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Improving Video Saliency Detection via Localized
Estimation and Spatiotemporal Refinement
Xiaofei Zhou, Zhi Liu , Senior Member, IEEE, Chen Gong , Member, IEEE, and Wei Liu

Abstract—Video saliency detection aims to pop out the most
salient regions in every frame of a video. Up to now, many
efforts have been made from various aspects for video saliency
detection. Unfortunately, the existing video saliency models are
very likely to fail in challenging videos with complicated motions
and complex scenes. Therefore, in this paper, we propose a novel
framework to improve the saliency detection results generated by
existing video saliency models. The proposed framework consists
of three key steps including localized estimation, spatiotemporal
refinement, and saliency update. Specifically, the initial saliency
map of each frame in a video is first generated by using
an existing saliency model. Then, by considering the temporal
consistency and strong correlation among adjacent frames, the
localized estimation models, which are generated by training the
random forest regressor within a local temporal window, are
employed to generate the temporary saliency map. Finally, by
taking the appearance and motion information of salient objects
into consideration, the spatiotemporal refinement step is deployed
to further improve the temporary saliency map and generate the
final saliency map. Furthermore, such an improved saliency map is
then utilized to update the initial saliency map and provide reliable
cues for saliency detection in the next frame. The experimental
results on four challenging datasets demonstrate that the proposed
framework is able to consistently and significantly improve the
saliency detection performance of various video saliency models,
thereby achieving the state-of-the-art performance.

Index Terms—Video saliency, localized estimation, local
temporal window, spatiotemporal refinement, saliency update.
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I. INTRODUCTION

SALIENCY detection has become a booming research topic
in recent years. The inherent visual attention mechanism

in human visual system is deployed to computationally iden-
tify the salient objects in the complicated scenes. Up to now,
numerous saliency models have been proposed for static im-
ages, and have been intensively used in various applications
such as object detection and segmentation [1]–[12], content-
aware image/video retargeting [13]–[15], image/video quality
assessment [16], and content-based image/video compression
[17], [18]. However, there are relatively few researches investi-
gating the video saliency. Therefore, in this paper we focus on
detecting the salient object in a given video.

Video saliency detection differs from the traditional image
saliency detection majorly in the introduction of temporal infor-
mation apart from the spatial information inherited by an image.
Therefore, to simultaneously cope with the temporal informa-
tion and spatial information of a video, many prior works have
been done from various aspects such as the center-surround
scheme [19]–[24], information theory [25]–[27],control the-
ory [28], [29], frequency domain analysis [17], [30], machine
learning [31]–[35], information fusion [36]–[43], and regional
saliency assessment [44]–[47]. The above saliency models can
obtain satisfactory results to some degree, however their perfor-
mances will degrade in dealing with the unconstrained videos
with complicated motion and complex scenes such as fast mo-
tion, dynamic background, nonlinear deformation, and occlu-
sion, etc. Concretely, the existing video saliency models are
insufficient to uniformly highlight salient objects with well-
defined boundaries and meanwhile suppress irrelevant back-
ground regions.

To elevate the performance of saliency detection in videos,
this paper proposes a novel framework to effectively improve the
saliency detection results in unconstrained videos generated by
any existing saliency model. The advantages of our framework
are twofold. First, to preserve the global shape of salient object
in video, we design a localized estimation step based on boot-
strap learning [48] within a local temporal window, in which
temporal consistency and strong correlation among frames are
considered. As a result, the saliency map will generally high-
light most part of salient object throughout the video. Second,
to refine the estimation result with well-defined boundaries, we
devise a spatiotemporal refinement step which takes the appear-
ance and motion cues of potential salient objects into consider-
ation simultaneously. Consequently, the obtained saliency map
will be more accurate.
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Fig. 1. Illustration of the proposed framework.

Our framework detects salient objects in a video frame by
frame, and it consists of three key steps, i.e., localized estima-
tion, spatiotemporal refinement, and saliency update, as shown
in Fig. 1. Specifically, for a given video, the initial saliency maps
of all frames are generated via using an existing saliency model.
Then, the localized estimation models are generated by train-
ing the random forest regressor within a local temporal window
centered on the current frame. The estimated saliency maps,
which are produced by the localized estimation models, are
combined with the initial saliency map to yield the temporary
saliency map. Finally, by deploying the appearance and motion
information of salient object, the spatiotemporal refinement is
performed to generate the final saliency map.

Overall, our main contributions are summarized as follows:
1) We propose a novel framework, which consists of three

key steps including localized estimation, spatiotemporal
refinement and saliency update, for boosting the saliency
detection results in unconstrained videos.

2) The proposed localized estimation method reasonably ex-
ploits the temporal consistency and strong correlation
among adjacent frames, where a local temporal window
based estimators are employed to highlight the global
shape of salient objects in each current frame.

3) The proposed spatiotemporal refinement method simulta-
neously incorporates the appearance and motion informa-
tion of salient objects to effectively highlight the salient
objects with well-defined boundaries and achieve more
accurate results.

4) We tested our framework with several state-of-the-art
video saliency models on four public video datasets, and
the results firmly demonstrate the effectiveness and supe-
riority of our framework.

The rest of this paper is organized as follows. The related
works are reviewed in Section II. The proposed framework is
described in Section III. Experimental results and the related
analyses are presented in Section IV. Finally, we conclude this
paper in Section V.

