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Abstract— The optical remote sensing images (RSIs) show
various spatial resolutions and cluttered background, where
salient objects with different scales, types, and orientations are
presented in diverse RSI scenes. Therefore, it is inappropriate
to directly extend cutting-edge saliency detection methods for
conventional RGB images to optical RSIs. Besides, the existing
saliency models targeting RSIs often render imperfect saliency
maps, where some of them are with coarse boundary details.
To solve this problem, this article attempts to introduce the edge
information to precisely detect salient objects in RSIs. Accord-
ingly, we propose an edge-aware multiscale feature integration
network (EMFI-Net) for salient object detection by conducting
multiscale feature integration under the explicit and implicit
assistance of salient edge cues. Specifically, our network contains
two parts including the encoder and decoder. First, the encoder
extracts multiscale deep features from three RSIs with different
resolutions, where the high-level deep semantic features from
three RSIs are integrated using a cascaded feature fusion module.
Second, the encoder explicitly enriches the multiscale deep
features by integrating the salient edge cues extracted by a
salient edge extraction module. Meanwhile, we also implicitly
deploy an edge-aware constraint to the supervision of the saliency
map prediction by introducing a hybrid loss function. Finally,
the decoder integrates the enriched multiscale deep features in
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a coarse-to-fine way, yielding a high-quality saliency map. The
experiments conducted on two public optical RSI datasets clearly
prove the effectiveness and superiority of the proposed EMFI-Net
against the state-of-the-art saliency models.

Index Terms— Multiscale deep features, optical remote sensing
images, salient edge cues, salient object detection.

I. INTRODUCTION

V ISION system of humans tries to locate the most visu-
ally distinctive regions based on the visual attention

mechanism [1], [2], which is the foundation of salient object
detection. Recently, salient object detection has received wide
attention around the world because of its successful appli-
cations in many research areas such as image/video seg-
mentation [3]–[5], image/video compression [6], [7], image
editing [8], image quality assessment [9], retargeting [10],
visual categorization [11], and so on.

In 1998–2020, the main efforts of salient object detection
mainly go through the computation of center-surround differ-
ence [12], [13], constructing feature-driven machine-learning
system [14], [15], and building deep learning-based frame-
work [16], [17]. Especially, the deep learning-based saliency
models significantly elevate the performance of salient
object detection. Obviously, the existing saliency mod-
els can be applied to conventional RGB images (nat-
ural scenes) [18], [19], RGB-D images [20]–[24], RGB-T
images [25], videos [3], [26], [27], light-field images [28],
and optical remote sensing images [29], [30]. Among them,
because of the crucial roles in the military, agriculture, and
disaster relief, optical remote sensing images have attracted
an increasing attention recently. Here, we should note that the
optical RSIs used by this article are different from the hyper-
spectral remote sensing images [31]–[36], which have more
spectrum bands and try to acquire the spectrum of each pixel.
However, on the one hand, there are only a small number of
related [29], [30], [37]–[43] major works in performing salient
object detection on optical RSIs, where their performance
will degrade on some challenging scenes. On the other hand,
the optical RSIs are photographed by the high-angle satellite,
and thus they often show various scene patterns, as shown
in Fig. 1. Generally, these patterns mainly include illumination
variations, objects of various sizes, multiple salient objects,
different object types, cluttered backgrounds, complex texture
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Fig. 1. Examples of optical RSIs: (top row) optical RSIs and (bottom row)
GT.

structures, and even no salient objects. This also poses the
barrier in achieving an encouraging performance by directly
applying existing natural scene saliency models.

Motivated by the aforementioned descriptions about salient
object detection in optical RSIs, we propose a novel
edge-aware multiscale feature integration network (EMFI-Net)
shown in Fig. 2, which is an encoder-decoder architecture
network. To be specific, first, taking the scale diversity of
salient objects in optical RSIs into consideration, we deploy
three convolutional branches with the same structure and
use three images of different resolutions as input. After
that, the cascaded feature fusion module, marked in purple
dotted box shown in Fig. 2, is deployed to combine the
high-level features from three images with different resolu-
tions progressively. Following this way, we can obtain the
multiscale deep features, namely the multilevel deep features
{F1

4, F1
3, F1

2, F1
1} from the original image and the high-level

deep semantic feature {F̃1
5} from the cascaded feature fusion

module shown in Fig. 2. In this process, the rich repre-
sentational deep features not only depict the local detail of
salient objects but also present the global context of salient
objects.

Second, through a deep analysis, we find that most existing
optical RSI saliency models (see [29], [30], [39]) ignore
the effect of fine edges or boundary details in depicting
salient objects, where the predicted saliency maps are often
with low-quality boundary details. Meanwhile, to tackle the
coarse boundary problem, the existing natural image saliency
models (see [17], [44], [45]) either only deploy edge infor-
mation to the stage of saliency inference or just embed
it to loss functions. Differently, we try to sufficiently uti-
lize the salient edge cues in both ways. On the one hand,
we employ an edge module to combine the low- and high-level
deep features, yielding the rich salient edge features, which
are used to enrich the multiscale deep features explicitly.
On the other hand, in the loss computation, we introduce
the hybrid loss [44] containing edge-aware constraint to
implicitly inject the fine edge information to saliency maps.
Lastly, the decoder, i.e. the deep feature aggregation mod-
ule equipped with a set of convolution and up-sampling
operations, integrates the enriched multiscale deep fea-
tures in a coarse-to-fine way, yielding high-quality saliency
maps with complete structure, distinct details, and accurate
boundaries.

Overall, our main contributions can be summarized as
follows.

1) We propose a novel optical RSIs saliency model,
namely EMFI-Net, which is an encoder-decoder archi-
tecture network including multiscale feature exaction,
salient edge digging and integration, and deep feature
aggregation.

2) The multiscale deep features from three images with
different resolutions present salient objects with diverse
scales in terms of local details and global context, and
the salient edge cues endow the deep features with
accurate boundary information in explicit and implicit
ways.

The remaining of this article is organized as follows. The
related works on salient object detection are reviewed in
Section II. Section III gives a detailed description of the pro-
posed EMFI-Net. In Section IV, comprehensive experiments
and the detailed analysis are presented. Finally, the conclusion
for this work is detailed in Section V.

II. RELATED WORKS

In past decades, various theories have been applied to
build saliency models, and we have fortunately witnessed the
booming research progress in salient object detection. In this
part, we will first give a brief introduction of salient object
detection in natural scene images, and then review some
saliency models targeting optical remote sensing images.

