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Abstract

In semantic segmentation, we aim to train a pixel-level classifier to assign category labels to
all pixels in an image, where labeled training images and unlabeled test images are from the
same distribution and share the same label set. However, in an open world, the unlabeled test
images probably contain unknown categories and have different distributions from the labeled
images. Hence, in this paper, we consider a new, more realistic, and more challenging problem
setting where the pixel-level classifier has to be trained with labeled images and unlabeled
open-world images—we name it open-set domain adaptation segmentation (OSDAS). In
OSDAS, the trained classifier is expected to identify unknown-class pixels and classify known-
class pixels well. To solve OSDAS, we first investigate which distribution that unknown-class
pixels obey. Then, motivated by the goodness-of-fit test, we use statistical measurements to
show how a pixel fits the distribution of an unknown class and select highly-fitted pixels to
form the unknown region in each test image. Eventually, we propose an end-to-end learning
framework, known-region-aware domain alignment (KRADA), to distinguish unknown classes
while aligning the distributions of known classes in labeled and unlabeled open-world images.
The effectiveness of KRADA has been verified on two synthetic tasks and one COVID-19
segmentation task.

∗CHZ and FL contributed equally to this paper.
�BH is the corresponding author.
Our source code is available at https://github.com/chenhong-zhou/KRADA
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(a) (b)

Figure 1: Illustration of the differences in two CT datasets. (a) Examples of normal CT scans. (b) Examples
of COVID-19 CT scans, where the infected area is circled by red boxes. These two datasets vary at the visual
level (domain shift) and are not consistent at the semantic level (category shift).

1 Introduction

Semantic segmentation aims to assign one category label to each pixel in an image, which has a large variety
of applications from autonomous driving (Cordts et al., 2016; Siam et al., 2018), indoor navigation (Silberman
et al., 2012) to medical image analysis (Tajbakhsh et al., 2020). In recent years, deep learning-based methods
have been developing rapidly and achieved remarkable successes in semantic segmentation (Garcia-Garcia
et al., 2017; Roth et al., 2022). These methods usually train a deep convolutional neural network (DCNN)
using a training set that contains pairs of images and pixel-level labels (Long et al., 2015) to segment unlabeled
test images. These works commonly assume that the training images and test images are taken from the
same scenario and share the same category label set (Panareda Busto & Gall, 2017; Saito et al., 2018b).

However, in an open world, test images might be taken from a different scenario and have additional category
labels compared to training images. For example, in autonomous driving, to reduce the great demand
for accurately annotated images, a synthetic dataset, such as SYNTHIA (Ros et al., 2016), is commonly
used to train a network for the segmentation of urban scenes. Unfortunately, a realistic urban scenario is
quite complex and different from the simulated one. Thus, real-world urban images probably contain some
additional category labels (i.e., unknown classes) that are not present in the synthetic images.

Another representative example is Coronavirus Disease 2019 (COVID-19) infection segmentation task. Due
to scarce annotated images in COVID-19 datasets, existing chest Computed Tomography (CT) scans are
expected to be utilized as training images to assist COVID-19 segmentation. However, the segmentation
models trained on a normal CT dataset usually show poor performance to segment the COVID-19 infected
area, as a result of domain shift and category shift issues. Domain shift refers to a distributional discrepancy
caused by the variations in light, conditions, and device types for the acquisition of training and test images,
while category shift means the inconsistent label sets between training and test images, e.g., COVID-19, a
new disease absent in training images. Figure 1 illustrates both issues in the COVID-19 segmentation task.

Regarding such a realistic and challenging segmentation scenario, we name it open-set domain adaptation
segmentation (OSDAS). Although closed-set domain adaptation segmentation (CSDAS) methods (Hoffman
et al., 2016; Vu et al., 2019; Tsai et al., 2018; Luo et al., 2019; Wang et al., 2020; Saito et al., 2018a; Mei
et al., 2020; Zou et al., 2019; Zhang et al., 2019; Kang et al., 2020) have been extensively studied to overcome
the domain-shift issue, they are not applicable to OSDAS because they probably mistakenly align unknown
target data (i.e., open-world images) with source data (i.e., training images), leading to negative transfer
(Bucci et al., 2020).

In this paper, to solve OSDAS, we first explore the inherent property of unknown classes and propose that the
probability distribution of a given input belonging to the unknown class outputted by a known-class classifier
would conform to a prior probability distribution of the known classes. Motivated by the goodness-of-fit test,
we propose to use statistical measurements to describe how likely a target pixel is an unknown pixel, i.e.,
how well the output probability distribution of a target pixel fits the distribution of an unknown class. The
distribution disparity between these two distributions can be measured by statistical measurements. Here we
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Figure 2: An illustration of the output distribution property of an unknown pixel. A test image contains a
“lake” region whose semantic label (lake) is not present during training. The well-trained segmentation model
M cannot recognize such a “lake” pixel (P1) and outputs a probability vector over known classes for it. Its
probability distribution conforms to a known-class prior probability distribution, different from that of a
known pixel (P2).

adopt two statistical metrics: 1) L2-norm (Ahmad & Cerrito, 1993); 2) Kullback–Leibler (KL) divergence
(Song, 2002), which are general criteria for testing goodness of fit.

Based on these statistical measurements, we can identify the highly-fitted pixels as “unknown”, while the
unknown region in a target image can be determined. Hence, a segmentation model can be trained using
source data and pseudo-labeled target data to achieve a better domain alignment by rejecting unknown target
regions and aligning the distributions only for known-class data. We call this framework known-region-aware
domain alignment (KRADA), which is independent of the network architecture and can be easily realized on
existing CSDAS methods to adapt them for OSDAS tasks.

We have realized KRADA on three CSDAS methods in our experiments and evaluated them on two synthetic-
to-real street scene segmentation tasks and one COVID-19 segmentation task. Experimental results show that
KRADA enables CSDAS methods to identify unknown-class regions and achieve a better overall adaptation,
verifying its effectiveness and good generalization ability.

2 Problem Setup: Open-set domain adaptation segmentation (OSDAS)

We address the problem of open-set domain adaptation segmentation (OSDAS) that is defined as follows.
Problem 1 (Open-set domain adaptation segmentation). Suppose that a set of source images with annotations
are denoted as

{
XS , Y S

}
where the source label space is LH×W and L = {1, . . . , K} is the category label set

with K known classes. The target images XT are drawn from a different distribution and the target label
set has an additional label K + 1 to denote the unseen classes that do not appear in L. We aim to train a
segmentation model M to accurately classify each pixel in target images XT into one class of the label set
{1, . . . , K, K + 1}.

Different from the open world setting in (Bendale & Boult, 2015; Joseph et al., 2021) which entirely
concentrates on unknown classes, our proposed setting further considers a common phenomenon in known
classes that a distributional discrepancy exists, apart from detecting unknown classes. Moreover, some
existing studies about open set segmentation (Hwang et al., 2021; Cui et al., 2020; Cen et al., 2021) also do
not consider the distribution shift problem. Instead, we expect the segmentation model in OSDAS to solve
both domain shift and category shift issues simultaneously.