II. RELATED WORKS

The saliency detection for still images has been studied for
decades, during which numerous effective models have been
proposed via bottom-up or top-down strategy [49], [50]. For
bottom-up models, the pioneering work was done by Itti et al.,
who proposed the well-known center-surround saliency model
[51]. In this model, luminance, color and orientation across

multiple scales are employed to compute the center-surround
difference. Similar to [51], a global contrast saliency model is
proposed in [6], where the global region contrast in entire im-
age and the spatial relationship across different image regions
are deployed to detect the salient object. As for the top-down
strategy, it is usually task and knowledge driven. For example,
in [1], the conditional random field is used to integrate multiple
features and generate the saliency map. In [52], the discrimina-
tive features of each region are mapped to saliency score using
random forest regression. More recently, deep learning based
saliency models such as [53]–[56] push forward the progress of
saliency detection for still images. Besides, some prior works
have been done to perform saliency detection based on existing
saliency models, such as bootstrap learning based models [3],
[57] and optimization-based saliency prediction [58], which is
a similar and related work for the spatiotemporal refinement
in our framework. Different from [58], which processes only
still color images at single scale, our spatiotemporal refinement
method incorporates motion information and operates at mul-
tiple scales. Generally speaking, such aforementioned efforts
focus on image saliency detection, so they are inappropriate to
conduct video saliency detection.

Since the proposed framework focuses on saliency detec-
tion in videos, next we will review some representative video
saliency models. Roughly speaking, the existing models are
based on center-surround scheme, information theory, control
theory, machine learning, or information fusion, etc.

The well-known center-surround scheme in [51] has been ex-
ploited by numerous video saliency models and interpreted as
the feature difference by defining various mathematical prin-
ciples. The surprise model [19] incorporates multiple features
including color, luminance, orientation, flicker and motion en-
ergy, to compute the feature difference and generate the saliency
map. Akin to [51], in [21], the Kullback-Leibler divergence on
dynamic texture feature is used to compute the video saliency
based on the discriminant center-surround hypothesis [20]. Be-
sides, the feature difference has also been formulated as local
regression kernel based self-resemblance [22], earth movers dis-
tance [23], or directional coherence [24].

Based on the information theory, the video saliency is charac-
terized by different models such as self-information [25], min-
imum conditional entropy [26], and incremental coding length
[27]. As for the control theory, a linear dynamic system [28], [29]
is used to discriminate the salient object from dynamic scenes.
Besides, the frequency domain analysis is also used for video
saliency detection, such as the phase spectrum of quaternion
Fourier transforms [17] and temporal spectral residual [30].

Machine learning methods have also been widely used in
video saliency detection. For example, probabilistic multi-task
learning [31], support vector machine with Gaussian kernels
[32], and support vector regression [33] are utilized to predict
fixations on videos. Besides, the one-class support vector ma-
chine is performed on object trajectories and the video saliency
is determined based on the diffusion results of such trajectories
[34]. Sparse representation is also employed in video saliency
detection [35], in which the video saliency detection is formu-
lated as a problem of regularized feature reconstruction.
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Considering the difference between spatial and temporal in-
formation possessed by a video, some models first generate
spatial saliency map and motion saliency map, respectively,
and then adopt certain fusion schemes to combine such two
saliency maps into the final saliency map. The examples in-
clude intra-map and inter-map competition based fusion [36],
mean/maximum value based combination [37], linear summa-
tion with location prior [38], and weighted linear summation
[39]. In addition, Fang et al. [40], [41] propose to use the pa-
rameterized normalization or sum/product fusion to effectively
combine spatial and motion saliency. In [42], the conditional
random field is leveraged to integrate spatial and motion infor-
mation. More recently, in [43], the color-based saliency is fused
with global motion cues in a batch-wise manner.

Recently, more efforts have been made on video saliency de-
tection. For example, in [59], the spatial transition matrix and
the temporal restarting distribution are systematically unified to
compute the video saliency. Besides, there are also some liter-
atures working on the segmented regions/superpixels. In [44],
superpixel-level motion distinctiveness, global contrast, as well
as spatial sparsity are first used to measure spatial and tempo-
ral saliency, and then they are fused via an adaptive scheme
to generate the final saliency map. In [45], a superpixel-level
graph based motion saliency measurement is leveraged to gen-
erate the initial saliency map, and then bidirectional temporal
propagation and two-phase spatial propagation are performed
successively to generate the final saliency map. In [46], the
intra-frame boundary information together with the inter-frame
motion information are first employed to construct the gradient
flow field, and then the local and global contrast mechanism is
deployed to obtain the coarse saliency cues. Such coarse saliency
cues are finally improved by the energy optimization method,
yielding the refined saliency map. In [47], spatial edges and
temporal motion boundaries are exploited to generate the initial
saliency map based on the geodesic distance over an intra-frame
graph, and then an inter-frame graph is constructed to generate
the final saliency map. Some more recent and prominent ap-
proaches such as spatiotemporal background priors based video
saliency model [60] and video quantum cuts [61] have also been
proposed, which achieved a very encouraging performance.

All the aforementioned saliency models, i.e. existing models
for video saliency detection, can generate visually promising
results in some cases, however the performance will degrade in
dealing with complicated scenarios such as fast motion, clut-
tered background, deformation and so on. For the purpose of
boosting saliency maps generated by existing video saliency
models, we present a novel framework, which combines three
key steps including localized estimation, spatiotemporal refine-
ment and saliency update in an effective way.

III. PROPOSED FRAMEWORK

This section details our proposed video saliency detection
framework.