A. Saliency Models for Natural Scene Images

The pioneering saliency model [1] proposed the well-known
center-surround difference mechanism to locate salient objects.
Following this way, in [12], saliency was defined as the differ-
ence between the current region and other regions. Meanwhile,
some other theories are also applied to saliency computa-
tion. For example, in [46], the boundary connectivity-based
saliency map depicted the background probability of each
region. In [47], based on the boundary prior informa-
tion, the saliency reversion correction method together with
the regularized random walk ranking model were used to
obtain high-quality saliency maps. Zhou et al. [48] applied
the compactness concept to acquire two initial saliency
maps. In recent years, many classical efforts are constructed
based on traditional machine-learning methods. For example,
Liu et al. [49] employed the conditional random field to
fuse multiple saliency maps. Jiang et al. [14] utilized the
random forest regressor to map the multiple region-level fea-
tures to saliency scores. In [15], the Adaboost algorithm was
exploited to perform an unsupervised saliency computation
process. The multiple instance-learning theory together with
a simple-to-complex optimization method were employed by
Huang et al. [50] to predict saliency maps.

The deep-learning techniques have also been successfully
applied to elevate the performance of salient object detection.
For example, Li and Yu [16] employed three convolutional
branches on three different resolution images to extract mul-
tiscale deep features, which are mapped to saliency values
using a shallow neural network. Hou et al. [51] combined
the multilevel deep features to generate saliency maps using
the holistically nested edge detector architecture. Differently,
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our network contains both kinds of multiscale deep fea-
tures, namely the multilevel deep features from the original
input image and the high-level deep semantic feature from
the multiresolution input images. Interestingly, the recurrent
structure has become popular in some deep saliency models.
A recurrent residual refinement network [18] was designed to
locate salient objects. Hu et al. [52] employed the multilevel
deep features integrated from different layers to refine each
layer’s deep features in a recurrent way. By incorporating
the saliency prior knowledge, Wang et al. [53] deployed a
recurrent architecture to generate reliable saliency maps by
iteratively correcting the previous errors. A cascaded partial
decoder [54] was presented to perform fast and accurate
saliency detection by discarding shallower layers’ features and
employing effective attention maps. However, it is very time
consuming and laborious to prepare pixel-wise annotations for
the network training. Therefore, Zhang et al. [55] proposed
a supervision synthesis scheme-based framework to learn
deep saliency model, which can be trained without human
annotation. Successively, Han et al. [56] further proposed a
weakly supervised learning framework to explore the object
segmentation and category-specific 3D shape reconstruction.

Besides, some researchers pay attention to the local
details and boundary quality of saliency maps. For instance,
Liu et al. [17] proposed two pooling based modules to provide
spatial contextual information and promote the fusion of mul-
tilevel deep features, respectively. Qin et al. [44] proposed an
end-to-end predict-refine network to obtain accurate saliency
maps by implicitly exploiting boundary information. After
that, Qin et al. [57] designed a two-level nested U-shaped
network equipped with Residual U-blocks to pop out salient
objects. Zhao et al. [45] proposed an edge-aware network
(i.e., EGNet) to explore the complementarity between salient
edge and salient objects. The differences between EGNet
and our model mainly focus on the details of the gener-
ation and the usage of edge features. First, in our model,
the high-level features employed to acquire edge information
are generated using a cascaded feature fusion module, which
aggregates high-level features from three different resolution
images. Therefore, the high-level features adopted by our
model present more effective global context information than
EGNet, which adopts the output of encoder’s last convolutional
layer as the high-level features. Second, the edge features in
EGNet are just deployed to enrich the multiscale deep features,
which are used to perform saliency prediction separately.
Differently, the edge-enhanced multiscale deep features of our
model are integrated into the final saliency map using the
decoder in a progressive way, where the edge information will
flow across different decoder blocks. Wu et al. [58] designed
the stacked cross refinement network by simultaneously ele-
vating the salient object and edge features. Li et al. [23]
utilized the saliency-guided position-edge attention module to
remit the edge blur problem. The differences between our
model and [23] can be summarized as two aspects. First,
our model employs the low- and high-level deep features to
generate edge features, whereas in [23], five edge maps are
generated by using each level of RGB-D features, modulated
features, and up-sampled features. Second, in our model,

the edge feature is concatenated with every level of deep
feature. Differently, in [23], edge maps are used as an attention
map, which are integrated with deep features by conducting
element-wise multiplication. In [24], an attention-steered inter-
weave fusion network was proposed to progressively integrate
cross-modal and cross-level deep features, where the side
outputs supervision was also employed. Particularly, in [24],
they adopt deep supervision to three side outputs, which are
employed as the feature selectors to weigh the features in the
same convolutional block. Differently, our model deploys the
supervision to more side outputs, which is only treated as
supervision signals.

Compared with the existing saliency models, which target
natural scene images and are unsuitable for directly detecting
salient objects in optical RSIs, our model makes some spe-
cial designs by sufficiently taking into account the complex
scene patterns of optical RSIs. For example, the multiscale
deep semantic features are extracted from three images with
different resolutions, and this gives a more effective repre-
sentation for the salient objects with different scales. After
that, the cascaded feature fusion attempts to integrate the
multiscale high-level semantic features, which further gives
powerful global context information for diverse scene patterns.
Particularly, compared with the edge-based saliency models,
our model adequately utilizes the edge information in explicit
and implicit ways, which gives precise detection for salient
objects in optical RSIs.

B. Saliency Models for Optical RSIs

Although many efforts have been devoted to salient object
detection in nature scene images, the research on opti-
cal RSIs saliency models is insufficient. There are only a
small number of prior works on salient object detection
in optical RSIs. For example, Zhao et al. [39] proposed a
sparsity-guided saliency model to perform saliency map inte-
gration through the acquisition of the global and background
cues. Ma et al. [40] presented a superpixel-to-pixel saliency
model to detect regions of interest by using the texture and
color features. Besides, there are also some works aiming
at locating special salient targets. For instance, a two-step
saliency estimation method [37] was proposed to locate build-
ings, where a probabilistic model was used to aggregate each
building’s multiple saliency cues. Zhang et al. [41] integrated
the vision-oriented and knowledge-oriented saliency maps to
accurately locate airports. In [38], the color features-based and
the radial symmetric circle-based feature maps are combined
to detect the oil tank.

