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Abstract
Traffic flowprediction plays a critical role in ensuring the efficiency of transportation systems,
which has motivated extensive research into capturing spatial-temporal dependencies within
road networks. However, most existing approaches depend on centralized data, potentially
raising privacy concerns as traffic data is often managed by different traffic administration
departments and restricted from distribution. To address this issue, federated learning (FL)
allows collaborative model training without exchanging raw data. Nevertheless, traditional
FL methods are designed to optimize a model that performs well globally, making them
inadequate for handling the naturally non-independent and identically distributed traffic data
across different regions. To overcome this limitation, we propose a new framework termed
“personalized Federated learning with Traffic Pattern Sharing” (FedTPS), which exploits the
sharing of underlying common traffic patterns across regionswhile preserving region-specific
characteristics in a personalizedmanner. Specifically, discrete wavelet transform is employed
to decompose the traffic data and extract low-frequency components in each client that reflect
stable traffic dynamics. The clients then learn representative traffic patterns from these stable
traffic dynamics and store them in traffic pattern repositories. Afterward, these repositories
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are shared with a central server, which enables the identification and integration of common
traffic patterns to improve global learning. Meanwhile, the model components capturing
spatial-temporal dependencies are retained for local training, ensuring adaptation to region-
specific data. Intensive experiments on four real-world traffic datasets firmly demonstrate the
superiority of our proposed FedTPS over traditional FL methods across various estimation
errors.

Keywords Spatial-temporal data · Traffic flow prediction · Personalized federated learning ·
Graph neural network

1 Introduction

Accurate and real-time traffic flow prediction (TFP) plays a pivotal role in enhancing urban
management by enabling efficient traffic control, reducing congestion, and optimizing travel
routes [34]. The primary objective ofTFP is to estimate future traffic conditions by uncovering
the spatial-temporal dependencies based on historical traffic data and relevant features [28].

Traditional TFP methods [14, 29, 31] simply apply statistical time series models to traffic
forecasting tasks. However, these approaches often rely on the assumption of stationarity,
which limits their ability to capture the complex anddynamic relationships in traffic data.With
the advancements in deep learning, researchers have explored combining convolutional neu-
ral networks (CNNs) and recurrent neural networks (RNNs) to model the spatial-temporal
dependencies among different traffic routes [20, 38, 46]. Nevertheless, the non-Euclidean
nature of traffic networks inherently conflicts with the grid-like structures assumed by CNNs,
which limits their ability to capture the spatial dependencies of road networks effectively. To
address this limitation, recent studies have introduced graph neural networks (GNNs) to TFP
tasks [26, 47], leveraging graph structures to accurately represent the spatial dependencies
between roads. However, these methods typically rely on pre-defined graphs, which may be
incomplete or biased. In response, emerging research has shifted toward adaptively learning
graph structures [2, 16, 43], enabling more precise characterization of the complex inter-
actions inherent in real-world traffic dynamics. Although these methods achieve promising
performance, their training relies on centralized traffic data collected from different regions.
In practice, traffic data is often collected and managed by different traffic administration
departments based on the zoning of the city, province, or state. Since traffic data may contain
sensitive information, such as individual locations and travel trajectories [22], centralizing
these data will probably raise privacy concerns, thereby limiting the practical applicability
of these approaches.

Federated learning (FL), which adopts a distributed training strategy without exchanging
raw data, provides a natural solution to the aforementioned privacy issues. In FL, model
training is conducted locally on clients (i.e., traffic administration departments in all regions
in our problem) and only model parameters, rather than raw data, are uploaded to a central
server for collaborative learning, which helps ensure data privacy [35, 48]. Up to now, var-
ious efforts have been made to achieve accurate TFP using the FL framework [32, 36, 42,
50]. However, traffic data recorded by sensors across different locations and time stamps
can exhibit significant variability. For instance, traffic sensors in high-density urban areas
may capture entirely different traffic flow when compared with that in suburban or rural
regions. This non-independent and identically distributed (non-IID) nature of traffic data
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Fig. 1 The observation on PEMS04 dataset. Traffic flow recorded by sensors from different regions (with
locations shown in (a)) may share common traffic patterns (indicated by the red dashed line in (b)) (Colour
figure online)

from different clients can result in unstable training, slow convergence, and degradation in
the performance of the global model in FL [25].

To address this issue, personalized federated learning (PFL) has emerged as an effective
approach. Unlike traditional FL, which aims to develop a single global model for all clients,
PFL methods focus on customizing models to the specific data distributions of each indi-
vidual client. This personalization enables PFL to capture the unique characteristics of local
traffic data while still benefiting from collaborative learning [24, 30, 49]. Although these
methods enhance model personalization to some extent, they ignore the underlying common
knowledge shared across different regions, which is actually critical in collaborative model
training. To be specific, due to similar functional characteristics of different regions (e.g.,
commercial and residential areas) or consistent travel behaviors during certain periods (e.g.,
morning and evening rush hours), traffic data from different regions may share certain com-
mon traffic patterns with similar temporal characteristics [21] despite the data heterogeneity
caused by unique local factors. Although these common traffic patterns may fluctuate due
to varying traffic conditions across regions, they generally exhibit stable traffic dynamics.
For instance, as shown in Fig. 1, sensors A, B, and C are located in distinct regions, but
the traffic flows they record exhibit similar stable traffic dynamics during certain periods.
This observation inspires the sharing of common traffic patterns within the FL framework
for performance enhancement.

To effectively explore and utilize common traffic patterns across different regions, in this
work, we propose personalized Federated learning with Traffic Pattern Sharing (FedTPS),
a novel federated framework for TFP. Our objective is to improve local performance by
leveraging the sharing of common traffic patterns across different regions while preserving
the region-specific data characteristics in a personalized manner. To be specific, we employ
discrete wavelet transform (DWT) to decompose the traffic data in each client, isolating
low-frequency components that capture stable traffic dynamics. Furthermore, we design a
parameterized traffic pattern repository for each client to learn and store representative traffic
patterns from the stable traffic dynamics. In the aggregation phase of FL, the traffic pattern
repositories from different clients are aggregated on the server side to obtain common traffic
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patterns, which facilitates the sharing of global knowledge and enhances collaborative model
training.Meanwhile, the model components capturing spatial-temporal dependencies of traf-
fic data are retained in each client for local training to preserve region-specific characteristics.
We have conducted intensive experiments on four popular TFP datasets in the FL scenario,
which demonstrates the superiority of FedTPS against multiple baseline methods.