A. Architecture Overview

The main architecture of our proposed framework is illus-
trated in Fig. 1, which consists of three steps including localized

estimation, spatiotemporal refinement and saliency update. For
saliency computation of each current frame Ft , a local temporal
window WTt = {Ft−1 ,Ft ,Ft+1} is established centered on
Ft , where Ft−1 is the previous frame and Ft+1 is the next
frame. The initial saliency maps ISt−1 , ISt and ISt+1 of the
three frames in WTt can be generated by any existing video
saliency model, and could serve as the input of our framework
without the saliency update. However, since the final saliency
map St−1 of the previous frame Ft−1 is actually available,
ISt−1 is updated by St−1 in our framework with the update
step, i.e., “Saliency Update”, as shown in Fig. 1. Furthermore,
in Section IV-C, we will evaluate the performance of our frame-
work with/without update and demonstrate the contribution of
saliency update. With St−1 , ISt and ISt+1 as the input, the
temporary saliency map TSt is generated via the localized
estimation step (Section III-B). Then, TSt is further improved
by the spatiotemporal refinement step (Section III-C) to obtain
a more precise result, namely the final saliency map St , for the
current frame Ft . For saliency computation of the next frame
Ft+1 , the initial saliency map ISt is also updated by St . The
above process iterates until all the frames in a video have been
processed. In this way, our framework detects the salient objects
frame by frame in a video, and operates on a local temporal win-
dow centered on each current frame. Besides, it should be noted
that the saliency computation for the first frame is performed
on a local temporal window, which only contains the first frame
and the second frame, while for the last frame, its local temporal
window only contains the penultimate frame and the last frame.

In our method, we follow the recent works [44]–[47] and
segment every frame Ft (t = 1, 2, · · · ) into some perceptually
homogenous superpixels {spi

t}nt
i=1 (nt is the number of gener-

ated superpixels) via the simple linear iterative clustering (SLIC)
algorithm [62]. Salient objects are likely to appear at different
scales, so we generate three layers of superpixel with different
granularities in our implementation with nt = 350, 400, 450,
respectively. In order to guarantee the temporal consistency of
saliency maps, in Section III-B, the local temporal window based
estimation models are designed to incorporate and exploit the
temporal consistency and strong correlation among temporally
adjacent frames. The above models complement to each other
and will be used for predicting the saliency map of current frame.
Furthermore, the individual performances at certain scales will
be discussed in Section IV-C. Note that the notation without
superscript denotes all superpixels at certain scale in Ft .

In our work, four kinds of features are extracted on every
superpixel. Firstly, color features are extracted from RGB and
CIELab color spaces. Secondly, we employ LBP [63] to char-
acterize the texture of image regions. Thirdly, horizontal and
vertical locations of superpixels are used to specify the spa-
tial information of superpixels. Lastly, the motion information
which is an important cue for video processing is also incor-
porated in our work. For the current frame Ft , its pixel-level
motion vector field MVFt,t+1 with respect to the next frame
Ft+1 is calculated using the method of large displacement op-
tical flow (LDOF) [64]. The motion feature of each superpixel
is then computed based on the amplitudes and orientations of
pixels in MVFt,t+1 .
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TABLE I
FEATURES EXTRACTED FOR EACH SUPERPIXEL

Fig. 2. Illustration of the localized estimation step. (a) and (b) denote the
training data {TRDcu r

t , TRDaux
t } collected from the current frame Ft and

the adjacent two frames {Ft−1 , Ft+1}, respectively. (c) represents the test data
TEDt extracted from the current frame Ft .

Table I gives the detailed information about the adopted fea-
tures. For each superpixel at each scale, a 20-dimensional feature
vector x = [x1 , x2 , . . . , x20 ] is obtained by concatenating all the
features mentioned above.

B. Localized Estimation

To exploited the temporal consistent and strong correlation
among temporally adjacent frames, we propose a novel localized
estimation method to obtain temporary saliency map, as shown
in Fig. 2. In the following, we will provide a detailed description
of localized estimation step.

For the current frame Ft , the local temporal window WTt =
{Ft−1 ,Ft ,Ft+1} contains the previous frame Ft−1 with its fi-
nal saliency map St−1 , the current frame Ft with its initial
saliency map ISt , and the subsequent frame Ft+1 with its
initial saliency map ISt+1 . Therefore, the current estimation
model Mcur

t is learned from current frame Ft , and the auxiliary
estimation model Maux

t is learned from adjacent two frames
{Ft−1 ,Ft+1}. Such two estimation models are denoted as the
localized estimation models. Both models are built via the ran-
dom forest regressor. Here, we take Ft as an instance. A binary

mask BMt is first obtained using the Otsu’s method [65] on
ISt . The confidence score is then obtained to select the reliable
training samples for the random forest regressor, namely:

CSi
t =

∣
∣spi

t ∩ BMt

∣
∣

∣
∣spi

t

∣
∣

, (1)

where CSi
t denotes the confidence score measuring the percent-

age of the pixels in the superpixel spi
t at one scale that belong

to the salient object, and |.| denotes the number of pixels in the
corresponding region. Then, we can compute the saliency score
Ai

t of the superpixel spi
t as:

Ai
t =

{
1 CSi

t ≥ qh

0 CSi
t ≤ ql

, (2)

which means that spi
t is treated as a positive sample if CSi

t

is not less than the upper threshold qh , so the correspond-
ing saliency score Ai

t is set to 1. If CSi
t is not larger than

ql , spi
t is treated as a negative sample and the corresponding

saliency score Ai
t should be 0. To obtain confident samples,

here we set the upper threshold qh and the lower threshold ql

as 0.8 and 0, respectively. By this way, we can obtain the train-
ing data TRDcur

t = {(x1
t ,A

1
t ), (x

2
t ,A

2
t ), · · · , (xQ

t ,AQ
t )} from

three scales in current frame, which consists of totally Q confi-
dent samples.

