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a b s t r a c t 

Accurate segmentation of polyps from colonoscopy images plays a critical role in the diagnosis and cure 

of colorectal cancer. Although effectiveness has been achieved in the field of polyp segmentation, there 

are still several challenges. Polyps often have a diversity of size and shape and have no sharp bound- 

ary between polyps and their surrounding. To address these challenges, we propose a novel Cross-level 

Feature Aggregation Network (CFA-Net) for polyp segmentation. Specifically, we first propose a boundary 

prediction network to generate boundary-aware features, which are incorporated into the segmentation 

network using a layer-wise strategy. In particular, we design a two-stream structure based segmentation 

network, to exploit hierarchical semantic information from cross-level features. Furthermore, a Cross-level 

Feature Fusion (CFF) module is proposed to integrate the adjacent features from different levels, which 

can characterize the cross-level and multi-scale information to handle scale variations of polyps. Further, 

a Boundary Aggregated Module (BAM) is proposed to incorporate boundary information into the segmen- 

tation network, which enhances these hierarchical features to generate finer segmentation maps. Quan- 

titative and qualitative experiments on five public datasets demonstrate the effectiveness of our CFA-Net 

against other state-of-the-art polyp segmentation methods. The source code and segmentation maps will 

be released at https://github.com/taozh2017/CFANet . 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

Colorectal cancer (CRC) is the third most frequently diagnosed 

ancer around the world [1,2] . CRC usually arises from adenoma- 

ous polyps, and if left untreated, a polyp usually takes 10 − 15 

ears to develop into cancer. Therefore, effective detection and re- 

oval of polyps before they become malignant can prevent the 

ccurrence of CRC and significantly reduce mortality rates. To de- 

rease mortality, early detection and assessment of polyps are 

ighly critical. For an initial evaluation, a popular procedure for 

linicians is to identify the adenomatous polyps, and then polyps 

re delineated in colonoscopy images manually by highly trained 

linicians. However, manual detection and segmentation of polyps 
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re time-consuming and subjective. Thus, an effective solution is 

o develop automatic polyp segmentation algorithms to help clin- 

cians accurately locate and segment polyp regions for further di- 

gnosis [3,4] . 

Polyps vary over time at different development stages with 

 diversity of sizes and shapes, making their accurate segmen- 

ation challenging (see Fig. 1 ). Moreover, it is difficult to seg- 

ent polyps due to the high intrinsic similarities between a 

olyp and its surrounding mucosa. To handle these challenges, 

arious deep learning models have developed and demonstrated 

romising performance for polyp segmentation. For example, Ak- 

ari et al. [6] adopted a fully convolutional network (FCN) and 

tsu thresholding to extract the largest connected regions for 

olyp segmentation. Sun et al. [7] proposed an FCN-based polyp 

egmentation framework, in which a dilated convolution is intro- 

uced to learn high-level semantic features without resolution re- 

uction. Moreover, UNet-based methods with an encoder-decoder 

tructure have shown promising performance. Among these meth- 

ds, high-level features in the decoder are gradually up-sampled 
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Fig. 1. Different challenging scenarios, including (a) small polyp, (b) big polyp, and (c) non-sharp boundary. Our model outperforms a cutting-edge model ( i.e. , PraNet [5] ). 

a

s

t

o

b

t

f

g

i

c

t

a

e

p

t

i

u

t

t

m

c

s

t

t

t

m

s

h

c

t

m

i

d

p

a

t

t

s

i

i

e

t

A

b

u

a

t

t

l

t

f

S

p

nd fused with corresponding low-level ones in the encoder via 

kip connections, in which high-level semantic and low-level con- 

ext information can be integrated effectively [8] . Two variants 

f the UNet architecture, ResUNet++ [9] and UNet++ [10] have 

een developed for polyp segmentation and achieved satisfac- 

ory performance. However, the above-mentioned methods often 

ocus on segmenting the whole region of the polyp, while ne- 

lecting some valuable boundary information. To overcome this 

ssue, some works introduced area-boundary constraints [11] or 

onstructed a multi-task framework to extract contour informa- 

ion [12] for improving the segmentation performance. Addition- 

lly, Fan et al. [5] utilized a reverse attention (RA) module to 

xploit boundary cues, which is helpful for accurately segmenting 

olyps. 

Although effectiveness has been achieved in the field of au- 

omatic polyp segmentation, there are several challenges remain- 

ng for existing methods. First, in the case of flat lesions or 

nclean bowel preparation, the boundaries between polyps and 

heir background are not sharp, leading to inaccurate segmen- 

ation results. Therefore, it is critical to exploit boundary infor- 

ation that provides boundary-aware guidance to establish the 

orrelation between polyp regions and boundary cues. Second, 

cale variation is one of the major challenges in polyp segmen- 

ation, how to effectively characterize the multi-scale informa- 

ion from a convolutional layer deserves further exploration. Third, 

he convolutional neural network (CNN) consists of a series of 

ulti-scale convolutional layers. The shallower layers retain the 

tructure details ( e.g. , boundaries), while deeper layers encode 

igh-level semantic information to locate the polyp regions. Ac- 

ordingly, it is challenging to effectively integrate deep seman- 

ic and structure features for generating the final segmentation 

ap. 

To this end, a Cross-level Feature Aggregated Network (CFA-Net) 

s proposed for polyp segmentation, consisting of a boundary pre- 

iction network and a polyp segmentation network. The boundary 

rediction network is specifically designed to generate boundary- 

ware features, which are incorporated into the polyp segmenta- 

ion network in a layer-wise strategy for boosting the segmen- 

ation performance. In the polyp segmentation network, a two- 
i

2 
tream structure is presented to capture the hierarchical semantic 

nformation. In addition, a Cross-level Feature Fusion (CFF) module 

s proposed to integrate the adjacent features from different lev- 

ls, in which multi-scale context information can be also captured 

o deal with the scale variations of polyps. Moreover, a Boundary 

ggregated Module (BAM) is presented to effectively incorporate 

oundary-aware features into the segmentation network. Finally, a 

nified framework is formulated to simultaneously conduct bound- 

ry prediction and polyp segmentation, and the boundary informa- 

ion can be fully captured to enhance the hierarchical features in 

he segmentation network, leading to finer segmentation results. 