This paper is an extended version of our previous conference paper [54], where FedTPS
was first introduced. Compared with the initial version [54], we provide more algorithmic
details by explaining the extraction of traffic patterns, elaborating on whyDWT is effective in
capturing stable traffic dynamics, and detailing how the traffic pattern repository is integrated
with the overall framework. Besides, we analyze the resource overhead of different methods
to demonstrate the efficiency of our proposed FedTPS. Furthermore, we present additional
experimental results on the visualizations ofmatched traffic patterns. These results are critical
for a deeper understanding of the common traffic patterns learned by FedTPS.

2 Related work

Our approach primarily focuses on the TFP task in FL scenarios. In this section, we will
review the related works in these areas that are relevant to our research.

2.1 Traffic flow prediction

As transportation systems grow in complexity and scale, efficient traffic management
becomes crucial for alleviating traffic congestion and planning travel routes. TFP is one
of the critical tasks in traffic management that focuses on forecasting traffic volumes at spe-
cific times and locations within a traffic network. In the early stages, some studies simply
applied statistical methods for time series models to TFP tasks, such as historical average
(HA) [14], Kalman filter (KF) [31], and auto-regressive integratedmoving average (ARIMA)
[29]. However, these methods typically assume linearity in traffic data, which is inadequate
for handling the complex dependencies inherent in traffic data. To capture nonlinear cor-
relations in traffic data, many deep learning-based time series models, such as RNN [38],
temporal convolutional network (TCN) [39], and Transformer [53], have been applied to TFP
with the advancement of deep learning technologies. These models have shown great power
in handling complex temporal dependencies, thereby enhancing prediction accuracy. Unlike
general time series prediction, TFP not only focuses on temporal dependencies but also needs
to account for spatial dependencies of different road segments. To capture the spatial depen-
dencies, some studies have combined CNN with time series models to achieve improved
performance [20, 38, 46]. However, CNN-based approaches typically treat road segments
as grid-based data, thereby overlooking the complex non-Euclidean structures inherent in
traffic road networks.

In recent years, researchers have increasingly focused on leveraging the strengths ofGNNs
to capture the complex spatial dependencies of traffic data. These methods integrate GNNs
with time series models to enhance TFP. For example, DCRNN [26] models the dynamics
of traffic flow as diffusion processes and introduces diffusion convolutional operations to
capture spatial dependencies. Besides, STGCN [47] combines graph convolutional network
(GCN) with TCN to capture comprehensive spatial-temporal correlations through model-
ing multi-scale traffic networks. However, these methods are typically based on pre-defined
graphs, which limits their ability to fully capture the latent dynamic relationships between
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road segments. To further explore the dynamism of traffic networks, Graph WaveNet [43]
adaptively learns a normalized adjacency matrix to capture the spatial dependencies. Build-
ing upon this, AGCRN [2] incorporates node-specific adaptive graph convolutional layers,
enabling the model to capture unique spatial interactions for each node. Besides, StemGNN
[3] employs spectral graph convolution to adaptively capture the spatial dependencies among
nodes in the traffic network, while MegaCRN [16] learns node-level prototypes in the meta-
node bank for updating the auxiliary graph adaptively. Additionally, some methods employ
attention mechanisms to capture time-varying spatial dependencies among traffic roads. For
instance, GMAN [52] utilizes graph attention network (GAT) and temporal attention to
model the relationships between historical and future time stamps. Meanwhile, ASTGNN
[13] develops a dynamic graph convolution module, which employs self-attention to capture
the spatial correlations in a dynamic manner. STWave [9] disentangles traffic data into trends
and events and applies a sampling strategy-based GAT to achieve accurate forecasts with
reduced computational costs.

However, in practice, traffic data from different regions are often managed by different
traffic administration departments. Since these data may contain sensitive information, such
as travel trajectories and vehicle identification numbers, sharing them across regions is often
prohibited due to privacy concerns. This reality renders most existing research efforts for
TFP, which rely on centralized training data, impractical for real-world scenarios.

2.2 Federated learning

Most deep learning models are deployed on the central server, requiring training data to
be uploaded to the server for model training. This process poses a risk of exposing sensi-
tive information contained in the data. FL is a distributed machine learning paradigm that
enables collaboratively training models across decentralized devices or clients, where data
remains local. In FL, clients train models locally and share only model parameters, rather
than raw data, ensuring data privacy and addressing the concerns associated with central-
ized data storage and processing. The traditional FL method FedAvg [35] aggregates model
weights sent from local clients on the server and downloads the aggregated model back to
the clients for further training. This iterative process continues until a satisfactory global
model is obtained. Although FedAvg is efficient and scalable, it assumes that data across
different clients are independently and identically distributed (IID), which is rarely met in
real-world scenarios. The presence of non-IID data, where data distributions vary signifi-
cantly between clients, can lead to challenges such as performance degradation in the global
model. To deal with this problem, FedProx [23] proposes a regularization term aimed at
minimizing the discrepancy between local models and the global model, thereby preventing
local models from deviating too far from their local training data. From the perspective of
global aggregation, FedAtt [15] enables flexible aggregation by adaptively assigning weights
according to the contribution of each local model to the global model. Besides, FedFed [45]
shares the performance-sensitive features to mitigate data heterogeneity while keeping the
performance-robust features locally. Unlike traditional FL methods, which train a global
model for all clients, clustered FL approaches group similar clients together for aggregation,
thereby reducing the impact of heterogeneity [7, 10]. For example, FedGroup [6] utilizes the
Euclidean distance of decomposed cosine similarity to cluster clients into multiple groups,
which effectively reduces the divergence between clients. Different from the above methods,
PFL proposes to train a personalized model suitable for the local data of each client. This
approach effectively addresses the issue of data heterogeneity in federated scenarios and
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has demonstrated promising performance in recent years [5]. Some PFL methods divide the
model into shared modules that participate in federated aggregation and private modules that
are retained locally [1, 27, 37]. For example, FedPer [1] shares the feature extractor as a
common base layer while retaining a private classifier to preserve local knowledge. Besides,
PerFedAvg [8] employs model-agnostic meta-learning to train a meta-model that generates
initial local models for each client, upon which the clients train personalized models with
local data. Additionally, pFedMe [40] utilizes Moreau envelopes to decouple the optimiza-
tion of personalized models from global model learning. FedALA [51] captures the desired
information in the global model for client models through adaptive local aggregation.