Then, a random forest regressor is exploited to obtain the
estimation model Mcur

t on the training data TRDcur
t . Next, for

the test data TEDt = {TEDs
t }3

s=1 (i.e., all the superpixels at
three scales in current frame Ft), the estimated saliency map
EScur

t is computed by:

EScur
t =

1
3

3∑

s=1

Mcur
t (TEDs

t ) . (3)

By incorporating the temporal correlation, an auxiliary esti-
mation model Maux

t is constructed based on the other two frames
{Ft−1 ,Ft+1} . Akin to the generation of estimated saliency map
EScur

t , we can obtain the corresponding training data TRDaux
t ,

estimation model Maux
t , and the estimated saliency map ESaux

t

that is defined as:

ESaux
t =

1
3

3∑

s=1

Maux
t (TEDs

t ) . (4)

The estimated saliency maps EScur
t and ESaux

t are shown in
Fig. 2. Compared with the initial saliency map ISt , the esti-
mated saliency maps EScur

t and ESaux
t highlight most part of

the car more effectively. Besides, due to the difference of train-
ing data, EScur

t pays more attention to discriminate the object
details (e.g., tyre), while ESaux

t is able to highlight the car more
uniformly.

Lastly, by integrating the initial saliency map ISt and the pre-
dicted saliency maps EScur

t and ESaux
t , the temporary saliency

map TSt is generated as:

TSt = ISt + EScur
t + ESaux

t . (5)

As a result, the temporary saliency map TSt well preserves
the details of the car as well as uniformly highlights the entire
car region due to the combination of such saliency maps.
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Fig. 3. Illustration of the spatiotemporal refinement step. “ST-BP” denotes
spatiotemporal background probability computation model, “ST-SOP” rep-
resents spatiotemporal saliency optimization model, and “GC” stands for
graph cut.

C. Spatiotemporal Refinement

To further improve the performance of temporary saliency
map output by the localized estimation step, we propose a
spatiotemporal refinement method to generate the final saliency
map with well-defined boundaries for current frame (see Fig. 3).
To this end, the appearance and motion information of salient ob-
ject are used simultaneously. Specifically, the current frame Ft

is first fed into “ST-BP”, which is a spatiotemporal background
probability computation model that will be later introduced,
to yield the background probability map BPMt . Then, the
temporary saliency map TSt and the background probability
map BPMt are together fed into “ST-SOP” and graph cut (GC)
method [57], in which “ST-SOP” denotes a spatiotemporal
saliency optimization model that will be detailed below. In
this way, we obtain the final saliency map St for the current
frame Ft .

(a) Spatiotemporal background probability (ST-BP). As men-
tioned above, a background probability computation model is
employed by us to infer the potential background priors in spa-
tiotemporal domain. Concretely, we use the strategy proposed
in [58], which models the boundary connectivity BondCon(.)
as the degree that a superpixel is connected to image boundaries.
For a superpixel spi

t at certain scale in Ft , the BondCon(.) is
defined as:

BondCon
(

spi
t

)

=
Lenbnd

(

spi
t

)

√

Area
(

spi
t

) , (6)

where Area
(

spi
t

)

measures the soft area of the region that
spi

t belongs to, and Lenbnd

(

spi
t

)

defines the length along the
boundary of the region that spi

t is located. Such two terms are
computed by:

Area
(

spi
t

)

=
nt∑

j=1

exp

⎛

⎝−
d2

geo

(

spi
t , sp

j
t

)

2σ2
geo

⎞

⎠, (7)

Lenbnd

(

spi
t

)

=
nt∑

j=1

×
⎡

⎣exp

⎛

⎝−
d2

geo

(

spi
t , sp

j
t

)

2σ2
geo

⎞

⎠ · δ (spi
t ∈ Bnd

)

⎤

⎦,

(8)

where Bnd denotes the set of image boundary superpixels and
δ (.) is equal to 1 for superpixel on the image boundary and 0

otherwise. The geodesic distance dgeo(spi
t , sp

j
t ) between any

two superpixels is defined as the accumulated edge weights,
which contains two kinds of geodesic distances dgeo,C (spi

t , sp
j
t )

and dgeo,M (spi
t , sp

j
t ) that are computed as:

dgeo,C

(

spi
t , sp

j
t

)

=

min
sp1

t =spi
t ,sp2

t ,...,sp
n t
t =spj

t

nt −1∑

k=1

dC

(

spk
t , spk+1

t

)

, (9)

dgeo,M

(

spi
t , sp

j
t

)

=

min
sp1

t =spi
t ,sp2

t ,...,sp
n t
t =spj

t

nt −1∑

k=1

dM

(

spk
t , spk+1

t

)

, (10)

where dC and dM are the Euclidean distance between any two
adjacent superpixels using color and motion feature, respec-
tively. Here, the color feature is the average of CIELab values
of pixels in each superpixel, i.e. [x7 , x8 , x9 ], and the motion
feature is the mean value of motion amplitude and orientation
values of pixels in each superpixel, i.e. [x17 , x19 ]. Besides, the
σgeo in (7) and (8) is computed as the mean of all distances be-
tween any two adjacent superpixels in above two feature spaces,
respectively.

Then, according to above explanations, we compute the back-
ground probability map BPMt at each scale as:

BPMt = BPMC
t + BPMM

t , (11)

where BPMC
t and BPMM

t are the background probabil-
ity maps generated by using color feature and motion fea-
ture, respectively. The uniform computation equation is then
defined as:

BPM∗,i
t = 1 − exp

(

−BondCon2
(

spi
t

)

2σ2
bondcon

)

, (12)

where the superscript “*” can be “C” or “M” that refers to the
color feature or motion feature, respectively. The normalization
term σbondcon is also set to the mean value of all the boundary
connectivity values Lenbnd (.).

