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Multiview Latent Space Learning With Feature
Redundancy Minimization

Tao Zhou , Member, IEEE, Changqing Zhang , Chen Gong , Member, IEEE, Harish Bhaskar, and Jie Yang

Abstract—Multiview learning has received extensive research
interest and has demonstrated promising results in recent years.
Despite the progress made, there are two significant challenges
within multiview learning. First, some of the existing methods
directly use original features to reconstruct data points with-
out considering the issue of feature redundancy. Second, existing
methods cannot fully exploit the complementary information
across multiple views and meanwhile preserve the view-specific
properties; therefore, the degraded learning performance will be
generated. To address the above issues, we propose a novel mul-
tiview latent space learning framework with feature redundancy
minimization. We aim to learn a latent space to mitigate the
feature redundancy and use the learned representation to recon-
struct every original data point. More specifically, we first project
the original features from multiple views onto a latent space,
and then learn a shared dictionary and view-specific dictionar-
ies to, respectively, exploit the correlations across multiple views
as well as preserve the view-specific properties. Furthermore, the
Hilbert–Schmidt independence criterion is adopted as a diversity
constraint to explore the complementarity of multiview repre-
sentations, which further ensures the diversity from multiple
views and preserves the local structure of the data in each view.
Experimental results on six public datasets have demonstrated
the effectiveness of our multiview learning approach against other
state-of-the-art methods.
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I. INTRODUCTION

RECENTLY, multiview (or multimodal) learning has
attracted significant attention as it is able to characterize

an object via harnessing the diverse information from multiple
sources in many real-world applications [1]–[7]. For exam-
ple, an image can be described by using different features,
such as SIFT, LBP, HOG, etc. The news on the Internet usu-
ally consists of texts, images, and videos. Sufficient research
results have demonstrated that the model performance can be
substantially improved by combining multiple views of data.
This is mainly because different views depict different per-
spectives of the data which further provide complementary
information for data description and model training. Thus,
one key challenge for multiview learning is how to effec-
tively integrate the information of multiple views and exploit
the underlying structures within data to obtain the improved
performance.

A number of multiview learning approaches have been
proposed in the last decade. Co-training [8] is one of the ear-
liest multiview learning schemes, which are alternately trained
based on the unlabeled data of two distinct views to maximize
their agreement. After that, many of its variants have also
been developed and obtained promising results [9], [10]. Next,
some multiview methods are proposed such that the data of
multiple views can be projected into a common space. For
example, canonical correlation analysis (CCA) [11] and its
related variants (e.g., multiview CCA [12]) learn multiple
projections to map multiview data into a common space.
Distributed spectral embedding [13] learns a low-dimensional
and sufficiently smooth embedding over all views simultane-
ously. Partial least squares (PLS) [14] projects different views
into a common linear subspace by using a standard regres-
sion methodology. Multiple kernel learning (MKL)-based
approaches [15], [16] learn a low-dimensional common repre-
sentation across multiple views. Besides, non-negative matrix
factorization (NMF)-based multiview learning methods have
also attracted wide attention. For example, multi-NMF [17]
formulates a joint multiview NMF learning framework, which
encourages the representations of all views to be compromised
to a common result.
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Additionally, as an important branch of multiview learn-
ing, the clustering methods for multiview data have also been
widely developed. Such approaches can be divided into three
main types. First, graph-based methods [18], [19] exploit the
correlations across different views via using the multiple graph
fusion strategies. The methods of second type are usually
based on co-training and co-regularization [20], [21]. Finally,
the third category relies on subspace learning [22]–[25], which
aims to find an underlying low-dimensional subspace for
representing data points rather than assuming that they are dis-
tributed uniformly across the entire feature space. Specifically,
the work of [22] proposes an iterative strategy to achieve mul-
tiview spectral clustering by minimizing the divergence of the
latent data-clustered representation for each view. The work
of [23] presents a Markov chain method for multiview cluster-
ing, which recovers a shared transition probability matrix via
low-rank and sparse decomposition. Gao et al. [24] performed
subspace clustering on each individual modality and then
integrates these modalities into a common indicator matrix.
Besides, the work [25] assumes that multiple views originate
from one underlying latent representation, and then clustering
is performed on such latent data representation.

In general, most of the existing approaches suffer from
the following challenges. First, in the real-world applica-
tions, the original high-dimensional data often contain feature
redundancy, which makes the relationships among different
examples not be accurately depicted in the original feature
space. As a result, the performances of existing multiview
learning algorithms still need further improvements. Second,
it also remains a challenging problem on how to simultane-
ously capture the correlation across multiple views and exploit
the diversity within each individual view to achieve better
multiview learning performance.

To address the challenges above, in this paper, we present a
novel multiview latent space learning framework with feature
redundancy minimization (FRM). The proposed method mini-
mizes redundancy by learning a latent space to render new data
representations that accurately depict the relationships among
different views. Within the latent space, our approach employs
shared and specific dictionaries to capture both the consen-
sus and particular information of different views. Moreover,
the Hilbert–Schmidt independence criterion (HSIC) is intro-
duced as a diversity constraint to enhance the complementarity
of multiview representations, which further ensures the diver-
sity from multiple views and preserves the local structure of
data in each view. The basic flow of our proposed framework
is depicted in Fig. 1. For algorithm validation, we compare
the performances of our FRM methodology and other state-
of-the-art multiview approaches on six benchmark datasets.
Experimental results demonstrate the effectiveness and the fea-
sibility of the proposed approach. The main contributions of
this paper are summarized below.

1) We formulate a unified framework for multiview sub-
space learning by constructing a latent space with
FRM.

2) Within the latent space, our approach simultaneously
captures the correlations across multiple views as well
as exploiting view-specific information from each view.