Due to the capability to preserve data privacy, FL has recently been applied to spatial-
temporal forecasting tasks in various studies. For example, FedGRU integrates FL with
gated recurrent units and adopts an ensemble clustering-based approach to capture the cor-
relations in traffic data. Furthermore, CNFGNN [36] models the temporal dependencies on
the client side, while capturing the spatial dependencies among clients through the GNN
on the server, where alternating optimization is employed to reduce communication costs.
Spatial-temporal data inherently exhibits temporal and spatial diversity, leading to data het-
erogeneity across different clients. To address this issue, some studies have employed PFL
to enhance model performance. For example, FedDA [49] employs a dual attention mecha-
nism to construct the global model by aggregating both intra-cluster and inter-cluster models,
rather than simply averaging the weights of local models. Besides, FML-ST [24] constructs
a global spatial-temporal graph based on meta-learning, where clients customize their mod-
els by evaluating the differences between the global graph and local graphs. Additionally,
FUELS [30] adaptively aligns positive and negative pairs based on semantic similarity and
incorporates auxiliary contrastive tasks to inject detailed spatial-temporal heterogeneity into
the latent representation space. To exploit the spatial relationships across clients, FedGTP
[44] performs adaptive learning of inter-client spatial dependencies.

However, the aforementioned methods fail to effectively leverage the underlying com-
mon knowledge (e.g., common traffic patterns) within spatial-temporal data across different
regions, and thus their performance could be limited. To address this issue, our FedTPS
extracts common traffic patterns from traffic data to capture global knowledge while retain-
ing personalized models.

3 Problem description

This section provides a formal definition of the setting for the federated TFP problem inves-
tigated in this study. The traffic road network of a city can be represented as an undirected
graph G = (V, E), where V represents the set of nodes, each corresponding to a traffic sensor
that records traffic data, and E represents the set of edges, which indicate the roads con-
necting these sensors. Additionally, A ∈ R

|V|×|V| represents the weighted adjacency matrix
depicting the proximity (e.g., geographical distance, causal dependencies, or traffic series
similarity) between nodes. The notation | · | denotes the cardinality of a set.

In practice, traffic sensors in different regions of a city are oftenmanaged by distinct traffic
administration departments. Suppose there are M traffic administration departments, each
governing one of theM regions. Then them-th (m = 1, 2, . . . , M) region is associated with a
subset of sensors Vm , forming a subgraph of the global traffic network Gm ⊆ G along with its
corresponding private dataset Dm = {X1, . . . ,Xt , . . . ,XT }, where Xt ∈ R

|Vm |×d represents
the observed d-dimensional features recorded by the sensors within the local traffic network
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Gm at time stamp t , and T represents the total number of time stamps. The objective is to
accurately predict the traffic flow at the locations of these sensors.

Most existing methods rely on centralized data collection, which is impractical due to
privacy restrictions on sharing traffic data across departments. In response, we propose using
FL to collaboratively train TFP models without exchanging private data. In federated TFP,
each traffic administration department can be considered as a client that trains a TFPmodel to
capture the spatial-temporal dependencies of traffic roads from historical traffic data recorded
by local sensors and make accurate predictions of future traffic flow. To be specific, the task
for the m-th client is to train a model fWm parameterized byWm such that it can predict the
traffic flow for the future T2 time stamps based on the historical T1 time stamps, namely

Xt−T1+1, . . . ,Xt
fWm−−→ Xt+1, . . . ,Xt+T2 . (1)

The objective of federated TPF is to collaboratively train TFP models across multiple
clients without compromising data privacy. The classic FL method, i.e., FedAvg [35], aggre-
gates model parameters at the server after local training according to the following formula:

W ←
M∑

m=1

|Vm |
|V| Wm . (2)

After aggregation, the global model is redistributed to clients for the subsequent training
round. However, due to the non-IID traffic data across different regions, this approach to
training a global TFP model for all clients often results in suboptimal performance. To
address this issue, PFL is implemented by training a customized model for each client to
enhance the performance on local traffic data. The objective of PFL can then be formulated
as

minW1,...,WM

1

M

M∑

m=1

|Vm |
|V| Lm (Wm,Dm) , (3)

where Lm is the loss function of the m-th client.

4 Methodology

This section provides a detailed explanation of the proposed FedTPS framework (see Fig. 2).
During the local training phase (see Fig. 2a), the model first decomposes the traffic flow to
extract stable traffic dynamics. Subsequently, the original traffic data and the obtained stable
traffic dynamics are fed into different encoders to obtain their corresponding representations.
Afterward, the representations of stable traffic dynamics are projected into a query space to
calculate the matching scores with the traffic patterns in the traffic pattern repository. Based
on the matching scores, the matched pattern is computed as a weighted sum of the patterns
in the repository. Finally, the representation of original traffic data is concatenated with the
matched traffic pattern and passed into the decoder to forecast future traffic flow. During this
process, the model of each client learns representative traffic patterns from the stable traffic
dynamics and stores them in the traffic pattern repository. During the global aggregation
phase (see Fig. 2b), the traffic pattern repository is uploaded to the server, where similarity-
aware aggregation is performed. By aligning and aggregating the traffic pattern repositories
from different clients, common traffic patterns are derived and redistributed to each client,
facilitating the sharing of global knowledge among clients. At the same time, the components
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Fig. 2 The framework of FedTPS.During the local training phase, stable traffic dynamics are extracted through
the decomposition of traffic flow and are further utilized to construct the traffic pattern repository consisting of
representative traffic patterns on each client. During the global aggregation phase, each client uploads the traffic
pattern repository to the server and shares the repository with other clients via similarity-aware aggregation
to derive common traffic patterns

that learn region-specific characteristics are retained locally as personalized modules. Next,
we detail the critical steps of FedTPS by presenting the graph convolutional recurrent unit
(GCRU) (see Sect. 4.1), explaining the extraction of traffic patterns (see Sect. 4.2), and
describing the sharing strategy of traffic patterns (see Sect. 4.3).