(b) Spatiotemporal saliency optimization (ST-SOP). spa-
tiotemporal saliency optimization model is utilized to establish
the final saliency map St based on the obtained background
probability map BPMt and the temporary saliency map TSt .
Concretely, the optimization model is designed to assign the
salient object region value 1 and the background region value 0.
The objective function at each scale is expressed as:

St = arg min
S i

t

[
nt∑

i=1

BPMi
t ·
(

Si
t

)2

+
nt∑

i=1

TSi
t ·
(

Si
t − 1

)2 +
∑

i,j

wij
t

(

Si
t − Sj

t

)2

⎤

⎦. (13)

Eq. (13) is conducted on all three scales (i.e., nt =
350, 400 and 450), therefore the optimization result is
the average of the outputs of all three scales, namely
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St := (
∑

nt =350,400,450 St(nt))/3. The smoothness term
∑
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2 encourages the adjacent superpixels to ob-
tain similar saliency values. For a pair of adjacent superpixels,
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t is calculated as:
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where the normalization terms σC and σM are computed as
the mean value of all the distances between any two adjacent
superpixels in color and motion feature spaces, respectively.
The trade-off parameter μ is empirically set to 0.1. The objec-
tive function in Eq. (13) can be easily solved by least-square
regression.

Finally, by feeding the output of Eq. (13) into a graph cut (GC)
based refinement method [57], a salient object mask SMt can be
generated. By combining SMt with St , the final saliency map
St is computed as St := (SMt + St)

/

2 as shown in Fig. 3.
Compared with the initial saliency map ISt , the temporary
saliency map TSt better highlights the salient object and sup-
presses background regions. Furthermore, by fusing TSt and
the background probability map BPMt , the final saliency map
St renders the salient object more uniformly and completely
with well-defined boundaries.

IV. EXPERIMENTAL RESULTS

In this section, we performed comprehensive experiments on
four public video datasets including SegTrackV2 [66], UVSD
[45], DAVIS [67] and ViSal [46]. First, the video datasets and
experimental settings are detailed in Section IV-A. Then, the
comprehensive comparison results over the aforementioned four
video datasets are provided in Section IV-B. Some validation
experiments are performed in Section IV-C. In Section IV-D,
some failure cases are presented, and finally, the computation
issue of our framework is discussed in Section IV-E.

A. Datasets and Experimental Settings

The four typical video saliency datasets with manually an-
notated binary ground truths are employed for evaluation. The
first dataset SegTrackV2 consists of 14 videos with challenging
circumstances such as appearance change, motion blur, occlu-
sion, complex deformation and so on. The second dataset UVSD
contains a total of 18 challenging videos with complicated mo-
tions and complex scenes. The third dataset DAVIS is a recent
dataset for video object segmentation, which contains 50 high-
quality videos with different motions of human, animal and
vehicle in challenging circumstances. As for the fourth dataset,
ViSal contains 17 challenging video sequences such as complex
color distributions, camera motion, rapid topology changes and
so on.

We applied our framework with five state-of-the-art saliency
models including SGSP [45], GD [47], MC [53], CVS [46],
and RWRV [59]. Therefore, the comparison is performed be-
tween the original saliency models (i.e. SGSP, GD, MC, CVS
and RWRV), and the corresponding improved version (denoted
as SGSP*, GD*, MC*, CVS* and RWRV*) based on the pro-
posed framework. The saliency model MC is designed for image
saliency detection while the rest four models are used for video
saliency detection. For a fair comparison, the source codes of
SGSP, GD, MC, CVS and RWRV are directly provided by their
authors, and the saliency maps generated by different models
are normalized into the same resolution as original videos with
pixel value ranging from 0 to 255.

B. Performance Comparison

1) Qualitative Evaluation: Figs. 4–7 provide the qualita-
tive evaluation between SGSP, GD, MC, CVS, RWRV and the
corresponding improved SGSP*, GD*, MC*, CVS*, RWRV*
on SegTrackV2, UVSD, DAVIS and ViSal, respectively. From
Fig. 4(k), 5(k), 6(k), and 7(k), it can be observed that the video
saliency model RWRV that works in a patches/volumes way
only highlights the regions around the boundaries of salient ob-
ject or falsely highlights some background regions. The other
three video saliency models including SGSP, GD and CVS per-
form better than RWRV and achieve the decent visual effect to
some degree, but the results are not sufficiently good on the four
challenging datasets. The reason behind this lies in the heavy
dependence of motion information on the construction of basic
saliency cue in such models. As for the image saliency model
MC, its performance is insufficient for the dynamic scenes due to
the lack of temporal information. However, it shows competitive
performance with the aforementioned three video saliency mod-
els, and this indicates the power of deep learning for saliency
detection.

Compared with the original saliency models including SGSP,
GD, MC, CVS and RWRV, it can be seen that the improved
version (i.e., SGSP*, GD*, MC*, CVS* and RWRV*) render
the better performance. The saliency maps improved by our
framework highlight the salient objects more completely and
meanwhile suppress background regions more effectively in
most test examples, as shown in Figs. 4(d), (f), (h), (j), (l),
5(d), (f), (h), (j), (l), 6(d), (f), (h), (j), (l), and 7(d), (f), (h),
(j), (l). In particular, the improved saliency maps exhibit more
promising visual results on some challenging scenarios such as
camera motion and appearance change in Figs. 4 and 7, cluttered
background, low resolution, fast motion, shape complexity in
Fig. 5, and edge ambiguity, heterogeneous object and complex
shapes of objects in Fig. 6. Furthermore, for some examples
including the two examples in Fig. 5 and the bottom example
in Fig. 7, there are two objects in each video frame such as
horse and horseman in the top example of Fig. 5. It can be
observed, when most parts of salient objects can be highlighted
by the original saliency models, as shown by the top example in
Fig. 5(e), the improved version can highlight the salient objects
more completely, as shown in Fig. 5(f). Even though the salient
objects cannot be highlighted well by existing saliency model,
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Fig. 4. Qualitative comparison between the original saliency maps and the final saliency maps improved by our framework on the SegTrackV2 dataset. (a) Input
video frames. (b) Binary ground truths. (c) SGSP. (d) SGSP*. (e) GD. (f) GD*. (g) MC. (h) MC*. (i) CVS. (j) CVS*. (k) RWRV. (l) RWRV*.

