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Abstract

Out-of-distribution (OOD) detection aims to identify the test
examples that do not belong to the distribution of training data.
The distance-based methods, which identify OOD examples
based on their distances from the centroids of in-distribution
(ID) examples, have demonstrated promising OOD detection
performance. However, the objectives utilized in prior ap-
proaches are typically designed for classification and thus
might not yield sufficient discriminative power to distinguish
between ID and OOD examples. Therefore, this paper pro-
poses a prototype-based contrastive learning framework for
OOD detection, which is termed provable Discriminative
Hyperspherical Embedding (DHE). The proposed framework
provides a theoretical analysis of inter-class dispersion, which
is proved to be fundamental in reducing the false positive
rate (FPR) on OOD examples. Based on this, we devise an
angular spread loss to achieve the maximal dispersion of the
prototypes of different classes prior to training. Subsequently,
a prototype-enhanced contrastive loss is introduced to align
embeddings of ID examples closely with their correspond-
ing prototypes. In our proposed DHE, the maximal prototype
dispersion is theoretically proved, thereby avoiding the pit-
falls of local optima commonly encountered by most existing
methods. Experimental results demonstrate the effectiveness
of our proposed DHE, which showcases a remarkable reduc-
tion in FPR95 (i.e., 5.37% on CIFAR-100) and more than
doubling the computational efficiency when compared with
the state-of-the-art methods.

Code — https://github.com/Canoeszzp/DHE.

Introduction
Machine learning models are typically trained with the im-
plicit assumption that training data and test data share the
same distribution, which forms in-distribution (ID) scenario.
However, in many practical scenarios, a deployed neural
model could be inevitably exposed to the out-of-distribution
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(OOD) examples that deviate from the training distribu-
tion (Rawat and Wang 2017). As a result, the model will
be confused and incorrectly attribute the OOD examples into
ID classes, leading to risks in practically implementing AI
algorithms (Ulmer, Meijerink, and Cinà 2020; Yang et al.
2022).

To mitigate the risk caused by OOD data, OOD detec-
tion has been developed, which aims to determine whether
an input example is ID or OOD. The existing OOD de-
tection techniques can be roughly divided into four main
types, i.e., the confidence score-based methods (Hendrycks
and Gimpel 2017; Liang, Li, and Srikant 2018; Liu et al.
2020; Zhang et al. 2022; Morteza and Li 2022), the density-
based methods (Grathwohl et al. 2019; Ren et al. 2019),
data augmentation-based methods (DeVries and Taylor 2017;
Yun et al. 2019; Tack et al. 2020; Hendrycks et al. 2022;
Wu et al. 2023; Vishwakarma, Lin, and Vinayak 2024), and
the distance-based methods (Lee et al. 2018; Sehwag, Chi-
ang, and Mittal 2020; Sun et al. 2022; Ming et al. 2023;
Lu et al. 2024). Among these, the distance-based methods
have shown very encouraging performance by assuming that
OOD examples should be distant from the clusters of ID
data in the embedding space. This assumption enables the
learning of discriminative embeddings, which facilitates the
accurate identification of OOD examples. Previous meth-
ods, such as SSD+ (Sehwag, Chiang, and Mittal 2020) and
KNN+ (Sun et al. 2022), directly employ the existing con-
trastive loss (i.e., SupCon) (Khosla et al. 2020) to structurize
the embedding space. However, since SupCon loss is not
designed specifically for OOD detection tasks, it might not
yield sufficiently discriminative embeddings to distinguish
between ID and OOD examples. Most recently, Ming et al.
(2023) proposed a distance-based OOD detection method
termed CIDER, which employs the class-conditional von
Mises-Fisher (vMF) distribution (Mardia, Jupp, and Mardia
2000) to model the embeddings of ID inputs. In the training
phase, CIDER utilizes a compactness loss to drive the embed-
dings of ID examples around their corresponding prototypes,
where a dispersion loss is employed to ensure separation
among different prototypes.



Previous works (Sehwag, Chiang, and Mittal 2020; Sun
et al. 2022; Ming et al. 2023) have demonstrated that large
inter-class dispersion helps to improve the performance of
OOD detection. Nevertheless, current distance-based OOD
detection methods did not adequately explore the theoretical
foundations for the effectiveness of prototype dispersion. As
a result, the existing distance-based methods could be trapped
in local optima when conducting inter-class dispersion, which
leads to performance degradation and considerable waste of
computing resources. Therefore, in this work, we propose a
simple yet effective distance-based OOD detection method
called provable Discriminative Hyperspherical Embedding
(DHE) to obtain the embeddings that are highly discrimina-
tive in distinguishing ID and OOD examples. Specifically,
we conduct an in-depth theoretical analysis of inter-class
dispersion, which demonstrates that increasing inter-class
dispersion is beneficial for reducing the false positive rate
(FPR) of model on OOD examples. Inspired by these theoreti-
cal insights, we introduce an angular spread loss to maximize
prototype dispersion. Additionally, a prototype-enhanced con-
trastive (PEC) loss is utilized to ensure that the embeddings
of ID examples are closely around their corresponding proto-
types, which further enhances the discriminability of feature
embeddings. By this means, the proposed method theoreti-
cally guarantees the maximization of prototype dispersion,
which leads to a more reliable model than the previous mod-
els without theoretical foundations. Besides, since the proto-
types with maximal dispersion are efficiently pre-computed
before iterative classifier training, the computation burden
of our method is significantly reduced when compared with
existing methods.

It is worth noting that although our proposed DHE looks
similar to CIDER (Ming et al. 2023), they diverges fundamen-
tally in multiple key aspects. Specifically, our DHE theoreti-
cally ensures the maximization of dispersion among different
class prototypes. In contrast, CIDER cannot guarantee such
maximal inter-class dispersion among prototypes. Addition-
ally, we theoretically prove that increasing inter-class dis-
tance can enhance the ability to detect OOD examples when
a distance-based scoring function is adopted. However, such
theoretical justification is absent in CIDER. Consequently,
when compared with CIDER, our DHE achieves enhanced
training efficiency and superior OOD detection performance.
The contributions of this paper are summarized as follows:

• We provide new insights for distance-based OOD detec-
tion methods, which theoretically reveal that the inter-
class dispersion enhancement is helpful for improving the
OOD detection performance.

• We propose a simple yet effective prototype-based
contrastive learning framework termed provable
Discriminative Hyperspherical Embedding (DHE),
which can theoretically guarantee the maximization of
inter-class prototype dispersion. Note that the proto-
types of our method can be efficiently pre-computed
without any complicated and time-consuming network
optimization.

• Extensive experiments demonstrate the superiority of the
proposed DHE over existing methods in terms of both

false positive fate and efficiency. For example, CIFAR-
100 (Krizhevsky, Hinton et al. 2009) dataset, our method
surpasses the state-of-the-art method (i.e., CIDER), by
5.37% in FPR95 and only needs approximately half of
the computational time of CIDER.

Theoretical Implication
We consider multi-class classification, where X denotes the
input space and Yin = {1, 2, ...,K} denotes the label space
of ID data, with K denoting the total number of categories in
the training data. We assume access to the labeled training
set Dtr = {(xi, yi)}Ni=1, where xi ∈ X and yi ∈ Yin are
drawn i.i.d. from the joint distribution PX×Yin

. Here, N is
the size of training set. We also denote Pin as the marginal
distribution on X .

In open-world scenarios, machine learning models often
encounter OOD examples with labels yout that are not present
in the training data. That is to say, we have yout /∈ Yin, which
indicates that there is no overlap between the label space of
ID and OOD data. In other words, the label space of OOD
data, denoted as Yout does not intersect with the label space
of ID data i.e., Yin ∩Yout = ∅. The aim of OOD detection is
to identify whether an example x ∈ X is from Pin (ID) or not
(OOD). The decision can be made via a level set estimation:

Gτ (x) =

{
ID data Sθ(x) ≥ τ

OOD data Sθ(x) < τ
, (1)

where Sθ(·) is the scoring function related to the neural net-
work parameter θ, and τ represents the threshold. In Eq. (1),
examples are determined as ID data if their scores Sθ(x) ≥ τ
and as OOD data, otherwise. Here, setting a reasonable value
for τ can typically contribute to high identification accuracy.