4.1 Adaptive graph convolutional recurrent unit

The inherent graph structure of traffic networks makes them highly compatible with models
that integrate GCN and GRU, enabling the simultaneous exploration of spatial and temporal
dependencies in traffic data [3, 26]. Based on this foundation, some methods [2, 16, 43] have
introduced adaptive adjacency matrices to model the dynamic spatial correlations within
traffic networks. Following these prior works, our local TFP model employs an encoder-
decoder architecture composed of GCRUs with an adaptive adjacency matrix, which can be
represented as

ut = σ(Gconvu(Xt ,Ht−1, Ã)), (4)

rt = σ(Gconvr (Xt ,Ht−1, Ã)), (5)

Ct = tanh(GconvC (Xt , (rt � Ht−1), Ã), (6)

Ht = ut � Ht−1 + (1 − ut ) � Ct , (7)

where Ã = softmax
(
ReLU(EE�)

) ∈ R
|Vm |×|Vm | denotes the adaptive adjacency matrix,

obtained based on learnable parameter E ∈ R
|Vm |×e. The notation Gconv(Xt ,Ht−1, Ã)

denotes the graph convolution operation over the current input Xt and the previous hidden
states Ht−1 ∈ R

|Vm |×h where h denotes the dimensionality of the hidden state of each node.
Here, the update gate, reset gate, and candidate state of GRU at time t are indicated by ut , rt ,
and Ct , respectively, while the corresponding graph convolution operations are, respectively
denoted asGconvu , Gconvr , andGconvC . The notationσ (·) represents an activation function,
such as the sigmoid function used in this paper, and� represents element-wise product. Note
that all the mathematical notations related to the m-th (m = 1, 2, . . . , M) client above and
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Fig. 3 Illustration of J -level DWT

hereinafter should be accompanied by the subscript m. However, to simplify the notation,
we omit the subscript m if no notational confusion is incurred.

4.2 Extraction of traffic patterns

Since common traffic patterns generally exhibit stable dynamics, we apply DWT to decom-
pose the traffic flow on each client and extract the low-frequency components that represent
these stable traffic dynamics. These stable dynamics are then utilized to construct a traffic
pattern repository during the local training phase. This repository serves as a collection of
representative traffic patterns that can be shared within the FL framework to derive common
traffic patterns for clients, thereby enhancing the collaborative learning process. The detailed
process will be outlined in the following part.

4.2.1 Decomposition of traffic flow

Since traffic flow is primarily influenced by human activities, traffic data from different
regions may share common traffic patterns [21]. Arising from similar functions of areas or
consistent travel behaviors, these patterns manifest as stable traffic dynamics. However, most
existing federated TFP methods [24, 30, 49] overlook the common traffic patterns across
different regions. In fact, these patterns represent underlying global knowledge that can
enhance TFP by capturing predictable and recurring traffic behaviors over time and across
locations. To bridge this gap, we propose extracting stable traffic dynamics from traffic data
across different regions. This approach facilitates clients in effectively learning representative
traffic patterns, which can be further utilized during aggregation to derive common traffic
patterns for clients.

To achieve this goal, we utilize DWT [9] to decompose the traffic data into waveforms
of different frequencies. The low-frequency component, which corresponds to stable traffic
dynamics, is expected to contain the common traffic patterns across regions. By isolating
these stable dynamics, we aim to capture the traffic patterns that can be shared among clients
for effective TFP. To be specific, given traffic data Z = [Xt−T1+1;Xt−T1+2; . . . ;Xt ] ∈
R
T1×|Vm |×d , the J -level DWT is performed to obtain the low-frequency component Z̄l

j and

high-frequency component Z̄h
j at the j-th level, namely

Z̄l
j = (↓ 2)( fg�Z̄l

j−1), (8)

Z̄h
j = (↓ 2)( fh�Z̄l

j−1), (9)
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where fg and fh represent the low-pass and high-pass filters of a 1D orthogonal wavelet,
respectively. The symbol � denotes the convolution operation and (↓ 2) represents naive
down-sampling halving the length of each component. The process of J -level DWT is illus-
trated in Fig. 3. To reduce the computation overhead, we only employ one-level DWT, which
can be performed as a preprocessing step prior to training. As a result, DWT will not com-
promise the efficiency and scalability of our method. The low-frequency component, which
represents stable traffic dynamics, is then transformed back to the time domain through
inverse DWT (IDWT), which reaches

Zl = f −1
g �(↑ 2)Z̄l

1, (10)

where f −1
g is the inverse low-pass filter and (↑ 2) denotes the naive up-sampling operation

doubling the length of each component. These low-frequency components capture the peri-
odicity and trends that remain relatively stable despite short-term fluctuations, which makes
them ideal for identifying common traffic patterns. In contrast, high-frequency components
aremore sensitive to region-specific, short-term fluctuations such as traffic incidents, weather
conditions, or sudden surges in traffic volume. By isolating the low-frequency components,
it becomes possible to focus on the more stable and generalizable aspects of traffic dynamics,
which are crucial for the extraction of representative traffic patterns.

After decomposition, the original traffic time series Z, which contains high-frequency
components, is fed into the original encoder to obtain the learned representationsHo

t . On the
other hand, the low-frequency component Zl is passed through a separate encoder, yielding
the learned representation of the stable traffic dynamics Hl

t .

4.2.2 Construction of traffic pattern repository

After learning the representations of stable traffic dynamics, we aim to leverage and share
the global knowledge contained within them across different clients in the FL framework.
However, since these stable traffic dynamics are derived by decomposing the raw data of
clients, directly sharing them may raise privacy concerns. More importantly, rather than
sharing all the stable dynamics, we aim to share only the common part of the stable traffic
dynamic. To achieve this, we further encode these stable traffic dynamics through learnable
parameters to obtain traffic patterns. Considering the observed variations in traffic patterns
across different traffic road networks [21], our goal is to learn a set of representative traffic
patterns for each client. These representative patterns capture the essential and generalized
traffic dynamics of regions, minimizing privacy concerns while still enabling the sharing of
common patterns for model training.