Fig. 1. Illustration of the proposed multiview latent space learning frame-
work, where “+” denotes to cascade the shared and view-specific dictionaries
together. First, we project the original features from multiview data into a
latent space through redundancy minimization, and then the low-dimensional
features are represented using shared and view-specific dictionaries. The newly
encoded representations is then used for reconstructing the data points. Within
the latent space, we learn both shared and specific dictionaries to exploit both
the correlations across multiple views and preserve view-specific property,
respectively. Note that, different colors in the cell mean different views, dot-
ted rectangles represent the learned low-dimensional features, dotted ellipses
represent the learned dictionaries, and double arrows denote feature projection
and reconstruction.

3) To ensure that the new representations within latent
space from different views can provide enhanced
complementary information, we use HSIC to penal-
ize the information redundancy among these new
representations.

4) Our approach can reduce the feature redundancy by dis-
covering the shared information and strengthening the
representation diversity of various views.

The rest of this paper is organized as follows. Section II
briefly reviews some related works. Section III presents the
proposed method, optimization solution, and computation
complexity analysis. Extensive experiments on benchmark
datasets are conducted in Section IV. Finally, we conclude
this paper in Section V.

II. RELATED WORK

In this section, we briefly review three related topics with
this paper: 1) dictionary learning; 2) multiview learning; and
3) low-rank subspace learning.

A. Dictionary Learning

Given a data matrix X ∈ R
L×N with N data points and L

features. Existing dictionary learning framework is defined as

min
D,H

‖X − DH‖2
F + λ�(D, H) (1)

where λ is a tradeoff parameter, D and H denote a dictionary
and the encoding coefficient matrix, respectively. �(D, H)

is used to enforce characteristic properties on D and H.
Recently, dictionary learning has been extensively used in
face recognition [26], [27], object classification [28], visual
tracking [29], [30], and so on, which have been shown good
performance. Besides, some studies have been developed to
learn class-specific dictionary and shared dictionary to char-
acterize the class-specific property and exploit the correlation
among different classes, respectively [31]. Further, some clas-
sification techniques [26], [32] simultaneously consider to train
a classifier by extending the above framework as follows:

min
D,H,W

‖X − DH‖2
F + λ1‖Y − WH‖2

F + λ2�(D, H) (2)
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where λ1 and λ2 are tradeoff parameters, Y is the label matrix,
and W is a linear projection matrix. In this paper, we inte-
grate dictionary learning into multiview learning framework,
and the encoding coefficient matrix can be regarded as new
representations which are used to reconstruct the data points.

B. Multiview Learning

Multiview learning aims to exploit the relationships between
different views to improve the performance. Since real-world
data are often collected from multiple views, multiview learn-
ing has attracted widespread attention over the last decades
and has been successfully applied to different applications,
such as classification, clustering, dimensionality reduction, and
so on. Existing multiview learning approaches can be divided
into three main categories [33]: 1) co-training; 2) MKL;
and 3) subspace learning. Specifically, co-training approaches
aim to maximize the agreement between two distinct views
from unlabeled data in a semisupervised manner. Following
that, many research works have been developed by fol-
lowing the basic idea of co-training [9], [10]. MKL-based
approaches [15], [16] aim to seek different kernels for dif-
ferent views and then combine them to process the training
data. Subspace learning-based approaches aim to learn a
latent subspace across different views, which assume that
the input views are generated from the learned latent sub-
space. Currently, subspace learning-based multiview learn-
ing [25], [34] is quite popular as the learned subspace can
be used to conduct both classification and clustering tasks.

C. Low-Rank Subspace Learning

Low-rank representation (LRR)-based methods [35] have
become well known for its robustness to the noise/corrupted
data, and have been demonstrated to be effective for tackling
many machine learning tasks. The general model of LRR can
be formulated as follows:

min
Z,E

rank(Z) + λ‖E‖p, s.t. X = AZ + E (3)

where X is a data matrix, A is a dictionary matrix that can lin-
early span the data space, E is a sparse additive error matrix,
‖E‖p denotes certain regularization strategy (such as the �1 and
�2,1 cases) to model the noise, and λ is a regularization param-
eter. Besides, rank(Z) denotes the rank of coefficients matrix
Z, however, rank minimization problem is in general NP hard,
thus the trace norm ‖Z‖∗ can be adopted to be a surrogate of
the rank of Z. Further, the data matrix itself X is directly used
as the dictionary, therefore, (3) can be reformulated as

min
Z,E

‖Z‖∗ + λ‖E‖p, s.t. X = XZ + E. (4)

Based on LRR, a lot of studies [36]–[38] have been
proposed to find a more robust subspace with low-rank
constraint.

III. PROPOSED METHOD

In this section, we first present our novel multiview learn-
ing framework. Then, we design an optimization solution, and
provide complexity analysis on our approach.

A. Formulation

Given a data set Xv ∈ R
Lv×N , where Xv denotes

the features matrix of the vth view (v = 1, . . . , V),
with Lv and N being the dimensionality of features from
the vth view and the number of examples, respectively.
Therefore, Xv can be represented by a learned dictionary,
which is

min
D0,Dv,Hv

∑

v

∥∥∥��
v Xv − [D0, Dv]Hv

∥∥∥
2

F
(5)

where �v ∈ R
Lv×L0 (L0 denotes the dimensionality of latent

space), is a linear transformation matrix that is used to
link the original input space and the learned latent space.
D0 ∈ R

L0×K0 and Dv ∈ R
L0×Kv represent the shared dictionary

and view-specific dictionary, respectively, and K0 and Kv are
the corresponding numbers of atoms in the two dictionaries
D0 and Dv, respectively. In addition, Hv is the new represen-
tations for the vth view in latent space that can be used for
the subsequent clustering and classification.