The challenges of OOD detection encompass two aspects,
namely: 1) preventing ID examples from being erroneously
judged as OOD examples by the level set estimation (i.e.,
Eq. (1)), and 2) correctly identifying input OOD data with a
high probability. Therefore, to address the above challenges
and provide guidance for the subsequent algorithm design,
we conduct some useful theoretical analyses here.

To cope with the first challenge, we first establish a formal
definition of the threshold set T as
Definition 1. We denote the set of thresholds as T =
{τ : P (Sθ(xi) < τ) ≤ α, xi ∈ Pin}, where P (·) denotes
probability throughout this paper. These thresholds ensure
that the probability of mis-identifying an ID example xi from
Pin as OOD is less than a specified probability α (e.g., 0.05).

To address the first challenge, i.e., preventing ID examples
from being judged as OOD, it is essential to select an appro-
priate threshold τ in Definition 1. For a given probability α,
a small threshold is preferred, as it provides a tight level set
estimation that can decrease the probability of misidentifying
an ID example as OOD.
Lemma 2. Given a small probability α, an example xi ∈
Dtr, τ ∈ T , and the scoring function Sθ(·), then we have

τ ≤ E (Sθ(xi))− σ (Sθ(xi)) /
√
α, (2)

where E(·) represents the mathematical expectation, and
σ(·) is standard deviation. The equality holds if and



only if P (Sθ(xi) > 2E (Sθ(xi))− τα) = 0, where τα =
E (Sθ(xi))− σ (Sθ(xi)) /

√
α is the maximum threshold for

a given probability α.

The proof of the Lemma 2 is presented in Appendix A.1.
Based on Lemma 2, we can derive the level set estimation
with the threshold τ ≤ τα, which guarantees that the prob-
ability of mis-identifying an ID example as OOD is lower
than α. Therefore, the first challenge of OOD detection can
be addressed.

Building upon Lemma 2, we then proceed to address the
second challenge in OOD detection. The goal here is to con-
trol the error rate of an OOD example being mis-identified as
an ID one, and this is commonly evaluated by the FPR metric.
To achieve this, we aim to reveal the relationship of FPR
with inter-class distance, and that with intra-class distance.
Formally, we denote fθ : X → RD is the encoder with θ rep-
resenting the network parameters and D being the embedding
dimension, respectively. The embedding of input example is
denoted as zi = fθ(xi). For a given class c ∈ {1, 2, ...,K},
the class prototype is denoted as µc = E(zi|yi = c).

Theorem 3. If the scoring function Sθ : RD → R is
distance-based, then the FPR for estimating P (Gτα(x0) =
ID data) has FPR ∝ r̂n/r̂o, where x0 refers to an
OOD example, r̂n = E (E (∥zi − µc∥2 | yi = c)) de-
notes the average intra-class distances, and r̂o =
Ec1 ̸=c2

(
∥µc1 − µc2∥2

)
, c1, c2 ∈ {1, 2, ...,K} represents

the average inter-class distances.

Theorem 3 indicates that the FPR is proportional to r̂n and
is inversely proportional to r̂o when using a distance-based
scoring function. To reduce the FPR in OOD detection, we
can decrease r̂n and increase r̂o. Given that no OOD data
are involved during the training phase, Theorem 3 offers
strong theoretical guidance on constructing discriminative
embeddings z for the data x. The proof of Theorem 3 is
presented in Appendix A.2.

Method
Building on the insights from Theorem 3, we propose a train-
ing framework for acquiring suitable data embedding, so that
the second challenge of OOD detection can be addressed
from two crucial aspects, namely: 1) maximizing inter-class
distances to enhance category distinction; and 2) ensuring
the feature embeddings are closely around the corresponding
prototypes of the same class. The framework of our method
is shown in Figure 1. Firstly, prior to classifier training, we
initialize the prototypes by averaging the embeddings zi of
each class. Subsequently, we optimize the dispersion among
prototypes to obtain a set of maximally dispersed prototypes
M = {µc ∈ RD, c ∈ {1, 2, ...,K}}. During the classifier
training phase, the encoder fθ is trained to ensure that the
embeddings of ID examples are closely around their corre-
sponding prototypes.

Construction of Hyperspherical Embedding
We establish the embeddings using a hyperspherical model,
inspired by the benefits highlighted in (Khosla et al. 2020;
Wang and Isola 2020). The embedding z is positioned on a

unit hypersphere (∥zi∥2 = 1) and is modeled via the von
Mises-Fisher (vMF) distribution (Mardia, Jupp, and Mardia
2000). Here, the probability density function of z is posi-
tioned on the hypersphere can be defined as

pD(zi;µc, κ) = Zd(κ) exp
(
κz⊤i µc

)
, (3)

where κ ≥ 0 measures the concentration of the embeddings
around the prototype µc, and Zd(κ) is a normalization fac-
tor. As κ increases, the distribution of embeddings becomes
more concentrated around the corresponding µc. When κ
approaches to 0, the embeddings are uniformly distributed
across the hypersphere. Based on this, the normalized prob-
ability that the embedding zi belongs to category c can be
expressed as

P (yi = c | zi; {κ,µj}Kj=1) =
Zd (κ) exp

(
κz⊤i µc

)∑K
j=1 Zd(κ) exp

(
κz⊤i µj

)
=

exp
(
z⊤i µc/t

)∑K
j=1 exp

(
z⊤i µj/t

) ,
(4)

where t = 1/κ acts similarly to a temperature parameter.

Prototype Dispersion Maximization
To achieve the first training objective detailed at the beginning
of this section, namely maximizing inter-class distances to
enhance category distinction, we focus on the optimization
of class prototypes and explore the conditions that maximize
inter-class distance. To this end, we first provide the following
Theorem 4
Theorem 4. For any two classes i, j ∈ {1, 2, ...,K}, the
sum of squared distances between prototypes µi and µj is
upper bounded by

1

2

∑
i ̸=j

∥µi − µj∥22 ≤ K2, (5)

where the equality holds if and only if

µ⊤
i µj =

{
1, i = j

1/(1−K), i ̸= j
. (6)

Theorem 4 specifies the optimal conditions for maximizing
the distance between different class prototypes, and its proof
is available in Appendix A.3.

Motivate by Theorem 4, we introduce an angular spread
loss to encourage maximal dispersion among class proto-
types,which is

Las=
1

K

K∑
i=1

log
1

K−1

K∑
j=1

I{i ̸= j}e[µ
⊤
i µj−1/(1−K)]

2
/t,

(7)
where t is a temperature parameter. Here, the indicator func-
tion I{·} equals 1 if the argument inside the bracket holds,
and 0 otherwise. Minimizing the angular spread loss Las

is equivalent to finding the global optimum of a quadratic
function, which ensures that the maximal dispersion of pro-
totypes can be achieved efficiently and reliably. Therefore,
the maximal dispersion of class prototypes can be guaranteed
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Figure 1: Overview of our proposed framework. Prior to the training phase, the dispersion between class prototypes is maximized
by optimizing the angular spread loss. During model training, we further minimize our prototype-enhanced contrastive (PEC) loss
to encourage the embedding of ID examples to align closely with their corresponding class prototypes. As a result, discriminative
hyperspherical embeddings can be obtained to enhance the distinction between ID examples and OOD examples.

both theoretically and empirically. In practice, we firstly use
Dtr = {(xi, yi)}Ni=1 to initialize the prototypes, and then cal-
culate the loss Las. Afterward, the prototypes will be updated
based on the gradient of the Las, in order to maximize the
distance among the class prototypes. The specific optimiza-
tion process has been explained in Appendix B. Note that
prototype initialization and optimization are performed prior
to the subsequent classifier training, and the prototypes are
kept unchanged throughout the training of classifier.

Prototype-Enhanced Contrastive Embedding
To achieve the second training objective, i.e., ensuring the
embeddings of ID examples are closely around their cor-
responding prototypes sharing the same class, we use the
training dataset Dtr = {(xi, yi)}Ni=1 to perform maximum
likelihood estimation (MLE), which is formulated as

argmax
θ

∏N

i=1
p(yi|zi; {κ,µc}Kc=1), (8)

where zi is the embedding of xi, and µc belongs to the
set of class prototypes M = {µc, c ∈ {1, 2, ...,K}}.
Thanks to the universal approximation power of neural net-
works (Hornik, Stinchcombe, and White 1989), we propose
a prototype-based contrastive learning method for solving
the MLE problem in Eq. (8). Specifically, we introduce a
prototype-enhanced contrastive (PEC) loss to encourage em-
beddings to closely align with their class prototypes, which
can be expressed as

Lpec = − 1

N

∑N

i=1

∑K

c=1
I{yi = c} log (pci ) . (9)

Here, pci quantifies the normalized proximity-based probabil-
ity between the embedding zi and the corresponding class
prototype µc, which is denoted as

pci =
exp

(
z⊤i µc/t

)∑K
j=1 exp

(
z⊤i µj/t

) .
The employment of PEC loss pushes the data embeddings of
the same class close to their corresponding prototypes, which
satisfies the second training objective mentioned above.