Due to the efficient ability to store and retrieve information, memory networks have
achieved notable success in fields such as computer vision [41] and anomaly detection [11,
17]. Their utility has recently extended to spatial-temporal data analysis [16, 21, 33] to
learn representative information. Drawing inspiration from memory networks, we construct
a learnable traffic pattern repository Wp ∈ R

N×c, where N and c denote the number of
the representative traffic patterns and the dimension of each pattern, respectively. To learn
representative traffic patterns from the data, we first project the stable traffic dynamics rep-
resentation Hl

t to a query space, which can be formulated as

Hq
t = Hl

tW
q . (11)

where Wq ∈ R
h×c is a learnable parameter matrix. The query matrix Hq

t ∈ R
|Vm |×c can

be further used to identify relevant patterns from the traffic pattern repository. Subsequently,
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we compute the matching scores between the query matrix and the patterns stored in the
repository. These scores are determined by the similarity between the query and the stored
patterns, which can be represented as

Q = softmax
(
Hq

t W
p�)

, (12)

where Q ∈ R
|Vm |×N is the matching score matrix. This operation allows us to quantify the

relevance of each stored pattern to the current query. Subsequently, we calculate the matched
traffic patterns Pt ∈ R

|Vm |×c as a weighted sum of the patterns inWp based on the computed
matching scores, and obtain

Pt = QWp. (13)

Finally, we concatenate thematched patternsPt with the representations of the original traffic
dataHo

t and feed them into the decoder to obtain predictionsZ′ = [Xt+1;Xt+2; . . . ;Xt+T2 ] ∈
R
T2×|Vm |×d , where �1 loss function is adopted to optimize the training process. The learn-

able parameters at the m-th client are denoted byWe1
m ,We2

m ,Wd
m ,W

q
m , andW

p
m , whereW

e1
m

and We2
m refer to the parameters of the original encoder and the pattern encoder, respec-

tively. Besides, Wd
m refers to the parameters of the decoder, Wq

m refers to the parameters
of the projector, and Wp

m refers to the learnable traffic pattern repository, which stores the
representative traffic patterns, and some of them can be shared across clients.

4.3 Sharing strategy of traffic pattern

In the FL framework, the server aggregates the models uploaded by clients and distributes the
aggregated model back to the clients for the next round of training. In the proposed FedTPS,
the model on the m-th client can be divided into two parts: the traffic pattern repositoryWp

m

that stores the representative traffic patterns and other modules (i.e., We1
m , We2

m , Wd
m , and

Wq
m) that learn the spatial-temporal dependencies of local traffic data. Building upon the

constructed traffic pattern repository, the core idea of FedTPS is to aggregate representative
traffic patterns from clients to derive common traffic patterns and share global knowledge,
while preserving personalized local learning. This strategy ensures that clients benefit from
the global knowledge of common traffic patterns while simultaneously refining personalized
models adapted to their unique local traffic conditions.

Furthermore, different from the widely adopted averaging aggregation [35], we propose
a similarity-aware aggregation strategy to enhance the alignment of traffic patterns across
different clients during the aggregation process. In particular, letWp

m[i] denote the i-th traffic
pattern in the repository of them-th client. The server computes the cosine similarity between
Wp

m[i] and the patterns from repositories of other clients. Afterward, the server selects and
aggregates the top-k most similar patterns from each client based on the cosine similarity,
where k is a hyperparameter fixed throughout the entire training process. The aggregation
process can be expressed as

W
p
m[i] ← 1

M

M∑

n=1

1

k

∑

j∈Sk

Wp
n [ j], (14)

where Sk indicates the set of k indices of the representative patterns in Wp
n that are most

similar toWp
m[i]. Afterward, the server redistributes the aggregated traffic pattern repository

to each client for the subsequent round of local training.
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Algorithm 1 FedTPS on the client side
Input: Historical traffic flow Z from private datasetDm ; number of local rounds R1; traffic pattern repository

W
p
m .

Output: Prediction of future traffic flow Z′.
1: Download traffic pattern repository W

p
m from the server;

2: Update the traffic pattern repository Wp
m ← W

p
m ;

3: for each local rounds r = 1, 2, . . . , R1 do
4: Compute low-frequency component Zl via Eqs. (8) and (10);
5: Compute the representations Ho

t and Hl
t via Eqs. (4)–(7);

6: Compute the matched pattern Pt via Eqs. (11)–(13);
7: Concate Ho

t and Pt , and predict future traffic flow Z′ through the decoder;
8: Update learnable parameters We1

m , We2
m , Wd

m , W
q
m , andW

p
m via gradient optimization;

9: end for
10: UploadWp

m to the server.

Algorithm 2 FedTPS on the server side
Input: Number of clients M ; number of communication rounds R2; number of selected patterns k; the traffic

pattern repository from each client.
Output: Traffic pattern repository W

p
m for client m.

1: Initialize the global traffic pattern repository W
p(1)

;
2: for each communication round r = 1, 2, . . . , R2 do
3: for client m ∈ {1, 2, · · · , M} in parallel do
4: if r = 1 then
5: Send W

p(1)
to client m;

6: else
7: W

p(r)
m ← aggregateWp(r)

1:M via Eq. (14);

8: Send W
p(r)
m to client m;

9: end if
10: Perform Algorithm 1 on client m;
11: end for
12: end for

Through iterative training and aggregation of traffic pattern repositories, common traffic
patterns provide additional global knowledge that enhances the TFP process. This enables
the clients to gain a generalized understanding of traffic dynamics across different regions. At
the same time, the other components of the model, which focus on learning region-specific
spatial-temporal dependencies, are excluded from the aggregation process. This strategy
enables clients to learn personalized models, allowing the model to benefit from common
traffic patternswhile learning regional characteristics.Moreover, it helpsmitigate the negative
impact of regional discrepancies in the FL framework.

In summary, our proposedmethod of traffic pattern extraction and sharing strategy enables
the FL framework to leverage these common patterns to enhance TFP while maintaining
model personalization for each client. By integrating global knowledge from common traffic
patterns with region-specific characteristics learned from personalized models, our approach
enhances the ability of the model to predict traffic dynamics for clients of different regions.
The detailed implementation of our FedTPS framework for the client side and the server side
is provided in Algorithms 1 and 2, respectively.
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Fig. 4 The performance of various methods on four datasets, with varied client numbers

Table 1 Dataset statistics

Datasets # Samples # Nodes Sample rate (mins) Time span

PEMS03 26,208 358 5 09/2018–11/2018

PEMS04 16,992 307 5 01/2018–02/2018

PEMS07 28,224 883 5 05/2017–08/2017

PEMS08 17,856 170 5 07/2016–08/2016

5 Experiments

To evaluate the effectiveness of our proposed model, we perform a series of comparative
experiments on four real-world highway traffic datasets in FL scenarios. In this section, we
first introduce the experimental settings, including details on the datasets, evaluation met-
rics, baseline methods, and implementation. Subsequently, we present the comprehensive
experimental results, including performance comparison, resource overhead analysis, abla-
tion study, parametric sensitivity analysis, and case study.

