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Abstract—Training a fully supervised semantic segmentation
network requires a large amount of expensive pixel-level an-
notations in manual labor. In this work, we focus on study-
ing the semantic segmentation problem using only image-level
supervision. An effective scheme for weakly supervised seg-
mentation is employed to produce the proxy annotations via
image tags firstly. Then the segmentation network is retrained
on the generated noisy proxy annotations. However, learning
from noisy annotations is risky, as proxy annotations of poor
quality may deteriorate the performance of the baseline seg-
mentation and classification networks. In order to train the
segmentation network using noisy annotations more effectively,
two novel loss functions are proposed in this paper, namely,
the selection loss and attention loss. Firstly, a selection loss
is designed by weighting the proxy annotations based on a
coarse-to-fine strategy for evaluating the quality of segmentation
masks. Secondly, an attention loss taking the clean image tags as
supervision is utilized to correct the classification errors caused
by ambiguous pixel-level labels. Finally, we propose an end-
to-end semantic segmentation network SAL-Net guided by the
above two losses. From the extensive experiments conducted on
PASCAL VOC 2012 dataset, SAL-Net reaches state-of-the-art
performance with mean IoU (mIoU) as 62.5% and 66.6% on the
test set by taking VGG16 network and ResNet101 network as the
baselines respectively, which demonstrates the superiority of the
proposed algorithm over eight representative weakly supervised
segmentation methods. The code and models are available at
https://github.com/zmbhou/SALTMM.

Index Terms—Deep Learning, Weakly Supervised Semantic
Segmentation, Selection Loss, Attention Loss.

I. INTRODUCTION

Convolution Neural Networks (CNNs) based semantic seg-
mentation or object detection have achieved greater success
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Fig. 1: Illustration of the proxy annotations with poor bound-
ary conditions or severe classification errors. (Objects with
poor boundary condition and miss-classified pixels are high-
lighted by the red rectangles).

recently [1], [2], [3], [4], [5], where the goal is to assign a
semantic label to a pixel. However, the prediction accuracy
of CNNs relies on a large amount of accurate pixel-level
annotations, and the collection and annotations of datasets are
time-consuming and laborious. Weakly supervised semantic
segmentation methods which require less pixel-level annota-
tions are designed to solve the above problem. As to weakly
supervised segmentation, there exist several types of weak
supervisions: image labels, bounding boxes or scribbles etc.
Among these supervisions, image-level labels are the most
convenient to be generated by indicating the presence and
absence of the classes of interest. There are two main
categories of methods for weakly supervised segmentation
with image-level supervision. One category focuses on mining
discriminative regions iteratively [6], [7], [8], [9]. The other
focuses on generating and retraining with high-quality proxy
annotations [10], [11], [12], [13], [14]. Accordingly the two
most important techniques used in current weakly supervised
semantic segmentation methods can be summarized as: (1)
mining discriminative foreground and background regions, and
(2) retraining the segmentation network with proxy annota-
tions. As to discriminative regions mining, various iterative
mining strategies have already been proposed [10], [15], [16],
[17], [12], [13], [14], [8], [18]. The procedure of retraining
with proxy annotations has also been proven to be effective
in boosting the segmentation performance by taking the gen-
erated segmentation masks as supervision for final network
training [19], [20], [14], [12], [8], [21].

However, retraining from proxy annotations may incur
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errors if they are of poor quality. When the noisy proxy
annotations are used, the training procedure will suffer from
two potential risks: (1) noisy proxy annotations with bad
boundary condition (see the 1st and 2nd examples in Fig.
1) may deteriorate the segmentation performance sharply and
(2) ambiguous categories may be wrongly classified due to
the confused pixel-level labels contained in proxy annotations
(see the 3rd and 4th examples in Fig. 1). In the first case, the
proxy annotations corresponding to complex images (such as
images with small objects or clutter background) are of poor
boundary accuracy and this kind of proxy annotations can
deteriorate the segmentation performance sharply according
to our observation. In the second case, the classification
ambiguities between objects with similar categories worsen
due to the confusing pixel-level labels.

Based on the above observations, we argue that not all proxy
annotations are suitable to participate in the retraining process,
especially when they are of poor boundary condition or with
serious classification errors. Therefore, we evaluate the quality
of the segmentation masks and correct the miss-classification
adaptively. This modification to the traditional scheme of
retraining is very critical, because in this modification the
annotations with high quality are selected and classification
errors can be refined, so that the segmentation network can be
optimized more effectively.

By taking advantage of these psychological opinions, a
segmentation framework with two novel losses (selection loss
and attention loss) is proposed in this paper (displayed in Fig.
2). The selection loss is defined to assign low confidence to
the bad proxy samples by evaluating the quality of masks
in a coarse-to-fine way. Then the proxy annotations of high
confidence are used to retrain the segmentation network. The
attention loss is built on a classification structure, then the
segmentation network can be trained with clean image tags
by adjusting the classification ambiguity caused by the noisy
samples adaptively. Furthermore, the attention weights are
used to refine the segmentation probability in the training
process as well. Finally, the whole framework is optimized
by the selection loss and attention loss jointly in an end-to-
end way.

Overall, our major contributions can be summarized as
follows:

• We introduce a coarse-to-fine mask scoring strategy for
evaluating the quality of proxy annotations and then a
selection loss is proposed for optimizing the weakly
supervised semantic segmentation network with high-
confidence annotations.

• We propose a classification subnetwork with hybrid di-
lation convolutions guided attention loss to adjust the
classification errors by learning from clean image tags
and interacting with segmentation network adaptively.

• We employ a simple and effective training protocol based
on selection loss and attention loss, which is different
from most existing methods of weakly-supervised seman-
tic segmentation.

• Detailed ablation experiments have been conducted to
verify the effectiveness of the proposed losses. Our work

obtains the state-of-the-art weakly supervised semantic
segmentation performance on the PASCAL VOC 2012
segmentation benchmark. The mIoU of our method are
62.5% and 66.6% on the test set using VGG16 and
Resnet101 as the baselines respectively.

II. RELATED WORK

Weakly supervised approaches have been widely studied
for semantic segmentation. Various weak supervisions such
as bounding boxes [22], scribbles [23] or image-level tags
[10], [11], [24], [17], [12], [13] have been used to improve
the segmentation efficiency. In this paper, we focus on the
image-level supervised framework. We will briefly review the
existing approaches from the following two aspects:

A. Mining Discriminative Regions in Weakly Supervised Seg-
mentation

Mining discriminative regions is the most important tech-
nique in training semantic segmentation model with image-
level supervisions. There are mainly four strategies for mining
regions: (1) localization with classification DCNNs, (2) mining
with saliency cues, (3) iterative erasing strategy and (4) hybrid
training strategy. The first kind of strategies identify the
discriminative regions respecting to each individual class based
on image classification DCNNs. Zhou et al. [25] proposes
a technique called Class Activation Mapping (CAM) for
identifying discriminative regions by replacing fully-connected
layers in image classification CNNs with convolutional layers
and global average pooling layer. CAM [25] is the most widely
used technique in weakly-supervised semantic segmentation
for generating pseudo-annotations [10], [26], [27]. Grad-CAM
[28] is a strictly generalization of CAM without the need
of modifying DCNN structure. Different from the previous
mentioned strategies, Zhang et al. [29] proposes Excitation
Backprop to back-propagate in the network hierarchy to
identify the discriminative regions. The second category of
strategies take the saliency information as guidance. In [24],
a saliency guided weakly-supervised semantic segmentation
framework is presented to evaluate different fusion strategies
comprehensively. Moreover, the saliency cues have also been
used to refine the discriminative regions to boost the seg-
mentation performance [11], [7], [30]. The third category of
strategies focus on iterative erasing, in which the class-specific
discriminative regions are discovered in a hide and seek
manner. For example, in [26], an adversarial erasing approach
is proposed to effectively adapt a classification network to
progressively discovering and expanding object discriminative
regions. In [7], two self-erasing strategies are designed to
prohibit the attention regions from spreading to unexpected
regions given the roughly accurate background priors. In [30],
a generic classification network equipped with convolutional
blocks of different dilated rates is proposed to generate dense
localization maps. In [8], many different localization maps
are generated from a single image by choosing features at
random during both training and inference, then those maps
are aggregated into a single localization map.

Different from the above three strategies, the hybrid training
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Fig. 2: The flowchart of the proposed weakly supervised semantic segmentation framework. The whole framework consists of
three parts: generating initial proxy annotations, coarse-to-fine mask scoring, and retraining with selection and attention losses.

strategy focuses on generating high-quality proxy annotations
iteratively. For example, in [10], a “seed, expand and con-
strain” (SEC) framework is proposed using only image-level
labels where localization cues from classification networks are
used to find the objects. In [11], a class-specific pixel discovery
method for weakly-supervised semantic segmentation method
is designed. The initial localization cues are combined with
the saliency cues to generate the proxy annotations. In [17],
an iterative bottom-up and top-down framework is presented
which tolerates inaccurate initial localizations by iteratively
mining common object features from object seeds. In [12],
a deep seeded region growing (DSRG) training approach is
designed which gradually improved the quality and extent of
mined object regions. DSRG also reveals that the retraining
procedure with proxy annotations refined by Condition Ran-
dom Filed (CRF)[31] can boost the segmentation performance
significantly. In [13], the authors present a novel framework
based on AffinityNet which is used for generating accurate
segmentation labels of training images given their image-level
class labels only. The refined proxy annotations generated by
the AffinityNet demonstrate higher quality for training the
segmentation model.

B. Learning From Noisy Proxy Annotations

Learning from noisy samples is a mechanism to train
the segmentation model with noisy image tags or proxy
annotations. Because handling noisy samples is an important
procedure in the task of weakly supervised semantic
segmentation, until now many methods have been explored
from different perspectives. As to learning from noisy
image tags, a `1 optimized based sparse learning model is
formulated to identify and correct the superpixel noisy labels
in [32]. In [33], the weakly supervised segmentation problem
is transformed into a large-scale sparse learning problem

by learning the data manifolds. As to learning from proxy
annotations, many methods have been proposed. In [34], a
method is proposed to sanitize the annotations and measure
their reliability, so as to alleviate the side effects introduced
by noisy and incomplete annotations. In [35], a two-stream
mutual attention network is presented to discover incorrect
labels and to weaken the influence of these incorrect labels
during the parameter updating process. In [36], a Filling Rate
guided adaptive loss (FR-loss) is suggested to help the model
ignore the wrongly labeled pixels in proposals. FR-loss can
adjust the model learning with global statistical information.

Different from the above methods, more solutions have
been designed from the perspective of high-quality annotations
selection [37], [19], [20], [14]. For example, in [37], Wei et
al. proposes a simple to complex framework where a network
is first trained using simple images (single object category)
followed by training over complex ones (multiple objects).
In [14], a novel bi-directional transfer learning framework
is designed to generate high quality masks for the training
images. However, few of these methods is able to solve the
problem of learning from noisy pixel-level annotations for
semantic segmentation effectively.

In order to improve the segmentation performance by
learning noisy pixel-level annotations more effectively, our
method focuses on designing novel mask scoring mechanisms
for selecting high-quality annotations, and then two novel loss
functions are proposed to retrain the segmentation network.

III. THE PROPOSED METHOD

As shown in Fig. 2, the proposed framework is comprised
of three principal components: (1) Generating initial proxy
annotations by taking image tags as the supervision; (2)
Selecting high-quality annotations by a coarse-to-fine mask
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scoring strategy; (3) Retraining the segmentation network
with selection and attention losses jointly. The details will be
introduced in the following subsections.

A. Generating Initial Proxy Annotations

In order to learn from the image tags, we apply the SEC
[10] and DSRG [12] frameworks for learning from the image-
level labels. Let T = (In, Yn)

N be the samples in the set
of training dataset which consists of N images. The image
In is annoated by image-level labels Yn ∈ {0, 1}C where C
is the number of classes. The semantic segmentation model is
designed using deep neural networks Z(I; Θ) with parameters
Θ and Z represents the category probabilities. The initial SEC
model is trained by three losses:

Lweak =
N∑

p=1

Lseed(Z(Ip; Θ), Yp) + Lexpand(Z(Ip; Θ), Yp)

+ Lconstraint(Z(Ip; Θ), Yp)
(1)

Lseed is supervised by the localization cues learned from the
Class Activation Mapping (CAM) [25]. Given the image-level
labels, the CAMs method is applied to localize the regions
of foreground classes. In the procedures of CAMs, the clas-
sification network is initialized with VGG-16 network. Then
the global average pooling (GAP) is applied on conv7 layer
to aggregate the features. Finally the generated feature tensors
are classified using a fully-connected layer and the heatmap
corresponding to each category is generated via classification.
It is obvious that the discriminative regions can be generated
by applying a hard threshold to the heatmap. Hence the role
of Lexpand is to aggregate the heat maps to be consistent
with image-level labels by applying a global weighted rank
pooling (GWRP) operation. Lconstraint is designed to enforce
the boundary constraint by utilizing the condition random field
model as a postprocessing procedure. Then the seed region
growing (SRG) strategy proposed in [12] is applied to improve
the segmentation performance further. In the growth process
of SRG, the image is segmented into regions with the property
that each connected component of a region contains exactly
one of the initial seeds. The label for each pixel is updated
iteratively by the SRG strategy simultaneously.

Once the segmentation network Z(I; Θ) was trained. The
images in the training set are segmented via the initial
segmentation model and proxy pixel-level annotations M =
{G1, .., GN} can be generated. In a typical retraining proce-
dure, the segmentation network is optimized with all the proxy
annotations using the cross-entropy loss:

Lretrain = −
∑
p

∑
(x,y)∈Ip

∑
c

Gc
p(x, y)log(Zc(Ip(x, y); Θ)),

(2)
where Gc

p(x, y) = 1 if the label at pixel (x, y) is c, otherwise
Gc

p(x, y) = 0. Zc(Ip(x, y); Θ) is the class specific probability
of the segmentation network.

Retraining the segmentation network with proxy annotations
M has been proven to be effective in boosting segmentation
performance. However, the overall quality of the proxy an-
notations is noisy. The principal risk of retraining with proxy

GTs is that the segmentation performance may be deteriorated
when some proxy annotations are of poor quality. In order to
train the semantic segmentation network from noisy and weak
annotations more effectively, a selection loss and an attention
loss are proposed to train the network and we will introduce
the details in the following subsections.