The main contributions of this paper are summarized as fol- 

ows: 

• We propose a novel Cross-level Feature Aggregated Network , 

which simultaneously exploits boundary information and cap- 

tures hierarchical semantic information for accurate segmenting 

polyps. 
• A Cross-level Feature Fusion module is proposed to fully utilize 

the features from adjacent layers, which also conducts cross- 

level feature fusion at different scales to deal with scale varia- 

tions. 
• We propose a Boundary Aggregated Module to capture the 

boundary context information and then incorporate them into 

the polyp segmentation network, which can overcome inac- 

curate boundary prediction to boost the segmentation perfor- 

mance. 
• Extensive experiments are conducted on five public 

colonoscopy datasets, and the results demonstrate that the 

proposed CFA-Net outperforms the other state-of-the-art polyp 

segmentation methods. Meanwhile, a comprehensive ablation 

study validates the effectiveness of all key components in the 

proposed model. 

The rest of this paper is organized as follows. We discuss three 

ypes of works related to our model in Section 2 . We describe the 

ramework of our proposed CFA-Net for the polyp segmentation in 

ection 3 . In Section 4 , we provide the experimental settings, com- 

arison results, and ablation study. Finally, we conclude the paper 

n Section 5 . 
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. Related Work 

We present a brief overview of the three types of works that 

re most related to the proposed polyp segmentation method, 

ncluding medical image segmentation, polyp segmentation, and 

ulti-scale and multi-level fusion. 

.1. Medical Image Segmentation 

Medical image segmentation [13,14] plays an important role 

n identifying interested and affected regions in the computer- 

ided diagnosis system. Currently, CNN-based methods have pre- 

ented promising performance in the medical image segmentation 

eld [14–16] . Among these methods, a representative architecture, 

amely, UNet [17] , has gained significant success for biomedical 

mage segmentation, and several variants based on the UNet archi- 

ecture have been developed to obtain more precise segmentation. 

or example, Jha et al. [9] proposed a novel framework for medi- 

al image segmentation (namely ResUNet++), which is an extended 

ersion of ResUNet by integrating additional layers ( e.g. , squeeze- 

nd-excitation and attention blocks) into the UNet structure. Li 

t al. [18] presented a hybrid densely connected UNet frame- 

ork (namely H-DenseUNet), which includes two key components, 

.e. , a 2-D DenseUNet for extracting intra-slice features, and a 3- 

 network for hierarchically aggregating volumetric contexts for 

he follow-up segmentation. To reduce the semantic gap between 

he encoder and decoder, Zhou et al. [10] proposed UNet++ for 

iomedical image segmentation, which can effectively alleviate the 

nknown network depth and design a new skip connection strat- 

gy for improving the segmentation performance. 

.2. Polyp Segmentation 

Early polyp segmentation methods mainly rely on hand-crafted 

eatures [19–22] , e.g. , color, shape, texture, appearance, or a com- 

ination of the above features [5] . After extracting hand-crafted 

eatures, these models often train a classifier to detect/segment a 

olyp from its surroundings. However, they still suffer from un- 

atisfactory results due to the limited representation capability of 

and-crafted features. For example, Ameling et al. [23] adopted 

exture features, including grey-level-co-occurrence and local bi- 

ary patterns, to achieve polyp segmentation. Further, the co- 

ariances of texture measurements are used to represent differ- 

nt polyp regions [24] . Tajbakhsh et al. [22] proposed an auto- 

ated polyp detection method from colonoscopy videos, which 

ully utilizes context and shape to remove non-polyp structures 

nd accurately locate polyps. However, the texture and shape of 

olyps highly differ in real-world applications, making the tra- 

itional methods suffer from unsatisfactory segmentation perfor- 

ance due to the limited-expression ability of hand-crafted fea- 

ures. Recently, the FCN has been widely applied for polyp detec- 

ion and segmentation tasks. For instance, Akbari et al. [6] pro- 

osed a polyp segmentation framework based on a fully CNN and 

dopted Otsu thresholding to extract the largest connected regions 

or segmenting polyp regions. Sun et al. [7] proposed an FCN- 

ased polyp segmentation framework, in which a dilated convo- 

ution is introduced to learn high-level semantic features with- 

ut resolution reduction. Moreover, two variants of the UNet ar- 

hitecture, including ResUNet++ [9] , and UNet++ [10] , have been 

roposed for polyp segmentation which led to a promising per- 

ormance. However, the above-mentioned methods often focus on 

egmenting the whole region of the polyp while neglecting some 

aluable boundary information. To overcome this problem, Fang 

t al. [11] designed a boundary-sensitive loss to introduce area- 

oundary constraints for producing more precise predictions. Psi- 

et [12] was presented with three parallel decoders, which are de- 
3 
igned for three tasks, i.e. , contour extraction, mask prediction, and 

istance map estimation. Nonetheless, the contour information has 

een captured, which cannot be effectively incorporated into the 

ask prediction decoder. 