3 How Do We Determine Unknown Pixels?

To solve OSDAS, the critical issue is how to separate unknown pixels from known pixels in target images.
Due to lack of unknown-class supervision, a classifier trained with source data will forcibly label an unknown
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pixel as one of the known (source) classes (Boult et al., 2019). To avoid this issue, we consider introducing
unknown-class pseudo-labels into a segmentation model so that the model can be trained to learn unknown-
class information from pseudo-labels and gain the ability to identify unknown pixels. Before the generation of
unknown-class pseudo-labels, we need to know what property an unknown class has. In other words, what
can we use to represent an unknown class? If given this property, we can exploit it to determine whether a
pixel is unknown.

As unknown classes have never appeared in the training data and there is only prior knowledge of source
classes, a well-trained model hardly recognizes an unknown pixel and tends to output a prediction probability
distribution conforming to the class prior probability of source classes (Figure 2). Hence, the distribution for
an unknown pixel also conforms to such a known-class prior probability distribution. Those target pixels
with this property would be considered unknown. In Figure 2, the output of a “lake” pixel (P1) in a test
image conforms to a known-class prior probability distribution, as this pixel is an unknown pixel for M.

4 A General Framework to Solve OSDAS
Generally, a segmentation network M consists of a feature extractor F and a pixel-level classifier C to encode
input images into the feature space and map the features to the label space, respectively. The network M
can be formalized as M = C ◦ F and it is usually trained with labeled source data:

LS
seg = Ê[ℓ(C(F (XS)), Y S)], (1)

where E [·] denotes the expectation over m.r.v.s, Ê [·] is the empirical estimation of E [·], and ℓ (·, ·) is a
cross-entropy (CE) loss function. In OSDAS, an open-set pixel-level classifier C is expected to assign one
category label from the label set {1, . . . , K, K + 1} to each pixel in target images. However, the known-class
supervision LS

seg is not sufficient to make M both identify unknown target pixels and classify known-class
pixels well. Thus, we consider adding auxiliary supervision LT

seg by introducing unknown-class pseudo-labels
into the training stage:

Lseg = LS
seg + αLT

seg, (2)
where

LT
seg = Ê[ℓ(C(F (XT )), Ŷ T )], (3)

and Ŷ T denotes the unknown-class pseudo-labels of target data, and α is a hyperparameter to control the loss
weight of unknown classes. Consequently, the open-set classifier C can be trained using the labeled source
and pseudo-labeled target data. We introduce the generation of unknown-class pseudo-labels as follows.

4.1 Unknown-class Pseudo-label Generation

Based on the distribution property of unknown classes, we consider determining whether a target pixel is
unknown from a statistical point of view. Specifically, goodness-of-fit tests indicate the goodness of fit of a
model by comparing the observed data with the data expected under the model (Kéry & Royle, 2015; Vasicek,
1976). Motivated by this, we utilize statistical measurements to measure how well the output probability
distribution for a target pixel fits a known-class prior distribution. Then, those highly-fitted target pixels
would be labeled as unknown pixels.

Statistical measurements. A straightforward way to determine unknown-class pseudo-labels is to compare
the maximum softmax probability (MSP) with a threshold (Luo et al., 2020). If a pixel whose maximum
softmax probability is smaller than a predefined threshold, this pixel will be considered unknown and assigned
to K + 1.

In this paper, we adopt L2 norm and Kullback–Leibler (KL) divergence to measure the distribution disparity
between the output probability distribution of a target pixel and a known-class prior distribution. L2 norm,
or Euclidean norm, is commonly used to evaluate the discrepancy between two distributions:

L2(p(x), q(x)) = ||p(x) − q(x)||2 =
(∑

x∈X

|p(x) − q(x)|2
)1/2

. (4)
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In addition, KL divergence is a non-symmetric measure that quantifies how much one distribution differs
from another one, a criterion used in goodness-of-fit tests (Song, 2002) to indicate the information lost when
q(x) is used to approximate p(x):

DKL(p(x)||q(x)) =
∑
x∈X

p(x) log
(

p(x)
q(x)

)
. (5)

Remark 1. Typically, p(x) represents a "true" distribution or a theoretical distribution while q(x) represents
the observed distribution. Here p(x) is a known-class prior distribution, and q(x) is the prediction probability
outputted by a model for a target pixel. Other statistical metrics can be chosen, and more available metrics
are offered in (Gibbs & Su, 2002).

Known-class classifier and mark unknown-class pseudo-labels. To obtain the prediction probability
over known classes (i.e., q(x) in Eq. (4) and Eq. (5)), we additionally introduce a pixel-level known-class
classifier C∗ to output an image defined on the label space. C∗ can be supervised by minimizing the
segmentation loss on the source data:

L∗
seg = LS,∗

seg = Ê[ℓ(C∗(F (XS)), Y S)]. (6)

For a target image xT ∈ XT , C∗ aims to produce a probability map pT,∗ of shape K × H × W :

pT,∗ = softmax(C∗ (F (xT
))

). (7)

More specifically, pT,∗
ij ∈ RK implies the probability vector for a pixel {i, j} in xT , and thus

∑
c∈L pT,c

ij = 1.
Here pprior ∈ RK is used to denote a prior probability of known classes, which is a distribution of classes
among all of the source data. Hence, we can calculate the distributional divergence between pT,∗

ij and pprior

for each target pixel and compare it with a threshold δ. Those target pixels whose distribution is close to a
known-class prior distribution are marked as unknown, which can be formalized as

ŷT,K+1
ij =

{
1, if L2(pprior, pT,∗

ij ) < δ,

0, otherwise,
(8)

where L2 norm can be replaced with KL divergence or other probability metrics in (Gibbs & Su, 2002).
Remark 2. Note that ŷT is initially a (K + 1) × H × W shaped tensor with all elements equaling zero.
ŷT

ij ∈ RK+1 is a one-hot vector for a target pixel. If ŷT,K+1
ij equals one, it means that this pixel will be

pseudo-labeled as unknown; otherwise, this pixel remains unlabeled.

Adaptive threshold. We use an exponential moving average method to define the threshold δ to make it
adaptive and smooth by considering the past historical information, denoted as Eq. (9). β is a momentum
factor to retain the past threshold information. Γ(xt

S , γ) indicates the update information from the current
source image xt

S ∈ XS at time t, as shown in Eq. (10). |xt
S | indicates the number of pixels in the source

image xt
S , and γ is a predefined proportion to represent the tolerable ratio of pixels in xt

S wrongly recognized
into the unknown class. As shown in Eq. (11), we sort the L2 norm distance between pprior and pS,∗

t in a
descending order, where pS,∗

t = softmax(C∗ (F (xt
S
))

). We acquired the threshold information from source
images under the given tolerable proportion to adaptively adjust the threshold.