To summarize, the proposed method theoretically guaran-
tees the maximization of prototype dispersion through the
optimization of the proposed angular spread loss Las. Sub-
sequently, the utilization of PEC loss Lpec helps align the
embeddings of input examples with their corresponding class
prototypes, which enhances the compactness of the intra-
class embeddings. In a word, the effectiveness of our method
in OOD detection can be primarily attributed to the theoreti-
cal guarantee for maximal prototype dispersion and the tight
clustering of inter-class embeddings. Further details about
the entire training framework are provided in Appendix B.

Experiments
In this section, we present a series of experiments designed
to demonstrate the effectiveness of the proposed DHE in
OOD detection. We compare DHE with multiple state-of-the-
art methods across various benchmarks, including CIFAR-
10 (Krizhevsky, Hinton et al. 2009), CIFAR-100 (Krizhevsky,
Hinton et al. 2009), and ImageNet-100 (Deng et al. 2009).
Our experiments are designed to validate the theoretical



advantages of DHE, especially its ability to enhance dis-
criminability between ID and OOD examples. Additionally,
we evaluate the computational efficiency to verify that our
method can achieve reduced training time without compro-
mising performance.

Experimental Setup
Datasets and training details. We use the CIFAR-
10 (Krizhevsky, Hinton et al. 2009) and CIFAR-
100 (Krizhevsky, Hinton et al. 2009) as our ID datasets, which
have been commonly adopted in this field. For evaluation of
OOD detection, we use five commonly-used datasets, includ-
ing SVHN (Netzer et al. 2011), Places365 (Zhou et al. 2017),
Texture (Cimpoi et al. 2014), LSUN (Yu et al. 2015), and
iSUN (Xu et al. 2015). In our main experiments, ResNet-18
is employed as the backbone for CIFAR-10, and ResNet-34
is deployed on CIFAR-100. The model is trained by using
stochastic gradient descent (SGD) with the momentum and
the weight decay setting to 0.9 and 10−4, respectively. Be-
sides, we keep our hyperparameters the same as those used
in CIDER (Ming et al. 2023) and ReweightOOD (Regmi
et al. 2024b). Specifically, we set the initial learning rate
to 0.5 with cosine scheduling, maintain a batch size of 512,
and conduct training for a duration of 500 epochs. The em-
bedding dimension D is set to 128 for our projector, which
is also consistent with the existing research (Khosla et al.
2020; Sun et al. 2022; Ming et al. 2023). The temperature t
in our method is set to 0.1. Additional experimental details
are provided in Appendix C.1.

OOD detection score. Our framework is designed to learn
discriminative representations. In our main experiments, we
evaluate the performance of our method using KNN (Sun
et al. 2022), which is a non-parametric distance-based OOD
detection approach. Concretely, if the distance between the
input example and its K-th nearest example in the training set
exceeds a predetermined threshold, the example is classified
as OOD. Since the features of all examples are normalized
to the unit norm, the distance metric here becomes the co-
sine similarity between feature vectors. To ensure fairness in
comparison, we also employ the widely used Mahalanobis
distance (Lee et al. 2018) for OOD data judgement.

Evaluation metric. To reveal the effectiveness of the pro-
posed DHE, we utilize two common metrics: 1) the false
positive rate of OOD examples when the true positive rate
of ID examples is at 95% (i.e.,FPR95), and 2) the area under
the receiver operating characteristic curve (AUROC).

Main Results
DHE outperforms different baseline methods. In Table 1,
we present the outcomes of our experiments conducted un-
der the standard setting, where CIFAR-100 serves as the ID
dataset and other datasets are deemed as OOD data. To en-
sure a fair comparison, we employ ResNet-34 trained on the
CIFAR-100 (ID) dataset, without accessing to any other ex-
ternal OOD datasets. We compare the proposed DHE with
two categories of methods: post-hoc methods and training
methods. The post-hoc methods include MSP (Hendrycks

Type Method Average (%)
FPR↓ AUROC↑

Post-hoc

MSP (ICLR’17) 83.57 75.27
ODIN (ICLR’18) 78.70 78.91
Mahalanobis (NeurIPS’18) 80.15 79.53
Energy (NeurIPS’20) 70.72 82.55

Training

GODIN (CVPR’20) 87.57 70.97
CE+SimCLR (ICML’20) 59.62 84.15
CSI (NeurIPS’20) 67.48 84.83
SSD+ (ICLR’20) 62.33 86.64
KNN+ (ICML’22) 62.21 86.39
CIDER (ICLR’23) 48.89 87.39
T2FNORM (CVPR’24) 69.07 83.01
ReweightOOD (CVPR’24) 56.74 86.03
DHE (ours) 43.52 87.82

Table 1: Comparison of OOD detection performance aver-
aged over five OOD benchmarks when CIFAR-100 is adopted
as ID dataset. “↑” denotes larger values are better, and “↓”
indicates smaller values are better. Bold numbers indicate the
best results. The specific result on each of the five datasets is
displayed in Appendix C.2.

and Gimpel 2017), ODIN (Liang, Li, and Srikant 2018), Ma-
halanobis (Lee et al. 2018), and Energy (Liu et al. 2020).
The training methods include GODIN (Hsu et al. 2020),
T2FNORM (Regmi et al. 2024a), and several related con-
trastive learning methods such as SimCLR (Chen et al. 2020),
CSI (Tack et al. 2020), SSD+ (Sehwag, Chiang, and Mittal
2020), KNN+ (Sun et al. 2022), CIDER (Ming et al. 2023),
and ReweightOOD (Regmi et al. 2024b).

As shown in Table 1, the proposed DHE significantly en-
hances the OOD detection performance and achieves superior
performance than the baseline methods. Unlike the existing
distance-based approaches that employ contrastive loss such
as KNN+ and SSD+, DHE can effectively maximize the
inter-class dispersion specifically for OOD detection. As a
result, DHE achieves a reduction of 18.81% compared with
SSD+ and 18.69% compared with KNN+ on FPR95, re-
spectively. Moreover, DHE outperforms the latest baseline
methods T2FNORM and ReweightOOD, reducing FPR95 by
25.55% and 13.22%, respectively. Besides, DHE surpasses
the most relevant baseline method, i.e., CIDER, by 5.37%
on FPR95. Note that the main difference between the pro-
posed DHE and CIDER lies in that DHE is provable to obtain
the prototypes with maximal dispersion, which can greatly
enhance the discriminative power of embeddings. Although
CIDER attempts to optimize inter-class prototype dispersion
during the training of classifier, it is achieved by an iterative
optimization process and may be trapped in local optima.
More experimental results when CIFAR-10 as ID data are
presented in Appendix C.2.

DHE demonstrates effectiveness across different distance-
based scores. The comparison of different OOD detection
scores is exhibited in Table 2. Here, we consider two com-
monly used scoring functions in OOD detection, namely
KNN (Sun et al. 2022) and Mahalanobis distance (Lee et al.
2018). Under both KNN (non-parametric) and Mahalanobis



Metric Method Average (%)
FPR↓ AUROC↑

KNN

KNN+ 62.21 86.39
CIDER 48.89 87.39
ReweightOOD 56.74 86.03
DHE(ours) 43.52 87.82

Mahalanobis

SSD+ 62.33 86.64
CIDER 49.37 87.98
ReweightOOD 53.94 88.25
DHE(ours) 44.61 89.01

Table 2: Results obtained by adopting different distance-
based scores when using CIFAR-100 as ID dataset. The
results averaged over five OOD benchmarks are reported.
“↑” denotes larger values are better and “↓” indicates smaller
values are better. Bold numbers indicate the best results.

distance (parametric) scores, DHE outperforms the existing
approaches. Specifically, when adopting KNN distance, DHE
outperforms KNN+ (SupCon + KNN) by 18.69%, CIDER
by 5.37%, and ReweightOOD by 13.22% in terms of FPR95,
respectively. Additionally, when employing Mahalanobis dis-
tance, DHE surpasses SSD+ (SupCon + Mahalanobis) by
18.81%, CIDER by 4.76%, and ReweightOOD by 9.33% in
terms of FPR95, respectively. All these statistics indicate the
effectiveness of the proposed DHE under different distance-
based scores. The detailed results on each dataset related to
Table 2 are presented in Appendix C.2.