Further, to enhance the complementarity of multiview rep-
resentations, the encoded representations of different views
are encouraged to be of sufficient diversity. Next, we briefly
introduce a diversity regularization term. Let us define two
kernel spaces F and G, the inner product between vectors
in the two spaces can then be given by the kernel functions,
i.e., k1(xi, xj) = 〈φ(xi), φ(xj)〉 and k2(yi, yj) = 〈φ(yi), φ(yj)〉,
where x ∈ X and y ∈ Y are two different variable sets, and
φ(·) maps the original features to a kernel space. Following
the work in [39], to avoid the direct estimation of an unknown
joint distribution pxy over the spaces F and G, we utilize an
empirical version of HSIC as a diversity term, of which the
definition is below.

Definition 1: Given a set of N independent observa-
tions collected from the joint distribution pxy, i.e., Z =
{(x1, y1), . . . , (xN, yN)} ⊆ X × Y , then we can define an
estimator of HSIC(Z,F ,G) as

HSIC(Z,F ,G) = (N − 1)−2tr(K1HK2H) (6)

where k1,ij := k1(xi, xj) and k2,ij := k2(yi, yj). hij := δij −1/N
centralizes the two Gram matrices K1 and K2, which makes
them have zero mean. The more details of HSIC can be found
in [39] and [40].

To encourage the encoded representations (i.e., Hv, v =
1, . . . , V) of different views to be sufficiently diverse, the
objective function in (5) is expressed as

min
D0,Dv,Hv

∑

v

∥∥∥��
v Xv − [D0, Dv]Hv

∣∣∣
2

F

+ β
∑

v

∑

w
=v

HSIC(Hv, Hw) (7)

where β is a tradeoff parameter. After obtaining the
new data representation Hv for vth view, the objective
function for self-representation-based subspace learning is
given by

min
Zv,Ev

‖Hv − HvZv − Ev‖2
F + λ‖Ev‖2,1 (8)
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where λ is a non-negative tradeoff parameter, and ||.||2,1
denotes �2,1-norm which encourages the columns of a matrix

to be zero [35], i.e., ‖E‖2,1 = ∑N
j=1

√∑M
i=1 [Eij]2, where

E ∈ R
M×N .

Finally, the objective function of multiview
latent space learning framework with FRM can be
formulated as

min
�v,Pv,Zv,Ev,Hv,Dv,D0

∑

v

‖Zv‖∗ + λ
∑

v

‖Ev‖2,1

+ β
∑

v

‖�v‖2
F

+ γ
∑

v

∑

w
=v

HSIC(Hv, Hw)

︸ ︷︷ ︸
diversity term

s.t. ��
v Xv = [D0, Dv]Hv + E1

v︸ ︷︷ ︸
latent space learning term

Xv = Pv�
�
v Xv + E2

v︸ ︷︷ ︸
reconstruction term

Hv = HvZv + E3
v︸ ︷︷ ︸

self-representation term

, Ev =
[
E1

v; E2
v; E3

v

]

D�
0 D0 = I, D�

v Dv = I, P�
v Pv = I (9)

where ‖.‖∗ is the matrix nuclear norm, which enforces the
subspace representation to be low rank. To clearly show the
proposed formulation, we list the main notations in Table I. In
detail, the critical properties of our proposed formulation are
explained below.

1) The latent space learning term (i.e., ��
v Xv =

[D0, Dv]Hv + E1
v) is utilized to learn the shared dic-

tionary and view-specific dictionaries. First, we learn
a projection matrix �v for the vth view to project
the original features into a subspace spanned latent
space. Within the latent space, we assume that dif-
ferent views are composed of a shared dictionary and
view-specific dictionaries. As a consequence, our model
can exploit the correlation across multiple views by
leveraging the shared dictionary. Besides, orthogonal
constraints are imposed on D0 and Dv (i.e., D�

0 D0 = I
and D�

v Dv = I) to prevent the trivial solution. If this con-
straint is missing, the values in Hv could be arbitrarily
large.

2) The reconstruction term (i.e., Xv = Pv�
�
v Xv + E2

v)
is used to ensure that a good reconstruction of the
original data can be obtained by using the learned low-
dimensional features. Its main advantage is to reduce
the redundancy as well as preserve critical and useful
information in data. Besides, an orthogonal constraint is
also introduced, i.e., P�

v Pv = I.
3) The self-representation term (i.e., Hv = HvZv + E3

v) is
used to reconstruct the data points by using the learned
new representations (i.e., Hv). In addition, we utilize the
HSIC as a diversity term [i.e., HSIC(Hv, Hw), w 
= v]
to explore the complementarity of multiview represen-
tations. Since each view of the data could contain

TABLE I
MAIN NOTATIONS USED IN THE PROPOSED FORMULATION

some knowledge that other views do not have, this
information can strengthen the ability to exploit the
diversity within each view for improving the multiview
learning performance. In addition, there are two differ-
ent understandings of Hv: one is the matrix Hv records
the coding coefficients that linearly represent the input
data by the dictionary atoms, and the other is that the Hv

can be regarded as new feature representations of data
points, which plays an important role in representing the
data structure from each view.

4) The constraint term ‖Zv‖∗ prevents the trivial solution
by enforcing the self-representation to be low rank.
Additionally, for the constraint Ev = [E1

v; E2
v; E3

v],
we vertically concatenate the column of errors, which
enforces the columns of E1

v , E2
v , and E3

v to jointly have
consistent magnitude values. The effectiveness has been
previously investigated in [25]. �2,1-norm encourages the
columns of Ev to be zero. Thus, an underlying assump-
tion here is that the corruptions in data are example
specific.