5.1 Experimental setup

5.1.1 Datasets description and preprocessing

We evaluate the effectiveness of our proposed FedTPS on four widely used datasets for
TFP, including PEMS03, PEMS04, PEMS07, and PEMS08. These datasets contain traffic
flow information gathered by California Transportation Agencies (CalTrans) Performance
Measurement System (PeMS) [4], where the numeric identifiers correspond to the district
code. The overview of the statistical details of these datasets is listed in Table 1.
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In line with the practice of previous methods [12], we divide the datasets into training
set, validation set, and test set in chronological order with the ratio of 6 : 2 : 2. For each of
the four datasets, we use the traffic data from the past 12 time stamps to predict the traffic
flow for the upcoming 12 time stamps. Before training, we apply a standard normalization
procedure to the datasets to ensure a stable training process. To simulate the FL scenario,
we employ the graph partitioning algorithm, i.e., METIS [18] to evenly partition the global
traffic road network, with each client assigned a subgraph of the global traffic road network.
This partitioning restricts each client to localized data, simulating a realistic decentralized
learning environment.

5.1.2 Evaluation metrics

In this paper, we use three widely adopted evaluation metrics to assess the performance
of different methods in the TFP task: mean absolute error (MAE), root mean square error
(RMSE), and mean absolute percentage error (MAPE), which are defined as follows:

MAE = 1

T

T∑

t=1

∣∣∣Xt − X̂t

∣∣∣ , (15)

RMSE =
√√√√ 1

T

T∑

t=1

(
Xt − X̂t

)2
, (16)

MAPE = 1

T

T∑

t=1

∣∣∣∣∣
Xt − X̂t

Xt

∣∣∣∣∣ , (17)

where Xt denotes the ground truth of all nodes at time stamp t and X̂t denotes the prediction
value. We evaluate the performance of the TFP task on the client side, and then average the
performances across all clients.

5.1.3 Baseline methods

Unlike previous node-level federated TFP methods [32, 36], where each sensor is treated
as an independent client, our approach targets subgraph-level federated TFP tasks. In this
setting, each client possesses a subset of sensors, representing a region of the global traffic
network. To ensure a fair comparison, we evaluate our method against the following nine
baseline methods:

• Local This baseline method represents a scenario where all clients train their models
independently without any sharing of model parameters. Each client updates its model
based solely on its own local data, and there is no communication between clients during
the training process.

• FedAvg [35] FedAvg is the classical FL algorithm that aggregates the locally updated
models by applying a simple averaging strategy. After each round of local training, the
averaged model is redistributed to all clients for further updates.

• FedProx [23] FedProx is a FL algorithm that incorporates a proximal term in the local
training objective. This term prevents the local models from deviating too far from the
global model, which ensures convergence and stability in heterogeneous data settings.
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• FedAtt [15] FedAtt is a FL algorithm that employs an attention mechanism to weigh
the aggregation of local model parameters. By assigning different importance to local
models, it enables a flexible model aggregation.

• FedGroup [6] FedGroup is a FL framework that groups clients based on the similarity
between their parameter updates. It employs a data-driven measure to efficiently cluster
clients, mitigating the concentration phenomenon in high-dimensional data clustering.

• FedPer [1] FedPer is a PFL algorithm that shares common base layers across clients
while keeping personalized layers locally. This strategy allows clients to benefit from
global knowledge while maintaining model customizations.

• PerFedAvg [8] PerFedAvg is a PFL algorithm where an initial model is trained in a
federated manner and subsequently fine-tuned to adapt to the local data of each client.

• pFedMe [40] pFedMe is a PFL algorithm that utilizes the global model to optimize
personalized models for each client by updating personalized models through a meta-
learning approach.

• FedALA [51] FedALA is a PFL algorithm that adaptively aggregates the global and local
models to align with the local objective of each client. It seeks to strike a balance between
global knowledge and local adaptation by adjusting the aggregation process.

5.1.4 Implementation details

In our encoder-decoder architecture, both the encoder and decoder modules are designed
with 64 GCRUs. To ensure a fair comparison, all baseline methods adopt the same encoder-
decoder architecture as the localmodel. For the traffic pattern repository, we set the dimension
of each traffic pattern c to 64 and the size of the traffic pattern repository N to 40 for PEMS07
and 20 for PEMS03, PEMS04, and PEMS08, respectively. The number of selected patterns k
in the aggregation process is set to 2.We employ the Adam optimizer [19] with a learning rate
of 0.001 and the batch size is set to 128. The local training epochs and global communication
rounds are fixed to 1 and 200, respectively, for all FL methods. The default number of clients
is set to 4. All methods are implemented using Python 3.8.8 and PyTorch 1.9.1, with all
experiments conducted on one GeForce RTX 3090 GPU.

5.2 Performance comparison

We present the comparison of the prediction performance between FedTPS and nine baseline
methods across four datasets. As shown in Table 2, our proposed FedTPS outperforms the
baseline methods in most cases. This improvement can be attributed to the ability of FedTPS
to effectively share common traffic patterns across different clients, which facilitates collabo-
rative model training while minimizing the adverse effects of regional discrepancies in traffic
data. Furthermore, when compared with Local, conventional FL methods (i.e., FedAvg, Fed-
Prox, and FedAtt) show a noticeable performance decline, which may be attributed to the
heterogeneity of traffic data across different clients. Since these conventional methods train
a global model for all clients, they are insufficient in capturing region-specific traffic char-
acteristics, leading to performance degradation. Differently, PFL methods train customized
models for each client, allowing them to achieve better performance by learning the unique
traffic characteristics for each region. This highlights the importance of personalization in
FL, particularly for tasks like TFP, where data are collected at varying times and locations,
resulting in significant data heterogeneity.
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Fig. 5 Effect of DWT on four datasets. N, Not using DWT; B, Biorthogonal; C, Coiflets; D, Daubechies; H,
Haar; S, Symlets

We further investigate the impact of varying numbers of clients on the performance of
FedTPS. The prediction performance of different methods in FL framework with different
numbers of clients across four datasets is presented in Fig. 4. It can be observed that, as the
number of clients increases, the performance of most methods tends to degrade. Since the
data amount of the dataset is constant, increasing the number of clients leads to the lack of
local data and the loss of correlation information between traffic roads, thereby hindering
the training of local models. Despite this, FedTPS usually demonstrates strong performance
by leveraging the common traffic patterns across different clients to enhance model training.
This highlights the effectiveness of our proposed method under the FL frameworks, even as
the number of clients increases.