Fig. 5. Qualitative comparison between the original saliency maps and the final saliency maps improved by our framework on the UVSD dataset. (a) Input video
frames. (b) Binary ground truths. (c) SGSP. (d) SGSP*. (e) GD. (f) GD*. (g) MC. (h) MC*. (i) CVS. (j) CVS*. (k) RWRV. (l) RWRV*.

Fig. 6. Qualitative comparison between the original saliency maps and the final saliency maps improved by our framework on the DAVIS dataset. (a) Input video
frames. (b) Binary ground truths. (c) SGSP. (d) SGSP*. (e) GD. (f) GD*. (g) MC. (h) MC*. (i) CVS. (j) CVS*. (k) RWRV. (l) RWRV*.

Fig. 7. Qualitative comparison between the original saliency maps and the final saliency maps improved by our framework on the ViSal dataset. (a) Input video
frames. (b) Binary ground truths. (c) SGSP. (d) SGSP*. (e) GD. (f) GD*. (g) MC. (h) MC*. (i) CVS. (j) CVS*. (k) RWRV. (l) RWRV*.
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such as the top example in Fig. 5(k), the improved saliency
maps produced by our framework can not only uniformly pop
out the entire salient objects, but also effectively suppress the
background noise.

In general, the performance boosting of the original saliency
models can be attributed to the following three aspects. First,
to consider the temporal correlation and consistency, two local
temporal window based estimation models are leveraged in our
framework. Specifically, one of the two models is trained on the
current frame, and the other one is trained on other frames in the
local temporal window. Therefore, such two estimation models
complement to each other to achieve satisfactory performance.
Second, the output of estimation, i.e., temporary saliency map,
is further improved via the refinement step that incorporates the
appearance and motion information simultaneously. As a result,
more accurate results can be generated. Finally, by updating
the initial saliency map of current frame with the obtained fi-
nal saliency map, more reliable samples can be collected for
processing the subsequent frames.

2) Quantitative Evaluation: To objectively evaluate the
saliency detection performances of different models, we adopt
three widely used performance measures, including precision-
recall (PR) curve, F-measure curve, and mean absolute error
(MAE). Specifically, the precision-recall (PR) curves plot the
trade-off between precision and recall achieved by an algorithm.
Precision corresponds to the ratio of salient pixels correctly as-
signed, while recall denotes the percentage of detected salient
pixels in relation to the salient pixels in ground truth. F-measure
is then defined as the weighted harmonic mean of precision and
recall for a comprehensive evaluation, which has the following
form:

Fβ =

(

1 + β2
)

Precision × Recall

β2Precision + Recall
, (15)

where β2 is set to 0.3 as suggested in [6] and [57]. To plot the
curve, the saliency maps are binarized with thresholds ranging
from 0 to 255, and then 256 pairs of precision-recall combination
and F-measure against thresholds are generated. Different from
F-measure, MAE provides a more balanced comparison be-
tween the binary ground truth GT and the continuous saliency
map S, which is defined as:

MAE =
1

W ∗ H

W ∗H∑

i=1

|S(i) − GT(i)| , (16)

where W and H denote the width and height of video frame,
respectively. In the computation of MAE, i.e., (16), S and GT
are normalized to [0,1] for all the compared methods.

The PR curves of the original video saliency models and our
improved versions on the four datasets are plotted in Fig. 8(a). It
can be seen that the improved versions consistently outperform
the corresponding original models on all datasets. In terms of F-
measure curves and MAE values shown in Fig. 8(b) and (c), the
improved version (i.e. SGSP*, GD*, MC*, CVS* and RWRV*)
achieves better performance with a noticeable margin than the
corresponding original saliency models (i.e. SGSP, GD, MC,
CVS and RWRV) on all datasets. Overall, the PR curves, F-

measure curves and MAE values shown in Fig. 8 convincingly
demonstrate the capability of our framework to improve the
performance of various video saliency models across diverse
challenging videos

C. Validation of the Proposed Framework

1) Componentwise Analysis: In this subsection, we first
study the contribution of each step in our framework. Then,
we make an analysis for the multiscale strategy adopted by
our framework. Lastly, we explore the influence of neighboring
frames used in our framework.

To demonstrate that all the critical steps (including localized
estimation, spatiotemporal refinement, and saliency update)
in our framework are beneficial for improving the saliency
detection performance, quantitative comparisons are performed
on the DAVIS dataset to show the contribution of each of
these critical steps. We use SGSP to do such a comparison
as this method achieves the best performance among the
aforementioned five state-of-the-art models. Specifically, we
present the initial saliency map (denoted as “initial”) generated
by the original SGSP, final saliency map with update (denoted
as “wup-F”), temporary saliency map with update (denoted
as “wup-T”), final saliency map without update (denoted as
“woup-F”), and the temporary saliency map without update
(denoted as “woup-T”). Fig. 9 shows the performances with the
above five different settings, i.e. initial, wup-F, wup-T, woup-F
and woup-T. It can be seen that wup-F performs best among
all the compared settings in terms of PR curves, F-measure
curves and MAE values. Besides, the superiority of wup-F over
woup-F and the superiority of wup-T over woup-T can be easily
identified from all the evaluations metrics. This clearly demon-
strates the rationality and effectiveness of the proposed update
operation (in Fig. 1). Furthermore, we can also observe that
the performance gains of wup-F over wup-T and woup-F over
woup-T, which clearly demonstrate the effectiveness of the pro-
posed spatiotemporal refinement step (in Section III-C). It can
also be observed that the saliency maps including wup-T, wup-F,
woup-T and woup-F all perform better than the initial saliency
map generated by SGSP, and this clearly reflects the effective-
ness of the proposed localized estimation step (in Section III-B).
Therefore, the PR curves, F-measure curves and MAE values
in Fig. 9 reveal that every step in the proposed framework
contributes to enhance the saliency detection performance.