B. Selection loss

The potential risks of annotations in M can be summarized
as two folds: (1) Coarse object boundaries and (2) Pixel-
level miss-classification. The selection loss will focus on
distinguishing the proxy annotations with poor quality. In
order to select high-quality masks, a coarse-to-fine strategy
for evaluating the quality of masks in M is designed firstly.
The overall pipeline of the mask scoring strategy is illustrated
in Fig. 3 which consists of two steps: saliency guided coarse
mask scoring and network based fine mask scoring. The coarse
mask scoring strategy can be divided into two parts: generating
saliency guided reference masks and defining rules for calcu-
lating scores. The fine mask scoring strategy contains three
steps: defining the network architecture, selecting samples for
network training and network parameters optimization.

1) Coarse Mask Scoring Strategy: The coarse scores are
calculated via analyzing the boundary accuracy and the clas-
sification accuracy. For each segmentation mask, the object
boundary accuracy AC and class distribution CD are calcu-
lated. When the precise annotations do not exist, we take the
saliency cues as coarse guidance. Firstly, the saliency cues
are used to generate the reference masks H and they will be
compared with the binary masks B of proxy annotations to
measure the boundary accuracy. Then the classification errors
will be measured by a simple class distribution measure.

Generating Reference Masks H: The widely used saliency
method such as DSS [38] is applied to generate the reference
masks. Firstly the saliency cues are produced for the images
in the training set. Then the fully connected CRF is applied
as the post-processing procedure to refine the saliency masks
and the reference mask for image i is represented as Hi

(The reference masks are illustrated in Fig. 4). For images
with multiple objects, a scheme with masks erasing similar to
the one used in [11] is designed to highlight multiple salient
objects iteratively.

Measuring Object Boundary Accuracy AC: Given the
saliency guided reference mask Hi, the binary segmentation
mask Bi of proxy annotation Gi is evaluated by the widely
used criteria F-measure [39] and the simple objectness score
F [40]. Generally speaking, ground truth (GT) is required for
calculating the F-measure. However, the precise annotations
don’t exist in the setting of weakly supervised segmentation,
hence the reference masks Hi is taken as the proxy GT to
measure the quality of the proxy annotation Gi in a coarse
way. Then the object boundary accuracy ACi is represented
as:

ACi =
2× prec(Hi, Bi)× rec(Hi, Bi)

prec(Hi, Bi) + rec(Hi, Bi)
× F (Bi)

b,

prec(Hi, Bi) =
|Hi

⋂
Bi|

|Hi|
, rec(Hi, Bi) =

|Hi

⋂
Bi|

|Hi

⋃
Bi|

(3)
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Fig. 3: The flowchart of the proposed coarse-to-fine mask scoring strategy. It consists of two parts: saliency guided coarse
mask scoring and network based refined mask scoring.

Fig. 4: Illustration of the coarse mask scoring strategy. AC is
the boundary accuracy as defined in Eq. (3). CD is the class
distribution as defined in Eq. (4). SC is the coarse score as
defined in Eq. (5)

.

where prec stands for the precision, rec represents the recall
and b is the weight cofficient of objectness score.

Measuring the confidence of Class Distribution CD: In
the setting of weakly supervised segmentation, it’s hard to
measure the accurate classification accuracy without precise
pixel-level annotations. In the proposed framework, a simple
class distribution confidence is designed to measure the
classification errors statistically:

CDi =

∑
p∈Bi

δ(p)

|Bi|
, δ(p) = 1 if Lp ∈ Yi. (4)

where Lp is the label for pixel p, Yi is set of tags for
image i and |Bi| is the number of pixels that belong to the
binary objects Bi. The intuition behind the above equation
is that if the pixels are classified with the labels that are
not contained in Yi, the confidence of class distribution will

Fig. 5: The flowchart for synthesizing new samples via ”cut”
and ”paste”. Two images are selected to display the procedure
for synthesizing the samples with multiple instances.

decrease. Finally, the coarse scores of masks are calculated
by combining the boundary accuracy and class distributions:

SCi = ACi × CDi, (5)

The reference masks, the class distribution probabilities
and the boundary accuracies are as illustrated in Fig. 4. It
is shown that the class-distribution probability is effective
in distinguishing annotations with serious miss-classification.
However, we note that the object boundary accuracy depends
on the quality of the reference masks heavily and the coarse
scoring strategy may not work well when the saliency maps
fail to capture the semantic objects (see the examples in 1st
and 2nd column in Fig. 4). In order to design a more robust
scoring strategy, a network based fine mask scoring strategy
will be introduced in the next subsection.
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2) Network based Fine Mask Scoring: Recently, many
work [41], [42] has revealed that predicting the segmentation
accuracy is helpful in boosting the performance of high-
level tasks such as object detection or instance segmentation.
Motivated by these works, a predictor network is designed
for robust mask scoring. The detailed network structure is
illustrated in Table I, a nine layers network with convolutions,
residual blocks [43] and fully connected layers is proposed
to predict the mask evaluation score, specially the GDN
[44] activation function is applied to improve the prediction
performance. GDN can serves as an attention mechanism and
it has been proven effective in the tasks such as predicting
image quality[45]. Given the network architecture, the original
image are contacted with the binary segmentation mask to
construct the input with 4 channels and the output P is taken
as the prediction score.

Prediction Network Training: Our methods formulate the
mask scores estimation as a regression task. For training the
prediction network, we use the selected proxy annotations as
training samples. For generating the regression target for each
training sample, we firstly get the predicted mask of the target
class and binarize the predicted mask. Then we use the scores
AC between the binary mask and its reference defined in Eq.
(3) as the prediction target. In order to adjust the wrongly
predicted mask scores of AC, the samples with high-confident
scores are selected to construct the training set. For example,
a high threshold AC ≥0.8 is set to select around 4k high-
quality training images to construct the positive samples. Then
a lower threshold such as AC ≤ 0.3 is used to select around
1k images as the negative samples. In order to generate the
samples with AC among 0.3 to 0.8, the high-quality anno-
tations are eroded or erased to generate another 3k samples
and the corresponding AC is calculated via comparing with
the original reference masks. Moreover, in order to enrich the
training samples for the images with multiple instances, the
schemes such as ”cut” or ”paste” proposed in [46] are applied
to synthesize more training samples (the whole procedure is
as illustrated in Fig. 5). The foreground masks of images with
AC ≥ 0.9 (around 1k) are cut and selected, and then they are
pasted on the background regions of selected images chosen
from the samples with AC≥0.3. Therefore, another 2k samples
with multiple classes can be generated. Finally, the training
set is augmented to an amount of 10k. For each sample in the
training set, the score AC predicted by the coarse selection or
sample augmentation strategy is treated as the ground truth.
As to the loss functions for network training, the `2-loss as the
empirical loss function is utilized in the training procedure:

`2(Pi, ACi) = ‖Pi −ACi‖2 = (Pi −ACi)
2, (6)

where Pi is the output of prediction network and ACi is the
coarse boundary accuracy scores of sample i in the training
set. We have also tried `1-normal as the loss, but observe
worse results. Once the prediction network is trained, the fine
evaluation score SF is formulated as:

SFi = Pi × CDi. (7)

As shown in Fig. 6, the role of network based mask scoring

Fig. 6: The illustration on the role of network based mask
scoring. AC is defined in Eq. (3), CD is defined in Eq. (4),
P is the output of the prediction network. SC is defined in
Eq. (5) and SF is defined in Eq. (7). AGT is the boundary
accuracy calculated by comparing with the pixel-level ground
truth.

is illustrated. When the reference masks fail to fit the semantic
objects well, the boundary accuracy scores will be incorrect
even if the extracted objects are acceptable (see the 1st, 2nd
and 4th examples). On the contrary, the coarse scores may be
miss-leading when the reference masks fit the objects in the
proxy annotations well but are of low precision compared with
the ground truth (see the 3rd example). It’s obvious that the
proposed network based scoring strategy can generate more
reliable quality evaluation scores. Take the 3rd example in Fig.
6 for example, the bird mask is over-segmented. However, it
fits well with the reference masks and the simple boundary
accuracy is calculated as 0.78. The prediction network can
generate a more reliable score as 0.21, which is closer to the
ground truth score 0.1.

3) Mask Scoring Guided Selection loss: Note that the
wrongly labeled regions of the pixel-level proposals have
negative effects on model training, recognizing the negative
regions will be helpful. A possible solution is to ignore the
pixels with small confident values in the score map, which
may be the wrongly labeled pixels. For weakly supervised
model, there are no guaranteed pixel-level annotations like
the fully supervised model. Thus it is hard to determine how
much percentage of pixels to be ignored. Furthermore, we
intuitively find that the proxy annotations of low scores can
worsen the performance. Then we introduce a selection loss
(Sel loss) by setting a weight for each annotation. The masks
with high scores are selected as the final proxy annotations for
fully supervised learning. Similar to the initial segmentation
network training, the selection loss (Sel loss) is formulated as:

Lsel = −
N∑
i=1

∑
(x,y)∈Gi

C∑
c=1

wiG
c
i (x, y)logZc(Ii(x, y); Θ),

(8)
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TABLE I: The network architecture for fine mask scoring. Channels denote the parameters of a module as input channel ×
output channel. Conv stands for the convolution operation and ResB represents the residual block defined in [43].

Methods layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9
Module 3 × 3 Conv ResB 3 × 3 Conv ResB 3 × 3 Conv ResB 3 × 3 Conv fc fc
Stride 1 1 2 1 2 1 2 1 1
Channels 4 × 128 128 × 192 192× 192 192 × 192 192× 192 192 × 192 192 × 192 192 × 128 128 × 1
Activations ReLU GDN ReLU GDN ReLU GDN ReLU GDN ReLU
Width 256 × 256 256 × 256 128 × 128 128 × 128 64 × 64 64 × 64 32 × 32 128 × 1 1 × 1

where Gi stands for the i-th proxy annotation, (x, y) repre-
sents a pixel location, Zl

xy(i) is defined as the segmentation
probability, and Gc

i (x, y) is the ground truth indicator of proxy
annotation. wi is the weight which indicates the confidence of
sample i in the training procedure. Then wi is defined as:

wi =

{
1, if SFi ≥ τ ;

0, if SFi < τ.
(9)

where τ is the hard threshold for masks selecting, which is
set by an evaluation procedure for different networks in the
experiment section.

C. Attention Loss
Another potential risk when training with noisy proxy

annotations is that the pixel-level classification errors may get
worse. Even if the noisy annotations with poor quality are
filtered, the miss-labeled pixels in selected annotations can also
make the classification performance worsen. Take the second
image in Fig. 4 for example, the pixels belonging to category
dog may be miss-classified as person, even if they are of high
boundary accuracy. In the field of weakly supervised segmen-
tation, only the image tags are clean and reliable. In order
to correct the classification errors adaptively, a classification
subnetwork is constructed to design an attention loss which
also can be interacted with the segmentation branch to refine
the segmentation probabilities.

1) The Classification Subnetwork: In our formation, the
classification network for attention loss is built on a hybrid
dilation structure, each branch consists of convolutions with
different dilation convolution. According to the validation
experiment, the final classification network consists of four
branches with the dilation rates as r = 1, 3, 6, 9 respectively.
The detailed classification network architecture for attention
loss and the interaction between the segmentation network
is shown in Fig. 7. The segmentation network and the clas-
sification network share the same baseline network and the
segmentation network consists of a baseline network and the
LargeFOV or atrous spatial pyramid pooling (ASSP) module
[47]. Assume the corresponding outputs of four branches are
represented as d1, d2, d3 and d4. Then the output of the
classification network is formulated as a weighted sum:

ds = d1 + d2 + d3 + d4. (10)

Furthermore the outputs of the classification branch are
interacted with the segmentation branch via dot product to
adjust the segmentation probabilities adaptively. The operation
is as shown in Fig. 7. Assume the output of segmentation

network is represented as Z, then the attention guided
probability Ẑ can be formulated as:

Ẑ = Z
⊗

ds, (11)

where
⊗

stands for the channel-wise multiplication.
2) Formation of the Attention Loss: Based on the output

of classification branch ds and the clean image tags Y , the
attention loss (Atten loss) is formulated as:

Latten = −
N∑
i=1

C∑
c=1

Yi(c)× log(dcs(i)), (12)

where N is the number of training samples and dcs(i) is the
classification score for sample i corresponding to class c.
Yi(c) = 1 is the set of image tag contains class c, otherwise
Yi(c) = 0.

D. Network Training with Selection loss and Attention Loss

1) The Training Protocol: The training protocol can be
summarized as four steps. Step 1: The initial segmentation
network is trained with the image tags, and the proxy annota-
tions are generated. Step 2: Defining the selection loss based
on a coarse-to-fine mask scoring strategy. Step 3: Defining the
attention loss based on a classification network. Step 4: The
final segmentation network is trained with the selection loss
and the attention loss jointly.

2) The Loss Functions: For constructing the selection loss,
the attention weight is enforced on the segmentation prob-
abilities Z as described in Eq. (11) to generate the refined
probability Ẑ (shown in Fig. 7). Then the selection loss is
reformulated as:

Lsel = −
N∑
i=1

∑
(x,y)∈Mi

C∑
c=1

wiG
c
i (x, y)logẐc

xy(i), (13)

It is noted that two types of selection losses: coarse selection
loss and refined selection loss are defined. The coarse selection
loss is constructed by calculating the wi in Eq. (9) via the
coarse mask scoring rule while the refined selection loss is
based on the wi calculated via fine mask scoring rule. Finally,
the combined loss function is formulated as:

L = Lsel + λLatten, (14)

where λ controls the weight of two losses. Lsel is defined
in Eq. (8) and Latten is defined in Eq. (12). Finally , the
combined loss functions are used to optimize the whole
semantic segmentation network in an end-to-end way.
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Fig. 7: Illustration of the structure of selection loss and the classification network with four branches for attention loss. r stands
for the dilation rate.