.3. Multi-scale and Multi-level Fusion 

Multi-scale feature representation provides an effective solu- 

ion to deal with the scale variations of objects in detection 

nd segmentation tasks. For instance, Li et al. [25] proposed 

o utilize different sizes of convolution kernels to adaptively de- 

ect multi-scale image features for image super-resolution. Jiang 

t al. [26] utilized a multi-scale progressive fusion module to fully 

xploit the inherent correlations among multi-scale rain streaks. 

e et al. [27] proposed to adaptively capture multi-scale con- 

ents for dealing with the scale variations of objects. In addition, 

ulti-level fusion strategies have been developed in several fields 

f computer vision. For example, feature maps from different levels 

re adopted with shortcut connections to provide multiple granu- 

arities for semantic segmentation [28,29] . In the visual recogni- 

ion task, deep features from different levels were integrated to 

oost the fused layer representation [30] . Several works have also 

een developed to study the integration of multi-level features 

n the field of saliency detection and camouflaged object detec- 

ion [31–34] . Moreover, multi-scale features have been captured 

nd validated effectively in the field of medical imaging [35–37] . 

or example, Sinha et al. [38] adopted a multi-scale strategy to 

ncorporate semantic information at different levels for aggregat- 

ng the relevant contextual features. Fang et al. [36] designed a 

yramid-output network to fully utilize multi-scale features for re- 

ucing the gaps between features at different scales. In addition, 

everal works focus on multi-scale feature fusion and aggregation 

or polyp segmentation [39–41] . 

. Methodology 

In this section, we first provide an overview of the proposed 

ross-level aggregation network for polyp segmentation in Sec. 3.1 . 

hen we present the two key components, including the bound- 

ry prediction network ( Sec. 3.2 ) and polyp segmentation network 

 Sec. 3.3 ). Finally, we present the overall loss function in Sec. 3.4 . 

.1. Overview 

Fig. 2 illustrates the architecture of the proposed cross- 

evel aggregation network for polyp segmentation, which involves 

hree key parts, i.e. , encoder network, boundary prediction net- 

ork, and two-stream polyp segmentation network. Specifically, a 

olonoscopy image is first fed into an encoder network (Res2Net- 

0 [42] as the backbone), to extract multi-level features, which are 

enoted as F i (i = 1 , 2 , . . . , 5) . The feature resolution of W 

8 × H 
8 for

he first level, and a general resolution of W 

2 m 
× H 

2 m 
(when i > 1 ) are

btained in this case. To accurately segment polyps, it is critical 

o exploit boundary-aware features for boosting the segmentation 

erformance. Therefore, low-level features ( i.e. , F 1 and F 2 ) are in- 

egrated, followed by constructing a boundary prediction decoder. 

hen, a two-stream segmentation network is constructed to ef- 

ectively exploit hierarchical semantic information from cross-level 

eatures, in which two adjacent features are fused by using the 

roposed CFF module. Next, the boundary-aware features can be 

ncorporated into the two segmentation decoders in a layer-wise 

trategy using the proposed boundary feature aggregation module. 

he final segmentation results are obtained by combining the out- 

uts of the two segmentation decoders. The details of each key 

omponent are provided in the following sections. 
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Fig. 2. Overview of the proposed CFA-Net for polyp segmentation, consisting of three key parts: encoder network, boundary prediction network, and two-stream polyp 

segmentation network. An input image is first passed through the encoder with five E-blocks to extract multi-scale convolutional features. Then, the low-level features 

are fused via a gated fusion strategy, and then the fused feature is fed into the boundary prediction network, which learns the boundary-aware features and generates the 

boundary prediction map. Then, the adjacent cross-level features are fused via the proposed cross-level feature fusion module, which is fed into the two-stream segmentation 

network. A boundary aggregated module is proposed to fully incorporate the boundary-aware features into the segmentation decoders. The final segmentation results are 

obtained by combing the outputs of two decoders and passing over a convolutional block. Here the orange rectangle denotes upsampled operation, and the blue rectangle 

represents a 3 × 3 convolutional layer followed by batch normalization and ReLU activation function. 
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.2. Boundary Prediction Network 

Polyps are visually embedded in their background, thus the 

oundary between a camouflaged object and its surrounding back- 

round is not sharp. Therefore, effective extracting boundary in- 

ormation can boost the polyp segmentation performance. To 

his end, a boundary prediction network is proposed to generate 

oundary maps, in which boundary-aware features can be incorpo- 

ated into the polyp segmentation network for improving the seg- 

entation performance. Specifically, according to several previous 

orks [43,44] , only low-level features preserve sufficient boundary 

nformation, thus the two low-level layers are integrated, including 

 1 and F 2 . Considering that noise could exist in the low-level fea- 

ures, a gated fusion strategy [45] is adopted to integrate the two 

eatures. Specifically, the two features are fed into a 3 × 3 convo- 

utional layer followed by batch normalization and an activation 

unction, respectively, so that to obtain F 1 
′ and F 2 

′ . Subsequently, 

he two features are concatenated and two separate 1 × 1 convo- 

utional layers are applied to compute the combined weights. The 

bove processing steps can be depicted as follows: 

G 1 = C 1 ×1 

(
CAT ( F 1 ′ , F 2 ′ ) 

)
, 

G 2 = C 1 ×1 

(
CAT ( F 1 ′ , F 2 ′ ) 

)
, 

(1) 

here C 1 ×1 and CAT represent a 1 × 1 convolutional layer and 

 concatenation operation, respectively. G 1 and G 2 are spatial- 

ise gates for the two feature maps. Next, the two gates are 

urther concatenated, and a softmax layer is applied to obtain 

 

(i, j) 
1 

= e G 
(i, j) 
1 / ( e G 

(i, j) 
1 + e G 

(i, j) 
2 ) and W 

(i, j) 
2 

= e G 
(i, j) 
2 / ( e G 

(i, j) 
1 + e G 

(i, j) 
2 ) , 

here W 

(i, j) 
1 

+ W 

(i, j) 
2 

= 1 . Therefore, the fused feature can be 

btained by using the gated weight strategy, which is 

 

ed ge (i, j ) 
1 

= W 

(i, j) 
1 

· F (i, j) 
1 

+ W 

(i, j) 
2 

· F (i, j) 
2 

. (2) 

Then, the fused low-level feature F 
edge 

1 
is obtained and fur- 

her fed into the three convolutional blocks, each consisting of a 

 × 3 convolutional layer followed by batch normalization and a 

eLU activation function. For convenience, the outputs of the three 

onvolutional blocks are denoted as F 
edge 

2 
, F 

edge 
3 

, and F 
edge 

4 
. Subse- 

uently, F 
edge 

4 
is fed into a 3 × 3 convolutional layer to generate 

he boundary map, which is up-sampled to the same resolution as 

he original image. Thus, the generated boundary map and its de- 
4 
ection edge map can be measured using the binary cross-entropy 

BCE) loss, which is expressed as 

 boundary = −∑ 

i [ B 

det 
i 

log (B 

pre 
i 

) + (1 − B 

det 
i 

) log (1 − B 

pre 
i 

)] , (3) 

here B 
pre 
i 

and B det 
i 

imply the predicted and detected boundary 

aps of the i -th image, respectively. In this study, the Canny edge 

etection algorithm is used to extract the boundary map of each 

mage. It is worth noting that the boundary prediction network can 

rovide boundary-aware features to enhance polyp segmentation. 