B. Optimization

The objective function in (9) is not jointly convex
with respect to all variables. Hence, we can utilize the
ADMM [41] algorithm to efficiently and effectively solve
our problem. To adopt ADMM strategy to our problem, we
introduce auxiliary variables Jv to replace Zv to make our
problem separable. Then, we have the following equivalent
problem:

min
�v,Pv,Zv,Ev,Hv,Dv,D0

∑

v

‖Zv‖∗ + λ
∑

v

‖Ev‖2,1

+ β
∑

v

‖�v‖2
F

+ γ
∑

v

∑

w
=v

HSIC(Hv, Hw)

s.t. ��
v Xv = [D0, Dv]Hv + E1

v,

Xv = Pv�
�
v Xv + E2

v

Hv = HvZv + E3
v, Ev =

[
E1

v; E2
v; E3

v

]

D�
0 D0 = I, D�

v Dv = I, P�
v Pv = I

Zv = Jv. (10)
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Thus, the augmented Lagrangian function can be given by

L
(
�v, Pv, Jv, Zv, Ev, Hv, Dv, Y1

v, Y2
v, Y3

v, Y4
v, D0

)

=
∑

v

‖Jv‖∗ + λ
∑

v

‖Ev‖2,1

+ β
∑

v

‖�v‖2
F + γ

∑

v

∑

w
=v

HSIC(Hv, Hw)

+
∑

v



(

Y1
v,�

�
v Xv − [D0, Dv]Hv − E1

v

)

+
∑

v



(

Y2
v, Xv − Pv�

�
v Xv − E2

v

)

+
∑

v



(

Y3
v, Hv − HvZv − E3

v

)

+
∑

v



(

Y4
v, Zv − Jv

)

s.t. Ev =
[
E1

v; E2
v; E3

v

]
, D�

0 D0 = I, D�
v Dv = I, P�

v Pv = I

(11)

where 
(Y, Q) = (μ/2)‖Y‖2
F + 〈Y, Q〉, with 〈·, ·〉 denoting

the matrix inner product, μ is a positive penalty scalar, and Y1
v ,

Y2
v , Y3

v , and Y4
v are Lagrangian multipliers. Next, we detail the

subproblems regarding each of the variables Jv, Zv, Ev, Hv,
Dv, �v, Pv, and D0.

Jv-Subproblem: The associated optimization problem with
respect to Jv can be written as

min
Jv

‖Jv‖∗ + 

(

Y4
v, Zv − Jv

)

⇔ min
Jv

1

μ
‖Jv‖∗ + 1

2
‖Jv −

(
Zv + Y4

v/μ
)
‖2

F (12)

which can be solved by using a singular value thresh-
olding operator [42], namely Jv = US(1/μ)(�)V�, where
S(1/μ)(�ii) = sign(�ii) max(�ii − 1/μ, 0) is a soft-
thresholding operator, and Zv + Y4

v/μ = U�V� is the SVD
of Zv + Y4

v/μ.
Zv-Subproblem: By fixing every other variables to constant,

we update Zv by solving

min
Zv



(

Y3
v, Hv − HvZv − E3

v

)
+ 


(
Y4

v, Zv − Jv

)

⇔ min
Zv

μ

2
‖Hv − HvZv − E3

v + Y3
v/μ‖2

F

+ μ

2
‖Zv − Jv + Y4

v/μ‖2
F. (13)

Taking the derivative with respect to Zv and setting it to
zero, we obtain

Zv =
(

H�
v Hv + I

)−1(
H�

v

(
Hv − E3

v + Y3
v/μ

)
+ Jv − Y4

v/μ
)
.

(14)

Ev-Subproblem: The error term Ev can be updated by
solving

min
Ev

λ‖Ev‖2,1 + 

(

Y1
v,�

�
v Xv − [D0, Dv]Hv − E1

v

)

+ 

(

Y2
v, Xv − Pv�

�
v Xv − E2

v

)

+ 

(

Y3
v, Hv − HvZv − E3

v

)
. (15)

It is equivalently to solving the following problem:

min
Ev

λ

μ
‖Ev‖2,1 + 1

2
‖Ev − Gv‖2

F (16)

where Gv can be formed by vertically concatenating the matri-
ces ��

v Xv − [D0, Dv]Hv + Y1
v/μ, Xv − Pv�

�
v Xv + Y2

v/μ, and
Hv − HvZv + Y3

v/μ. Then, an �2,1 minimization operator as
in [35] can be used to obtain the optimal Ev.

Hv-Subproblem: Dropping all unrelated terms with respect
to Hv yields

min
Hv

γ
∑

w
=v

HSIC(Hv, Hw)

+ 

(

Y1
v,�

�
v Xv − [D0, Dv]Hv − E1

v

)

+ 

(

Y3
v, Hv − HvZv − E3

v

)
. (17)

By following [40], we utilize the inner product kernel
for HSIC constraint, i.e., Kv = H�

v Hv. Then, we have the
following equation:

HSIC(Hv, Hw) = tr
(

HvKH�
v

)

with K =
∑

w
=v

MKwM (18)

where M = [mij] with mij = δij − 1/n. The details can be
found in [39] and [40]. By plugging (18) into (17), and setting
the derivative of (17) to Hv to zero, we get the following
closed-form solution:

Hv =
(

[D0, Dv]�
(
��

v Xv + Y1
v/μ − E1

v

)

+
(

E3
v − Y3

v/μ
)

Z′�
v

)(
I + Z′

vZ′�
v + 2γ

μ
K

)−1

(19)

where Z′
v = I − Zv and I is an identity matrix.

Dv-Subproblem: The associated optimization problem with
respect to Dv can be written as

min
D�

v Dv=I



(
Y1

v,�
�
v Xv − D0Hs

v − DvHc
v − E1

v

)
(20)

where Hv = [Hs
v; Hc

v], and Hs
v and Hc

v are corresponding to D0
and Dv, respectively. In other words, Hs

v is the new represen-
tation learned from the shared dictionary D0, while Hc

v is the
new representation learned from view-specific dictionary Dv.
Equation (20) contains a matrix orthogonality constraint which
has been used in [25] and [43]. The detailed optimization steps
for solving Dv can be found in [25] and [43].