As for the multiscale strategy adopted by our framework,
the performance evaluation under different scales is conducted.
Quantitative comparisons are performed on the DAVIS dataset
based on SGSP, as shown in Fig. 10. Here, the results at different
scales including 350, 400 and 450 are denoted as S350, S400
and S450, respectively. It can be observed that our framework,
i.e. SGSP* with multiple scales, performs best in terms of PR
curves, F-measure curves and MAE values, and this demon-
strates the rationality and effectiveness of multiscale strategy
adopted in our framework. As for the results at different scales
including S350, S400 and S450, they also achieve a competitive
performance in terms of all the three metrics. Furthermore, we
can also see that the results at all the three scales perform better
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Fig. 8. Quantitative evaluation of different saliency models. (a) presents PR curves, (b) presents F-measure curves, and (c) presents MAE values. From top to
down, each row shows the results on the SegTrackV2 dataset, the UVSD dataset, the DAVIS dataset, and the ViSal dataset, respectively.

than SGSP, and this indicates the effectiveness of our framework
again.

In order to explore the influence of neighboring frames used
in our framework, the performance comparison of our frame-
work with different numbers of neighboring frames is performed
on the DAVIS dataset using the original model SGSP, and the
results are shown in Fig. 11. The three improved versions ob-
tained by setting the neighbor size of forward and backward
frames to 1, 3 and 5 are represented as SGSP*1, SGSP*3 and
SGSP*5, respectively. It can be seen from Fig. 11 that the per-

formances of the three improved versions are all better than the
original model SGSP in terms of PR curves, F-measure curves
and MAE values. Further, we can see that the three improved
versions achieve almost the same performance in terms of all
the three metrics. This indicates the effectiveness and robustness
of our framework. We performed the experiments on a PC with
Intel Core i7-4790K 4GHz CPU and 32GB RAM. The average
processing time per frame with the video resolution 320 × 240
is 5.928 seconds using SGSP*1, 6.706 seconds using SGSP*3
and 7.630 seconds using SGSP*5, respectively. It can be seen
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Fig. 9. Componentwise efficacy of our framework. (a) presents PR curves, (b) presents F-measure curves, and (c) presents MAE values.

Fig. 10. Effects at different scales of our framework. (a) presents PR curves, (b) presents F-measure curves, and (c) presents MAE values.

Fig. 11. Performances with different numbers of neighboring frames used in our framework. (a) presents PR curves, (b) presents F-measure curves, and
(c) presents MAE values.

that with more neighboring frames, the corresponding compu-
tation cost increases.

Besides, we also show quantitative and qualitative compar-
isons on a video which contains a slowly moving object, as
shown in Figs. 12 and 13, respectively. In Fig. 12, we can find
that SGSP*5 and SGSP*3 render slightly superior results to
SGSP*1 in terms of all the three metrics. Obviously, all the
three improved versions outperform the original model SGSP.
In Fig. 13, the example shows a slowly moving goat with low
contrast to cluttered background. We can see that the results of
SGSP*1, SGSP*3 and SGSP*5 are very close to each other, and
most parts of the goat are highlighted uniformly, as shown in
Fig. 13(d)–(f). As for the results of SGSP shown in Fig. 13(c),

the background regions around the goat are falsely highlighted.
Therefore, we can conclude that our framework is effective and
robust to videos with slowly moving objects. In a word, incorpo-
rating more neighboring frames brings slight performance gain
for videos with slowly moving objects, but incurs more compu-
tation costs. To balance the efficiency and effectiveness, we set
the neighbor size of forward and backward frames to one.

2) Evaluation of Video Object Segmentation: We objectively
evaluate the quality of video object segmentation using the
saliency maps generated by the original saliency models, i.e.,
SGSP, GD, MC, CVS and RWRV, and the corresponding im-
proved versions, i.e., SGSP*, GD*, MC*, CVS* and RWRV*.
The video object segmentation results are obtained by using
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Fig. 12. Quantitative comparisons with different numbers of neighboring frames on a video which contains a slowly moving object. (a) presents PR curves,
(b) presents F-measure curves, and (c) presents MAE values.

Fig. 13. Qualitative comparisons with different numbers of neighboring frames on a video which contains a slowly moving object. (a) Input video frames. (b)
Binary ground truths; the original saliency maps generated by using (c) SGSP, and the improved saliency maps generated by using (d) SGSP*1, (e) SGSP*3, and
(f) SGSP*5, respectively.

Fig. 14. Quantitative evaluation of video object segmentation using
F-measures on the DAVIS dataset.

the graph cut based segmentation method [68] with the afore-
mentioned ten groups of saliency maps. Furthermore, we also
compared with the video object segmentation method FOS [69].
Here, we use the average F-measure to measure the segmenta-
tion quality. As shown in Fig. 14, we can see that the improved
saliency maps generated by SGSP*, GD*, MC*, CVS* and

RWRV* consistently result in the better segmentation quality
compared to the original saliency maps. Concretely, the maxi-
mum improvement appears between GD and GD* with an in-
crease of 0.12 on F-measure, from 0.513 to 0.633. The minimum
improvement occurs between RWRV and RWRV* with an in-
crease of 0.055 on F-measure, from 0.240 to 0.295. For all the
five saliency models, the average improvement on F-measure is
0.087. Besides, among the five saliency models, the video object
segmentation with GD, MC and CVS performs worse than FOS,
but with the deployment of our framework, the corresponding
segmentation with GD*, MC* and CVS* achieves comparable
or even better performance than FOS. This clearly demonstrates
that our framework can generate the better saliency maps for
video object segmentation.