DHE is competitive on large-scale datasets. To evaluate
the performance of DHE in more realistic scenarios, experi-
ments are performed on challenging large-scale benchmarks.
Specifically, we used ImageNet-100 as the ID dataset, which
is a subset of ImageNet (Deng et al. 2009) consisting of
100 randomly sampled classes. Meanwhile, we employed
the same OOD datasets as those adopted in CIDER (Ming
et al. 2023), including subsets of iNaturalist (Van Horn et al.
2018), SUN (Xiao et al. 2010), Places365 (Zhou et al. 2017),
and Texture (Cimpoi et al. 2014). To improve the efficiency,
we fine-tuned a pre-trained ResNet-50 for 10 epochs with
an initial learning rate of 0.005. Concretely, we focus on the
parameters of the last residual block and the projector, while
freezing the weights in other modules. The performance (in
AUROC) is shown in Figure 2, where it can be observed that
DHE outperforms CIDER and other distance-based methods
across all datasets. This further demonstrates the advantage
of our approach in maximizing prototype dispersion. Detailed
experimental results are available in Appendix C.2.

Discussions
DHE enhances the discrimination between ID and OOD
examples. We visualize the embedding distributions of ID
(CIFAR-10) and OOD (LSUN) data using UMAP (McInnes
et al. 2018) in Figure 3. A notable observation is that the
embeddings obtained by DHE exhibit better discriminabil-
ity between ID and OOD embeddings when compared with
those trained with cross-entropy (CE) loss. Additionally, we
estimated the density distribution of ID and OOD examples
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Figure 2: OOD detection performance obtained by fine-
tuning the pre-trained ResNet-50 model on ImageNet-100.

regarding KNN scores in Figure 3, which further verifies the
strong performance of DHE in separating ID and OOD data.

DHE exhibits high computational efficiency. Figure 4
exhibits the training time (seconds per epoch) of different
methods when using the CIFAR-100 dataset (ID) with a
ResNet-34 model. Here, we compare our proposed DHE
with the CE loss and the popular contrastive learning method
SupCon (Khosla et al. 2020) that is utilized in KNN+ (Sun
et al. 2022) and SSD+ (Sehwag, Chiang, and Mittal 2020).
We also compare our proposed DHE with CIDER (Ming et al.
2023), which is specially designed for OOD detection. The
results clearly show that DHE maintains competitive com-
putational efficiency, when compared with CE and SupCon.
It is worth noting that our method reduces training time by
62% when compared with CIDER. This is due to that our
method achieves maximal prototype dispersion before train-
ing, while CIDER continuously updates prototypes using an
exponential-moving-average (EMA) approach (Grathwohl
et al. 2020) during training. This ongoing optimization in
CIDER introduces significant computational overhead.

Related Work
Out-of-Distribution Detection
In recent years, with the flourishing development of the ma-
chine learning community, OOD detection has attracted in-
creasing attention. The key to OOD detection is the devel-
opment of an effective ID-OOD binary classifier (Yang et al.
2021; Szyc, Walkowiak, and Maciejewski 2023). The foun-
dation of OOD detection research stems from the approach
that uses the maximum softmax probability (Hendrycks and
Gimpel 2017) to identify OOD examples. Subsequently, vari-
ous methods for OOD detection have emerged, such as the
gradient-based methods (Liang, Li, and Srikant 2018; Huang,
Geng, and Li 2021) and density-based methods (Grathwohl
et al. 2019; Ren et al. 2019). In the meanwhile, methods
deriving improved OOD scores based on neural network out-
puts (Hendrycks and Gimpel 2017; Liang, Li, and Srikant
2018; Hsu et al. 2020; Liu et al. 2020; Wang et al. 2021;
Zhang et al. 2022; Regmi et al. 2024a) and utilizing strong
data augmentation (DeVries and Taylor 2017; Yun et al. 2019;
Hendrycks et al. 2019; Thulasidasan et al. 2019; Mohseni
et al. 2020; Tack et al. 2020; Ahmadian, Lindsten, and Zhou
2021; Hendrycks et al. 2022; Wang et al. 2022; Wu et al.
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Figure 4: Training time of different methods.

2023; Vishwakarma, Lin, and Vinayak 2024) have also shown
promising results. Among these newly developed OOD detec-
tion techniques, the distance-based methods (Lee et al. 2018;
Sehwag, Chiang, and Mittal 2020; Tack et al. 2020; Ren et al.
2021; Sun et al. 2022; Ming et al. 2023; Ghosal, Sun, and
Li 2024) have gained intensive attention due to their theo-
retical clarity and effectiveness. They are established based
on the principle that OOD examples should demonstrate sub-
stantial separation from the centroids or prototypes of ID
classes during testing. Our work contributes to this area by
designing a distance-based OOD detection approach within
a hyperspherical embedding space.

Contrastive Learning
Contrastive learning is a self-supervised learning method that
aims to learn representations by comparing the similarities
and differences between data examples. It can be leveraged
to enhance OOD detection by training models to maximize
the similarity within the same class and minimize the similar-
ity across different classes, simultaneously. Recent advance-
ments in contrastive representation learning methods, such as
SimCLR (Chen et al. 2020) and SupCon (Khosla et al. 2020),
have paved the way for distance-based approaches for OOD
detection. For example, the CSI (Tack et al. 2020) examines
the impact of various data augmentations on OOD detection

via SimCLR. Besides, SSD+ (Sehwag, Chiang, and Mittal
2020) and KNN+ (Sun et al. 2022) leverage SupCon to con-
struct embeddings that are more effective for OOD detection.
Furthermore, methods such as VOS (Du et al. 2022b) and
NPOS (Tao et al. 2023) enhance OOD detection by contrast-
ing synthesized OOD examples with training data to refine
the decision boundaries between ID and OOD examples. Ad-
ditionally, some recent works (Du et al. 2022a; Ming et al.
2023; Tao et al. 2023; Lu et al. 2024) that adopt vMF distri-
bution (Mardia, Jupp, and Mardia 2000) for data modeling
provide clear insights into hyperspherical embedding. Specif-
ically, CIDER (Ming et al. 2023) proposed an optimization
strategy that pushes examples from the same class close to
their corresponding prototypes while ensuring maximal dis-
persion among different classes. However, minimizing the
dispersion loss may lead to convergence to local minima
and requires extensive computational resources. To address
this challenge, our proposed method theoretically ensures the
attainment of globally optimal dispersed prototypes before
the classifier training. This pre-training strategy not only en-
hances the OOD detection performance but also significantly
reduces computational demands.

Conclusion
In this work, we propose DHE, a simple yet effective
prototype-based contrastive learning framework for OOD de-
tection. Our theoretical analysis demonstrates that inter-class
dispersion is crucial for effectively distinguishing between
ID and OOD examples. Inspired by this, we devise an angu-
lar spread loss to provably maximize the dispersion among
prototypes. Furthermore, we introduce a prototype-enhanced
contrastive loss to ensure that embeddings are tightly clus-
tered around their corresponding class prototypes. By si-
multaneously maximizing the inter-class distances and min-
imizing the intra-class distance, the ID-OOD separability
can be greatly enhanced. Building on the above-mentioned
theoretical foundation, our empirical evaluations reveal that
DHE exhibits superior OOD detection performance and com-
putational efficiency on common OOD benchmarks, when
compared with the state-of-the-art baseline methods.



Acknowledgments
This research is supported by the National Natural Sci-
ence Foundation of China (NSFC) under Grants Nos.
62336003, 12371510, 62172222, and 62006119; the NSF
for Distinguished Young Scholars of Jiangsu Province
(No. BK20220080); the NSF of Jiangsu Province (No.
BK20241469); the Postdoctoral Fellowship Program of
the China Postdoctoral Science Foundation (CPSF) (No.
GZC20233503); the Project funded by the China Postdoctoral
Science Foundation (Nos. 2023M741708, 2023TQ0159);
and the National Key Research and Development Program
of China (International Collaboration Special Project, No.
SQ2023YFE0102775).