δt = βδt−1 + (1 − β)Γ(xt
S , γ). (9)

Γ(xt
S , γ) = Pxt

S

[
γ|xt

S |
]

. (10)

PxS
t

= sort(L2(pprior, pS,∗
t ), descending). (11)

Eventually, we can produce pseudo-labels Ŷ T for target images XT . Particularly, pseudo-labels are constantly
updated when target images are fed into the network once again. As a consequence, the network can be
optimized using source data and previously pseudo-labeled target data while generating new pseudo-labels,
which is different from the multi-round training mechanism in (Mei et al., 2020; Zou et al., 2019; 2018) that
alternatively optimizes pseudo-label generation and network training.
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Figure 3: Overview of the proposed KRADA realized on the existing CSDAS methods. It consists of a feature
extractor (F ), a open-set pixel-level classifier (C), a known-class classifier (C∗), and a discriminator (D).
The orange and green parts denote the source domain flow and target domain flow, respectively. Specifically,
C is optimized under the supervision from both the source domain and pseudo-labeled target domain, where
Ŷ T

t−1 denotes the pseudo-labels of target data previously produced at last time (t − 1). The aim of C∗ is to
generate the new pseudo-labels Ŷ T

t at time (t) and known-class region Rkn. Then we forward the features of
source images and known regions in target images into D to perform known-class-aware domain alignment.

Remark 3. It should be emphasized that here L2 norm or KL divergence plays a different role from entropy
since entropy measures the prediction uncertainty and only depicts the internal relationships of known classes
for a target pixel. It does not exploit the distribution property of the unknown class, so it does not measure
the distance of a pixel to an unknown class in a strict sense. This is confirmed by the fact that those pixels
with high entropy are probably boundary pixels, not unknown pixels.

4.2 Known-region-aware Domain Alignment (KRADA)

Since there is a domain shift between source and target domains, we also consider reducing this domain gap
when minimizing Eq. (2). Adversarial training (AT) based methods are a predominant stream of minimizing
the domain gap, e.g., existing CSDAS works. These methods train M to learn domain-invariant features by
confusing a domain discriminator D. An adversarial loss is minimized to align the distributions between
source and target domains at input level (Hoffman et al., 2018; Gong et al., 2019), feature level (Hoffman
et al., 2016; Vu et al., 2019; Chen et al., 2019; Wang et al., 2020; Hoffman et al., 2018), or output level (Luo
et al., 2019; Saito et al., 2018a; Tsai et al., 2018). The main difference between these three kinds of domain
alignment is the input of the discriminator D. For a clear illustration, we take the feature-level alignment as
an example in the following. In this case, the inputs of the discriminator D are the source features and target
features produced by the feature extractor F , and the adversarial loss is formulated as:

LAT
adv = −Ê

[
log(D(F (XS)))

]
− Ê

[
log(1 − D(F (XT )))

]
. (12)

Unfortunately, these CSDAS works cannot be directly applied to OSDAS since they would forcefully match
the feature distributions of two domains, which makes unknown target data mistakenly aligned with source
data, leading to negative transfer.

To avoid this issue, we consider that cross-domain adaptation should be performed only on the known-class
data. Therefore, a novel known-region-aware domain alignment (KRADA) is proposed to align the target
image regions predicted as known with the source images, which is shown in Figure 3. The adversarial loss
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Algorithm 1 An implementation of KRADA on existing CSDAS methods.
Input: source data (XS , Y S), target data XT , initial pseudo-labels Ŷ T

0 .
Parameter: network parameters: θF , θC , θD, θC∗ , the number of iteration N , learning rate: µ, pseudo-label loss

weight: α, initial threshold: δ, tolerable proportion: γ, momentum factor: β.
Output: predicted target labels: Ỹ T .

1: for t = 1 to N do
2: calculate Lseg using (XS , Y S , XT , Ŷ T

t−1) according to Eq. (1), (2), and (3).
3: calculate L∗

seg using (XS , Y S) according to Eq. (6).
4: generate Ŷ T

t , Rkn using XT according to Eq. (7), (8), and (14).
5: calculate Ladv using (XS , XT , Rkn) according to Eq. (13).
6: θF = θF − µ▽θF (Lseg + L∗

seg − Ladv)
7: θC = θC − µ▽θC Lseg

8: θD = θD − µ▽θD Ladv

9: θC∗ = θC∗ − µ▽θC∗ L∗
seg

10: update δ according to Eq. (9), (10), and (11).
11: end for
12: Prediction: Ỹ T ← C(F (XT )).

can be developed from Eq. (12) to:

Ladv = −Ê
[
log(D(F (XS)))

]
− Ê

[
log(1 − D(F (XT ) · Rkn))

]
, (13)

where Rkn is a binary mask to denote the known-class region predicted for target images. Once pseudo-labels
Ŷ T are determined, Rkn can also be obtained by:

Rkn
ij =

{
0, if ŷT,K+1

ij = 1.

1, otherwise.
(14)

We multiply Rkn and each channel of target feature maps and then forward the features of known-class
regions in target images into D. Eventually, unknown-class regions are rejected, and only the known regions
of target images are aligned with source images. It is worth mentioning that KRADA does not have any
requirement for the discriminator, so the alignment process of KRADA has no difference from that of original
AT methods, except for the target inputs of the discriminator. This indicates that KRADA is independent of
the model or structure and has good extensibility.

5 Realizations of KRADA on Existing CSDAS Methods

In this section, we realize the proposed KRADA on existing CSDAS methods, as illustrated in Figure 3.
The original CSDAS network generally consists of a feature extractor (F ), a pixel-level classifier (C), and a
discriminator (D). To solve OSDAS, we additionally introduce a known-class classifier (C∗) which is arranged
in parallel with C. The architecture of C∗ is similar to that of C except for the last convolutional layer with
K output channels. The training details are summarized in Algorithm 1. We use source data (XS , Y S) and
target data XT with previously generated pseudo-labels Ŷ T

t−1 to calculate Lseg according to Eqs. (1), (2), and
(3) (line 2), where the initial pseudo-labels Ŷ T

0 is a tensor of (K + 1) × H × W with all elements being zero.