IV. EXPERIMENTAL RESULTS

In this section, we first describe the experiment setups, and
then report the performance of our approach and compare it
with previous state-of-the-art methods. At last, we conduct
a series of experiments to demonstrate the impact of each
component of our proposed approach on the performance.

A. Dataset and Experimental Setup

This section demonstrates the effectiveness of our approach
with comparisons to current state-of-the-art weakly supervised
semantic segmentation methods on the PASCAL VOC 2012
segmentation benchmark [48]. As to the performance metric,
we adopt the Intersection-over-Union (IoU) between ground
truth and predicted segmentations. We evaluate our framework
on the challenging PASCAL VOC12 segmentation benchmark
dataset [48], which contains 20 foreground object categories
and one background category. The original dataset contains
1,464 training images. Following common practice, we aug-
ment the dataset with the extra annotations provided by [49].
This gives us a total of 10,582 training images. The validation
and test sets contain 1,449 and 1,456 images, respectively. No
additional data is being used in the entire train/test pipeline. In
our experiments, we only utilize image-level class labels of the
training images. We use the val images to evaluate our method.
As for the evaluation measure for segmentation performance,
we use the standard PASCAL VOC 2012 segmentation met-
ric: mean intersection-over-union (mIoU). We implement two
segmentation frameworks: SAL-Net-VGG16 built on Deeplab-
ASSP [47] and VGG16 [50], and SAL-Net-ResNet101 built
on DeepLab-ASSP [47] and Resnet101 [43]. Our approach is
implemented based on tensorflow. In the selection process, we
set b = 0.1 in Eq. (3) and λ=2 in Eq. (13) experimentally.
In the training process, SGD with mini-batch is used for
training the classification and segmentation networks. We use
the momentum of 0.9, a weight decay of 0.0005, a dropout
rate as 0.5 and the batch size is 7. The initial learning rate is
blr = 1× 10−3 for SAL-Net-VGG16 and blr = 1× 10−4 for

SAL-Net-ResNet101. The base learning rate is decreased by
the poly learning policy:

clr = (1− iter

maxiter
)power.blr, (15)

where power = 0.9, maxiter=27000 for VGG16 based net-
work and maxiter=15000 for ResNet101 based network. iter
denotes current iteration number and clr is the current learning
rate. In the test phase, the learned segmentation network is
applied to produce the probability map for each testing image.
Then, we upscale the predicted probability map to match the
size of the input image, and then apply multi-scale (MS) fusion
and a fully-connected CRF [47] to refine the segmentation
results. For the mask scoring network, we set the initial
learning rate as 1 × 10−5, the batch size as 8 and the epoch
number as 50.

B. Comparison with State-of-the-art Methods

The proposed method is compared with previous state-of-
the-art image-level supervised semantic segmentation meth-
ods, SEC [51], Pixel Affinity [13], BOOTSTRAPPING [14],
DSRG [12], MDC [30], SeeNet [7] and FickleNet [8] built
on VGG16 or ResNet101. The two proposed implementations
SAL-Net-VGG16 and SAL-Net-ResNet101 are evaluated, and
the results on PASCAL VOC validation and test datasets are
summarized in Table II and Table III, respectively. When using
VGG-16 as the basic network, SAL-Net-VGG16 achieves
mean IoU of 61.3 and 62.51 for val and test sets. When
the more powerful ResNet101 is used, SAL-Net-ResNet101
achieves mean IoU of 66.1 and 66.62 for val and test sets,
outperforming the second best method FickleNet by 1.2%
and 1.3%, respectively. Compared with the latest research
FickleNet, our framework has been designed from a new
viewpoint and our segmentation performance has been im-
proved. By selecting high-quality annotations and utilizing

1http://host.robots.ox.ac.uk:8080/anonymous/KEOAJP.html
2http://host.robots.ox.ac.uk:8080/anonymous/L3XWLR.html
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TABLE II: Overall accuracy on PASCAL VOC 2012 val dataset. The IoUs of twenty categories and the mean IoU are presented.
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tv mIoU
SEC [51] 82.4 62.9 26.4 61.6 27.6 38.1 66.6 62.7 75.2 22.1 53.5 28.3 65.8 57.8 62.3 52.5 32.5 62.6 32.1 45.4 45.3 50.7
Decouple-VGG16 [6] - - - - - - - - - - - - - - - - - - - - - 55.4

Pixel Affinity (VGG16) [13] 87.2 57.4 25.6 69.8 45.7 53.3 76.6 70.4 74.1 28.3 63.2 44.8 75.6 66.1 65.1 71.1 40.5 66.7 37.2 58.4 49.1 58.4
BOOTSTRAPPING (VGG16) [14] 85.0 74.4 24.9 76.2 20.7 58.2 82.3 73.6 81.0 25.9 71.3 37.4 71.8 69.6 70.3 71.0 44.1 73.8 34.1 48.4 40.0 58.8
DSRG (VGG16) [12] - - - - - - - - - - - - - - - - - - - - - 59.0
Revisit (VGG16) [30] 89.5 85.6 34.6 75.8 61.9 65.8 67.1 73.3 80.2 15.1 69.9 8.1 75.0 68.4 70.9 71.5 32.6 74.9 24.8 73.2 50.8 60.4
SeeNet (VGG16)[7] - - - - - - - - - - - - - - - - - - - - - 61.1
FickleNet (VGG16) [8] - - - - - - - - - - - - - - - - - - - - - 61.2
SAL-Net-VGG16 89.1 78.2 33.7 72.5 53.6 70.2 78.6 70.5 79.6 22.5 71.7 24.9 74.2 68.8 69.5 68.3 37 76.7 28.5 71.7 51.8 61.3
Decouple-ResNet101 [6] - - - - - - - - - - - - - - - - - - - - - 58.2
Pixel Affinity (ResNet38) [13] 88.2 68.2 30.6 81.1 49.6 61.0 77.8 66.1 75.1 29.0 66.0 40.2 80.4 62.0 70.4 73.7 42.5 70.7 42.6 68.1 51.6 61.7
BOOTSTRAPPING (ResNet50) [14] 86.8 71.2 32.4 77.0 24.4 69.8 85.3 71.9 86.5 27.6 78.9 40.7 78.5 79.1 72.7 73.1 49.6 74.8 36.1 48.1 59.2 63.0
DSRG (ResNet101) [12] - - - - - - - - - - - - - - - - - - - - - 61.4
SeeNet (ResNet101)[7] - - - - - - - - - - - - - - - - - - - - - 63.1
FickleNet (ResNet101) [8] - - - - - - - - - - - - - - - - - - - - - 64.9
SAL-Net-ResNet101 (ours) 90.2 75.5 31.2 72.8 56.6 71 88 78.3 88.3 26.7 76.9 31.9 79.9 75.2 70.8 76.5 54.1 77.9 35.9 64.8 64.8 66.1

clean image tags adaptively, SAL-Net-VGG16 further boosts
the segmentation performance by 2.3% on the validation set
and by 1.9% on the test set when compared with DSRG, while
FickleNet with VGG16 boosts the segmentation performance
by 2.2% on the validation set and by 1.5% on the test set when
compared with DSRG. Greater improvement can be observed
for SAL-Net-ResNet101 when a more powerful backbone
network is utilized. Therefore, the segmentation performance
can be boosted from 61.4 to 66.1 on the validation set and
4.7% performance gain can be achieved, while FickleNet only
achieves a mIoU gain of 3.5%.