�v-Subproblem: The associated optimization problem with
respect to �v can be written as

min
�v

β‖�v‖2
F + 


(
Y1

v,�
�
v Xv − [D0, Dv]Hv − E1

v

)

+ 

(

Y2
v, Xv − Pv�

�
v Xv − E2

v

)
. (21)

It is equivalent to optimizing the following problem:

min
�v

β‖�v‖2
F + μ

2
‖��

v Xv − [D0, Dv]Hv + Y1
v/μ − E1

v‖2
F

+ μ

2
‖Xv − Pv�

�
v Xv + Y2

v/μ − E2
v‖2

F. (22)
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Algorithm 1: Solving Problem (11) via ADMM

1 Input: Multi-view matrices: {X1, . . . , XV }, hyper-parameters λ,
β and γ , and L0, K0 and Kv.

2 Initialize: Y1
v = Y2

v = Y3
v = Y4

v = 0 (v = 1, . . . , V), ε = 10−6,
ρ = 1.5, μ = 10−4, maxμ = 106.

3 Output: Z1, . . . , ZV .
4 while not converged do
5 Update Jv, Zv, Ev, Hv, Dv, �v, Pv, and D0 via Eq. (12),

Eq. (14), Eq. (16), Eq. (19), Eq. (20), Eq. (23), Eq. (24),
and Eq. (25), respectively;

6 Update multipliers Y1
v , Y2

v , Y3
v , and Y4

v via Eq. (26);
7 Update the parameter μ via μ: = min(ρμ, maxμ);
8 Check convergence conditions:
9 ‖��

v Xv − [D0, Dv]Hv − E1
v‖∞ < ε,

10 ‖Xv − Pv�
�
v Xv − E2

v‖∞ < ε,
11 ‖Hv − HvZv − E3

v‖∞ < ε, and
12 ‖Zv − Jv‖∞ < ε.
13 end

Taking the derivative of the above objective with respect to
�v and setting it to zero, we have the following closed-form
solution:

�v =
(

2β

μ
I + 2XvX�

v

)−1

×
{

Xv

((
Xv + Y2

v/μ − E2
v

)�
Pv

+
(

[D0, Dv]Hv − Y1
v/μ + E1

v

)�)}
. (23)

Pv-Subproblem: The associated optimization problem with
respect to Pv can be written as

min
P�

v Pv=I



(
Y2

v, Xv − Pv�
�
v Xv − E2

v

)
. (24)

We also use the same method from [25] and [43] to obtain
an optimal Pv.

D0-Subproblem: By dropping all other unrelated terms, we
optimize D0 by

min
D�

0 D0=I

∑

v



(

Y1
v,�

�
v Xv − [D0, Dv]Hv − E1

v

)

⇔ min
D�

0 D0=I

∑

v

μ

2
‖Xv − D0Hs

v − DvHc
v + Y1

v/μ − E1
v‖2

F

⇔ min
D�

0 D0=I

∥∥[
X′

1, . . . , X′
V

] − D0
[
Hs

1; . . . ; Hs
V

]∥∥2
F (25)

where X′
v = ��

v Xv −DvHc
v +Y1

v/μ−E1
v . Then, we can obtain

the optimal D0 by using the same optimization strategy as
solving Dv in (20).

Multipliers Updating: The multipliers Y1
v , Y2

v , Y3
v , and Y4

v
(v = 1, . . . , V) can be updated with the following rule:

⎧
⎪⎪⎨

⎪⎪⎩

Y1
v := Y1

v + μ
(
��

v Xv − [D0, Dv]Hv − E1
v

)

Y2
v := Y2

v + μ
(
Xv − Pv�

�
v Xv − E2

v

)

Y3
v := Y3

v + μ
(
Hv − HvZv − E3

v

)

Y4
v := Y4

v + μ(Zv − Jv).

(26)

The variables are updated iteratively until convergence.
The details of optimizing (11) via ADMM algorithm are
summarized in Algorithm 1.

TABLE II
DETAILS OF SIX BENCHMARK DATASETS

Fig. 2. Sampling images of six benchmark datasets in our experiments (“NH”
is short for “Notting-Hill Video Face”).

C. Complexity Analysis

The major computational burden of our Algorithm 1 lies in
updating Jv, Zv, Ev, Hv, Dv, �v, Pv, and D0. Specifically,
updating Jv with SVD operation takes O(N3) complexity
and updating Zv requires O(N3) complexity due to matrix
inversion. The complexity of optimizing Ev is O(N2). The
complexities of updating Hv and �v are O(N3). Moreover, the
complexities of updating Dv, Pv, and D0 are O(K2

v N), O(L2
0N),

and O(K2
0N), respectively. Thus, the total complexity of our

algorithm is deduced as O(T(V(K2
0+K2

v +L2
0)N+VN2+VN3)),

where T is the total iteration number, and V is the number of
views. Further, considering N � V for multiview data setting,
the main computational complexity of the proposed approach
is O(T(V(K2

0 + K2
v + L2

0)N + VN3)).

IV. EXPERIMENTAL RESULTS

In this section, we first explain the experimental setup, and
then compare our method with other state-of-the-art multiview
clustering and classification approaches. Subsequently, we
investigate some critical properties of our proposed multiview
learning approach.

A. Experimental Setup

Datasets: We evaluate the effectiveness of the proposed
approach by using the following six popular benchmark
datasets (the statistics of the employed datasets are summa-
rized in Table II, some example images of these six datasets
are shown in Fig. 2, and the value in bracket denotes the
dimension of feature).