.3. Polyp Segmentation Network 

The polyp segmentation network is designed using a two- 

tream structure with two decoders, in which different scale fea- 

ures can be integrated to capture the hierarchical semantic in- 

ormation. Specifically, F 2 and F 3 are combined and then fed into 

he first segmentation decoder. Furthermore, F 4 and F 5 are fused 

nd then fed into the second segmentation decoder. Additionally, 

oundary-aware features ( i.e. , F 
edge 

1 
, F 

edge 
2 

, F 
edge 

3 
, and F 

edge 
4 

) are in-

orporated into the segmentation decoders to boost the segmen- 

ation performance. Finally, the outputs of the two decoders are 

used to obtain the final segmentation results. To achieve this goal, 

 CFF module is proposed to effectively fuse the two adjacent fea- 

ures ( e.g. , F 2 and F 3 , as well as F 4 and F 5 ), and a BAM is presented

o incorporate the boundary-aware features into the segmentation 

ecoders. The following sections present the details of the two key 

omponents. 

.3.1. Cross-level Feature Fusion Module 

Multi-level features at different solutions can be obtained us- 

ng the feature extraction network. Therefore, it is important to ef- 

ectively integrate multi-level features, which can boost the repre- 

entation ability of different scale features. Thus, a CFF module is 

roposed to fuse the two adjacent features and then feed them 

nto the segmentation network. Specifically, as shown in Fig. 3 , 

he two adjacent features F i and F i +1 are fed into a 1 × 1 convo-

utional layer to reduce the channel size, and obtain S i ∈ R 

W i ∗H i ∗L 

nd S i +1 ∈ R 

W i ∗H i ∗L . Then, the two features from the adjacent layers 

re cascaded and then fed into a two-bypass network, of which 

ach stream has a different convolutional kernel. In this way, the 

nformation between the two-stream network can be shared for 
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Fig. 3. The flowchart of the proposed cross-level feature fusion module. 

Fig. 4. The flowchart of the proposed boundary aggregated module (“P” denotes a GAP operation). 
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apturing features from cross-level and multiple scales. The above- 

entioned process can be described as follows: 
 

 

 

S 12 = B con v 3 ×3 

(
CAT (S 11 , S 21 ) 

)
, 

S 22 = B con v 5 ×5 

(
CAT (S 21 , S 11 ) 

)
, 

(4) 

here B con v 3 ×3 (·) is a sequential operation that consists of a 3 × 3 

onvolutional layer followed by batch normalization and an activa- 

ion function, and the same settings by using a 5 × 5 convolutional 

ayer for B con v 5 ×5 (·) . Next, the two multi-scale features S 12 and S 22 

re further cascaded to be fed into two different convolutional lay- 

rs, which can be presented as follows: 
 

 

 

S 13 = B con v 3 ×3 

(
CAT (S 12 , S 22 ) 

)
, 

S 23 = B con v 5 ×5 

(
CAT (S 22 , S 12 ) 

)
, 

(5) 

To fully fuse the multi-scale and original cross-level features, 

he two features S 13 and S 23 are combined using an element-wise 

ultiplication operation, and then the original cross-levels can be 

urther combined by an addition operation, thus the fused feature 

an be obtained as 

 f use = S 13 � S 23 � S 11 � S 21 , (6) 

here � and � represent element-wise product and addition, re- 

pectively. 

Subsequently, to further smooth the fused feature, it is fed into 

 sequential operation to obtain the final cross-level fusion feature, 

amely, F dec 
11 

= B con v 3 ×3 (F f use ) . 

.3.2. Boundary Aggregated Module 

To fully make use of boundary-aware features, two key prob- 

ems need to be taken into consideration. The redundancy and 

oise in boundary-aware features should be reduced, and it is 

mportant to effectively incorporate boundary-aware features into 

he segmentation decoder. Therefore, a BAM is presented to ad- 

ress the above-mentioned problems by excavating useful infor- 

ation from boundary-aware features and obtaining the aggre- 

ated features to boost the segmentation performance. Specifically, 

s shown in Fig. 4 , the boundary-aware feature is first fed into a

hannel attention operation, and this process is depicted by 

 

edge 
1 ,att 

= C att 

(
F edge 

1 

)
, (7) 
5 
here C att (·) denotes the channel attention operation. More specif- 

cally, it is implemented by 

 att (F ) = MLP (P max (F )) � F , (8) 

here MLP (·) and P max present a two-layer perceptron and 

lobal max pooling (GMP) operation, respectively. Additionally, F 

enotes an input feature map. 

Next, the feature at each layer from the segmentation decoder 

nd the attention enhanced boundary-aware feature are combined 

sing a simple concatenation operation. The concatenated feature 

 i.e. , F cat 
11 

= CAT (F 
edge 

1 ,att 
, F dec 

11 
) ) is processed through a 3 × 3 convolu-

ional layer and then fed into a global average pooling (GAP) layer. 

oreover, the output of the GAP layer is adopted to enhance the 

oncatenated feature. Furthermore, to make the network more ef- 

cient and preserve the original information, a residual connection 

s adopted to combine the previous feature in the current decoder. 

herefore, the process can be depicted as follows: 

 

agg 
11 

= P a v e 
(
F cat 

11 

)
� F cat 

11 � F dec 
11 , (9) 

here F 
agg 

11 
represents the aggregated feature, and it is further pro- 

essed by an up-sampled operation and fed into a sequential op- 

ration B con v 3 ×3 . P a v e (·) denotes a GAP operation. Then, the output 

s regarded as the input of the following BAM. It is worth noting 

hat the boundary-aware features are well incorporated into the 

egmentation decoder, thus some useful boundary information can 

oost the segmentation performance. 