References
Ahmadian, A.; Lindsten, F.; and Zhou, Z.-H. 2021.
Likelihood-Free Out-of-Distribution Detection With Invert-
ible Generative Models. In IJCAI, 2119–2125.
Chen, T.; Kornblith, S.; Norouzi, M.; and Hinton, G. 2020.
A Simple Framework for Contrastive Learning of Visual
Representations. In ICML, 1597–1607. PMLR.
Cimpoi, M.; Maji, S.; Kokkinos, I.; Mohamed, S.; and
Vedaldi, A. 2014. Describing Textures in the Wild. In CVPR,
3606–3613.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A Large-Scale Hierarchical Image
Database. In CVPR, 248–255. Ieee.
DeVries, T.; and Taylor, G. W. 2017. Improved Regulariza-
tion of Convolutional Neural Networks With Cutout. arXiv
preprint arXiv:1708.04552.
Du, X.; Gozum, G.; Ming, Y.; and Li, Y. 2022a. Siren: Shap-
ing Representations for Detecting Out-of-Distribution Ob-
jects. NeurIPS, 35: 20434–20449.
Du, X.; Wang, Z.; Cai, M.; and Li, Y. 2022b. VOS: Learning
What You Don’t Know by Virtual Outlier Synthesis. In ICLR.
Ghosal, S. S.; Sun, Y.; and Li, Y. 2024. How to Overcome
Curse-of-Dimensionality for Out-of-Distribution Detection?
In AAAI, volume 38, 19849–19857.
Grathwohl, W.; Wang, K.-C.; Jacobsen, J.-H.; Duvenaud,
D.; Norouzi, M.; and Swersky, K. 2019. Your Classifier Is
Secretly an Energy Based Model and You Should Treat It
Like One. In ICLR.
Grathwohl, W.; Wang, K.-C.; Jacobsen, J.-H.; Duvenaud,
D.; Norouzi, M.; and Swersky, K. 2020. Mopro: Webly
Supervised Learning With Momentum Prototypes. In ICLR.
Hendrycks, D.; and Gimpel, K. 2017. A Baseline for De-
tecting Misclassified and Out-of-Distribution Examples in
Neural Networks. In ICLR.
Hendrycks, D.; Mu, N.; Cubuk, E. D.; Zoph, B.; Gilmer, J.;
and Lakshminarayanan, B. 2019. Augmix: A Simple Data
Processing Method to Improve Robustness and Uncertainty.
In ICLR.
Hendrycks, D.; Zou, A.; Mazeika, M.; Tang, L.; Li, B.; Song,
D.; and Steinhardt, J. 2022. Pixmix: Dreamlike Pictures Com-
prehensively Improve Safety Measures. In CVPR, 16783–
16792.

Hornik, K.; Stinchcombe, M.; and White, H. 1989. Multilayer
Feedforward Networks Are Universal Approximators. Neural
Networks, 2(5): 359–366.
Hsu, Y.-C.; Shen, Y.; Jin, H.; and Kira, Z. 2020. Generalized
Odin: Detecting Out-of-Distribution Image Without Learning
From Out-of-Distribution Data. In CVPR, 10951–10960.
Huang, R.; Geng, A.; and Li, Y. 2021. On the Importance
of Gradients for Detecting Distributional Shifts in the Wild.
NeurIPS, 34: 677–689.
Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola,
P.; Maschinot, A.; Liu, C.; and Krishnan, D. 2020. Supervised
Contrastive Learning. NeurIPS, 33: 18661–18673.
Krizhevsky, A.; Hinton, G.; et al. 2009. Learning Multiple
Layers of Features From Tiny Images.
Lee, K.; Lee, K.; Lee, H.; and Shin, J. 2018. A Simple Unified
Framework for Detecting Out-of-Distribution Samples and
Adversarial Attacks. NeurIPS, 31.
Liang, S.; Li, Y.; and Srikant, R. 2018. Enhancing the Re-
liability of Out-of-Distribution Image Detection in Neural
Networks. In ICLR.
Liu, W.; Wang, X.; Owens, J.; and Li, Y. 2020. Energy-Based
Out-of-Distribution Detection. NeurIPS, 33: 21464–21475.
Lu, H.; Gong, D.; Wang, S.; Xue, J.; Yao, L.; and Moore,
K. 2024. Learning With Mixture of Prototypes for Out-of-
Distribution Detection. In ICLR.
Mardia, K. V.; Jupp, P. E.; and Mardia, K. 2000. Directional
Statistics, volume 2. Wiley Online Library.
McInnes, L.; Healy, J.; Saul, N.; and Grossberger, L. 2018.
UMAP: Uniform Manifold Approximation and Projection.
The Journal of Open Source Software, 3(29): 861.
Ming, Y.; Sun, Y.; Dia, O.; and Li, Y. 2023. How to Exploit
Hyperspherical Embeddings for Out-of-Distribution Detec-
tion? In ICLR.
Mohseni, S.; Pitale, M.; Yadawa, J.; and Wang, Z. 2020. Self-
Supervised Learning for Generalizable Out-of-Distribution
Detection. In AAAI, volume 34, 5216–5223.
Morteza, P.; and Li, Y. 2022. Provable Guarantees for Under-
standing Out-of-Distribution Detection. In AAAI, volume 36,
7831–7840.
Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; Ng,
A. Y.; et al. 2011. Reading Digits in Natural Images With Un-
supervised Feature Learning. In NeurIPS Workshop, volume
2011, 7. Granada, Spain.
Rawat, W.; and Wang, Z. 2017. Deep Convolutional Neural
Networks for Image Classification: A Comprehensive Review.
Neural Computation, 29(9): 2352–2449.
Regmi, S.; Panthi, B.; Dotel, S.; Gyawali, P. K.; Stoyanov,
D.; and Bhattarai, B. 2024a. T2FNORM: Train-Time Feature
Normalization for OOD Detection in Image Classification.
In CVPR, 153–162.
Regmi, S.; Panthi, B.; Ming, Y.; Gyawali, P. K.; Stoyanov, D.;
and Bhattarai, B. 2024b. ReweightOOD: Loss Reweighting
for Distance-Based OOD Detection. In CVPR, 131–141.



Ren, J.; Fort, S.; Liu, J.; Roy, A. G.; Padhy, S.; and Laksh-
minarayanan, B. 2021. A Simple Fix to Mahalanobis Dis-
tance for Improving Near-OOD Detection. arXiv preprint
arXiv:2106.09022.
Ren, J.; Liu, P. J.; Fertig, E.; Snoek, J.; Poplin, R.; Depristo,
M.; Dillon, J.; and Lakshminarayanan, B. 2019. Likelihood
Ratios for Out-of-Distribution Detection. NeurIPS, 32.
Sehwag, V.; Chiang, M.; and Mittal, P. 2020. SSD: A Unified
Framework for Self-supervised Outlier Detection. In ICLR.
Sun, Y.; Ming, Y.; Zhu, X.; and Li, Y. 2022. Out-of-
Distribution Detection With Deep Nearest Neighbors. In
ICML, 20827–20840. PMLR.
Szyc, K.; Walkowiak, T.; and Maciejewski, H. 2023. Why
Out-of-Distribution Detection Experiments Are Not Reliable-
Subtle Experimental Details Muddle the OOD Detector Rank-
ings. In UAI, 2078–2088. PMLR.
Tack, J.; Mo, S.; Jeong, J.; and Shin, J. 2020. Csi: Nov-
elty Detection Via Contrastive Learning on Distributionally
Shifted Instances. NeurIPS, 33: 11839–11852.
Tao, L.; Du, X.; Zhu, J.; and Li, Y. 2023. Non-Parametric
Outlier Synthesis. In ICLR.
Thulasidasan, S.; Chennupati, G.; Bilmes, J. A.; Bhat-
tacharya, T.; and Michalak, S. 2019. On Mixup Training:
Improved Calibration and Predictive Uncertainty for Deep
Neural Networks. NeurIPS, 32.
Ulmer, D.; Meijerink, L.; and Cinà, G. 2020. Trust Issues:
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Appendix for “Provable Discriminative Hyperspherical Embedding”

In the appendix part, we provide additional details that have not been fully elaborated in the main paper. First, in Appendix A, we
present detailed proofs of the theoretical results mentioned in the paper. Additionally, in Appendix B, we detail the algorithmic
implementation of the proposed DHE. Next, in Appendix C, we report a range of experimental settings, including parameter
configurations and detailed experimental results. Finally, in Appendix D, we discuss the limitation and broad impact of this work.