Then we use source data to calculate L∗
seg according to Eq. (6) (line 3). After generating the new pseudo-labels

Ŷ T
t and the known-region map Rkn according to Eqs. (7), (8), and (14) (line 4), we calculate Ladv according

to Eq. (13) (line 5). These network parameters and the threshold are updated until the network converges
(lines 6-10). Finally, we obtain the segmentation results Ỹ T of target data (line 12). Overall, KRADA has
no specific requirements for CSDAS architectures (F , C, and D) and can be easily integrated into CSDAS
methods to form unified segmentation models. Therefore, a series of CSDAS methods can be adapted to
solve OSDAS by a minor modification. In our experiments, we realize KRADA using three representative
CSDAS methods, and the results show that KRADA can help address the OSDAS problem well.
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Table 1: Results on SYNTHIA → Cityscapes. “B” denotes the best score during training, while “L” denotes
the last score at the end of training. Source-only refers to a base model only trained on source images without
adaptation.
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or

bi
ke
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mIoU mIoU∗

Soure-only B 39.9 19.2 65.4 0.0 22.4 2.0 63.8 70.2 47.8 14.0 47.9 7.5 26.2 0.0 30.4 32.8
L 34.5 18.0 61.7 0.0 20.9 2.0 60.1 67.8 48.0 15.7 46.5 8.4 26.2 0.0 29.3 31.5

OSBP (Saito et al., 2018b) B 31.7 17.4 67.5 0.0 20.3 0.4 63.0 71.0 33.3 11.7 60.8 7.7 26.2 1.7 29.5 31.6
L 28.7 16.3 66.6 0.1 19.5 0.6 59.0 72.7 28.9 7.0 50.2 3.2 23.9 2.0 27.0 29.0

AdaptSegNet (Tsai et al., 2018) B 72.4 35.7 75.6 0.0 14.6 1.1 69.9 75.5 37.7 14.4 70.6 12.2 29.9 0.0 36.4 39.2
L 66.6 35.9 74.0 0.0 14.2 1.1 68.4 72.8 35.2 13.6 62.4 10.4 27.8 0.0 34.5 37.1

CLAN (Luo et al., 2019) B 83.4 37.6 76.8 0.0 21.9 2.7 77.8 78.7 49.9 17.7 80.1 12.5 28.6 0.0 40.6 43.7
L 82.9 38.1 76.1 0.0 21.7 2.3 77.1 77.0 47.5 17.1 78.5 10.7 26.8 0.0 39.7 42.8

FADA (Wang et al., 2020) B 84.5 39.0 79.0 0.0 27.2 1.4 83.0 73.6 38.3 13.3 75.6 5.1 38.6 0.0 39.9 43.0
L 82.6 37.5 79.0 0.0 25.8 1.8 82.9 74.8 37.7 12.9 76.3 6.6 35.0 0.0 39.5 42.5

AdaptSegNet + KRADA B 74.1 31.5 76.5 0.0 16.3 0.7 75.1 75.9 47.9 16.0 74.4 9.8 34.6 6.1 38.5 41.0
L 66.6 30.8 75.9 0.0 17.2 0.7 74.9 75.3 46.7 16.7 73.0 9.6 36.9 5.1 37.8 40.3

CLAN + KRADA B 82.4 37.3 76.4 0.0 22.1 2.5 76.6 77.8 49.9 18.5 72.4 15.3 28.9 5.3 40.4 43.1
L 80.2 38.3 76.9 0.0 20.3 2.5 76.8 78.8 51.0 17.7 71.6 14.2 27.9 4.8 40.1 42.8

FADA + KRADA B 85.3 41.5 80.3 0.0 28.9 0.9 82.7 78.5 42.6 12.8 80.1 8.5 42.7 6.5 42.2 45.0
L 84.6 40.0 79.9 0.0 27.6 1.5 82.4 77.4 42.6 12.7 78.5 8.5 40.5 6.4 41.6 44.3

6 Experiments

Synthetic OSDAS tasks. Since the research about OSDAS has not been explored, there is no public
dataset for such a new setting. Based on two synthetic-to-real benchmark tasks in CSDAS: SYNTHIA (Ros
et al., 2016) → Cityscapes (Cordts et al., 2016) and GTA5 (Richter et al., 2016) → Cityscapes, we adjust
these two tasks to simulate the OSDAS scenario. For the task SYNTHIA → Cityscapes, we select three
classes (wall, light, and bus) to form the unknown class and discard those images containing either of the
three classes. The remaining images in SYNTHIA are regarded as the source domain. For the task GTA5 →
Cityscapes, we choose two classes (fence and sign) to form the unknown class. Those images which do not
contain the unknown class in GTA5 are retained as the source domain. Following the common practice in
CSDAS, we use the Cityscapes training set as the target domain and evaluate our models on the Cityscapes
validation set with a widely adopted evaluation metric: mean Intersection over Union (mIoU) for all classes.
Considering the evaluation protocol in unsupervised open set domain adaptation (UOSDA) (Panareda Busto
& Gall, 2017; Saito et al., 2018b), we also report the mIoU averaged over known classes only, denoted as
mIoU∗ in this paper. To justify the generalization ability of KRADA, we implement KRADA on three CSDAS
methods: 1) AdaptSegNet (Tsai et al., 2018), 2) CLAN (Luo et al., 2019), and 3) a state-of-the-art adversarial
training-based method—FADA (Wang et al., 2020), denoted as AdaptSegNet + KRADA, CLAN + KRADA,
and FADA + KRADA, respectively. Additionally, OSBP (Saito et al., 2018b) is used as the baseline, which
is one of the few UOSDA methods that can be modified to segmentation tasks by directly convolutionalizing
its network architecture. More data descriptions and implementation details are described in Appendix B.

Results on synthetic OSDAS tasks. We present the results of SYNTHIA → Cityscapes in Table 1.
Compared with Source-only, OSBP increases unknown-class IoU from 0% to around 2%. But this achievement
is at the cost of the segmentation performance on known classes as both mIoU and mIoU∗ of OSBP significantly
decrease. Compared to Source-only, AdaptSegNet, CLAN, and FADA promote the adaptation for known
classes by a large margin, but their unknown-class IoU values are stable at 0%, which means that they cannot
recognize the unknown class. After the realizations of KRADA, these three modified models consistently
outperform OSBP with huge margins and achieve significant improvements in the segmentation of unknown
regions. Compared to their corresponding original versions, these three models equipped with KRADA
significantly improve the unknown-class IoU from 0% to around 5% meanwhile obtaining higher mIoU and
mIoU∗ at the last epoch. This is because KRADA mitigates negative transfer caused by unknown classes
in the target domain wrongly matched to known classes in the source domain. Thus, the segmentation of
known classes also improves. Particularly, FADA + KRADA achieves the best performance at both best and
last epochs.
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Table 2: Results on GTA5 → Cityscapes. “B” denotes the best score during training, while “L” denotes the
last score at the end of training.
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mIoU mIoU∗

Soure-only B 80.0 6.8 74.4 16.2 25.6 27.9 77.2 15.7 72.5 52.4 19.5 70.5 16.2 17.1 0.9 11.0 0.3 0.0 32.5 34.4
L 77.6 4.3 70.9 14.9 22.0 26.5 75.6 10.2 71.3 51.8 17.0 69.6 14.9 16.3 0.1 12.4 0.3 0.0 30.9 32.7

OSBP (Saito et al., 2018b) B 84.9 36.8 77.9 18.4 24.1 23.0 80.6 26.3 74.5 51.3 13.2 74.8 20.1 23.0 0.0 16.4 0.0 0.5 35.9 38.0
L 85.7 35.7 78.0 15.6 23.8 20.6 79.6 29.8 70.5 51.0 11.9 72.6 18.4 19.1 0.0 16.6 0.0 0.2 35.0 37.0