The proposed polyp segmentation network involves two de- 

oders, which are supervised by using the ground truth segmen- 

ation results. Further, the output features ( i.e. , F dec 
15 

and F dec 
25 

) of

he two decoders are cascaded and then fed into a sequential op- 

ration B con v 3 ×3 , which produces the final segmentation results. 

.4. Loss Function 

The binary cross-entropy (BCE) loss is widely used in several 

egmentation tasks, however, it ignores the global structure of 

n image when computing the loss for each pixel independently. 

o overcome these issues, our polyp segmentation loss function 

s defined as L seg = L wIoU 

+ L wBCE , where L wIoU 

and L wBCE 
ndicate the weighted IoU (wIoU) loss and BCE (wBCE) loss for 

he global and local restrictions [46] , respectively. Specifically, the 

IoU loss is defined by 

 wIoU 

= 1 −
∑ W 

i =1 

∑ H 
j=1 (g i, j ∗p i, j ) ∗(1+5 μi, j ) ∑ W 

i =1 

∑ H 
j=1 (g i, j + p i, j −g i, j ∗p i, j ) ∗(1+5 μi, j ) 

, (10) 
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here g i, j and p i, j are the values at pixel (i, j) of the ground truth

nd predicted segmentation maps, respectively. μi, j denotes the 

ixel importance, which can be calculated by a pixel and its sur- 

ounding pixels [46] . 

The wBCE loss is defined by 

 wBCE 

= −
∑ W 

i =1 

∑ H 
j=1 (1+5 μi, j ) 

∑ l 
l=0 1 (g i, j = l) log Pr (p i, j = l| �) ∑ W 

i =1 

∑ H 
j=1 5 μi, j 

, (11) 

here 1 is an indicator function, and the notation l ∈ { 0 , 1 } in-

icates two kinds of labels. � denotes all the parameters of the 

odel and Pr (p i, j = l| �) represents the predicted probability. 

It is noteworthy that L wIoU 

can increase the weights of hard 

ixels to highlight their importance, and L wBCE pays more atten- 

ion to hard pixels rather than treating all pixels equally. Moreover, 

hree segmentation maps ( i.e. , S 
up 
1 

, S 
up 
2 

, and S 
up 

f use 
) are up-sampled

o have the same size as the ground truth map ( i.e. , G ). 

Finally, the overall loss function can be formulated as follows: 

 total = L boundary + 

L seg (G, S up 
1 

) + L seg (G, S up 
2 

) + L seg (G, S up 

f use 
) . 

(12) 

. Experiments 

We provide the details of datasets and evaluation metrics 

 Sec. 4.1 ), as well as implementation details ( Sec. 4.2 ). Then, we

ompare the proposed model with the state-of-the-art polyp seg- 

entation methods in Sec. 4.3 . To clarify the validity of the key 

omponents in our model, we conduct ablation experiments in 

ec. 4.4 . Further, we present failure cases and provide limitation 

iscussions in Sec. 4.5 . 

.1. Datasets and Evaluation Metrics 

.1.1. Datasets 

To validate the effectiveness of the proposed segmentation 

odel, we conduct comparison experiments on five benchmark 

atasets. The details of each dataset are provided below. • CVC- 

linicDB [47] : This dataset contains 612 images collected from 

olonoscopy video sequences, whose resolutions are 288 ×384 . 

ETIS [48] : This dataset includes 196 polyp images with a size of 

66 × 1225 . • CVC-ColonDB [22] : This dataset consists of 380 im- 

ges with a size of 500 × 570 . • Kvasir [49] : This dataset includes 

,0 0 0 polyp images, which are collected from several colonoscopy 

ideo sequences. • CVC-300 [50] : This dataset contains 60 polyp 

mages with a size of 500 ×574 . 

.1.2. Evaluation Metrics 

We adopt four widely used metrics [51] , including mean dice 

core (Dice), mean intersection over union (IoU), specificity (SPE), 

nd sensitivity (SEN). Additionally, four metrics are introduced, 

hich are widely used in the field of object detection [32,52,53] , 

ncluding S-measure ( S α) [54] , F-measure [55] ( F w 

β
), E φ [56] , and

ean absolute error ( M ) [57] . The details of the four evaluation

etrics are provided below. 

• S α is used to evaluate the structural similarity between the re- 

gional perception ( S r ) and object perception ( S o ), which is de-

fined by S α = α × S o + ( 1 − α) × S r ( α is a trade-off parameter 

and it is set to 0.5 as default [54] ). 
• F β is defined by F β = 

(
1 + β2 

)
P×R 

β2 P+ R , wher e β is set to 1. In

our experiments, we utilize the improved version of F β , namely, 

weighted F-measure ( F w 

β
), which can be proven to overcome the 

interpolation, dependency, and equal-importance flaws of F β . 
• E φ captures image-level statistics and their local pixel matching 

information. It can be defined by E φ = 

1 
W ×H 

∑ W 

i =1 

∑ H 
i =1 φF M 

( i, j ) , 

where φ denotes the enhanced-alignment matrix [56] . 
F M 

6 
• M [57] is adopted to evaluate the difference between the 

ground truth and the normalized prediction, and it is defined 

by M = 

1 
W ×H 

∑ W 

i =1 

∑ H 
i =1 | S(i, j) − G (i, j) | , where G and S present

the ground truth and normalized prediction (they are normal- 

ized to [0,1]). 