A. Proofs
A.1 Proof of Lemma 2
Proof. Given an example xi ∈ Pin, a scoring function Sθ(·), a level set estimation Gτ (·), and τ satisfying the Definition 1, the
probability that the example will be classified to be OOD data is represented as

P (Gτ (xi) = OOD data)
= P (Sθ(xi) < τ)

= P (Sθ(xi)− E(Sθ(xi)) < τ − E(Sθ(xi)))

≤ P (|Sθ(xi)− E(Sθ(xi))| > E(Sθ(xi))− τ)

= P
(
[Sθ(xi)− E (Sθ(xi))]

2
> [E (Sθ(xi))− τ ]

2
)

≤ E
(
[Sθ(xi)− E(Sθ(xi))]

2
)
/ [E(Sθ(xi))− τ ]

2
,

(1)

where the last inequality dues to the Markov’s inequality. To ensure that P (Gτ (xi) = OOD data) ≤ α, we only need to make
the right-hand side of the last inequality smaller than α, that is

E
(
[Sθ(xi)− E(Sθ(xi))]

2
)
/ [E(Sθ(xi))− τ ]

2 ≤ α. (2)

By solving Eq. (2), we get
τ ≤ E (Sθ(xi))− σ (Sθ(xi)) /

√
α,

where σ(·) denotes standard deviation. The equality in Eq.(2) holds if and only if P (Sθ(xi) > 2E [Sθ(xi)]− τα) = 0, which
is governed by the condition under which equality holds in Markov’s inequality. Here, τα = E (Sθ(xi)) − σ (Sθ(xi)) /

√
α

represents the maximal threshold derived from α. This formally proves Lemma 2.

A.2 Proof of Theorem 3
Proof. To simulate the lack of prior knowledge regarding OOD distribution, we assume that the OOD example x0 follows a
distribution with a probability density function p(x0) = π(x0), where π stands for an unknown distribution. Although the exact
distribution of OOD examples is unknown, it is reasonable to expect that as the embedding space expands, the probability of an
OOD example occurring in a specific region decreases. As a result, when x0 is processed by a encoder parameterized by θ, p(x0)
can be rewritten as p̂θ(x0) = πθ(x0)/V . Here, V is a factor that measures the size of the embedding space, which is used to
normalize the distribution p(x0) within the embedding space. Given a scoring function Sθ(·) and a detector Gτα(·), we have

FPR = P (Gτα(x0) = ID data) =
∫
Sθ(x0)≥τα

p̂θ(x0) dx0. (3)

If the scoring function Sθ(·) is distance-based, such as the Mahalanobis distance (Lee et al. 2018) defined by

Sθ(x0) = max
c∈{1,2,...,K}

{
− (fθ(x0)− µc)

⊤
Σ−1 (fθ(x0)− µc)

}
, (4)

the FPR in Eq. (3) can be reformulated as

FPR =

∫
Sθ(x0)≥τα

p̂θ(x0) dx0

=

∫
Sθ(x0)≥τα

πθ(x0)

V
dx0

=
πθ(x

′
0)VSθ(x0)≥τα

V
.

(5)



In Eq. (5), πθ(x
′
0) represents the probability density at a certain point in the embedding space, as guaranteed by the mean value

theorem for integrals. The notation VSθ(x0)≥τα denotes the volume of the region that satisfies condition Sθ(x0) ≥ τα. Under the
premise that the scoring function Sθ(·) is distance-based, we have

VSθ(x0)≥τα = K
[σ (Sθ (xi)) /

√
α− E (Sθ (xi))]

D√
πD

Γ
(
D
2 + 1

) , (6)

where D is the dimension of embedding space. Furthermore, assuming that the norm of θ is upper bounded by a positive value
θmax, namely ∥θ∥ ≤ θmax, we can estimate V as

V =
(Cor̂o)

D
√
πD

Γ
(
D
2 + 1

) , (7)

where Co is an unknown constant, and r̂o = E
(
∥µc1 − µc2∥2

)
for c1, c2 ∈ {1, 2, ...,K} and c1 ̸= c2. Therefore, by combining

Eq. (6) and Eq. (7), Eq. (5) can be re-written as

FPR = πθ(x
′
0)K

[
σ (Sθ(xi)) /

√
α− E (Sθ(xi))

Cor̂o

]D
. (8)

We define the inter-class distance as r̂n = E (E (∥z− µc∥2 | y = c)). It is easy to observe that r̂n and σ (Sθ(xi)) /
√
α −

E (Sθ(xi)) have the same monotonicity. As a result, we have

FPR = πθ(x
′
0)K

[
σ(Sθ(xi))/

√
α− E (Sθ(xi))

Cor̂o

]D
∝ πθ(x

′
0)K

[
r̂n

Cor̂o

]D
∝ r̂n

r̂o
.

(9)

Therefore, when the inter-class distance of the ID increases and the intra-class distance decreases, namely increasing r̂o and
decreasing r̂n in Eq. (9), FPR will decrease. Formally, Theorem 3 is proved.

A.3 Proof of Theorem 4
Proof. We can derive that

1

2

∑
i ̸=j

∥µi − µj∥22

=
1

2

∑
i ̸=j

(
∥µi∥22 + ∥µj∥22 − 2µ⊤

i µj

)

=
1

2

2(K − 1)

K∑
i=1

∥µi∥22 −
∑
i ̸=j

2µ⊤
i µj


=

1

2

2K K∑
i=1

∥µi∥22 − 2

(
K∑
i=1

µi

)⊤( K∑
i=1

µi

)
≤ K

K∑
i=1

∥µi∥22.

(10)

When (
K∑
i=1

µi

)⊤( K∑
i=1

µi

)
= 0,

we further have
1

2

∑
i ̸=j

∥µi − µj∥22 =
1

2

(
2K

K∑
i=1

∥µi∥22

)
= K2.



Note that the final equality holds if and only if all the equalities hold, i.e., the distances between all pairs of class prototypes are
constant, namely:

∥µi − µj∥22 = constant, ∀ i ̸= j.

Therefore, we can easily derive that the final equality holds if and only if

µ⊤
i µj =

{
1, i = j

1/(1−K), i ̸= j
.

As a result, Theorem 4 is proved.

B. Algorithms
Algorithm 1 summarizes our scheme for inter-class prototype optimization. Through the optimization of our proposed angular
spread loss, we maximize the dispersion between class prototypes prior to the commencement of training.

Algorithm 1: Optimization of class prototypes
Input: Training dataset Dtr, initialized encoder fθ, and projector gϕ.
Output: A set of prototypes µc with c ∈ {1, 2, ...,K} satisfying Theorem 4.

1 Initialize prototypes µ(0)
c = 1

nc

∑N
i=1 I{yi = c}gϕ (fθ(xi)) for each class c ∈ {1, 2, ...,K};

/* No gradients are computed for initialized prototypes */
2 repeat
3 Calculate the angular spread loss:

4 Las =
1
K

∑K
i=1 log

1
K−1

∑K
j=1 I{j ̸= i}e[µ

⊤
i µj−1/(1−K)]

2
/t;

5 Update prototypes µ(n+1)
c = µ

(n)
c − η(n) ∂Las

∂µ
(n)
c

;

6 n← n+ 1;
7 until Las = 0;
8 µc = µ

(n)
c ;

Algorithm 2 illustrates our training framework for bringing ID embeddings close to their corresponding class
prototypes. By adhering to Theorem 4, we ensure that the embeddings of input examples are closely aligned
with their corresponding prototypes through the minimization of the prototype-enhanced contrastive loss func-
tion. This strategy significantly enhances the discrimination between the embeddings of ID and OOD examples.

Algorithm 2: Training framework of the proposed DHE
Input: Training dataset Dtr, number of epochs ε, initialized encoder fθ, projector gϕ, and prototypes µc obtained from

Algorithm 1.
Output: Encoder fθ and projector gϕ.