Furthermore, the recently published works have pushed
forward the progress of this area to some degree. For example,
Zhang et al. [43] proposed a self-adaptively feature fusion
model to fuse multiple saliency cues including the color,
intensity, texture, and global contrast using the low-rank
matrix recovery method. Dong et al. [59] designed the
multiscale pyramid architecture to generate saliency maps,
which were further used to conduct graph-based segmentation.
Li et al. [29] proposed an end-to-end LV-Net, which consists
of a two-stream pyramid module and an encoder-decoder
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module, to detect salient objects in optical RSIs. Meanwhile,
this work provides a public optical RSIs dataset. A parallel
down-up fusion network proposed by Li et al. [30] sufficiently
utilized the in/cross-path information and the multiresolution
features to detect salient objects in optical RSIs. In [60],
an attention guided feature-learning architecture was deployed
to perform salient object detection, and the authors also
built a large-scale optical RSIs dataset. In addition, there
are also some models targeting object detection in remote
sensing images. In [61], a dynamic curriculum learning strat-
egy was employed to progressively learn the object detectors,
where the difficulty of training examples is ranked with
the entropy-based image difficulty measure criterion. To deal
with the challenging scene such as rotation variations and
appearance ambiguity, Li et al. [62] designed the region
proposal network (RPN) and local-contextual feature fusion
network to extract the proposals and locate the geospatial
objects.

Among the existing saliency models aiming at processing
optical RSIs, some of the previous works only treat the
saliency detection as an auxiliary unit for related vision tasks.
Some other previous works including the traditional models
and the deep learning-based models are less effective in some
challenging scenes, where they either fail to sufficiently utilize
the edge information or ignore the effect of edge information.
By contrast, our model pays more attention on the edge infor-
mation. This way not only enhances the multiscale deep fea-
tures but also acts as constraints for establishing supervision.
Through the multiscale feature integration under the explicit
and implicit assistance of salient edge cues, the generated
saliency maps are endowed with complete objects, accurate
boundaries, and distinct local details.

III. THE PROPOSED METHOD

In this section, the architecture of the proposed EMFI-Net
is first introduced in Section III-A. Then, some key opera-
tions such as the multiscale feature extraction, salient edge
extraction and integration, and deep feature aggregation will
be described in Sections III-B–III-D, respectively.

A. Overall Architecture

The architecture of the proposed EMFI-Net is shown
in Fig. 2, which is an encoder-decoder structure network
consisting of multiscale feature extraction, salient edge extrac-
tion and integration, and deep feature aggregation. To be
specific, three images {Ii}3

i=1 of different resolutions are first
passed into the multiscale feature extraction module, in which
three parallel convolutional branches with the same struc-
ture followed by a cascaded feature fusion module try to
relieve the obstacle caused by the scale diversity of salient
objects. Following this way, we can obtain the multiscale
deep features {F1

1, F1
2, F1

3, F1
4, F̃1

5}, where the multiresolution
high-level deep features {Fi

5}3
i=1 can be obtained from three

different resolution images and they are fused to generate
the high-level deep semantic feature F̃1

5 using the cascaded
feature fusion module. Then, the low-level deep feature {F1

2}
and the high-level deep feature {F̃1

5} are combined to acquire

the salient edge cues {Ei }5
i=1 using an edge module, i.e.,

the salient edge extraction module shown in Fig. 2. After that,
the multiscale deep features {F1

1, F1
2, F1

3, F1
4, F̃1

5} are tamped by
integrating with the salient edge cues, yielding the enriched
multiscale deep features {FE

j }5
j=1. Next, the decoder, namely

the deep feature aggregation module, progressively integrates
the multiscale deep features using a set of convolution and
up-sampling operations, yielding the high-quality saliency map
S with complete structure, accurate boundary, and distinct
details. Besides, we also introduce the hybrid loss to implicitly
endow the saliency maps with well-defined boundaries. In the
following, we will give a detailed description for each of the
components.

B. Multiscale Feature Extraction

Salient objects in optical RSIs usually show various sizes,
which include both tiny object like ship on the ocean and
large objects like stadium roof. This phenomenon will lead to
the performance degradation of saliency models. To confront
the scale diversity problem, we deploy the multiscale feature
extraction module, which contains three parallel convolutional
branches with the same structure and a cascaded feature fusion
module.

Formally, we first downsample the original image I1 by
factors 2 and 4, generating other two images {I2, I3}. Then,
the three images {I1, I2, I3} with different resolutions are
passed to three parallel convolutional branches with the same
structure, as shown in Fig. 2. Concretely, each convolutional
branch containing five convolutional blocks Conv-Bi (i =
1, . . . , 5) is constructed based on ResNet-34 [63], which
embeds the residual learning to each pair of 3 × 3 convolu-
tional layers by using shortcut connections. It should be noted
that the convolutional branch in EMFI-Net is slightly different
from that in ResNet-34. To be specific, the convolutional
layer (kernel size = 7 × 7, channel = 64, stride = 2) in
“conv1” of ResNet-34 is replaced with a convolutional layer
with 3 × 3 kernel size, 64 channels, and 1 stride. In addition,
the max pooling layer is abolished after “conv1.” Therefore,
in EMFI-Net, we set the “conv1” and “conv2_x” as the first
convolutional block Conv-B1. After that, Conv-B2, Conv-B3,
and Conv-B4 adopt the “conv3_x,” “conv4_x,” and “conv5_x”
of ResNet-34, respectively. Moreover, to further enlarge the
receptive field of our network, we deploy a max pooling layer
(kernel size = 2 × 2, stride = 2, padding = 0) and three
basic res-blocks (channel = 512) after Conv-B4, and these
layers constitute the convolutional block Conv-B5 of EMFI-
Net. Following this architecture, we can obtain high-level
deep semantic features {F1

5, F2
5, F3

5} from three RSIs {Ik}3
k=1

and multilevel deep features {F1
1, F1

2, F1
3, F1

4} from the original
image I1. Subsequently, to aggregate the three deep semantic
features, we deploy a cascaded feature fusion module shown
in purple dotted box of Fig. 2.

Specifically, at first, the deep feature F3
5 is passed into a

convolutional block Conv (i.e., three convolutional layers),
yielding the enhanced deep feature F̃3

5, namely

F̃3
5 = Conv

�
F3

5

�
(1)
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Fig. 2. Architecture of the proposed EMFI-Net: the input are three different resolution optical remote sensing images {I1, I2, I3}, and the output is the
saliency map S, which are all marked in dotted red boxes. The overall network consists of the encoder and decoder. To be specific, the encoder is used to
extract multiscale deep features {F̃1

5, F1
4, F1

3, F1
2, F1

1} and obtain salient edge cues {Ei }5
i=1, which are further applied to enhance the deep features (yielding the

enriched deep features {FE
i }5

i=1). The decoder is employed to aggregate the multiscale deep features in a coarse-to-fine way, and we can obtain the high-quality
saliency map S for the original image I1. Here, the supervision (blue arrows) of edge module, decoder blocks, bridge module, and three convolutional branches
of encoder is indicated by le, {lsi }5

i=1, ls0, and {lss}3
i=1, respectively.

where each convolutional layer (kernel size = 3 × 3, stride =
1) in Conv is followed by a batch normalization (BN) layer
and a ReLU layer.