.2. Implementation Details 

The proposed framework is implemented in PyTorch, which is 

rained using one NVIDIA Tesla P40 GPU with 24 GB memory. 

n our model, Res2Net-50 [42] is used as the backbone network, 

hich has been pre-trained on ImageNet [58] . In addition, the 

dam algorithm is used to optimize the proposed model. The ini- 

ial learning rate is set to 1 e − 4 and is divided by 10 every 30

poch. Different data augmentation strategies are adopted, includ- 

ng random flipping, crop, and rotation. The input images are re- 

ized to 352 × 352 , and we also train our model using different 

caling ratios, i.e. , { 0 . 75 , 1 , 1 . 25 } . The batch size is set to 10 and the

odel has trained over 100 epochs. To train the proposed model, 

e follow the same experimental settings in [5] , where 900 images 

rom the Kvasir and 550 images from the CVC-ClinicDB are col- 

ected to form the training set. The remaining images from the two 

atasets ( i.e. , Kvasir and CVC-ClinicDB) and other three datasets 

 i.e. , ETIS, CVC-ColonDB, and CVC-300) are adopted for testing. Dur- 

ng the testing stage, the test images are resized to 352 × 352 and 

hen fed into the model to obtain the segmentation maps. The seg- 

entation maps are rescaled to the original size to conduct the 

nal evaluation. 

.3. Comparison to State-of-the-art Methods 

.3.1. Comparison Methods 

To evaluate the effectiveness of the proposed polyp segmen- 

ation method, we compare it with six state-of-the-art meth- 

ds, including UNet [10] , UNet++ [10] , SFA [11] , PraNet [11] ,

SNet [59] , and C2FNet [60] . The results of UNet [10] , UNet++ [10] ,

FA [11] , and PraNet [11] are collected from https://github.com/ 

engPingFan/PraNet . The results of MSNet [59] are collected from 

he original paper. For C2FNet, we retrained and tested based on 

he released codes using the recommended parameters. 

.3.2. Quantitative Comparison 

Table 1 provides the quantitative comparison between our 

odel and six state-of-the-art methods in terms of eight evalua- 

ion metrics on the CVC-ClinicDB [47] and Kvasir [49] datasets. On 

he CVC-ClinicDB dataset, it can be observed that our model out- 

erforms all compared methods. MSNet and C2FNet achieve rel- 

tively better segmentation performance than the other compari- 

on methods. Furthermore, SFA takes into account the dependency 

etween the region and boundary, but it still fails to segment 

olyps, while our model can effectively segment them and achieve 

he best performance. This is because our model can fully cap- 

ure the multi-scale information to deal with the scale variations 

f polyps, and the boundary-aware features provide boundary cues 

o boost the segmentation performance. On the Kvasir dataset, the 

roposed polyp segmentation method consistently obtains the best 

erformance. For instance, in terms of mDice, mIou, S α , F w 

β
, and E φ ,

ur model achieves 3 . 3% , 3 . 6% , 2 . 1% , 3 . 8% , and 2 . 9% improvements

ver C2FNet. 

Table 2 shows the quantitative comparison between our 

odel and six state-of-the-art methods on the CVC-300 [50] and 

olonDB [22] datasets. From the results, it can be observed that 

ur method performs better than other segmentation approaches. 

or example, compared with PraNet, our method achieves the im- 

rovements are 2 . 5% , 3 . 8% , 3 . 8% in the terms of mDice, mIoU, and

 

w 

β
on the CVC-300 dataset. On the ColonDB dataset, our method 

https://github.com/DengPingFan/PraNet
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Table 1 

Quantitative polyp segmentation results on the CVC-ClinicDB and Kvasir datasets using eight metrics. “↑ “ & “↓ ” indicate that larger or smaller is better. The best two results are shown 

in red and blue fonts. 

Methods 

CVC-ClinicDB [47] Kvasir [49] 

mDice ↑ mIou ↑ SPE ↑ SEN ↑ S α ↑ F w 
β

↑ E φ ↑ M ↓ mDice ↑ mIou ↑ SPE ↑ SEN ↑ S α ↑ F w 
β

↑ E φ ↑ M ↓ 
UNet [17] 0.823 0.755 0.947 0.835 0.889 0.811 0.954 0.019 0.818 0.746 0.950 0.857 0.858 0.794 0.893 0.055 

UNet + [10] 0.794 0.729 0.927 0.795 0.873 0.785 0.931 0.022 0.821 0.744 0.986 0.807 0.862 0.808 0.910 0.048 

SFA [11] 0.700 0.607 0.919 0.802 0.793 0.647 0.885 0.042 0.723 0.611 0.965 0.799 0.782 0.670 0.849 0.075 

PraNet [5] 0.899 0.849 0.990 0.911 0.936 0.896 0.979 0.009 0.898 0.840 0.978 0.912 0.915 0.885 0.948 0.030 

MSNet [59] 0.918 0.869 0.975 0.933 0.946 0.913 0.979 0.008 0.905 0.849 0.981 0.911 0.923 0.892 0.954 0.028 

C2FNet [60] 0.919 0.872 0.974 0.941 0.941 0.906 0.976 0.009 0.886 0.831 0.974 0.904 0.905 0.870 0.935 0.036 

CFA-Net (Ours) 0.933 0.883 0.991 0.960 0.950 0.924 0.989 0.007 

0.915 0.861 0.985 0.926 0.924 0.903 0.962 0.023 

Table 2 

Quantitative polyp segmentation results on the CVC-300 and ColonDB datasets using eight metrics. “↑ “ & “↓ ” indicate that larger or smaller is better. The best two results are shown 

in red and blue fonts. 