Fig. 8 shows examples from the validation set. The seg-
mented masks generated by state-of-the-art methods such
as DSRG [12], SeeNet [7] may suffer from poor boundary
condition and many discriminative regions are ignored. In
contrast, the proposed algorithm can select more high-quality
annotations for network training and apply the attention mech-
anism for segmentation probability refinement. Thus, more
discriminative regions with high classification confidence can
be discovered as shown in the results of SAL-Net-VGG16.

C. Analysis on the Mask Scoring Strategy

The impact of the threshold τ corresponding to the coarse
and refined mask scoring strategies on the segmentation per-
formance is analysed. Firstly, the thresholds for the coarse
mask scores SC defined in Eq. (5) and validation results are
reported in Table IV. For VGG16 based model, we find that
the segmentation network is sensitive to the amount of training
samples and the segmentation performance will drop sharply
when the number of training images decreases. According
to the cross validation, the setting SAL-Net-VGG16 with
τ = 0.55 achieves the highest mIoU as 57.6, which is selected
as the setting for the coarse selection loss. For ResNet101
based model, masks selection can improve the segmentation
performance obviously. Especially the best mIoU of 64.1 can
be witnessed when τ = 0.8 in SAL-Net-ResNet101. It is
apparent that ResNet101 based network is less sensitive to

Fig. 8: Predictions on PASCAL VOC 2012 validation set for
comparing with different methods such as DSRG [12] and
SeeNet [7].

the amount of annotations, but more sensitive to the quality of
annotations. Then the refined mask scores SF defined in Eq.
(7) are analysed and similar phenomena can be observed. As
shown in Table IV, τ = 0.55 can generate the best mIoU as
58.0 for SAL-Net-VGG16 and τ = 0.85 can generate the best
mIoU as 64.9 for SAL-Net-ResNet101. Therefore, τ = 0.55
and τ = 0.85 are used for defining the refined selection
loss (defined in Eq. (13)) for VGG16 and ResNet101 based
models respectively. It is noted that the refined masks scores
SF perform better in selecting high-quality annotations than
the saliency guided scores SC. For example, with the 3303
samples selected by SF, SAL-Net-ResNet101 can generate
a mIoU of 64.9. However, with the 3638 samples selected
by SC, SAL-Net-ResNet101 can only generate a mIoU 64.1.
We can conclude that if a more powerful baseline model is
selected, even a small amount of high-quality samples can
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TABLE III: Overall accuracy on PASCAL VOC 2012 test dataset. The IoUs of twenty categories and the mean IoU are
presented.
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SEC [51] 83.5 56.4 28.5 64.1 23.6 46.5 70.6 58.5 71.3 23.2 54.0 28.0 68.1 62.1 70.0 55.0 38.4 58.0 39.9 38.4 48.3 51.7
Decouple-VGG16 [6] - - - - - - - - - - - - - - - - - - - - - 56.4

BOOTSTRAPPING (VGG16) [14] 85.3 77.6 26.2 76.6 17.3 61.4 82.4 74.8 83.8 25.7 66.9 46.2 74.0 75.6 79.2 70.8 48.3 73.1 40.5 38.8 39.0 60.2
DSRG (VGG16) [12] - - - - - - - - - - - - - - - - - - - - - 60.4
Pixel Affinity (VGG16) [13] 88.0 61.1 29.2 73.0 40.5 54.1 75.2 70.4 75.1 27.8 62.5 51.4 78.4 68.3 76.2 71.8 40.7 74.9 49.2 55.0 48.3 60.5
MDC (VGG 16) [30] 89.8 78.4 36.2 82.1 52.4 61.7 64.2 73.5 78.4 14.7 70.3 11.9 75.3 74.2 81.0 72.6 38.8 76.7 24.6 70.7 50.3 60.8
SeeNet (VGG16)[7] - - - - - - - - - - - - - - - - - - - - - 60.7
FickleNet (VGG16) [8] - - - - - - - - - - - - - - - - - - - - - 61.9
SAL-Net-VGG16 (ours) 88.5 75.5 31.7 70.5 42.9 65.9 79.1 73.5 82.4 28 71.2 39.1 76.1 70.3 77.8 71 48 73.7 48.7 46.9 50.9 62.5
Decouple-ResNet101 [6] - - - - - - - - - - - - - - - - - - - - - 60.1
Pixel Affinity (ResNet38) [13] 89.1 70.6 31.6 77.2 42.2 68.9 79.1 66.5 74.9 29.6 68.7 56.1 82.1 64.8 78.6 73.5 50.8 70.7 47.7 63.9 51.1 63.7
BOOTSTRAPPING (ResNet50) [14] 87.2 76.8 31.6 72.9 19.1 64.9 86.7 75.4 86.8 30.0 76.6 48.5 80.5 79.9 79.7 72.6 50.1 83.5 48.3 39.6 52.2 63.9
SeeNet (ResNet101)[7] - - - - - - - - - - - - - - - - - - - - - 62.8
DSRG (ResNet101) [12] - - - - - - - - - - - - - - - - - - - - - 63.2
FickleNet (ResNet101) [8] - - - - - - - - - - - - - - - - - - - - - 65.3
SAL-Net-ResNet101 (ours) 90.6 80 31.6 75.4 53.9 66.1 86.3 76.1 87.7 29.7 73.7 44.1 79.9 78.9 74.2 74.7 50.2 78.7 46.8 57.6 63 66.6

TABLE IV: Different values of thresholds τ are evaluated
on PASCAL VOC 2012 validation dataset. The segmentation
performance under different values of τ is reported for SAL-
Net-ResNet101 and SAL-Net-VGG16. “NoS” represents the
number of samples. The results of one single model are
reported and the strategies such as multi-scale fusion and CRF
are not used.

τ for SC
Threshold-τ 0.85 0.8 0.7 0.55 0.35 0

NoS 2481 3638 5551 7535 9055 10490
SAL-ResNet101 mIoU 63.9 64.1 63.5 63.0 62.5 61.6

SAL-VGG16 mIoU 55.3 56.5 57.3 57.6 57.1 56.2
τ for SF

Threshold-τ 0.85 0.8 0.7 0.55 0.35 0
NoS 3303 4362 5961 7586 8889 10392

SAL-ResNet101 mIoU 64.9 64.7 64.1 63.3 62.7 61.8
SAL-VGG16 mIoU 56.9 57.2 57.6 58.0 56.8 56.4

generate satisfactory results. In order to evaluate the quality
of network based mask scores SF more comprehensively, we
plot each predictions and their corresponding ground truth in
Fig. 9. The ground truth scores are obtained by calculating
the AC (defined in Eq. (3)) using the ground truth pixel-
level annotations. We can see that the refined mask scores SF
have better correlation with their ground truth, especially for
those prediction with values higher than 0.5. The correlation
coefficients between the coarse mask scores SC and their
ground truth is 70.1 for the initial coarse scores SC, while the
correlation coefficient is 73.6 for network based refined scores
SF . It indicates that the quality of the refined mask scores has
been improved greatly via training the mask scoring network.
Moreover, the `2-loss and the training accuracy defined by
Spearman correlation coefficients of the mask scoring network
in the training procedure are presented in Fig. 9 as well. We

(a) (b)

(c) (d)

Fig. 9: Analysis on the performance of the mask scoring
network. (a) Correlations between SC and their ground truth;
(b) Correlations between SF and their ground truth; (c) The
`2-loss in the training procedure; (d) The Spearman correlation
coefficient in the training procedure.

can see that the training procedure of mask scoring network
almost converges around 30 epoches and a training accuracy
around 0.984 can be achieved.