5.3 Resource overhead

In addition to model prediction performance, resource overhead is a critical factor for prac-
tical deployment, particularly in FL scenarios where client resources may be constrained.
We measure the computation overhead (i.e., the training time per communication round)
and communication overhead (i.e., the parameters transmitted per communication round) of
different methods on the PEMS08 dataset. As shown in Table 3, FedTPS requires 0.81min
per communication round, with the primary additional computation overhead arising from
local updates for the pattern encoder and the traffic pattern repository. Compared with tradi-
tional FLmethods, FedTPS only incurs an additional 0.05–0.25min, resulting in a significant
improvement in prediction performance. While perFedAvg and pFedMe also demonstrate
good performance, they require additional training steps to personalize the local model,
making training time longer than FedTPS.

Regarding communication overhead, although there are differences in training and aggre-
gation strategies, most methods upload and download all model parameters during each
communication round, resulting in communication overhead consistent with FedAvg. In
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Table 3 Comparison of the computation overhead and the communication overhead of different methods on
PEMS08 dataset

Method Computation (time/round) (min) Communication (Param./round) (KB)

Local 0.55 –

FedAvg [35] 0.56 2364

FedProx [23] 0.69 2364

FedAtt [15] 0.76 2364

FedGroup [6] 0.60 2364

FedPer [1] 0.59 1174

PerFedAvg [8] 1.16 2364

pFedMe [40] 3.29 2364

FedALA [51] 0.68 2364

FedTPS 0.81 40

contrast, FedPer transmits the common base layers of the model and retains the personal-
ized layers locally, therefore reducing communication overhead. FedTPS only uploads and
downloads the traffic pattern repository, which contains the common traffic patterns, rather
than all model parameters during each communication round. This reduces communication
overhead substantially while maintaining encouraging performance.

5.4 Ablation study

Our proposedFedTPS integrates global knowledge sharing and localmodel personalization to
enhancemodel performance. As described in Sect. 4, FedTPS leverages DWTdecomposition
to extract stable traffic dynamics, which are then used to learn representative traffic patterns.
Meanwhile, clients retain themodules that learn spatial-temporal dependencies locally,which
ensures personalized model adaptation while sharing only traffic pattern repositories for
collaborative learning. To illustrate the contributions of these two modules, we conduct a
series of ablation studies.

5.4.1 Effectiveness of DWT decomposition

To evaluate the effectiveness of our proposed DWT decomposition, we conduct a series of
ablation studies across four datasets comparing the performance of themodelswith orwithout
DWT. In the variant without DWT, the model directly feeds the original traffic data into the
pattern encoder without performing any wavelet decomposition. Additionally, we investigate
the impact of different wavelet bases in the variants with DWT, including Biorthogonal,
Coiflets, Daubechies, Haar, and Symlets. As illustrated in Fig. 5, compared with the variant
without DWT, applying DWT to decompose the traffic data enhances the performance across
all datasets. This improvement can be attributed to the ability of DWT to isolate stable
traffic dynamics, which facilitates the identification of common traffic patterns effectively.
The server aggregates the traffic pattern repositories from the clients to derive common
traffic patterns, thereby providing global knowledge to enhance model training. Furthermore,
we observe that the choice of wavelet bases influences the model performance across the
datasets. Specifically, Daubechies and Haar wavelets demonstrate the best performance for
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PEMS03 and PEMS08 datasets, Coiflets wavelets yield the optimal results for PEMS04, and
Biorthogonal wavelets are most effective for PEMS07.

5.4.2 Effectiveness of traffic pattern sharing strategy

To evaluate the contribution of the proposed traffic pattern sharing strategywith the similarity-
aware aggregation, we conduct a comparative analysis between FedTPS and its variants.
These variants differ in terms of which components of the local model are shared across
clients, where the same aggregation method as FedAvg [35] is adopted. As shown in Table 4,
on most datasets, the aggregation strategy that shares encoder-decoder parameters (i.e., “ED”
inTable 4) results in a performance degradation comparedwith the strategy that does not share
parameters (i.e., “None” in Table 4). This suggests that directly sharing model parameters
of clients across different regions can introduce the interference of region-specific charac-
teristics from other clients, which disrupts the model ability to effectively learn from local
data. Although the variant that shares all parameters (i.e., “All” in Table 4) can somewhat
mitigate the performance decline with the help of common traffic patterns, it is still inevitably
influenced by discrepancies of different regions. This indicates that a direct sharing of all
model parameters across clients,without distinguishing between common and region-specific
knowledge, is insufficient to overcome the heterogeneity of traffic data from different regions.

Differently, the strategy that shares traffic pattern repositories (i.e., “PR” in Table 4)
demonstrates good performance since it only aggregates the traffic pattern repositories to
benefit from common traffic patterns, while keeping other model components locally. This
allows clients to retain region-specific knowledge in a personalized manner, which enhances
the overall model ability to adapt to local variations in traffic dynamics while still benefiting
from the global knowledge contained in common traffic patterns. Furthermore, unlike the
model variants using averaging-based aggregation (i.e., “None”, “All”, “ED”, and “PR” in
Table 4), our proposed FedTPS that employs similarity-aware aggregation outperforms the
others. By aligning the traffic patterns fromdifferent regions based on their similarity, FedTPS
effectively reduces the negative effects of regional discrepancies. This alignment improves
the model ability to integrate and share knowledge, thereby showing improved performance.

5.5 Parametric sensitivity

In the proposed FedTPS framework, there are two key hyperparameters that require manual
tuning, i.e., the size of the traffic pattern repository N , and the number of selected patterns
k during the aggregation process. In this section, we analyze in detail the impact of these
hyperparameters on model performance.