Methods 

CVC-300 [50] ColonDB [22] 

mDice ↑ mIou ↑ SPE ↑ SEN ↑ S α ↑ F w 
β

↑ E φ ↑ M ↓ mDice ↑ mIou ↑ SPE ↑ SEN ↑ S α ↑ F w 
β

↑ E φ ↑ M ↓ 
UNet [17] 0.710 0.627 0.966 0.768 0.843 0.684 0.876 0.022 0.504 0.436 0.798 0.525 0.710 0.491 0.781 0.059 

UNet + [10] 0.707 0.624 0.957 0.738 0.839 0.687 0.898 0.018 0.482 0.408 0.828 0.497 0.693 0.467 0.764 0.061 

SFA [11] 0.467 0.329 0.935 0.889 0.640 0.341 0.817 0.065 0.456 0.337 0.861 0.703 0.629 0.366 0.754 0.094 

PraNet [5] 0.871 0.797 0.988 0.941 0.925 0.843 0.972 0.010 0.712 0.640 0.874 0.740 0.820 0.699 0.872 0.043 

MSNet [59] 0.865 0.799 0.988 0.931 0.926 0.848 0.953 0.010 0.751 0.671 0.931 0.775 0.838 0.736 0.883 0.041 

C2FNet [60] 0.874 0.801 0.988 0.952 0.927 0.844 0.968 0.009 0.724 0.650 0.894 0.752 0.826 0.705 0.868 0.044 

CFA-Net (Ours) 0.893 0.827 0.990 0.952 0.938 0.875 0.978 0.008 0.743 0.665 0.953 0.762 0.835 0.728 0.898 0.039 

7
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Table 3 

Quantitative polyp segmentation results on the ETIS dataset using eight metrics. “↑ “ & “↓ ” indicate 

that larger or smaller is better. The best two results are shown in red and blue fonts. 

Methods 
ETIS [48] 

mDice ↑ mIou ↑ SPE ↑ SEN ↑ S α ↑ F w 
β

↑ E φ ↑ M ↓ 
UNet [17] 0.398 0.335 0.703 0.484 0.684 0.366 0.740 0.036 

UNet + [10] 0.401 0.344 0.727 0.415 0.683 0.390 0.776 0.035 

SFA [11] 0.297 0.217 0.781 0.633 0.557 0.231 0.633 0.109 

PraNet [5] 0.628 0.567 0.805 0.688 0.794 0.600 0.841 0.031 

MSNet [59] 0.723 0.652 0.893 0.796 0.845 0.677 0.890 0.020 

C2FNet [60] 0.699 0.624 0.902 0.745 0.827 0.668 0.875 0.022 

CFA-Net (Ours) 0.732 0.655 0.910 0.804 0.845 0.693 0.892 0.014 

Fig. 5. Precision-Recall and F-measure curves of our model and other six state-of-the-art methods across three datasets ( i.e. , CVC-ClinicDB, CVC-ColonDB, and ETIS). 
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chieves 2 . 6% , 6 . 6% , 3 . 3% , and 3 . 5% over C2FNet in terms of mDice,

Iou, F w 

β
, and E φ . This is because our model can provide boundary-

ware features to help locate the boundaries of polyps, resulting in 

ccurate segmentation of polyps. Table 3 provides the quantitative 

omparison between our model and six state-of-the-art methods 

n the ETIS [48] dataset. According to the results, the effectiveness 

f our method can be further validated. 

In addition to the overall quantitative comparisons using the 

bove evaluation metrics, precision-Recall and F-measure curves 

re further presented in Fig. 5 and Fig. 6 . From the results, the pro-

osed model achieves much better results compared to the other 

tate-of-the-art polyp segmentation methods. 

.3.3. Qualitative Comparison 

Fig. 7 depicts the segmentation results by comparing our model 

ith six state-of-the-art polyp segmentation methods. Based on 

he visual results, the results of our model are closest to the 

round truth maps, and our method outperforms the other com- 

ared methods in dealing with different challenging factors. Specif- 

cally, in the 1 st and 2 nd rows, the polyps have extremely small 

izes, and our method still can accurately segment small polyps. 

owever, UNet and UNet++ completely fail to segment them. In 

his case, SFA, MSNet, and C2FNet produce several errors with 

ver-segmented regions. In the 3 rd and 4 th rows, the polyps have 

ifferent shapes and large sizes ( e.g. , in the 4 th row), making it

hallenging to accurately segment polyps. Accordingly, SFA and 
8 
Net++ perform worse than the other methods. In the 5 th and 6 th 

ows, the boundaries between the polyps and background are not 

harp since the polyps are visually embedded in their background, 

hus it is highly challenging for segmentation methods to identify 

hem. In this case, our method segments polyps more accurately 

han the other compared methods. Overall, the visual results fur- 

her demonstrate that our model can achieve good performance in 

andling different challenging factors for polyp segmentation. 

Moreover, we visualize the predicted edges and segmentation 

esults using the proposed model in Fig. 8 . From the results, we 

an be observed that the boundary extraction network can ef- 

ectively predict the main edge parts of polyps. Although some 

ne details are missing, the boundary-aware features can still 

apture edge information for boosting the segmentation perfor- 

ance. Overall, the proposed boundary extraction network can 

earn boundary-aware features and its effectiveness has been well 

alidated. 

.3.4. Model Complexity and Inference Time Comparison 

To investigate the model complexity and inference time, we re- 

ort the model sizes and inference times of our model and other 

ompared methods in Table 4 . In Table 4 , # Param is measured

n million (M), floating point operations (FLOPs) are measured in 

iga (G), and the inference time is measured by frames per sec- 

nd (FPS). As can be observed, our model is with minimal param- 

ters in comparison with the other methods. Because our model 
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Fig. 6. Precision-Recall and F-measure curves of our model and other six state-of-the-art methods across two datasets ( i.e. , Kvasir and CVC-300). 

Fig. 7. Qualitative visualization of polyp segmentation results comparing our model with six state-of-the-art methods, including UNet [17] , UNet++ [10] , SFA [11] , PraNet [5] , 

MSNet [59] , and C2FNet [60] . 

9 
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Fig. 8. Visualization of the predicted edges and segmentation results using the proposed model. 

Table 4 

Comparison of model size and inference time. 