AdaptSegNet (Tsai et al., 2018) B 78.3 14.4 77.9 14.4 25.6 34.3 80.2 18.3 82.9 56.0 25.0 76.5 14.7 3.8 0.5 27.9 0.9 0.0 35.1 37.2
L 71.2 14.4 73.9 10.2 24.9 33.2 81.3 19.1 83.8 53.8 24.0 72.7 14.4 1.9 0.6 30.0 1.4 0.0 33.9 35.9

CLAN (Luo et al., 2019) B 87.8 17.5 76.8 22.4 23.0 26.6 82.6 30.0 80.0 54.8 16.6 83.6 35.7 43.2 0.0 26.7 0.2 0.0 39.3 41.6
L 87.2 16.7 76.0 19.9 21.7 27.3 82.5 28.4 79.2 55.0 9.3 83.1 32.2 38.0 0.0 26.8 0.2 0.0 38.0 40.2

FADA (Wang et al., 2020) B 91.6 45.3 83.8 37.5 31.0 29.8 85.8 37.8 87.2 61.7 30.4 86.2 34.4 47.7 0.0 21.2 2.0 0.0 45.2 47.8
L 91.5 44.5 83.9 36.5 31.2 28.1 86.1 41.0 87.1 62.0 33.1 86.3 29.2 40.3 0.0 19.8 2.0 0.0 44.6 47.2

AdaptSegNet + B 70.5 25.8 80.1 21.4 23.8 28.1 82.9 33.0 78.1 55.1 20.2 81.7 27.2 35.9 0.5 18.1 0.1 0.7 38.0 40.1
KRADA L 71.9 25.5 79.4 21.1 23.7 26.7 82.4 31.6 78.8 53.9 18.8 79.9 27.7 35.7 1.2 16.6 0.0 0.4 37.5 39.7
CLAN + B 85.8 19.5 79.3 20.1 25.0 28.0 83.5 35.2 79.8 54.6 21.3 82.4 32.1 37.8 0.0 23.7 0.2 0.9 39.4 41.7
KRADA L 87.2 17.5 78.4 19.7 25.0 27.6 82.9 35.2 79.4 55.7 20.5 82.3 30.2 38.0 0.0 24.2 0.2 0.6 39.1 41.4
FADA + B 91.9 42.9 84.2 35.6 31.8 32.0 86.3 36.8 87.3 61.9 33.6 86.1 34.5 43.9 0.0 34.6 2.7 0.9 45.9 48.6
KRADA L 91.7 43.6 84.4 36.0 32.0 33.8 85.9 36.2 86.8 61.6 32.6 86.0 31.0 42.0 0.0 34.3 3.1 0.8 45.7 48.3

Figure 4: Qualitative results on SYNTHIA → Cityscapes. From left to right, each row is a target image,
ground truth, and segmentation results of OSBP, FADA, and FADA + KRADA, where the white area denotes
the unknown-class region.

Table 2 presents the results of GTA5 → Cityscapes. We can see that KRADA enables three CSDAS models
to consistently outperform OSBP and improve the unknown-class IoU from 0% to nearly 1%, meanwhile
obtaining margin gains in mIoU and mIoU∗ at the both last and best epochs. Overall, the results shown
in Table 1 and Table 2 demonstrate that KRADA can enable CSDAS methods to identify unknown-class
regions and promote a better overall adaptation by rejecting unknown-class regions and conducting the
known-region-aware domain alignment. We also provide some qualitative segmentation results in Figure 4.

Ablation studies: 1) We tend to select the minority classes to construct the unknown class in the above
experiments in order to retain as many source images as possible. Even though KRADA makes three CSDAS
methods capable of detecting unknown regions, the unknown-class IoU values are not very large, especially
for the GTA5 → Cityscape task in Table 2. This is because the unknown class is a challenging class to
segment due to the imbalance issue. To explore the effect of different compositions of the unknown class,
we conduct an extra ablation study. We choose car and light to form a new unknown class in GTA5 →
Cityscape where the car is a majority class. The results are shown in Table 3. Compared to Table 2, there is
a sharp overall decline in both mIoU and mIoU∗ since an easy class (car) is excluded from known classes.
Comparatively, KRADA drastically increases the unknown-class IoU from 0% to more than 22% under the
CLAN architecture and also improves mIoU and mIoU∗ by a large margin.
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Table 3: Ablation study of varying the unknown class on GTA5 → Cityscapes.
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CLAN (Luo et al., 2019) B 58.1 18.4 61.0 19.2 17.8 19.3 11.0 81.8 29.5 78.5 52.0 7.2 20.1 8.0 0.0 18.6 5.0 0.0 28.1 29.7
L 53.8 17.8 59.9 17.9 16.5 16.2 8.2 82.2 29.4 79.4 51.3 4.3 19.2 6.7 0.0 15.6 3.3 0.0 26.8 28.3

CLAN + KRADA B 64.1 12.9 71.5 19.9 19.2 15.9 10.6 81.2 31.0 77.1 50.3 7.0 21.4 10.9 0.0 20.3 8.1 25.3 30.4 30.7
L 57.2 11.0 73.6 18.0 18.3 15.3 8.9 81.0 27.5 77.1 49.3 6.0 18.6 8.3 0.0 14.8 4.1 22.3 28.4 28.8

Table 4: Ablation study of the effects of the known-region map on SYNTHIA → Cityscapes. “w/o” indicates
without the known-region map Rkn.
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CLAN + KRADA w/o Rkn B 78.8 37.0 76.8 0.0 22.7 2.1 76.5 78.5 50.6 17.0 74.2 13.5 31.7 4.5 40.3 43.0
L 72.8 37.4 76.3 0.0 21.7 2.2 75.5 79.2 50.7 16.3 72.7 13.4 29.2 3.9 39.4 42.1

CLAN + KRADA B 82.4 37.3 76.4 0.0 22.1 2.5 76.6 77.8 49.9 18.5 72.4 15.3 28.9 5.3 40.4 43.1
L 80.2 38.3 76.9 0.0 20.3 2.5 76.8 78.8 51.0 17.7 71.6 14.2 27.9 4.8 40.1 42.8

Table 5: Results of CLAN + KRADA with different statistical metrics on SYNTHIA → Cityscapes.
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MSP (Luo et al., 2020) B 81.9 37.6 77.8 0.0 19.4 2.2 77.8 79.6 50.3 18.2 61.4 14.7 34.3 5.1 40.0 42.7
L 82.2 39.4 76.2 0.0 18.1 1.6 75.7 78.7 47.2 16.9 57.6 17.0 28.6 4.5 38.8 41.5

L2 norm B 82.4 37.3 76.4 0.0 22.1 2.5 76.6 77.8 49.9 18.5 72.4 15.3 28.9 5.3 40.4 43.1
L 80.2 38.3 76.9 0.0 20.3 2.5 76.8 78.8 51.0 17.7 71.6 14.2 27.9 4.8 40.1 42.8

KL divergence B 80.2 37.4 77.6 0.1 23.2 2.8 77.0 78.5 49.4 17.7 80.4 15.0 30.1 3.9 40.9 43.8
L 78.8 38.6 77.4 0.0 22.9 2.5 76.6 77.6 50.4 17.3 80.8 15.3 28.8 3.4 40.7 43.6

2) To investigate the impact of the known-region map Rkn, we compare the results of CLAN + KRADA
with/without Rkn on SYNTHIA → Cityscapes in Table 4. The performance of CLAN + KRADA w/o Rkn is
worse than CLAN + KRADA neither at the last epoch nor at the best epoch, which confirms the effectiveness
of Rkn and the necessity of rejection of unknown-class regions in target images for better domain alignment.