Second, the enhanced deep feature F̃3
5 is up-sampled to the

same size as F2
5 using bilinear interpolation. Then, both deep

features are combined and sent into a convolutional block
Conv. The process can be defined as

F̃2
5 = Conv

�
up×2

�
F̃3

5

� + F2
5

�
(2)

where “up×2(.)” denotes 2× up-sampling operation by per-
forming the bilinear interpolation and “+” is the element-wise
summation operation.

Lastly, the deep semantic feature F1
5 together with the

two enhanced deep features F̃2
5 and F̃3

5 are also sent into a
convolution block Conv, yielding the enhanced deep feature
F̃1

5, which can be formulated as

F̃1
5 = Conv

�
up×4

�
F̃3

5

� + up×2

�
F̃2

5

� + F1
5

�
(3)

where “up×4(.)” refers to 4× up-sampling operation by using
the bilinear interpolation.

Following this way, we can aggregate the three high-level
semantic deep features {Fi

5}3
i=1, generating the deep feature F̃1

5.
In the following, the multiscale (or multilevel) deep features
{F1

1, F1
2, F1

3, F1
4, F̃1

5} will be improved by the salient edge
module.

C. Salient Edge Extraction and Integration

Through a thorough review of existing optical RSI saliency
models, we can find that the usage of boundary information
is insufficient in current works. Therefore, we try to take full

Fig. 3. Illustration of the edge module, where S means pixel-wise summation,
the red line denotes up-sampling operation, the black line means connectivity,
and the blue line refers to down-sampling operation.

advantage of salient edge cues in both explicit and implicit
ways, which enable our model to generate clear boundary
details.

Formally, the shallow layer features are able to depict rich
spatial details such as edge information, whereas the deep
layer features try to capture the semantic knowledge. Here,
similar as the saliency model [45] for natural scene images,
we first combine the low- and high-level deep features F1

2 and
F̃1

5 to generate the salient edge cue E. According to Figs. 2
and 3, the whole process can be formulated as

E = f
�
F1

2 + up×8

�
F̃1

5

��
(4)

where “up×8(.)” means 8× up-sampling, i.e. bilinear interpo-
lation shown in red line, and f denotes the function of the
combination of convolution layer, the BN layer and the ReLU
layer, as shown in Fig. 3.

Then, we try to deploy the salient edge cue E to
enrich multiscale deep features {F1

1, F1
2, F1

3, F1
4, F̃1

5}. Con-
cretely, the salient edge cue E is first resized to the same
size as the multiscale deep features using up-sampling or
down-sampling operation, yielding the corresponding salient

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on July 15,2021 at 08:41:09 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 4. Illustration of the bridge module, where fb represents the function
of bridge module and “C” denotes the concatenation operation.

edge cues {E j}5
j=1. Here, the j th edge cue E j is with the same

spatial size as the j th deep feature F1
j , and the corresponding

sampling rate sr j is set to 2| j−2|. Then, E j is delivered to
integrate with the multiscale deep features, namely

FE
j =

�
Conv

��
F1

j , E j
��

j = 1, 2, 3, 4

Conv
��

fb
�
F̃1

j

�
, E j

��
j = 5

(5)

where FE
j denotes the enriched deep feature, Conv means

the convolution operation after concatenation operation “[·, ·],”
and fb(·) represents the function of bridge module shown
in Fig. 2. Particularly, to enlarge the receptive field and capture
the powerful global context, we add the bridge module shown
in Fig. 2. To be specific, similar to the Atrous spatial pyramid
pooling (ASPP) [64], the bridge module shown in Fig. 4 first
deploys four parallel dilated convolution with dilation rates
r = {2, 4, 8, 16}, and then the input of bridge module F̃1

5 and
the obtained four deep features {Fea2, Fea4, Fea8, Fea16} are
combined using the concatenation operation.

Meanwhile, to depict the salient edge cue E accurately,
we employ the supervision to guide the salient edge extraction.
Concretely, the salient edge cue E is first processed by a
convolutional layer (kernel size = 1 × 1, stride = 1, padding =
0, and channel = 1), a bilinear interpolation layer (2× up-
sampling), and a sigmoid function. This operation is denoted
by fc(·) and is used to obtain the salient edge map. Then,
we adopt the cross-entropy loss to realize the supervision,
namely

le = −
W×H�
i=1

{GTe+(i) log( fc(E)(i))

+ GTe−(i) log(1 − fc(E)(i))} (6)

where GTe+ and GTe− refer to salient edge pixels and
background pixels, respectively. Here, we generate the ground
truth (GT) of salient edge GTe by following [45]. Specifically,
the gradient magnitude of salient object GT GTs is first
computed, and then we set the value of the pixels with nonzero
gradient amplitude to 1. Therefore, the values of salient edge
pixels GTe+ are 1 and the values of background pixels GTe−
are 0.

Lastly, except for the explicit usage of salient edge cues
in the proposed EMFI-Net, the implicit utilization of edge
information is also applied to further model the proposed

Fig. 5. Illustration of the ith decoder block “Decoder-Bi ,” where the red
line denotes the up-sampling operation and “C” refers to the concatenation
operation.

EMFI-Net with rich edge details. Specifically, in the compu-
tation of loss functions (this will be detailed in Section III-D)
shown in Fig. 2, we introduce the hybrid loss [44], which is
defined as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ls = lbce + lssim + liou

lbce = −
W×H�
i=1

{GTs+(i)log(S(i))

+ GTs−(i)log(1 − S(i))}
lssim = 1 − (2u pugt + �1)(2δp,gt + �2)�

u2
p + u2

gt + �1
��

δ2
p + δ2

gt + �2
�

liou = 1 −
�W×H

i=1 S(i)GTs(i)�W×H
i=1 [S(i) + GTs(i) − S(i)GTs(i)]

(7)

where lssim, lbce, and liou refer to SSIM loss [65], BCE
loss [66], and IoU loss [67], respectively. Besides, in the
computation of lssim, u p, and ugt, δp and δgt denote the
mean and the standard deviations of patch regions p =
(p1, . . . , pi , . . . , pN ) and gt = (gt1, . . . , gti , . . . , gtN ), which
are cropped from the generated saliency map S and the GT
GTs . Here, N is the patch size, and pi and gti are the i th pixel
values of p and gt, δp,gt is the covariance of p and gt, and
�1 and �2 are usually set to 10−4 and 9 × 10−4, respectively.
In addition, among them, BCE loss aims to give a smooth
gradient for each pixel, IoU loss pays more attention to salient
regions, while the SSIM loss pays more attention to boundary
pixels by incorporating the neighboring pixels’ effects on
them. Based on the hybrid loss, we deploy the implicit
modeling of salient edges, where the predicted saliency maps
can be enhanced with clear and accurate boundary details.