The effect of varying the size of the traffic pattern repository N is shown in Fig. 6. It can be
observed that the optimal value of N is closely related to the number of traffic sensors in the
datasets. Specifically, datasets with a large number of sensors tend to benefit from a large size
repository of traffic patterns. For instance, in thePEMS07 dataset, which contains a relatively
high number of sensors, the performance improves as the size of the traffic pattern repository
N increases. This is due to the presence of a great variety of traffic patterns in large-scale
datasets, which necessitates a large repository to effectively learn and store the representative
traffic patterns. Conversely, for small datasets with fewer sensors, such as PEMS08 dataset,
a large repository size is unnecessary, as a small set of traffic patterns is sufficient to capture
the traffic pattern.

123



H. Zhou et al.

Ta
bl
e
4

C
om

pa
ra
tiv

e
an
al
ys
is
of

di
ff
er
en
ts
ha
ri
ng

st
ra
te
gi
es

Sh
ar
ed

C
om

po
ne
nt

P
E
M
S0

3
P
E
M
S0

4
P
E
M
S0

7
P
E
M
S0

8

M
A
E

R
M
SE

M
A
PE

/%
M
A
E

R
M
SE

M
A
PE

/%
M
A
E

R
M
SE

M
A
PE

/%
M
A
E

R
M
SE

M
A
PE

/%

N
on

e
15

.2
9

26
.3
0

15
.0
4

19
.6
5

31
.6
9

12
.7
8

23
.5
4

37
.0
7

9.
94

15
.9
0

25
.0
6

10
.5
6

A
ll

15
.2
4

26
.1
8

15
.2
2

20
.1
9

31
.9
8

13
.2
9

23
.3
3

36
.2
8

10
.4
7

15
.9
8

24
.9
2

10
.7
2

E
D

15
.3
8

26
.4
6

15
.1
9

20
.5
5

32
.4
8

14
.1
1

24
.3
7

37
.1
1

11
.6
7

16
.2
8

25
.2
8

11
.4
4

PR
15

.1
3

26
.3
3

14
.8
7

19
.5
9

31
.6
0

12
.6
8

22
.6
1

35
.6
7

9.
63

15
.8
7

24
.9
7

10
.3
3

Fe
dT

PS
15

.0
5

25
.9
4

14
.7
0

19
.4
6

31
.1
8

12
.6
7

21
.7
4

34
.5
7

9.
16

15
.8
1

24
.9
1

10
.2
8

T
he

be
st
re
su
lts

ar
e
hi
gh
lig

ht
ed

in
bo
ld
fa
ce

N
on
e,
N
on
pa
ra
m
et
er

sh
ar
in
g;

A
ll,

Sh
ar
in
g
al
lp

ar
am

et
er
s;
E
D
,S

ha
ri
ng

en
co
de
r–
de
co
de
r
pa
ra
m
et
er
s;
PR

,S
ha
ri
ng

th
e
tr
af
fic

pa
tte
rn

re
po
si
to
ry

123



FedTPS: traffic pattern sharing for personalized federated…

Fig. 6 Sensitivity analysis of the pattern number N in different datasets

Fig. 7 Sensitivity analysis of the number of selected patterns k during aggregation in different datasets

The impact of varying k on model performance is shown in Fig. 7. We observe that our
model achieves the best performance across all datasets when the number of selected patterns
k is set to 2. When k is too small, FedTPS may fail to capture sufficient common patterns,
limiting effective knowledge sharing between clients. On the other hand, when k is set too
large, the aggregation process may lead tomisalignment in shared knowledge and suboptimal
model performance.

5.6 Case study

To further explore the interpretability and effectiveness of the common traffic patterns learned
by FedTPS,we analyze thematched traffic patterns across different time stamps and locations
on PEMS08 dataset. First, we use t-distributed Stochastic Neighbor Embedding (t-SNE) to
visualize thematched traffic patterns for traffic data at different times of the day in Fig. 8a.We
observe that the matched traffic patterns exhibit clear daily periodicity. This aligns well with
consistent travel behaviors, indicating that FedTPS can effectively learn regular temporal
characteristics of common traffic patterns from historical traffic data. Secondly, we visualize
thematched traffic patterns of traffic data recorded by sensors from different clients in Fig. 8b.
Although these sensors are located in different regions, some of them tend to cluster together.
This is due to similar temporal characteristics present in the traffic flow of different regions.
FedTPS can effectively leverage the traffic pattern repository to share such global knowledge
in the form of common traffic patterns across different clients.

To provide a detailed illustration, we visualize the traffic flow recorded by sensors from
different clients, along with their corresponding matching scores of traffic pattern repository
in Fig. 9. For time window 1 (i.e., the period from 6:30 am to 7:30 am), the traffic flows
recorded by the sensors from clients 1, 2, and 3 exhibit consistent trends, resulting in similar
matching scores with the traffic pattern repository. The traffic flow recorded by the sensor
from client 4 shows noticeable differences when compared with other traffic flow records,
which is also reflected in its matching scores. Likewise, for time window 2 (i.e., the period
from6:00 pm to 7:00 pm), the traffic flows recorded by the sensors from clients 3 and 4 display
similar characteristics, and their matching scores also align closely, whereas the matching
scores of clients 1 and 2 differ from the others. These visualizations provide further insight
into the interpretability of FedTPS and demonstrate its ability to share and utilize common
traffic patterns effectively across clients.
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Fig. 8 The visualization of matched traffic patterns for traffic data across different time stamps and locations
on PEMS08 dataset

Fig. 9 The visualization of traffic flow and matching scores from different clients on PEMS08 dataset

6 Conclusion

In this paper, we introduce FedTPS, a novel PFL framework designed to address the chal-
lenge of data heterogeneity in federated TFP. Different from previous works that overlook
the underlying global knowledge represented by common traffic patterns across regions, the
proposed FedTPS decomposes traffic data to extract stable traffic dynamics for learning rep-
resentative traffic patterns. Additionally, by incorporating the similarity-aware aggregation
strategy, our framework enables clients to leverage common traffic patterns from different
regions, which enhances global knowledge sharing while preserving local spatial-temporal
dependencies to maintain region-specific characteristics. This balance between collabora-
tive learning and personalization allows FedTPS to effectively mitigate the adverse effects
of heterogeneous data. Intensive experiments conducted on four widely-used TFP datasets
confirm the effectiveness and superiority of our FedTPS over multiple baseline methods.
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