3) We also compare the results of three statistical metrics (MSP, L2 norm, and KL divergence) used for
generating unknown-class pseudo labels in Table 5. MSP achieves satisfactory and comparable results and L2
norm achieves the highest unknown-class IoU. Although KL divergence obtains relatively lower unknown-class
IoU, it has superior performance in segmenting known classes (mIoU∗) and the best segmentation overall
performance (mIoU). Both L2 norm and KL divergence leverage the property of the unknown class to
compare the output probability distribution of a pixel in the test image with the known-class prior probability
distribution. This indicates that the statistical metric is not fixed and also proves the adjustability and
flexibility of KRADA. However, MSP does not utilize the property of the unknown class derived from the
source data, which may be the main reason why MSP achieves a slightly inferior performance.

4) To extend our proposed method in more segmentation settings, we have conducted experiments to prove
that this method can be applied to the same domain, i.e., only with unknown class shifts without target
domain shifts. Therefore, we use the abandoned SYNTHIA images (those with the unknown class) as the
target domain and show the results in Table 6. The results show that the proposed method not only can
be applied to OSDAS (with unknown class shifts and target domain shifts) but also is applicable to the
same-domain setting (with only unknown class shifts).

5) To evaluate the effectiveness of using the known-class prior distribution to depict the distribution
characteristics of the unknown class, we also use the uniform distribution as a baseline and make a comparison
in Table 7. Although the uniform distribution achieves similar mIoU and mIoU∗ as the known-class prior
distribution at the best epoch, its unknown-class IoU values are significantly lower at the both last and best
epochs. Table 7 shows that the known-class prior distribution is more suitable to portray the distribution
characteristics of the unknown class while taking full advantage of the data attribute of source data.
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Table 6: Results of CLAN + KRADA applied to the same domain (SYNTHIA → SYNTHIA with the
unknown class).
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Same domain B 75.9 44.5 80.0 26.6 39.72 0.2 60.3 81.3 54.3 41.6 60.6 23.7 28.6 8.6 44.7 47.5
L 69.7 44.4 85.0 27.0 39.5 0.1 63.0 81.8 56.1 36.7 57.5 17.6 24.8 7.7 43.6 46.4

OSDAS B 82.4 37.3 76.4 0.0 22.1 2.5 76.6 77.8 49.9 18.5 72.4 15.3 28.9 5.3 40.4 43.1
L 80.2 38.3 76.9 0.0 20.3 2.5 76.8 78.8 51.0 17.7 71.6 14.2 27.9 4.8 40.1 42.8

Table 7: Results of CLAN + KRADA with different pprior for the unknown-class pseudo-label generation on
SYNTHIA → Cityscapes.
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Uniform distribution B 80.6 36.8 77.8 0.0 24.6 2.4 76.7 77.1 49.3 18.1 81.7 14.3 30.7 2.1 40.9 43.9
L 77.6 37.4 77.0 0.0 22.4 2.0 76.2 75.2 48.5 17.3 80.1 13.8 29.8 1.6 39.9 42.9

Known-class prior distribution B 80.2 37.4 77.6 0.1 23.2 2.8 77.0 78.5 49.4 17.7 80.4 15.0 30.1 3.9 40.9 43.8
L 78.8 38.6 77.4 0.0 22.9 2.5 76.6 77.6 50.4 17.3 80.8 15.3 28.8 3.4 40.7 43.6

Table 8: Results of CLAN + KRADA with single and two classification heads on SYNTHIA → Cityscapes.
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C B 67.3 36.0 76.1 0.0 20.6 2.1 72.1 73.5 48.5 16.3 64.9 11.9 28.3 3.5 37.2 39.8
L 55.7 31.3 75.5 0.0 18.3 1.8 75.1 76.8 48.7 17.0 62.7 13.7 30.0 2.9 36.4 39.0

C and C∗ B 82.4 37.3 76.4 0.0 22.1 2.5 76.6 77.8 49.9 18.5 72.4 15.3 28.9 5.3 40.4 43.1
L 80.2 38.3 76.9 0.0 20.3 2.5 76.8 78.8 51.0 17.7 71.6 14.2 27.9 4.8 40.1 42.8

Table 9: Results of CLAN + KRADA with varying γ on SYNTHIA → Cityscapes.
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0.005% B 79.8 38.2 77.3 0.0 22.1 2.3 76.9 81.0 51.9 19.3 78.8 20.7 28.1 0.1 41.2 44.4
L 82.1 37.5 77.8 0.0 24.4 2.5 78.0 78.4 46.5 18.8 80.9 13.1 28.2 0.1 40.6 43.7

0.01% B 80.3 39.4 78.2 0.1 24.8 2.8 78.0 79.3 49.4 18.0 80.8 12.9 31.0 1.6 41.2 44.2
L 81.0 38.6 78.0 0.0 24.0 2.5 78.0 76.8 47.7 17.5 79.6 11.3 29.8 1.0 40.4 43.4

0.05% B 82.4 37.3 76.4 0.0 22.1 2.5 76.6 77.8 49.9 18.5 72.4 15.3 28.9 5.3 40.4 43.1
L 80.2 38.3 76.9 0.0 20.3 2.5 76.8 78.8 51.0 17.7 71.6 14.2 27.9 4.8 40.1 42.8

0.1% B 79.0 35.8 76.6 0.0 21.4 1.8 76.5 76.5 47.4 17.7 72.9 14.2 27.2 4.6 39.4 42.1
L 73.9 32.0 73.9 0.0 19.3 1.9 74.4 77.0 47.5 16.2 61.2 11.8 24.9 4.0 37.0 39.5

0.5% B 70.3 31.9 73.7 0.1 19.7 0.9 69.8 71.9 48.9 18.3 64.4 16.5 33.6 3.9 37.4 40.0
L 49.9 11.3 48.0 0.0 10.2 0.1 34.6 45.4 27.1 7.5 28.7 6.0 8.5 2.1 20.0 21.3

6) To verify the necessity of two classification heads C and C∗, we conduct the ablation study in Table 8.
Experimental results demonstrate that two classification heads are necessary since these two classification
heads have different functions and do not mix with each other.