D. Deep Feature Aggregation

With the enriched multiscale deep features
{FE

1 , FE
2 , FE

3 , FE
4 , FE

5 }, the following crucial issue is how
to effectively make a fusion for these features. Here, our
model, which adopts the encoding-decoding architecture,
treats the deep feature fusion as a decoding process and tries
to integrate multiscale deep features in a progressive way.

Formally, according to Fig. 2, the decoder, namely deep
feature aggregation module, contains five decoder blocks
“Decoder-Bi” (i = 1, . . . , 5), in which each of them consists
of three convolutional blocks, i.e. DBi -1, DBi -2, DBi -3. For
each convolutional block shown in Fig. 5, it contains a convo-
lutional layer, a BN layer, and a ReLU layer. Correspondingly,
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according to Fig. 2, the decoding process can be defined as

FD
i =

�
fdi

�
FE

i

�
i = 5

fdi
��

FE
i , up×2

�
FD

i+1

���
i = 1, 2, 3, 4

(8)

where FD
i denotes the output of the i th decoder block, fdi

denotes the function of the i th decoder block “Decoder-
Bi ,” and “up×2(.)” denotes the 2× up-sampling operation by
executing the bilinear interpolation, which is marked in red
line shown in Fig. 5. Finally, to obtain the saliency map S
shown in Fig. 2, the output of “Decoder-B1” FD

1 is further
processed by a convolutional layer (kernel size = 1 × 1,
stride = 1, padding = 0, and channel = 1) and a sigmoid
function. Here, to present each decoder block in a simple
and convenient way, we do not draw this convolutional layer
in Fig. 2.

Besides, the deeply supervised architecture has been suc-
cessfully deployed by some saliency models [45], [51], [68].
Inspired by this, we also add the deep supervision to all
decoder blocks by using the hybrid loss [44], namely {lsi }5

i=1
shown in Fig. 2, where the side output of each decoder
block can be generated by using a convolutional layer (kernel
size = 1 × 1, stride = 1, padding = 0, and channel = 1),
an up-sampling layer (bilinear interpolation), and a sigmoid
function. Here, the up-sampling layer is used to resize the
output of the convolutional layer to the same size as the
original input image I1. Meanwhile, we also employ the hybrid
loss shown in Eq. 7 to form supervision for training the
multiscale feature extraction module (i.e., the side outputs
of the three parallel branches) and the bridge module shown
in Fig. 2. Therefore, the total loss L of the proposed EMFI-Net
can be formulated as

L = le +
3�

i=1

lssi +
5�

i=0

lsi (9)

where ls0 denotes the supervision of bridge module and
{lssi }3

i=1 denote the supervision of multiscale feature extraction
module, as depicted in Fig. 2. Notice that the side outputs
of multiscale feature extraction module are also generated
using a convolutional layer (kernel size = 1 × 1, stride = 1,
padding = 0, and channel = 1), an up-sampling layer (bilinear
interpolation), and a sigmoid function.

Following this way, the enriched multiscale deep features
containing low-level deep spatial details and the high-level
deep semantic information are aggregated in a coarse-to-fine
way, and we can obtain the high-quality saliency map with
complete structure, accurate boundary, and distinct details
indicated in Fig. 2.

IV. EXPERIMENTAL RESULTS

In this section, we first present the public optical remote
sensing image dataset and the implementation details in
Section IV-A. Second, the evaluation metrics are detailed in
Section IV-B. Third, in Section IV-C, we will make some
comparisons between the proposed EMFI-Net and the state-
of-the-art saliency models. Fourth, the ablation study will be
presented in Section IV-D. Lastly, in Section IV-E, we present
the failure cases and analysis.

A. Datasets and Implementation

To comprehensively validate our model, we conduct exten-
sive comparisons on two public benchmark optical remote
sensing image datasets, namely ORSSD dataset [29] and
EORSSD dataset [60]. Specifically, the ORSSD dataset con-
tains 800 images, where 600 images are treated as the training
set and 200 images are used for testing. This dataset exhibits
various spatial resolutions, numerous object scales and types,
cluttered background, and so on. Meanwhile, as an exten-
sion of the ORSSD, EORSSD contains 2000 images, where
1400 images are used for training and 600 images are adopted
for testing. Notably, each image in the ORSSD and EORSSD
datasets is furnished with pixel-wise annotation.

Here, according to [29], [30], [60], we employ the same
training set, namely 600 images in ORSSD dataset and
1400 images in EORSSD dataset, to train our model. Besides,
we also adopt 200 images in ORSSD dataset and 600 images
in EORSSD dataset to constitute the test set. Furthermore,
to train the proposed EMFI-Net, the training set is augmented
by performing rotation with angles 90◦, 180◦, and 270◦ and
conducting mirror reflection on those images. By following
this way, the training set of ORSSD and EORSSD contains
totally 4800 examples and 11 200 examples, respectively.
In addition, each training image is resized to 256 × 256 during
the training phase.

Our model is implemented with PyTorch on a PC with
an Intel(R) Core(TM) i9-9900X 3.50 GHz CPU, 32 GB
RAM, and an NVIDIA GTX 2080Ti GPU, in which parts
of the encoder are initialized by using ResNet-34 [63] and the
remaining parts are initialized by Xavier [69]. Besides, the pro-
posed EMFI-Net can be trained in an end-to-end manner, and
the Adam algorithm [70] is adopted to optimize the network,
where the initial learning rate, batch size, and maximum epoch
number are set to 10−4, 4, and 130, respectively.

B. Evaluation Metrics

To quantitatively make a comparison for different saliency
models on ORSSD and EORSSD datasets, we adopt
the following evaluation metrics including precision-recall
(PR) curve, F-measure curve, max F-measure (maxF),
S-measure (S) [71], max E-measure (maxE) [72], and mean
absolute error (MAE).