Models UNet [17] UNet + [10] PraNet [5] MSNet [59] C2FNet [60] CFA-Net (ours) 

Speed (FPS) 123.11 82.51 25.05 31.08 20.93 23.50 

FLOps 123.87 262.16 13.15 17.00 13.16 55.36 

Param (M) 34.52 36.63 30.50 27.69 26.36 25.24 
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dopts a boundary prediction network and a polyp segmentation 

etwork to generate the boundary map and segmentation maps, 

espectively, it takes much more inference time for the polyp seg- 

entation than other compared methods. Therefore, we can design 

ightweight networks to improve the efficiency of the proposed 

odel for real-time polyp segmentation in future work. 

.4. Ablation Study 

Effectiveness of Boundary-aware Features . In our model, the 

oundary prediction network is designed to generate boundary- 

ware features, which are incorporated into the segmentation net- 

ork for providing the boundary context information. To investi- 

ate the effectiveness of the boundary prediction network, we per- 

orm ablation studies by removing it from our model, denoted as 

w/o Boundary”. Additionally, we adopt a simple and effective gate 

usion strategy to integrate low-level features ( i.e. , F 1 and F 2 ). To 

alidate its effectiveness, we utilize the concatenation and addi- 

ion operations to replace the gate fusion strategy, which are de- 

oted as “Concat” and “Addition”. The experimental results of ab- 

ation studies are provided in Table 5 . As shown in Table 5 , com-

ared “w/o boundary” with our full model, it can be observed that 

ur method using the boundary-aware features can improve the 

egmentation performance. Moreover, our model, using the gate 

usion strategy, could perform better compared to using concate- 

ation or addition operations. This is probably because low-level 

eatures contain some noises, and the gate fusion strategy helps to 

lter out these noises and then enhance the features. The visual 

omparison results in Fig. 9 further indicate that boundary-aware 

eatures can improve the segmentation performance. 

Effectiveness of CFF Module . To validate the effectiveness of 

he CFF module in our model, we directly utilize a concatenation 

peration to fuse the two adjacent features, followed by a 3 ×3 

onvolutional layer, which is further fed to the segmentation net- 

ork, denoted as “w/o CFF”. Based on the results ( Table 5 ), the

FF module could enable our method to accurately segment polyp 
10 
egions. This is because the proposed CFF module could effec- 

ively fuse cross-level features and capture multi-scale information 

or dealing with scale variations. The visual comparison results in 

ig. 9 further indicate that the proposed CFF module can boost the 

egmentation performance. 

Effectiveness of BAM . To validate the effectiveness of BAM in 

ur model, we directly utilize a concatenation operation to incor- 

orate boundary-aware features into the segmentation network, 

enoted as “w/o BAM”. As shown in Table 5 , the proposed BAM 

oosts the segmentation performance, highlighting the effective- 

ess of the proposed BAM in incorporating the boundary cues into 

he segmentation network. As shown in Fig. 9 , without using the 

roposed BAM, some boundary details can not be accurately de- 

ected. 

Effectiveness of Two-stream Structure in Segmentation Net- 

ork . In the proposed model, we adopt a two-stream decoder 

tructure in the polyp segmentation network, which can effectively 

xploit the hierarchical semantic information. To validate the effec- 

iveness of the two-stream structure, we compare it with the pro- 

osed method using a one-stream structure (as shown in Fig. 10 ). 

s shown in Table 5 , the results confirm that our model outper- 

orms when using the two-stream structure rather than only using 

 one-stream structure, indicating that much hierarchical seman- 

ic information can be exploited to boost the segmentation per- 

ormance. Moreover, the visual comparison results in Fig. 9 also 

emonstrate that our model can accurately segment polyps. 

.5. Failure Cases and Limitations 

The qualitative and quantitative evaluations show the effective- 

ess and superiority of the proposed CFA-Net, however, our CFA- 

et fails to segment polyps when dealing with some challenging 

cenes such as big polyps and complex backgrounds. Some failure 

ases of our model are shown in Fig. 11 . In the 1 st and 2 nd rows,

e can see that the polyps have a big size, which makes our model 

an segment the coarse regions without fine boundary details. In 
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Fig. 9. Visual comparisons for validating the benefits of different modules. 

Fig. 10. The architecture of our method uses a one-stream structure in the segmentation network. 

Fig. 11. Some failure cases of the proposed CFA-Net. 
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he 3 rd and 4 th rows, it can be seen that polyps have a similar ap-

earance to background regions in the scene, which makes it chal- 

enging to accurately segment polyps without sharp boundaries. 

s a result, our CFA-Net fails to accurately locate and segment 

he polyps under this condition. Therefore, dealing with large-scale 

ariation and segmenting polyps under complex backgrounds will 

e investigated in future work. Moreover, it is worth noting that a 
11
eal-time detection system with high accuracy is needed in clini- 

al practice, which can help doctors take necessary action during 

olonoscopy procedures. Although our CFA-Net has achieved satis- 

actory segmentation performance, it still requires a huge compu- 

ational cost. In the future, we can compress the proposed CFA-Net 

y network pruning and knowledge distillation [61] to develop a 

ightweight network for real-time polyp segmentation in clinics. 
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12 
. Conclusion 

In this paper, we present a Cross-level Feature Aggregation Net- 

ork (CFA-Net) for Polyp Segmentation. Specifically, we first pro- 

ose a boundary prediction network to learn boundary-aware fea- 

ures, which capture boundary information to boost the segmen- 

ation performance. To effectively exploit hierarchical semantic in- 

ormation, we propose a two-stream segmentation network. In the 

egmentation network, we propose a Cross-level Feature Fusion 

CFF) module to fuse cross-level features and exploit multi-scale 

ontext information for handling scale variations. Furthermore, we 

ropose a Boundary Aggregated Module (BAM) to fully incorpo- 

ate the boundary cues into the segmentation network. Experi- 

ents on five public datasets demonstrate that our CFA-Net out- 

erforms other state-of-the-art methods, and a comprehensive ab- 

ation study has validated the effectiveness of all key components 

n the proposed CFA-Net. 
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