1) Notting-Hill Video Face [40]: The examples in this
dataset are captured from the movie “Notting-Hill,”
where the faces of five main casts are used which lead
to totally 4660 face examples. For this dataset, we resize
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the images into 48 × 48 and extract three types of fea-
tures, including gray-level intensity (2000), LBP (3304),
and Gabor (6750).

2) CMU-PIE1: It consists of 68 subjects in total, with
large variances within the same subject but in differ-
ent poses. We randomly select 80 examples from each
subject to construct 5440 facial images in the evaluation
subset, where all face images are cropped to the size
of 64 × 64. Also, three types of features, namely gray
intensity (1024), LBP (256), and HOG (496), are used
for this paper.

3) Caltech1012: This image data set consists of 101
categories of images for object recognition problem.
We follow previous work [44] and select the images
from seven widely used classes, i.e., Dolla-bill, Face,
Garfield, Motorbike, Snoopy, Stop-sign, and Windsor-
chair. Specifically, six types of features are extracted,
including CENTRIST (1302), CMT (48), GIST (512),
HOG (100), LBP (256), and SIFT (441).

4) MSRCV13: This dataset consists of 240 images and 8
object classes. Similar to [25], we select the examples of
seven classes, i.e., Cow, Tree, Building, Airplane, Face,
Car, and Bicycle. We also extract six types of features
which are CENTRIST (1302), CMT (48), GIST (512),
HOG (100), LBP (256), and SIFT (210).

5) Oxford Flowers4: This dataset is composed of 1360
examples with 17 flower categories. In this dataset, χ2

distance matrices for three different visual features [45],
i.e., color (1360), texture (1360), and shape (1360), are
used to form three views.

6) Still DB [46]: The dataset is a still image dataset which
is made up of 467 images with six classes of actions.
Three types of features are extracted, i.e., Sift Bow
(200), Color Sift Bow (200), and Shape Context Bow
(200).

Parametric Settings: We set L0 = 100 (L0 denotes the
dimensionality of latent space) for all datasets, and set the
number of atoms from the view-specific dictionary as Kv = 60
(v = 1, . . . , V). Besides, the number of atoms within the
shared dictionary K0 is tuned in the range of {10, 20, . . . , 60}.
The parameters λ, β, and γ are selected within the range of
{10−4, 10−3, . . . , 103}.

B. Comparison on Clustering Tasks

Compared Methods: To verify the effectiveness of our
proposed framework, we first implement clustering and com-
pare our results to some recent state-of-the-art single-view and
multiview clustering methods, which include the following.

1) Singlebest: This method performs standard spectral clus-
tering algorithm [47] by selectively using the most
informative view.

2) LRRbest: This method performs LRR [35] by
selectively using the most informative view. We

1http://vasc.ri.cmu.edu/idb/html/face/
2http://www.vision.caltech.edu/Image_Datasets/Caltech101/
3http://research.microsoft.com/en-us/projects/objectclassrecognition/
4http://www.robots.ox.ac.uk/vgg/data/flowers/

tune the involved parameter λ in the range of
{0.001, 0.01, 0.02, 0.05, 0.1, 0.2, 1, 2, 5}.

3) S3Cbest [48]: This method carries out the clustering on
every single view and then outputs the best performance.
The parameter spaces are λ ∈ {10−5, 10−4, . . . , 105} and
α ∈ [0.03, 0.3], respectively.

4) FeatConcate: This method concatenates the features
of all views and then conducts the standard spectral
clustering.

5) ConcatePCA: This method concatenates the features
from all views and then applies PCA [51] to obtain
a low-dimensional subspace representation. Further, it
conducts the standard spectral clustering on the low-
dimensional representation. The optimal dimensionality
is searched in the range of {100, 200, . . . , 500}.

6) Co-Reg SPC [21]: This method co-regularizes the
clustering hypotheses to enforce corresponding data
point in each view to have the same cluster mem-
bership. Its parameter λ is searched in the range of
{0, 0.02, . . . , 0.1}.

7) Min-Dis [50]: This method creates a bipartite graph
and tries to minimize the disagreement among vari-
ous views. The final result is obtained through spectral
clustering.

8) MVSC [24]: This method performs subspace clustering
on individual views and then fuses their outputs to obtain
the final result. Its parameters λ1 and λ2 are searched in
the range of {10−4, 10−3, . . . , 103}.

9) RMSC [23]: This method recovers a shared low-rank
transition probability matrix for clustering. Its parameter
λ is searched from 0.005 to 100.

10) Multi-NMF [17]: This method searches a compatible
clustering solution across multiple views by minimiz-
ing the differences between data representations of each
view and the consensus matrix.

11) DiMSC [40]: This method enforces the diversity of dif-
ferent views using the HSIC criterion. Its parameter λs is
searched in the range of [0.01, 0.03], and the parameter
λv is searched in the range of {20, 40, . . . , 180}.

12) LMSC [25]: This method assumes that each view is
originated from an underlying latent representation. Its
parameter λ is decided within {10−4, 10−3, . . . , 103}.

For clustering, after obtaining the optimal Zv for the vth
view, we adopt the existing spectral clustering algorithm [47]
on a similarity matrix S, i.e., S = (1/V)

∑
v(|Zv| + |Z�

v |). To
achieve a fair comparison for all the compared methods, we
directly use the source codes provided by the authors to obtain
the best results. Finally, we report the mean values and stan-
dard deviations for all methods over 30 independent trials. In
addition, to evaluate the clustering performance, six popular
metrics, including normalized mutual information, accuracy
(ACC), adjusted Rand index, F-score, precision, and recall
are utilized in this paper. Each metric penalizes or favors dif-
ferent properties in the clustering task, and hence we report
the results on these different measures to achieve a compre-
hensive evaluation of our method against all state-of-the-art
methods. Note that a higher value indicates better clustering
performance.
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(a) (b) (c) (d)

Fig. 3. Comparison of similarity matrices of LRR (top row) and our FRM (bottom row) on different views and their combinations.