D. Analysis on the Classification Structures for Attention Loss

In this experiment, different network structures for the
attention loss are evaluated by integrating various types of
classification branches. As shown in Table V, the segmentation
performance will be improved when multiple classification
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TABLE V: Structure evaluations on the classification subnet-
work for the attention loss. The results with multi-scale fusion
and CRF are reported.

Settings Rate No Selection Coarse Sel Ref Sel
One branch Rate=1 59.61 60.61 61.24
Two branch Rate=1,3 59.71 60.65 61.26

Three branch Rate=1,3,6 59.73 60.64 61.29
Four branch Rate=1,3,6,9 59.75 60.69 61.33

TABLE VI: Ablation study on PASCAL VOC 2012 validation
dataset and the mIoUs corresponding to P1 to P5 are presented.
The values in “( )” indicates the results without multi-scale
fusion and CRF. 4 denotes the cumulative improvements
compared with P2.

SAL-Net- P1 P2 P3 P4 P5
VGG16 56.9(52.1) 59.1(56.2) 60.2(57.6) 60.9(58.0) 61.3(58.4)
4vgg - - 1.1%(1.4%) 1.8%(1.8%) 2.2%(2.2%)

ResNet101 61.4(60.1) 62.2(61.5) 64.9(64.1) 65.8(64.9) 66.1(65.5)
4resnet - - 2.7%(2.6%) 3.6%(3.4%) 3.9%(4.0%)

branches are used, when the segmentation network is trained
without selection loss. For different kind of classification
network structures, training with coarse or refined selection
loss jointly can both improve the segmentation performance.
It is obvious that the architecture with four branches whose
dilation rates are 1,3,6,9 can generate the best performance.
When the four branch structure is used for constructing the
attention loss, the proposed SAL-Net-VGG16 can achieve a
mIoU of 61.3 when trained with the refined selection loss
jointly.

E. Analysis on the Effects of Selection and Attention Losses
for Ablation Study

The roles of five components are evaluated: P1: learning
from image tags, P2: retraining with all the proxy annotations,
P3: training with coarse selection loss, P4: training with
refined selection loss and P5: +training with attention loss.
Specifically, as shown in Table VI, the mIoUs of 56.9(52.1)
and 61.4(60.1) are obtained for VGG16 and ResNet101 based
models respectively in P1 by implementing DSRG [12].
Then the generated proxy annotations are applied to retrain
the segmentation networks SAL-Net-VGG16 and SAL-Net-
ResNet101 in P2. mIoUs of 59.1(56.2) and 62.2(61.5) can be
achieved subsequently, and they are better than the reported
59.0 and 61.4 in [12]. In P3, the segmentation performance
can be improved to 60.2(57.6) and 64.9(64.1) by selecting
7535 and 3638 high-quality annotations (Table IV) respec-
tively. Therefore, the refined mask scores SF select 7586
and 3303 samples (Table IV) with higher quality to generate
better segmentation performance as 60.9(58.0) and 65.8(64.9)
respectively in P4. Finally, mIoU of 61.3(58.4) and 66.1(65.5)
can be achieved by training the segmentation network with
refined selection loss and attention jointly in P5. We can see
that compared with the baseline P2, 1.1%(1.4%), 1.8%(1.8%)
and 2.2%(2.2%) mIoU gains can be achieved for SAL-Net-
VGG16 from P3 to P5 incrementally, and cumulative mIoU
gains of 2.7% (2.6%), 3.6%(3.4%) and 3.9%(4.0%) can be

Fig. 10: Illustration of the segmentation results corresponding
to ablation study steps from P1 to P5 in Table VI.
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Analysis on the Roles of Different Losses in the Training Procedure

P2:initial network retraining
P3:coarse selection loss
P4:fine selection loss
P5:fine selection loss + attention loss

Fig. 11: Analysis on the roles of different losses for SAL-Net-
VGG16 in the training procedure. The mIoUs on the validation
set are reported every 3k iterations in the training process. The
y-axis presents the mIoUs on the validation set and the x-axis
presents the iterations from 3k to 27k.

obtained for SAL-Net-ResNet101 from P3 to P5. In sum-
mary, the segmentation performance with retraining is boosted
from 59.1 to 61.3 and 62.2 to 66.1. Clearly, the significant
performance improvements (2.2% and 3.9%) indicate that
the proposed mechanisms of mask scoring and classification
errors correction are effective in optimizing the segmentation
networks, especially when the pixel-level annotations are
noisy. Moreover, the qualitative results for ablation study are
displayed in Fig. 10, which show that the segmentation masks
corresponding to P1 to P5. It is observed that the segmentation
masks are refined by discovering more discriminative regions
and correcting classification errors adaptively. Then the
effects of selection losses and attention loss are evaluated more
comprehensively in Table VII. Without Sel loss and Atten loss,
a mIoU of 59.1 is achieved by training from 10582 proxy
annotations. The role of Sel loss is evaluated firstly, we can
see that the coarse Sel loss can generate 1.1% performance
gain and the refined selection loss can boost the performance
to 60.9 with more reliable mask scores. When the Atten loss
is integrated into the training framework, a mIoU of 59.8 is
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TABLE VII: Evaluating the roles of the selection loss and
attention loss. The results with multi-scale fusion and CRF
are reported.

Methods No Sel Loss Coarse Sel Loss Ref Sel Loss
No Atten Loss 59.1 60.2 60.9

+Atten Loss 59.8 60.7 61.3

TABLE VIII: Segmentation performance on PASCAL VOC
2012 val dataset for different λ.

λ 0 0.5 1 2 5 15 30
Lsel + λLatten mIoU 60.91 60.84 61.19 61.33 61.20 60.6 58.9

produced by taking the clean image tags as supervision even
if the Sel loss is not integrated into the framework. Moreover,
0.9% and 1.5% mIoU gains can be witnessed when the whole
framework is trained with coarse selection loss and refined
selection loss respectively.

Furthermore, one additional experiment is performed to
demonstrate the effectiveness of the proposed selection and
attention losses. As shown in Fig. 11, the mIoUs on the
validation set are recorded every 3k iterations in the training
procedure. We can see that both the coarse and refined
selection losses can improve the training efficiency, and a
maximum advance mIoU as 1.9% can be recorded. When the
selection loss is combined with the attention loss in P5, the
training accuracy can climb to a high level within 6 epoches
and reaches the highest value as 58.4 finally.