7) To show the effects of different γ, we change the value of γ and show the results in Table 9. Compared
with 0.05%, reducing γ (0.005% and 0.01%) leads to the decrease of identifying the unknown-class pixels
(lower unknown-class IoU) and the increase of segmenting known classes and overall performance (mIoU∗

and mIoU). On the contrary, increasing γ (0.1% and 0.5%) does not mean a higher unknown-class IoU and
instead, it diminishes the known-class segmentation performance and thus an inferior overall performance
(lower mIoU∗ and mIoU). More specifically, we achieve unsatisfactory and unstable results when γ is set as
0.5%. To obtain satisfactory and competitive segmentation performance, it is appropriate to set γ between
0.01% – 0.1%. Therefore, we finally set γ as 0.05%.

8) Comparison with other related works. Since there is no relevant work to solve the scenario that is completely
consistent with ours: open set, domain adaptation, and semantic segmentation, other methods are not easy
and suitable to directly be compared with our proposed method. Thus we adopt a compromise way to find
the comparable part that is unknown-class pseudo-label generation criteria. Therefore, we compared the
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Table 10: Comparison with other related works.
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MSP (Luo et al., 2020) B 81.9 37.6 77.8 0.0 19.4 2.2 77.8 79.6 50.3 18.2 61.4 14.7 34.3 5.1 40.0 42.7
L 82.2 39.4 76.2 0.0 18.1 1.6 75.7 78.7 47.2 16.9 57.6 17.0 28.6 4.5 38.8 41.5

DML (Cen et al., 2021) B 77.3 37.4 77.3 0.0 23.9 1.6 75.9 68.6 48.4 16.5 76.7 12.8 30.7 0.9 39.1 42.1
L 72.6 35.9 77.3 0.0 22.0 1.7 71.4 62.7 47.3 18.5 79.8 9.7 37.3 1.4 38.4 41.3

MSP-baseline (Vaze et al., 2021) B 82.5 35.1 75.0 0.0 19.7 2.4 74.7 77.2 47.6 19.3 78.9 7.0 29.2 2.5 39.4 42.2
L 79.5 35.6 73.6 0.0 17.4 2.1 74.1 76.3 48.4 19.0 73.8 7.5 29.7 2.2 38.5 41.3

L2 norm B 82.4 37.3 76.4 0.0 22.1 2.5 76.6 77.8 49.9 18.5 72.4 15.3 28.9 5.3 40.4 43.1
L 80.2 38.3 76.9 0.0 20.3 2.5 76.8 78.8 51.0 17.7 71.6 14.2 27.9 4.8 40.1 42.8

KL divergence B 80.2 37.4 77.6 0.1 23.2 2.8 77.0 78.5 49.4 17.7 80.4 15.0 30.1 3.9 40.9 43.8
L 78.8 38.6 77.4 0.0 22.9 2.5 76.6 77.6 50.4 17.3 80.8 15.3 28.8 3.4 40.7 43.6

Table 11: Results on COVID-19 infection segmentation.

Method Lung_IoU Infection_IoU Accuracy Precision Recall F1-score
OSBP (Saito et al., 2018b) 69.9 0.6 66.7 66.7 100.0 80.0
AdaptSegNet + KRADA 80.7 0.4 66.7 66.7 100.0 80.0

CLAN + KRADA 81.7 0.8 66.7 66.7 100.0 80.0
FADA + KRADA 85.6 2.0 100.0 100.0 100.0 100.0

performance of different unknown-class pseudo-label generation criteria: including the MSP in (Luo et al.,
2020) and DML in (Cen et al., 2021). We realized MSP and DML in CLAN + KRADA framework and
showed the results of SYNTHIA → Cityscapes in Table 10. In addition, Vaze et al. (Vaze et al., 2021)
introduced a baseline for open-set recognition (OSR). The OSR baseline refers to training a K-way classifier
and identifying the unknown pixels directly during inference by assigning the unknown-class probability with
1 minus the maximum value of softmax probabilities. We denoted this OSR baseline as MSP-baseline to
distinguish it from MSP (Luo et al., 2020). Table 10 also shows the results of MSP-baseline on CLAN for the
SYNTHIA → Cityscapes task. Our proposed methods significantly outperform MSP-baseline and DML with
large margins in terms of unknown-class IoU, mIoU, and mIoU∗.

Real-world OSDAS task (COVID-19 infection segmentation in CT scans). To construct a COVID-
19 task, we exploit the public datasets summarized in (Ma et al., 2020). The source data consists of normal
CT scans with lung annotations. Both target data and test data include COVID-19 cases and non-infected CT
scans. Detailed data descriptions and data processes are introduced in Appendix B. To give a comprehensive
comparison, we evaluate the proposed method from both pixel-level and instance-level aspects. The IoU
values of lung and infection averaged among all test cases are reported in Table 11, denoted as Lung_IoU
and Infection_IoU. We also provide four other metrics: Accuracy, Precision, Recall, and F1-score, commonly
used in medical fields for instance-level evaluation.

Figure 5: From left to right: CT slice, Ground Truth,
and results of FADA and FADA + KRADA, where the
brighter area is the infected area.

Results on real-world OSDAS task. In Table
11, all these models achieve 100.0% recall, mean-
ing that all infected cases are detected, which is
desirable in medical image diagnosis. OSBP gains
a 0.6% IoU in infection and the same instance-
level performance as AdaptSegNet + KRADA and
CLAN + KRADA, but it heavily sacrifices the seg-
mentation accuracy of the lung. Compared with
OSBP, CLAN + KRADA shows superior perfor-
mance in both pixel-level and instance-level eval-
uations. Moreover, FADA + KRADA greatly out-
performs other models and obtains the best results.
Examples of segmentation results are provided in
Figure 5.
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7 Conclusion

This paper considers the semantic segmentation task in an open world, where test images have a different
distribution from training images and contain unknown categories/classes. To address this new and challenging
problem, we explore the inherent property of unknown classes and propose an end-to-end framework, KRADA,
that performs known-region-aware domain alignment. KRADA is a generalized framework with no particular
structure dependency and can be easily implemented on existing CSDAS methods, as demonstrated by three
realizations of KRADA in our experiments. Experimental results validate that KRADA enables CSDAS
methods to distinguish unknown-class pixels from known-class pixels and classify known-class pixels well.
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A Related Works

In this section, we briefly review two kinds of domain adaptation settings related to open-set domain
adaptation segmentation (OSDAS).