TABLE III
RESULTS (MEAN ± STANDARD DEVIATION) ON NOTTING-HILL DATASET

TABLE IV
RESULTS (MEAN ± STANDARD DEVIATION) ON CMU-PIE DATASET

Fig. 3 shows the comparison of affinity matrices between
LRR and our FRM method on Still DB dataset, which
constructs the affinity matrices of different views and also
their combinations. From Fig. 3, it is evident that our FRM
reveals the underlying clustering structures more clearly than
using LRR.

In addition, we report the performances of all methods on
six benchmark datasets by using six evaluation metrics. The
detailed results are presented in Tables III−VIII. In each table,
the values in bold indicate the best performance among all
methods. Specifically, Tables III and IV show the cluster-
ing results on two face datasets, Notting-Hill and CMU-PIE,

respectively. Video face clustering in Notting-Hill dataset is
very challenging because the appearances of faces often vary
significantly due to the lighting conditions. From Table III, it
can be seen that our approach outperforms all other single-
view and multiview clustering methods. From Table IV, it
can be observed that our approach performs best when com-
pared with all other methods. More importantly, our multiview
subspace clustering approach performs better than all the
single-view methods, which indicate that our approach can
effectively explore distinct information from multiple views
to improve the clustering performance. This is because our
approach utilizes the learned representations in latent space
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TABLE V
RESULTS (MEAN ± STANDARD DEVIATION) ON CALTECH101 DATASET

TABLE VI
RESULTS (MEAN ± STANDARD DEVIATION) ON MSRCV1 DATASET

TABLE VII
RESULTS (MEAN ± STANDARD DEVIATION) ON OXFORD FLOWERS DATASET

to reconstruct the data points, which can effectively reduce
the feature redundancy to boost the clustering performance.
Besides, within the latent space, our approach simultaneously
exploits the correlations across multiple views and preserves
view-specific property. Further, HSIC-based diversity term is
utilized to enforce the complementary information, which
could serve as a valuable complement to multiview clustering.

On the Caltech101 dataset, as shown in Table V, some
approaches achieve good performance, while our method still
outperforms all other compared methods. Table VI shows the
clustering result on MSRCV1 dataset, and it can be observed
that our approach reports significantly better performance
than the competing baselines. Tables VII and VIII show the

clustering results on Oxford Flowers and Still DB datasets,
respectively. Compared with other baseline methods, LMSC
and DiMSC achieve relatively better performances. Overall,
our approach obtains much better clustering performance than
the state-of-the-art methods.

C. Comparison on Classification Tasks

To further verify the effectiveness of the proposed frame-
work, we test its ability on processing classification tasks based
on the learned representations (i.e., Hv). The k-NN (k = 1 in
our experiment) classifier is a classic technique for classifica-
tion, which has been applied in some existing works [52], [53].
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TABLE VIII
RESULTS (MEAN ± STANDARD DEVIATION) ON STILL DB DATASET

Fig. 4. Classification performance with respect to varying training rate (i.e., r) on six benchmark datasets (from left to right and top to bottom: Notting-Hill,
CMU-PIE, Caltech101, MSRCV1, Oxford Flowers, and Still DB datasets, respectively).

The classification accuracy can be calculated by the ratio of
the corrected classified against all considered test examples.

For each dataset, we split the entire dataset into the training
and test sets. Specifically, r × N (0 < r < 1) examples are
randomly selected to build the training set and the remaining
examples are for testing, where N is the size of the whole
dataset and r denotes the ratio of training data to N. In the
training set, the number of examples belonging to different
classes is kept identical, while the number of test examples
for different classes may not the same. Above dataset split-
ting is randomly repeated 30 times, and thus all the compared
methods should independently run 30 times to generate the
averaged classification accuracy. In this experiment, the com-
pared methods are PCA [51], LPP [54], PLS [55], MSE [13],
and McDR [53].

Fig. 4 shows the classification performances of vari-
ous methods with respect to the varied ratio (i.e., r =
0.1, 0.2, . . . , 0.8) on six benchmark datasets. From the clas-
sification results shown in Fig. 4, we have the following
observations. First, directly concatenating the features of all
views (i.e., PCA and LPP methods) is not reasonable, for
example, LPP obtains relatively better performance on CMU-
PIE, Caltech101, and Still DB datasets, while it obtains
much worse performance on the remaining datasets. Second,
although MSE and PLS methods can explore the correlations
between different views, they ignore the relationship within

individual view. Overall, our proposed approach simultane-
ously learns a shared dictionary to exploit the correlations
across multiple views and learns the view-specific dictionary
to preserve the property of individual view, which effec-
tively learns the compact representations for improving the
classification accuracy.

D. Model Property Evaluation

1) Evaluation of Redundancy Rate: To verify that our
proposed approach reduces the redundancy feature information
across multiview representations, we define a redundancy rate
(RR) evaluation metric as

RR =
∑N

i=1
∑V

v=1,w
=v |Corr
(
hi

v, hi
w

)|
V(V − 1)N

(27)

where Corr(·, ·) denotes the Pearson correlation coefficient
between the two vectors, which can be used to measure the
linear correlation between two variables. Similar to [56], the
average sum of similarity of all N data samples in all pairs of
views can be obtained in a range of {0, . . . , 1}, where 0 means
a completely complementary result, and 1 vice versa. We com-
pare the RR of the proposed approach with PCA, multi-NMF,
and McDR, which first obtain the representation of each view
and then get the final multiview representation by averaging
them. Table IX shows the comparison results. From Table IX,
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(a) (b) (c) (d)

Fig. 5. Clustering performance with respect to different parameters: (a) λ and β; (b) λ and γ ; (c) β and γ ; and (d) K0 on Still DB dataset.