Precision and Recall is a standard metric to evaluate the
model performance, where we totally compute 256 pairs of
average precision value and average recall value over all
saliency maps using the thresholds ranging from 0 to 255.
Here, we plot the PR curve, where the vertical and horizontal
axes denote precision value and recall value, respectively.
Particularly, the closer the PR curve is to the coordinates
(1, 1), the better the performance of the saliency model is.

F-measure is regarded as a comprehensive metric, which
can be obtained by performing the weighted harmonic average
on precision and recall values, namely

Fβ = (1 + β2)Precision × Recall

β2Precision + Recall
(10)

where β2 is set to 0.3 to give more emphasis on precision as
suggested in [73]. In this article, we report the max F-measure
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Fig. 6. (better viewed in color) Quantitative evaluation of different saliency models. (a) PR curves. (b) F-measure curves on ORSSD dataset. (c) PR curves.
(d) F-measure curves on EORSSD dataset.

and show the F-measure curve simultaneously. Specially, for
the F-measure curve, it can be drawn based on the pair of F
score and threshold ([0, 255]), where each F score is computed
by using (10) under each threshold. And thus, the larger the
coordinate area covered by the F-measure curve, the better
performance of the saliency model is.

MAE presents the absolute pixel-wise difference between
the saliency map S and its corresponding GT GTs , which can
be written as

MAE = 1

W × H

W×H�
i=1

|S(i) − GTs(i)| (11)

where W and H represent the width and height of the saliency
map, respectively.

S-measure measures the structural similarity of saliency
maps, which simultaneously incorporates the region similarity
(Sr ) and the object similarity (So). The definition is presented
as

S = α × So + (1 − α) × Sr (12)

where α is set to 0.5 as suggested in [71].
E-measure evaluates the similarity between the predicted

saliency maps and the GT by incorporating the local pixel
saliency value and the image-level mean saliency value
simultaneously. According to [72], the E-measure is

formulated as

ξ = 2ϕGT(x, y) ◦ ϕFM(x, y)

ϕGT(x, y) ◦ ϕGT(x, y) + ϕFM(x, y) ◦ ϕFM(x, y)

E = 1

W × H

W�
x=1

H�
y=1

f (ξ) (13)

where f (·) is a convex function and ◦ refers to the Hadamard
product. Besides, the alignment matrix ξ is constructed on
the bias matrices ϕGT and ϕFM, which can be regarded as
the centering operation on GT and binary saliency map,
respectively.

C. Comparison With the State-of-the-Art Methods

In this section, we compare our model EMFI-Net denoted
as “Ours” with 20 state-of-the-art saliency models on ORSSD
and EORSSD datasets, in which there are six saliency models
for optical RSIs (i.e., DAFNet [60], PDFNet [30], LVNet [29],
SSD [39], SPS [40], ASD [41]), four traditional saliency mod-
els for natural scene RGB images (i.e., RBD [46], RCRR [47],
DSG [48], MILPS [50]), and ten deep learning-based saliency
models for natural scene RGB images (i.e., R3Net [18],
DSS [51], RADF [52], RFCN [53], PoolNet [17], CPD [54],
BASNet [44], EGNet [45], SCRN [58], andU2Net [57]).
Meanwhile, for a fair comparison, saliency maps are generated
by running the codes released or provided by the authors.
All networks are trained from scratch on the training set of
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TABLE I

QUANTITATIVE COMPARISON RESULTS OF S-MEASURE, MAX
F-MEASURE, MAX E-MEASURE, AND MAE ON THE ORSSD
AND EORSSD DATASETS. HERE, “↑” (↓) MEANS THAT THE

LARGER (SMALLER) THE BETTER. THE BEST THREE

RESULTS IN EACH ROW ARE MARKED IN RED,
GREEN, AND BLUE, RESPECTIVELY

the employed datasets. In the following, we will present the
quantitative comparison as well as the qualitative comparison.
Here, the results of SSD [39], SPS [40], and PDFNet [30] on
EORSSD dataset are not provided by the authors, and thus
the corresponding quantitative and qualitative results are not
presented in this article.

1) Quantitative Comparison: To conduct quantitative eval-
uations on ORSSD and EORSSD datasets, we first present
PR curves and F-measure curves in Fig. 6. Here, similar as
the recently published RSIs saliency model DAFNet [60],
we also provide the results of the proposed EMFI-Net under
the backbone of VGG-16 [74] and ResNet-34, i.e., Ours-V
and Ours-R. As shown in Fig. 6, we can find that our model
performs better than other saliency models in terms of the
PR curve and F-measure curves on the ORSSD and EORSSD
datasets, where the PR curve of our model is the closest one
to the coordinates (1, 1) and the area below the F-measure
curve by our model is also the largest one.

Besides, to give a more intuitive presentation for different
models, we provide Table I to show the comparison results
in terms of S-measure (S), max F-measure (maxF), max
E-measure (maxE), and mean absolute error (MAE). It can
be seen that the performance of deep learning-based models
such as DAFNet [60], PDFNet [30], and U2Net [57] is signif-
icantly better than the traditional saliency models including
traditional saliency models for natural scene RGB images
and RSIs saliency models. Particularly, compared with the
top-level saliency models targeting natural scene images such
as U2Net [57], CPD [54], and EGNet [45], the RSIs saliency
models such as DAFNet [60] and PDFNet [30] acquire a

better performance. This confirms the necessity of devising a
RSIs saliency model exclusively. In addition, benefitting from
the design of our network, our model (Ours-V and Ours-R)
performs better than other models on both datasets except for
the top-ranking RSI saliency model DAFNet [60]. Concretely,
compared with one of the top-level models U2Net [57] on the
ORSSD dataset, our approach (Ours-R) elevates the perfor-
mance by 2.9%, 4.8%, and 2.9%, in terms of S-measure, max
F-measure, and max E-measure, respectively. It reduces the
MAE by 42.7%. On the EORSSD dataset, our model (Ours-R)
also promotes the performance by 1.3%, 0.1%, and 0.7%,
in terms of S-measure, max F-measure, and max E-measure,
respectively, whereas the MAE is reduced by 1.3%. Moreover,
compared with DAFNet [60], our model (Ours-V and Ours-R)
is superior in terms of three metrics including S-measure, max
F-measure, and MAE on the ORSSD dataset. On the EORSSD
dataset, our model performs better than DAFNet [60] in
terms of two metrics including S-measure and max F-measure.
Therefore, through Fig. 6 and Table I, we can clearly observe
the superiority and effectiveness of our model.