The improvement induced by the proposed losses is il-
lustrated in Fig. 12, the SAL-Net with Sel loss and Atten
loss can generate object masks of higher quality by adjusting
the classification errors and refining the object boundaries
adaptively. For example some pixels in the table region are
miss-classified as bootle in the 1st image without the Atten
loss, the the model trained with Atten loss can correct the
wrongly labeled pixels by learning from the clean image
tags. Furthermore, the segmentation model trained with Sel
loss and Atten loss can generate segmentation masks with
higher boundary accuracy by learning from more high quality
supervisions, such as clean image tags or high-confident proxy
annotations. In addition, we tried different values of λ in Eq.
(14) to find the best performance for network training. The
results for different values of λ are shown in Table VIII which
show that setting λ = 2 in our method can achieve the best
performance when simultaneously conducting mask selecting
and segmentation probabilities refinement. We also found that
the segmentation performance will drop sharply when λ is
larger than 15. This is primarily because the attention loss
will dominate the energy and the network tends to generate
sparse localization maps so as to improving the classification
accuracies, therefore, the segmentation performance will drop
in consequence.

F. Experiments on Semi-supervised Semantic Segmentation

In order to evaluate the generality of the proposed selection
loss and attention loss more comprehensively, the segmenta-
tion experiments with semi-supervised learning are conducted.

Fig. 12: Illustration of the roles of the attention loss and the
selection loss. “wo” is the abbreviation of without. “Sel” is
the short for selection. “Ref” is the short for refined. “Atten”
is the short for attention.

Fig. 13: Illustration of the effects of the selection and attention
losses in semi-supervised semantic segmentation correspond to
the results reported in Table IX.

In the semi-supervised setting, the segmentation models are
trained on 1449 images with precise pixel-level annotations
and other 9k images with image tags in the PASCAL VOC
2012 dataset. Different from the schemes proposed in DSRG
[12] or FickleNet [8], SAL-Net-VGG16 utilizes the 9k initial
proxy annotations and the image tags for network optimiz-
ing. In the first experiment, the effect of the selection and
attention losses are evaluated, and the corresponding results
are displayed in Table IX. In the setting of fully supervised
segmentation with 1.4k images, the attention loss can boost the
performance from 62.8 to 63.2. When the 9k proxy annotations
are applied for learning, a mIoU of 64.5 can be achieved.
Once the selection loss is utilized for annotations filtering,
SAL-Net-VGG16 can obtain another 1.2% mIoU gain by
selecting 7668 high quality samples. Finally, a mIoU of 66.2
is obtained by training the whole network with selection loss
and attention loss jointly. The segmentation masks generated
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TABLE IX: Evaluation of the selection and attention losses
for semi-Supervised semantic segmentation.

S1 1.4kstrong 62.8
S2 1.4k strong+Atten loss 63.2
S3 1.4k strong+0.9k weak 64.5
S4 1.4k strong+0.9k weak+Sel Loss 65.7
S5 1.4k strong+0.9k weak+Sel Loss+Atten Loss 66.2

TABLE X: Comparison of semi-supervised semantic seg-
mentation methods on PASCAL VOC 2012 validation set.
The performances of DeepLab using 1.4K and 10.6K fully
annotated data are presented as well.

Methods Training Set mIoU
DeepLab [47] 1.4K strong 62.5
WSSL [22] 1.4K strong + 9K weak 64.6
GAIN [52] 1.4K strong + 9K weak 60.5
MDC [30] 1.4K strong + 9K weak 65.7
DSRG [12] (baseline) 1.4K strong + 9K weak 64.3
FickleNet [8] 1.4K strong + 9K weak 65.8
SAL-Net-VGG16 (Proposed) 1.4K strong + 9K weak 66.2
DeepLab [47] 10.6K strong 67.6

by models trained with settings S1 to S5 are illustrated in Fig.
13. We can see that higher object boundary accuracies can be
achieved when more high-quality annotations are generated
and selected for training. SAL-Net-VGG16 is also compared
with other state-of-the-arts such as FickleNet [8], DSRG [12],
MDC [30] etc. The evaluation results shown in Table X have
demonstrated that SAL-Net-VGG16 is more effective for semi-
supervised semantic segmentation than other state-of-the-arts
by generating high-quality supervision cues from image tags.

G. Analysis on the Computation Cost

As demonstrated in Table XI, the training & inference
time of the segmentation networks and the mask scoring
network are reported. Both networks are implemented by using
Tensroflow on GTX 1080Ti. In the training stage, SAL-Net-
VGG16 takes approximate 0.12s to process an image size
321×321 on average by employing selection loss and attention
loss. Subsequently, the whole training procedure takes about
6.5 hours for 27000 iterations, while Deeplab-VGG16-ASSP
[47] takes 6 hours. For SAL-Net-ResNet101, all the 15000
iterations during training period takes around 3.8 hours. As for
the inference results, the inference of SAL-Net-VGG16 takes
around 0.1s for segmenting an image with size 500× 375 on
average, while the inference of SAL-Net-ResNet101 consumes
0.15s. Therefore, we found that the inference time of the
proposed segmentation networks is the same as that of the
baseline Deeplab-ASSP. Furthermore, the mask scoring net-
work takes about 0.39s to process 8 inputs with size 432×432
in a batch. Afterwards, 516 seconds are consumed by an epoch
and all 50 epoches (around 66k iterations) take 7.2 hours in
total. The inference on an image with size 432× 432 for SF
of mask scoring network takes approximate 0.03s on average.
Our proposed framework mainly focuses on the retraining
procedure of weakly supervised segmentation. It consists of

TABLE XI: The training & inference time of the mask scoring
network and the segmentation networks.

Bath Iterations Time Per Training Inference
Size Iteration

Mask Scoring Network 8 66k 0.39s 7.2h 0.03s
SAL-Net-VGG16 7 27k 0.87s 6.5h 0.1s
SAL-Net-ResNet101 7 15k 0.91s 3.8h 0.15s
Deeplab-VGG16-ASSP 7 27k 0.81s 6h 0.1s

a mask scoring network and segmentation networks. It can be
seen that the training & inference time of SAL-Net-VGG16
and SAL-Net-ResNet101 are almost the same as that of the
baseline Deeplab-ASSP used in SEC and DSRG, but the
segmentation performance has been significantly improved.
The introduced extra computation costs are primarily caused
by the training of mask scoring network, which is implemented
in an offline manner. In summary, the complexity of designed
algorithm has not been significantly increased when compared
with the existing methods such as SEC and DSRG.

V. CONCLUSION

In this paper, we have introduced a novel end-to-end
framework SAL-Net with two novel losses: a selection loss
and an attention loss to effectively optimize the semantic
segmentation model from weak and noisy annotations.
Firstly, a coarse-to-fine mask scoring strategy is proposed
to evaluate the quality of the produced segmentation masks
in the training set. Then the selection loss is constructed to
optimize the segmentation network on proxy annotations of
high confidence. Moreover, an attention loss is proposed to
learn the attention weights of each class from clean image
tags. The classification ambiguities are refined adaptively by
reciprocally learning from clean image tags and interacting
with the segmentation network. The proposed framework
SAL-Net is evaluated on the challenging PASCAL VOC 2012
benchmark, extensive numerical and visualization results
demonstrate the benefits brought by the proposed new losses.
In the future, we will explore enhancing the performance of
SAL-Net for images with more complex scenes.
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