TABLE IX
COMPARISON OF VARIOUS METHODS ON RR. THE BEST RESULT FOR

EACH DATASET IS MARKED IN BOLD

Fig. 6. Performance of the proposed approach with respect to ACC measure
when varying the parameter Kv on Still DB dataset.

it can be seen that our proposed approach can enforce the com-
plementarity across multiple views and meanwhile effectively
reducing the feature redundancy both.

2) Effects of Key Parameters: In our approach, there are
three regularization parameters, i.e., λ, β, and γ in (9), which
are used to balance different terms. We show the effect of
these different parameters on our algorithm by using the
Still DB dataset in Fig. 5. Fig. 5 illustrates the clustering
performance when one parameter is fixed while the remaining
two parameters are changed. It is observed that the clustering
performance of our proposed approach is generally satisfac-
tory (i.e., ACC ≥ 0.32) when λ ≥ 1, β ≥ 1, and γ ≥ 0.1.
Besides, we also notice that the parameter K0, which denotes
the number of atoms in the shared dictionary D0, can also
influence the performance of our proposed approach. To show
the effect of K0, we vary K0 within a range {10, . . . , 60} and
study the model output. The produced ACC under different
selections of K0 is shown in Fig. 5(d). From Fig. 5(d), we see
that good performance can be obtained when K0 ∈ [20, 40].
Overall, the proposed algorithm can obtain promising clus-
tering performance when K0 ∈ [20, 40]. Besides, we tested
the effects of Kv on Still DB dataset, when fixed all other
parameters, to tune Kv in a range of [10, 20, . . . , 100]. Fig. 6
shows the performance of the proposed approach with respect
to ACC measure when varying the parameter Kv on Still DB
dataset. From Fig. 6, it can be clearly seen that our method

Fig. 7. Performance of the proposed approach with respect to ACC measure
when using the HSIC term (γ 
= 0) and without using it (γ = 0).

Fig. 8. Convergence curves of our proposed approach on Still DB dataset
in terms of various relative errors.

obtains better clustering performance (i.e., ACC > 0.34) when
Kv in the range of [40, 50, . . . , 90], and it obtains the best
performance when Kv = 60. Thus, we set Kv = 60 for all
datasets.

Aiming to promote the diversity of the new learned repre-
sentations in the proposed formulation, we employ the HSIC
to penalize for dependence between data in different views.
Accordingly, the redundancy among different views (espe-
cially the view-specific information) could be also reduced.
Further, to verify the effectiveness of the HSIC in the proposed
framework, we report the comparison clustering results (i.e.,
ACC) between using the diversity term and without using it in
Fig. 7. From Fig. 7, it can be seen that the HSIC term helps
to improve the multiview clustering performance.

3) Convergence Study: In this part, we provide empirical
evidence to demonstrate the convergence of our approach on
real-world data. Specifically, we investigate how the relative
errors (i.e., ‖�T

v Xv − [D0, Dv]Hv − E1
v‖2

F as “error1,” ‖Xv −
Pv�

T
v Xv − E2

v‖2
F as “error2,” ‖Hv − HvZv − E3

v‖2
F as “error3,”

and ‖Zv−Jv‖2
F as “error4”) vanish when the iteration proceeds.

The convergence curves on Still DB dataset are presented in
Fig. 8. From Fig. 8, we can see that the convergence conditions
are all reached within less than 60 iterations.
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E. Discussion and Extension

Our method learns a latent space with redundancy
minimization, which can reduce the effects of noise and out-
liers to learn more informative representations. The new rep-
resentations can effectively depict the underlying relationships
among different samples to improve the clustering and classifi-
cation performance. In addition, some related studies [57]–[59]
have indicated that redundant features can have significant
adverse the effect on learning performance, thus, it is neces-
sary to address this limitation for feature selection (or feature
representation learning). These studies have also verified the
effectiveness of redundancy minimization to learn more infor-
mative features. This is consistent with this paper, as it is
expected to learn more informative features (representations)
to reconstruct data points.

Linear projection employed in our framework (i.e., latent
space learning) is a simple but effective technique for high-
dimensional data, and it is easy to resolve in practice. In order
to capture more complex correlations, some nonlinear methods
(e.g., kernel technique [60] and deep networks [61]) will be
introduced in our model in the future work. Besides, it often
takes much time to project high-dimensional features into a
latent space, especially, the feature reconstruction will increase
the computation complexity. Thus, hashing technique [62],
[63] can be also introduced in our model to accelerate the
multiview learning speed.

In addition, the proposed framework can be easily extended
to some related applications, e.g., visual tracking [64]–[67],
classification tasks [68]–[72], etc. As in visual tracking, fusion
of multiple features is an effective approach to improve
tracking performance, thus it is also critical to reduce the
redundancy of high-dimensional multiple features and exploit
the correlations across multiple features. Therefore, we can
consider some extensions based on the current framework in
the future work.

V. CONCLUSION

In this paper, we have presented a novel multiview subspace
learning framework by minimizing the feature redundancy in
a learned latent space. Different from most existing multiview
learning approaches that directly deploy the original redundant
data, our approach can effectively improve its performances by
utilizing the learned compact representations in a latent space.
Importantly, within this latent space, our approach simulta-
neously captures the underlying correlations cross multiple
views and takes advantage of the information embedded in
each view to preserve the view-specific property. We have
shown that the enhanced complementary information is help-
ful to multiview subspace learning. Extensive experimental
results have demonstrated the superiority of the proposed mul-
tiview subspace learning approach when compared with the
other state-of-the-art methods in terms of both clustering and
classification tasks.
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