3) Effectiveness of Interframe Interaction: For the purpose
of validating the effectiveness of inter-frame interaction using
our framework, we present two examples in Fig. 15, where
the object is not so salient initially in a particular frame but
becomes salient by interacting with other frames. Here, the
saliency maps are generated using the original model SGSP and
its improved version SGSP*. In Fig. 15(a), the car moves from
far to near, and becomes salient gradually. It can be seen from
Fig. 15(c) that the saliency maps generated by SGSP falsely
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Fig. 15. Examples of saliency maps for some videos where the object is not salient initially but becomes salient by interacting with other frames. (a) and
(e) Input video frames. (b) and (f) Binary ground truths. (c) and (g) Saliency maps generated by SGSP. (d) and (h) Saliency maps generated by SGSP*.

Fig. 16. Failure examples. (a) Input video frames. (b) Binary ground truths. (c) SGSP. (d) SGSP*. (e) GD. (f) GD*. (g) MC. (h) MC*. (i) CVS. (j) CVS*.
(k) RWRV. (l) RWRV*.

highlight the background regions around the car. In contrast, as
shown in Fig. 15(d), due to the inter-frame interaction using our
framework, the improved version SGSP* can highlight the car
uniformly and suppress background regions effectively. For the
second example shown in Fig. 15(e), we can see that the soccer
is not so salient in the middle row due to the occlusion of the tree.
It can be seen from Fig. 15(g) that some background regions are
falsely highlighted and the boundaries of salient object are not
well-defined in the saliency maps generated by SGSP. In con-
trast, as shown in Fig. 15(h), the improved version SGSP* can
uniformly highlight the salient object regions with well-defined
regions, and also can suppress the background regions more
effectively. The reason behind this is that the inter-frame inter-
action using our framework provides more information about
salient objects and background.

D. Failure Examples and Analysis

As aforementioned, our framework can improve the quality of
saliency maps generated by the existing video saliency models
on both quantitative and qualitative evaluations. However, our
framework cannot obtain satisfactory results when dealing with
some challenging videos such as the examples shown in Fig. 16.
For the example shown in the top two rows, the salient object (i.e.
the cyclist) is shot from behind with severe camera jitter. As a
result, the existing video saliency models (i.e., SGSP, GD, MC,
CVS and RWRV) cannot locate the salient object. As shown
in the top two rows of Fig. 16(c), (e), (g), (i), and (k), some

background regions are mistakenly identified as salient object.
Based on such initial saliency maps, the obtained final saliency
maps (i.e. SGSP*, GD*, MC*, CVS* and RWRV*) also cannot
capture the correct salient object as shown in the top two rows
of Fig. 16(d), (f), (h), (j), and (l). In the bottom example, besides
the salient object (the singer), the colorful screen content and
the audiences also move quickly. It can be seen that the existing
saliency models improperly highlight some background regions
as shown in the bottom two rows of Fig. 16(c), (e), (g), (i), and
(k). As a result, our final saliency maps are also unable to tackle
such challenging videos as revealed by the bottom two rows of
Fig. 16(d), (f), (h), (j), and (l).

Overall, it can be concluded that our framework depends on
the original video saliency models, which provide training data
for the saliency estimation in our framework. If the original
video saliency model fails to offer sufficiently reliable training
samples, it is difficult for the final saliency maps improved by our
framework to make effective improvements on such challenging
videos as shown in Fig. 16.

E. Computation Cost

In this section, we report the computation cost of the pro-
posed framework. Our method is implemented on a PC with
Intel Core i7-4790K 4 GHz CPU and 32 GB RAM. Table II
gives the average processing time per frame with the video
resolution 320 × 240. Taking SGSP* for example, the average
test time for one frame is 5.928 seconds excluding the genera-
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TABLE II
PROCESSING TIME OF EVERY STEP FOR ONE FRAME

tion of initial saliency maps by SGSP. Specifically, the optical
flow estimation consumes 2.977 seconds, which takes 50.22%
of the total processing time. The extraction of features, local-
ized estimation step and spatiotemporal refinement step take
1.143 seconds, 1.378 seconds and 0.430 seconds, respectively,
which account for 19.28%, 23.25%, and 7.25% of the total pro-
cessing time. It can be observed that optical flow estimation and
localized estimation are the two most time-consuming compo-
nents, and they occupy about 73.47% of the total processing
time. Thus, the efficiency is one of the limitations of our frame-
work. There are two potential ways to relieve the computational
complexity and speed up our algorithm. The first one is to re-
size every frame of a video to a low resolution for calculating
saliency maps, and then resize the obtained final saliency map
back to the original resolution. The second one is to use GPU to
accelerate the LDOF process.

V. CONCLUSION

This paper proposed a novel framework to improve saliency
detection results generated by existing video saliency mod-
els. The framework consists of three key steps including lo-
calized estimation, spatiotemporal refinement, and saliency up-
date. Firstly, by considering the temporal consistency and strong
correlation among temporally adjacent frames, a local tempo-
ral window based estimation models, i.e., localized estimation
models, are learned to obtain the temporary saliency map. Such
temporary saliency map can preserve the global shape of salient
object in a video. Secondly, by incorporating the appearance
and motion information simultaneously, a spatiotemporal refine-
ment step is deployed to further improve the temporary saliency
map and obtain the final saliency map with well-defined bound-
aries. Finally, the final saliency map is used to update the initial
saliency map of current frame, which provides more reliable in-
formation for processing the next frame. Extensive experiments
are performed on four challenging public video datasets, and the
results show that the proposed framework consistently elevates
the performance of the state-of-the-art video saliency models
with significant improvements on four datasets.
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