Furthermore, to evaluate the computational efficiency of
different models, we present the model size (MB) and the
average running time (seconds per image) of different models
performed on the test set of ORSSD dataset, as summarized
in Table II. Here, because the codes of PDFNet [30], SSD [39],
SPS [40], and ASD [41] are not provided by the authors,
we are unable to provide the average running time of them.
Besides, the average running time and the model size of
our model and DAFNet [60] are obtained under the ResNet
backbone. As presented in Table II, the deep learning-based
models are more efficient than the traditional saliency mod-
els. Especially, our model takes about 0.04 s for a 256 ×
256 image, which is prominent among all models. However,
compared with the top-level models, the model size of our
network is slightly large. Therefore, we can say that there
is still a large room for further improving the computational
efficiency (especially the model size) of our model in future
work.

2) Qualitative Comparison: To qualitatively make a com-
parison for all saliency models, some visual results on the
ORSSD dataset and the EORSSD dataset are presented
in Figs. 7 and 8, respectively. Here, each figure provides
five examples selected from the corresponding dataset, and
the results of the proposed EMFI-Net and DAFNet [60] are
generated under the ResNet backbone. It can be found that the
prediction results of our model shown in Figs. 7(c) and 8(c)
are more complete and accurate than other models. Overall,
the main advantages of our model lie in three aspects:

a) Superiority in the scenarios with multiple and small
objects: In the first and second examples of Fig. 7, the tra-
ditional models [e.g., SPS [40] and RCRR [47] shown
in Fig. 7(h) and (k)] are completely unable to detect
salient objects, whereas the deep learning-based models
[e.g., DAFNet [60], LVNet [29], and U2Net [57] shown
in Fig. 7(d), (f), and (w)] either provide incomplete detection
or falsely highlight background regions. By contrast, our
model can successfully detect the two salient ships and two air-
crafts from the above two examples. Similarly, in Fig. 8, for the
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TABLE II

COMPARISON OF THE MODEL SIZE (MB) AND THE AVERAGE RUNNING TIME (SECONDS PER IMAGE) ON THE TEST SET OF ORSSD DATASET. NOTE
THAT “M” DENOTES MATLAB, “C” DENOTES CAFFE, “T” DENOTES TENSORFLOW, AND “P” DENOTES PYTORCH

Fig. 7. Visual comparison of different saliency models on several challenging optical RSIs of ORSSD dataset. (a) Optical RSIs. (b) GT. (c) Ours.
(d) DAFNet [60]. (e) PDFNet [30]. (f) LVNet [29]. (g) SSD [39]. (h) SPS [40]. (i) ASD [41]. (j) RBD [46]. (k) RCRR [47]. (l) DSG [48].
(m) MILPS [50]. (n) R3Net [18]. (o) DSS [51]. (p) RADF [52]. (q) RFCN [53]. (r) PoolNet [17]. (s) BASNet [44]. (t) EGNet [45]. (u) CPD [54].
(v) SCRN [58]. (w) U2Net [57].

Fig. 8. Visual comparison of different saliency models on several challenging optical RSIs of EORSSD dataset. (a) Optical RSIs. (b) GT. (c) Ours.
(d) DAFNet [60]. (e) LVNet [29]. (f) ASD [41]. (g) RBD [46]. (h) RCRR [47]. (i) DSG [48]. (j) MILPS [50]. (k) R3Net [18]. (l) DSS [51].
(m) RADF [52]. (n) RFCN [53]. (o) PoolNet [17]. (p) BASNet [44]. (q) EGNet [45]. (r) CPD [54]. (s) SCRN [58]. (t) U2Net [57].

third and fourth examples, the top-level deep learning-based
models such as DAFNet [60], LVNet [29], and U2Net [57]
either mistakenly highlight background regions or cannot
distinguish salient objects clearly, as shown in Fig. 8(d), (e),
and (t). By contrast, our model shown in Fig. 8(c) can pop-out
all salient objects completely and clearly.

b) Superiority in cluttered and complex scenes: In the
fourth and fifth examples of Fig. 7, no matter the tradi-
tional models [e.g., ASD [41] and RCRR [47] presented
in Fig. 7(i) and (k)] or the deep learning-based models
[e.g., DAFNet [60], LVNet [29], and U2Net [57] shown
in Fig. 7(d), (f), and (w)] all failed, namely falsely highlighting
background regions. By contrast, our model can provide
complete and accurate inference for salient objects. Similarly,
in the first and second examples of Fig. 8, some top-level
deep learning-based models [e.g., DAFNet [60], DSS [51],

and PoolNet [17] depicted in Fig. 8(d), (l), and (o)] either
incorrectly detect the background regions or fail to completely
pop-out salient objects. In stark contrast, our model shown
in Fig. 8(c) can still successfully highlight the salient objects,
where our results are with clear boundaries, especially on the
river turning area and the airplane wing.

c) Superiority in highlighting of salient objects and sup-
pression of background: In the third example of Fig. 7,
some traditional models [e.g., SSD [39] and DSG [48] shown
in Fig. 7(g) and (l)] and deep learning-based models [e.g.,
LVNet [29] and U2Net [57] shown in Fig. 7(f) and (w)]
falsely highlight the wharf area. By contrast, our model shown
in Fig. 7(c) performs better than other models, where the
wharf area is effectively suppressed and the salient ship
is highlighted completely. Similarly, in thefifth example of
Fig. 8, the traditional models [e.g., ASD [41], RBD [46], and
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Fig. 9. (better viewed in color) Quantitative evaluation for the ablation study. (a) PR curves. (b) F-measure curves.

TABLE III

ABLATION STUDIES ARE PERFORMED ON ORSSD DATASET, WHERE THE BEST RESULT IN EACH COLUMN IS MARKED IN RED BOLD FACE.
NOTABLY, “↑” (↓) MEANS THAT THE LARGER (SMALLER) THE RESULT, THE BETTER IS

Fig. 10. Qualitative comparisons of several variants of the proposed
EMFI-Net. (a) Optical RSIs. (b) GT. (c) Ours. (d) Edge-all. (e) w/o EI-edge.
(f) w/o I-edge. (g) w/o E-edge.

RCRR [47] presented in Fig. 8(f), (g), and (h)] and deep
learning-based models [e.g., LVNet [29], RFCN [53], and
EGNet [45] shown in Fig. 8(e), (n), and (q)] cannot detect
the airplane completely, and even introduce some background
regions. By contrast, our model shown in Fig. 8(c) can still
generate a more complete saliency map, which is with more
accurate boundaries.