1 for epoch = 1 to ε do
2 for iter = 1 to N

b do
3 Sample a mini-batch B = {xi, yi}bi=1;
4 for i = 1 to b do
5 Compute embedding zi = gϕ (fθ(xi));
6 Calculate the prototype-enhanced contrastive loss:

7 Lpec = − 1
N

∑N
i=1

∑K
c=1 I{yi = c} log (pci );

8 Update the parameters of the encoder fθ and the projector gϕ via SGD;

C. Experimental details
C.1 Detailed experimental setting
Software and hardware. All methods are implemented in Pytorch 1.13 with one NVIDIA GeForce RTX-3090 GPU.

Architecture. The overall architecture of DHE consists of a projector on top of a deep neural network encoder. By following
the common practice and to ensure fair comparison with prior works (Lu et al. 2024; Ming et al. 2023; Sun et al. 2022), we
fix the output dimension of the projector to 128. For the CIFAR-10 and CIFAR-100 datasets, we employ a two-layer nonlinear
projector, which is consistent with the approaches used in KNN+ (Sun et al. 2022) and CIDER (Ming et al. 2023).



Details for experiments on CIFAR benchmark. For methods based on the outputs of pre-trained models, such as
MSP (Hendrycks and Gimpel 2017), ODIN (Liang, Li, and Srikant 2018), Mahalanobis (Lee et al. 2018), and Energy (Liu et al.
2020), we follow the settings in (Ming et al. 2023; Sun et al. 2022) for CIFAR-10 and train with the cross-entropy loss for 100
epochs. The initial learning rate is 0.1 and decays by a factor of 10 at the 50th, 75th, and 90th epochs, respectively. For the more
challenging dataset CIFAR-100, the training extends to 200 epochs. We use SGD with a momentum of 0.9 and a weight decay
10−4. For fair comparison, methods involving contrastive learning (Ming et al. 2023; Sehwag, Chiang, and Mittal 2020; Tack
et al. 2020) are trained for 500 epochs on CIFAR-10 and CIFAR-100 datasets. For CIDER (Ming et al. 2023), We maintain
consistency with the original work by setting the prototype update factor α to 0.95 for CIFAR-10 with ResNet-18 and 0.5 for
CIFAR-100 with ResNet-34. For DHE, we adopt the same key hyperparameters for contrastive losses, such as the initial learning
rate (0.5), temperature (0.1), and batch size (512), which is in consistent with those used in SSD+ (Sehwag, Chiang, and Mittal
2020) and CIDER (Ming et al. 2023), in order to demonstrate the effectiveness and simplicity of DHE.

Details for experiments on large-scale benchmark. We employ a pre-trained ResNet-50 model equipped with a two-layer
MLP projector for the ImageNet-100 dataset. In line with the protocols in CIDER (Ming et al. 2023), we fine-tune the last
residual block and the projection layer of a pre-trained ResNet-50 backbone for 10 epochs with a learning rate of 0.005.

C.2 Detailed experimental results
Results on CIFAR-100. In Table 3, we present the outcomes of our experiments conducted under the standard setting, where
CIFAR-100 serves as the ID dataset and other datasets are deemed as unseen OOD data. To ensure a fair comparison, we employ
ResNet-34 trained on the CIFAR-100 (ID) dataset, without access to any external outlier or OOD datasets. Our proposed DHE
has achieved the best results on most of the datasets. Moreover, we also observe that all the methods exhibit poor performance on
the Place365 dataset. This can largely be attributed to the overlapping features between Place365 (OOD) and CIFAR-100 (ID)
datasets, which makes OOD detection complicated. In Table 4, we report the experimental results when KNN and Mahalanobis
are used as scoring functions, which further demonstrate the superiority of our DHE over the compared methods.

Method
OOD Dataset AverageSVHN LSUN Places365 iSUN Texture

FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑
MSP (ICLR’17) 78.89 79.80 83.47 75.28 84.38 74.21 84.61 74.51 86.51 72.53 83.57 75.27
ODIN (ICLR’18) 70.16 84.88 76.36 80.10 82.16 75.19 79.54 79.16 85.28 75.23 78.70 78.91
Mahalanobis (NeurIPS’18) 87.09 80.62 84.15 79.43 84.63 73.89 83.18 78.83 61.72 84.87 80.15 79.53
Energy (NeurIPS’20) 66.91 85.25 59.77 86.69 81.41 76.37 66.52 84.49 79.01 79.96 70.72 82.55
GODIN (CVPR’20) 74.64 84.03 93.33 67.22 89.13 68.96 94.25 65.26 86.52 69.39 87.57 70.97
CE+SimCLR (ICML’20) 24.82 94.45 56.40 89.01 86.63 71.48 66.52 83.82 63.74 82.01 59.62 84.15
CSI (NeurIPS’20) 44.53 92.65 75.58 83.78 79.08 76.27 76.62 84.98 61.61 86.47 67.48 84.83
SSD+ (ICLR’20) 29.81 94.09 49.09 90.08 80.95 79.78 86.74 82.47 65.07 86.78 62.33 86.64
KNN+ (ICML’22) 46.26 91.95 48.99 89.30 80.54 77.61 75.26 84.30 59.99 88.77 62.21 86.39
CIDER (ICLR’23) 20.61 95.93 32.76 93.53 80.16 79.91 69.22 84.24 41.93 89.37 48.89 87.39
T2FNORM (CVPR’24) 83.80 79.17 28.46 92.90 81.35 76.45 84.64 81.69 67.13 84.86 69.07 83.01
ReweightOOD (CVPR’24) 32.40 93.66 43.41 87.79 79.61 77.23 71.14 83.62 57.13 87.86 56.74 86.03

DHE (ours) 18.46 95.90 14.59 96.20 84.20 69.01 67.53 85.20 32.82 92.77 43.52 87.82

Table 3: Comparison of OOD detection performance using CIFAR-100 as the ID dataset with ResNet-34. All values are in
percentages. “↑” denotes larger values are better, and “↓” indicates smaller values are better. Bold numbers indicate the best
results.

Metric Method
OOD Dataset AverageSVHN LSUN Places365 iSUN Texture

FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑

KNN

KNN+ 46.26 91.95 48.99 89.30 80.54 77.61 75.26 84.30 59.99 88.77 62.21 86.39
CIDER 20.61 95.93 32.76 93.53 80.16 79.91 69.22 84.24 41.93 89.37 48.89 87.39
ReweughtOOD 32.40 93.66 43.41 87.79 79.61 77.23 71.14 83.62 57.13 87.86 56.74 86.03
DHE(ours) 18.46 95.90 14.59 96.20 84.20 69.01 67.53 85.20 32.82 92.77 43.52 87.82

Mahalanobis

SSD+ 29.81 94.09 49.09 90.08 80.95 79.78 86.74 82.47 65.07 86.78 62.33 86.64
CIDER 16.33 96.63 27.00 95.81 81.94 74.60 77.60 83.70 43.96 89.17 49.37 87.98
ReweightOOD 19.41 96.21 44.05 91.77 75.74 80.05 77.76 83.69 52.73 89.52 53.94 88.25
DHE(ours) 15.85 96.77 10.25 97.97 82.64 74.70 75.14 83.75 39.15 91.84 44.61 89.01

Table 4: Comparison of different distance-based OOD detection scores using CIFAR-100 dataset (ID) with ResNet-34. We
evaluate both Mahalanobis distance and KNN scores (K = 300). All values are in percentages. “↑” denotes larger values are
better, and “↓” indicates smaller values are better. Bold numbers indicate the best results.



Results on CIFAR-10. In the main paper, we primarily focus on the challenging CIFAR-100 dataset. In this subsection, we
report the experimental results using CIFAR-10 as the ID dataset. Compared with CIFAR-100, CIFAR-10 is a less complex
benchmark, and thus some methods with contrastive loss yield comparable performance. Table 5 presents the experimental
results of DHE, where our DHE achieves the best results across most datasets. When compared with CIDER, our method attains
more discriminative embeddings by ensuring maximal prototype dispersion, and thus outperforming CIDER by 2.54% in FPR95.