Unsupervised open set domain adaptation (UOSDA) is first proposed by Busto et al. (Panareda Busto
& Gall, 2017), where both source and target domain contain private and shared classes, but we only know
shared labels. To relax the requirement of private source labels, Saito et al. (Saito et al., 2018b) introduce
a new concept of UOSDA setting where only the target domain has private labels and propose Open Set
Back-Propagation (OSBP), a novel adversarial training-based method for an open set scenario. Later on,
UOSDA methods follow this new and realistic setting and cope with it by a coarse-to-fine weighting mechanism
(Liu et al., 2019), a self-supervised task (Bucci et al., 2020), self-ensembling (Pan et al., 2020), or inheritable
models (Kundu et al., 2020). Additionally, Fang et al. and Zhong et al. (Fang et al., 2020; Zhong et al., 2020)
provide theoretical analysis for UOSDA and introduce open set difference, a special term that facilitates
recognizing unknown target samples. Feng et al. (Feng et al., 2019) explicitly utilize the semantic margin
of open set data to make the unknown class apart from the decision boundary and the known classes more
separable. Luo et al. (Luo et al., 2020) propose a graph neural network with episodic training and achieve
state-of-the-art performance. However, these existing UOSDA methods only focus on classification tasks, and
most of them cannot be modified for semantic segmentation by simply convolutionalizing their classification
architectures. For example, the state-of-the-art UOSDA method (Luo et al., 2020) requires source episodes
containing each known class in a batch to construct a graph neural network. This requirement is hard to meet
in segmentation tasks which demand a large memory to support dense computations. Therefore, modifying
existing UOSDA methods for OSDAS is not usually feasible.

Closed set domain adaptation for semantic segmentation (CSDAS) has been extensively studied
and developed maturely (Toldo et al., 2020). A predominant stream of UCSDA works is adversarial training
(AT) based methods which minimize adversarial losses to align the distributions between the source and
target domains at input level (Hoffman et al., 2018; Gong et al., 2019), feature level (Hoffman et al., 2016;
Vu et al., 2019; Chen et al., 2019; Wang et al., 2020; Hoffman et al., 2018), or output space level (Luo et al.,
2019; Saito et al., 2018a; Tsai et al., 2018). Recently, a series of approaches (Zou et al., 2018; Mei et al., 2020;
Zou et al., 2019; Zhang et al., 2019) based on deep self-training (ST) has become an alternative research
direction. These approaches generate pseudo-labels for target samples to provide extra supervision so that
the network can be trained under the supervision of two domains. Zou et al. (Zou et al., 2018) propose a
class-balanced self-training (CBST) framework to overcome the issue of imbalanced target pseudo-labels.
To avoid overconfident wrong pseudo-labels, Zou et al. (Zou et al., 2019) further incorporate two types of
confidence regularization to CBST. To generate high-quality pseudo-labels, Mei et al. (Mei et al., 2020)
propose an instance adaptive selector to generate more accurate pseudo-labels. In addition, several works
(Li et al., 2019; Tsai et al., 2019) have been developed by combining AT and ST methods and presented
great potential. Despite the well-studied CSDAS methods, they cannot detect unknown classes and lead to
negative transfer due to mismatched label sets. Therefore, current CSDAS methods are not applicable to an
open world and cannot solve OSDAS tasks well.

Based on such well-studied CSDAS methods, we propose an end-to-end framework, KRADA, which can
modify current CSDAS segmentation methods and adapt them for OSDAS tasks.

B Experiment Setup

B.1 Experiments on Two Synthetic OSDAS Tasks

Data description: For the task SYNTHIA → Cityscapes, SYNTHIA originally includes 9,400 synthetic
images and has 16 common classes with Cityscapes. These three classes (wall, light, and bus) are selected to
form the unknown class, and we discard those images containing either of the three classes. The remaining
data in SYNTHIA contain 750 images, and there are 13 shared known classes in this task. For the task GTA5
→ Cityscapes, GTA5 initially contains 24,966 images rendered from the GTA5 game engine and has the same
19 category annotations as Cityscapes. Similarly, we choose two classes (fence and sign) as the unknown
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class and only retain the images which do not contain the unknown class. The remaining images in GTA5
include 17 categories and 2,277 images. Cityscapes is a real-world dataset consisting of a training set with
2,957 images and a validation set with 500 images. We divide the Cityscapes training set into training splits
of 2,500 images for training and evaluation splits of 457 images for hyperparameter selection. The results on
the Cityscapes validation set are reported for performance comparison.

Implementation details: For a fair comparison, we adopt the Deeplab-V2 (Chen et al., 2017) framework
with ResNet-101 (He et al., 2016) pretrained on ImageNet (Deng et al., 2009) as the segmentation base
network. We implement KRADA on three CSDAS methods: AdaptSegNet (Tsai et al., 2018), CLAN (Luo
et al., 2019), and FADA (Wang et al., 2020). For each CSDAS method, we additionally duplicate a last
convolution classification module as C∗ which is arranged in parallel with the original classifier C after
the feature extractor. C∗ is identical as C expect for the last layer with channel number K to output the
predicted score map over known classes. Regarding the pseudo-label hyperparameters in KRADA, γ, β, and
δ are chosen as 0.05%, 0.99, and 0.1 respectively for these two synthetic segmentation tasks. α is set as 0.1,
0.03, and 0.2 for the AdaptSegNet, CLAN, and FADA models equipped with KRADA. Other experimental
settings such as discriminator structure, optimization policy, and hyperparameters in three modified models
are almost the same as those described in the original papers. All the models are implemented using Python
3.6 and Pytorch 1.7 on a TITAN Tesla V100 GPU.

B.2 Experiments on COVID-19 Infection Segmentation in CT Scans

We describe the details of our data used in the COVID-19 infection segmentation task. More specifically, we
exploit the public datasets summarized in (Ma et al., 2020) to construct a real-world OSDAS task. Source
data includes 30 CT scans which are randomly selected from NSCLC left and right lung segmentation dataset
(Kiser et al., 2020; Aerts et al., 2014; Clark et al., 2013) (with CC BY-NC license). The target data consists
of 20 COVID-19 CT scans and 10 non-infected CT scans. More specifically, COVID-19 CT scans are publicly
available (Jun et al., 2020) (with CC BY-NC-SA license), and each case has the annotations of the left
lung, right lung, and infection. Non-infected CT scans are randomly selected from MICCAI 2019 StructSeg
lung organ segmentation challenge, and we only use their left lung and right lung annotations. We divide
the target data into two parts for training and testing, and each part includes 10 COVID-19 cases and 5
non-infected CT scans. Following (Ma et al., 2020), we adjust each CT scan to lung window [-1250, 250] and
then normalize it to [0,255] for pre-processing. We slice each CT volume into 2D slices and perform the same
data augmentation as (Müller et al., 2020). In this task, the pseudo-label hyperparameters γ, β, and δ are
chosen as 1%, 0.99, and 0.001 respectively. α is set as 0.01, 0.01, and 0.1 for the three models equipped with
KRADA. Other experimental setups are similar to the above two synthetic tasks.

C Potential Social Impacts

Our research allows training a segmentation model for a new dataset by exploiting existing annotated data,
which reduces the annotation cost. Besides, the proposed method can recognize the abnormal and unseen
regions in a new dataset and give an early warning. This is quite critical and has a broader significance in
the medical field, especially when it comes to a new disease, and we know nothing about it. However, this
method is not entirely mature, and there are potential risks of false alarms and missed detection. Therefore,
it cannot be used in clinical medical practice for the time being.
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