In summary, through the aforementioned quantitative and
qualitative comparisons, we can firmly demonstrate the effec-
tiveness and superiority of the proposed EMFI-Net, namely
our model can perform dense and precise salient object detec-
tion on optical RSIs.

D. Ablation Studies

In this part, we conduct comprehensive experiments to
validate each key component of our model on ORSSD dataset.
The experiments contain quantitative comparisons shown

in Fig. 9 and Table III, and qualitative comparisons shown
in Figs. 10–12. Here, the results of our model (denoted as
“Ours”) are obtained based on the ResNet backbone.

1) Validation of Edge Information: To demonstrate the
effectiveness of edge cues, we design three variants including
EMFI-Net without the explicit and implicit usage of salient
edge cues, EMFI-Net without the implicit usage of edge
information, and EMFI-Net without the explicit usage of
salient edge cues, which are dubbed as “w/o EI-edge,” “w/o
I-edge,” and “w/o E-edge,” respectively. We also utilize all
multiscale deep features to generate the salient edge cue,
which is denoted as “edge-all.” The results presented in Fig. 9
and Table III signify that our model performs better than w/o
EI-edge, w/o I-edge, and w/o E-edge. We can also find that w/o
E-edge and w/o I-edge perform better than w/o EI-edge. This
firmly demonstrates the importance of edge information in our
model, and further validates the necessity of the sufficient
usage of edge information. Besides, it can be seen that our
model performs better than edge-all, and this demonstrates
the rationality of the design of our edge extraction module.
In addition, as shown in the visual comparisons of Fig. 10,
our model can detect the four white cars in the top example
more completely, and give more accurate boundaries of the
green island in the bottom example when compared with the
four variants.

2) Validation of Multiscale Deep Features: To prove the
effectiveness our multiscale strategy, we devise four vari-
ants, namely our model without the second- and third-scale
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Fig. 11. Qualitative comparisons of several variants of the proposed
EMFI-Net. (a) Optical RSIs. (b) GT. (c) Ours. (d) w/o CFF. (e) S2-S3.
(f) w/o S3. (g) w/o S2. (h) w/o bridge.

Fig. 12. Qualitative comparisons of several variants of the proposed
EMFI-Net. (a) Optical RSIs. (b) GT. (c) Ours. (d) ls + le. (e) bce + iou.
(f) bce + ssim. (g) bce.

branches, our model without the third-scale branch, and our
model without the second-scale branch, which are denoted as
“w/o S2-S3,” “w/o S3,” and “w/o S2,” respectively. More-
over, to validate the effectiveness of the cascaded feature
fusion module, we employ a simple concatenation operation
to replace it, namely “w/o CFF.” In addition, to demonstrate
the effectiveness of bridge module, we define our network
without the bridge module as “w/o Bridge.” According to
Fig. 9 and Table III, we can find that our model performs best
when compared with the five variants. This demonstrates the
rationality of the designed multiscale strategy with cascaded
feature fusion module. Meanwhile, this also validates the
effectiveness of the adopted bridge module. Besides, as shown
in Fig. 11, the five variants either give more concern on
background regions or lose salient objects, whereas our model
is capable of giving more complete and accurate prediction for
the building and the two islands.

3) Validation of Loss Functions: To demonstrate the effec-
tiveness of our loss functions, we first define three variants,
namely 1) our model is only equipped with BCE loss and IoU
loss (bce + iou); 2) our model only adopts BCE loss and SSIM
loss (bce + ssim); and 3) our model only employs BCE loss
(bce). Actually, “bce” is our model without implicit usage of
edge information, namely “w/o I-edge.” Besides, we use “ls +
le” to denote our network shown in Fig. 2, which only utilizes
the BCE-based edge loss (i.e., le) and the output loss (i.e.,
ls1). The results presented in Fig. 9 and Table III indicate that
our model achieves the best performance when compared with
the four variants. Similarly, in Fig. 12, the four variants cannot
detect the two airplanes of the top example and the truck of the
bottom example completely and accurately. By contrast, our
model provides more complete and precise results, especially
the two engines of each airplane can be precisely highlighted.
Besides, we also provide the training time of these models,
where our model, bce + iou, bce + ssim, bce (i.e., w/o
I-edge) and ls + le take about 30.4 h (hours), 31.7 h, 36.7 h,
26 h, and 31 h, respectively. This indicates that different loss

Fig. 13. Some failure examples. (a) Optical RSIs. (b) GT. (c) Saliency maps
generated by the proposed EMFI-Net.

terms have little effect on training time. Therefore, through the
above comparison results, we can demonstrate the rationality
of the deployment of our loss functions.

E. Failure Cases and Analysis

As mentioned above, the proposed EMFI-Net can give good
prediction for salient objects in optical RSIs. However, our
model is still incapable of generating satisfactory results when
dealing with some challenging scenes shown in Fig. 13. For
instance, the two examples in the first and second rows of
Fig. 13(a) present two salient objects, i.e., a road and a house,
respectively. It can be seen that the road shares the similar
color with the beachhead land, and the house roof shares
similar appearance with background. As shown in Fig. 13(c),
our model falsely highlights the background regions around
the salient objects. For the bottom two examples of Fig. 13(a),
curved slender river and three cars are surrounded by clut-
tered background, where the two objects also share similar
appearance with the surroundings. As presented in Fig. 13(c),
the salient objects are missed by our model. Therefore, we can
conclude that the scene with low contrast (i.e., salient objects
and background are quite similar) and cluttered background
are still challenging for our network. To tackle this issue,
more effort should be paid to design more effective integration
method for multiscale deep features, so that the network can
provide more discriminative representation for salient objects
and background.

V. CONCLUSION

This article presents a novel EMFI-Net to detect salient
objects in optical remote sensing images, where the two key
components are the multiscale deep feature fusion and the
edge cues exploitation. Specifically, the proposed EMFI-Net
first generates effective multiscale deep features by using the
three convolutional branches with different resolution inputs
and the cascaded feature fusion module, so that a power-
ful representation of salient objects can be acquired. Then,
the explicit and the implicit usage of the edge information
not only further strengthens the multiscale deep features but
also directly endows the saliency maps with clear boundaries.
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Besides, the atrous dilated convolution-based bridge module
is introduced to enhance the global context, which further
promotes the ability of our method in depicting salient
objects. Lastly, with the decoding network, the edge-enhanced
multiscale deep features are progressively integrated to the
final high-quality saliency maps, which show complete salient
objects together with clear boundary details. Intensive exper-
iments are conducted on two public optical RSI datasets, and
both the quantitative and qualitative results clearly demon-
strates the effectiveness and superiority of our model.
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