Method
OOD Dataset AverageSVHN LSUN Places365 iSUN Texture

FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑
MSP (ICLR’17) 59.66 91.25 45.21 93.80 62.46 88.64 54.57 92.12 66.45 88.5 57.67 90.86
ODIN (ICLR’18) 53.78 91.30 10.93 97.93 43.40 90.98 28.44 95.51 55.59 89.47 38.43 93.04
Mahalanobis (NeurIPS’18) 9.24 97.80 67.73 73.61 83.50 69.56 6.02 98.63 23.21 92.91 37.94 86.50
Energy (NeurIPS’20) 54.41 91.22 10.19 98.05 42.77 91.02 27.52 95.59 55.23 89.37 38.02 93.05
GODIN (CVPR’20) 18.72 96.10 11.52 97.12 55.25 85.50 30.02 94.02 33.58 92.20 29.82 92.99
CE+SimCLR (ICML’20) 6.98 99.22 64.53 85.60 54.39 86.70 59.62 86.78 16.77 96.56 40.46 90.97
CSI (NeurIPS’20) 37.38 94.69 10.63 97.93 38.31 93.04 10.36 98.01 28.85 94.87 25.11 95.71
SSD+ (ICLR’20) 2.47 99.51 10.56 97.83 22.05 95.57 28.44 95.67 9.27 98.35 14.56 97.39
KNN+ (ICML’22) 2.70 99.61 7.89 98.01 23.05 94.88 24.56 96.21 10.11 97.43 13.66 97.23
CIDER (ICLR’23) 2.32 99.34 3.99 99.23 27.67 94.46 16.63 96.77 16.15 97.42 13.35 97.44
T2FNORM (CVPR’24) 7.30 98.39 3.17 99.32 37.56 92.71 21.78 96.55 26.95 95.46 19.35 96.47
ReweightOOD (CVPR’24) 2.67 99.83 4.48 99.06 26.78 94.69 17.90 96.33 6.22 98.88 11.61 97.76

DHE (ours) 2.04 99.6 3.01 99.32 25.56 94.99 15.92 97.23 7.54 98.68 10.81 97.96

Table 5: Comparison of OOD detection performance using CIFAR-10 as the ID dataset with ResNet-18. All values are in
percentages. “↑” denotes larger values are better, and “↓” indicates smaller values are better. Bold numbers indicate the best
results.

Results on ImageNet-100. Recently, the deep learning community has increasingly favored the practice of fine-tuning pre-
trained models, as training a model from scratch becomes inefficient with the growth of dataset size. Therefore, it is essential
to evaluate the efficacy of DHE when applied to the fine-tuned models. We report the performance of DHE on the large-scale
benchmark in Table 6. Specially, DHE surpasses other methods across all datasets. This demonstrates the power of DHE in
handling complex tasks.

Method
OOD Dataset AverageiNaturalist Places365 Texture SUN

FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑
SSD+ 30.16 94.69 51.67 90.87 8.34 98.64 45.37 90.52 33.89 93.68
KNN+ 30.58 94.72 50.90 90.92 8.58 98.54 46.48 90.43 34.14 93.65
CIDER 29.74 94.64 49.68 91.03 5.08 98.98 43.90 90.69 32.10 93.84
DHE(ours) 25.32 95.95 48.56 91.11 5.78 98.99 43.80 91.31 30.87 94.34

Table 6: OOD detection performance of different methods achieved by fine-tuning the pre-trained ResNet-50 model on ImageNet-
100. All values are in percentages. “↑” denotes larger values are better, and “↓” indicates smaller values are better. Bold numbers
indicate the best results.

ID Dataset
OOD Dataset AverageSVHN LSUN Places365 iSUN Texture

FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑
CIFAR-10 1.69±1.32 99.67±0.11 3.83±1.17 99.24±0.31 25.49±3.94 95.01±0.18 20.66±3.72 96.62±0.48 7.76±1.34 98.66±0.26 11.89±1.44 97.84±0.23

CIFAR-100 18.04±2.53 96.06±0.21 18.07±4.93 95.33±1.25 84.38±4.56 69.06±0.38 64.65±3.82 85.07±0.57 35.81±3.52 92.31±0.60 44.19±3.74 87.70±0.92

Table 7: Performance of DHE trained with different seeds on CIFAR-10 and CIFAR-100 datasets. Results are averaged over three
independent runs. All values are in percentages. “↑” denotes larger values are better, and “↓” indicates smaller values are better.

Stability of DHE. To validate the stability of DHE in achieving promising performance, DHE is trained using three different
random seeds. When testing, we use the KNN distance as the score. Table 7 presents the results, which include the average and
standard deviation of FPR95 and AUROC of our method. We can see that DHE consistently achieves small standard deviation
across different datasets, so the performance of DHE is stable.



Analysis of angles between prototypes. To experimentally validate our Theorem 3, which suggests that OOD detection
performance improves with increased inter-class dispersion, we implement a series of experiments when the angles between
prototypes vary. Specifically, we selected four representative angle values: 30◦, 60◦, 90◦, and the maximal angle max =
cos−1(1/(1−K)), derived from Theorem 4. The results are recorded in Table 8. It can be observed that the average FPR95
monotonically decreases as the angle increases, which is consistent with the conclusion of Theorem 3 regarding OOD detection
performance. These experimental results provide strong empirical support for our Theorem 3 and further reinforce its applicability
in enhancing OOD detection performance.

Angle
OOD Dataset AverageSVHN LSUN Places365 iSUN Texture

FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑
30◦ 21.23 95.61 54.42 83.84 83.14 71.29 70.57 83.45 46.54 90.51 55.18 84.94
60◦ 21.61 95.43 36.52 91.36 80.69 73.05 59.72 86.81 44.98 90.86 48.70 87.50
90◦ 20.69 95.62 15.57 96.20 80.76 71.29 65.74 84.82 43.69 90.19 45.29 87.62
max 18.46 95.90 14.59 96.20 84.20 69.01 67.53 85.20 32.82 92.77 43.52 87.82

Table 8: Results of different angles between prototypes on CIFAR-100 (ID) with ResNet-34. All values are percentages. “↑”
denotes larger values are better, and “↓” indicates smaller values are better.

Classification accuracy on ID data. The classification accuracy on CIFAR-10 and CIFAR-100 can be seen in Table 9. We
follow the practice in CIDER (Ming et al. 2023) and use a linear probe on normalized features.

method Accuracy
CIFAR-10 CIFAR-100

CE 94.21 74.59
GODIN 93.64 74.92
CE+SimCLR 93.12 73.53
SupCon 94.54 75.41
CIDER 94.68 75.53
T2FNORM 94.39 75.62
ReweightOOD 94.94 75.81
DHE 94.87 75.74

Table 9: ID data classification accuracy on CIFAR-10 and CIFAR-100 (%).

D. Limitation and broad impact
D.1 Limitation
Through the theoretical guarantee for the maximization of prototype dispersion and the compactness of inter-class embeddings,
the proposed DHE demonstrates promising results in enhancing the discriminability between ID and OOD examples. We
have achieved significant improvements in performance of OOD detection over SOTA methods and substantially accelerated
the computational efficiency. However, there still exist several limitations. To be specific, our method is currently limited to
multi-class classification problems where the marginal label distribution must remain unchanged between training and testing.
This constraint arises from the reliance on prototypes, which are initialized and optimized based on the class distribution observed
during training. If there is a significant disparity in the distribution of ID examples between the training and testing phases, such
as transitioning from photographs to sketches, it may pose challenges in learning embeddings effectively. Therefore, further
efforts are needed to explore its effectiveness in addressing challenges in downstream tasks such as domain adaptation and
few-shot learning.

D.2 Broad impact
Our proposed method for generating discriminative embeddings and improving OOD detection has significant potential for
various applications across multiple domains. By leveraging techniques such as prototype dispersion maximization and prototype-
enhanced contrastive learning, our approach contributes to the advancement of representation learning, benefiting fields such
as computer vision, natural language processing, and healthcare analytics. In computer vision, OOD detection is crucial for
ensuring the safety and reliability of autonomous systems and surveillance applications. Similarly, in natural language processing,
accurately distinguishing between ID and OOD examples can improve the performance of sentiment analysis, spam detection,
and content moderation systems. Moreover, our theoretical foundations and empirical results pave the way for further research



in understanding and enhancing the interpretability and generalization capabilities of deep learning models. However, it is
important to recognize potential negative consequences that may arise from the deployment of our method. One significant
concern is the possibility of exacerbating existing biases present in the training data, leading to unfair or discriminatory outcomes,
particularly in sensitive applications such as hiring processes or criminal justice systems. If the training data is based towards
certain demographics or social groups, our method may inadvertently reinforce these biases by amplifying the differences
between in-distribution and out-of-distribution examples. Therefore, the deployment of our approach in these more sensitive
areas needs to be more carefully considered.


