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Abstract—Acquiring labeled training examples for hyperspec-
tral images (HSI) is an expensive task, and even labeling one more
pixel requires a real-time field survey of tens of square meters.
Therefore, it is highly demanded to achieve satisfactory accuracy
for an HSI classification method when the number of labeled
examples is extremely limited. However, most of existing methods
lack the ability to handle extremely sparse labeled data. To
overcome this issue, we propose a novel graph-based framework
for HSI classification, termed “Dynamic Spectral-Spatial Poisson
Learning” (DSSPL). Specifically, three measures are utilized to
enable the proposed model suitable for the situation of extremely
limited labeled data. First, Poisson Learning (PL) is adopted
for predicting labels on a graph, as it can prevent undesirable
constant output labels of traditional label propagation methods
and generate more informative label determinations. Second,
spectral and spatial graphs are constructed from various features
and fused to build a spectral-spatial graph, which exploits
comprehensive connective relationships among pixels. Third, in
each iteration, the fused graph is dynamically updated by feeding
back the up-to-date label information generated by each iteration.
The feedback strategy progressively refines the fused graph, and
the propagation on updated graph in turn improves output labels
iteratively. Intensive experimental results on three public datasets
demonstrate that the proposed DSSPL significantly outperforms
other state-of-the-art HSI classification methods when very few
pixels (e.g., 3, 5, or 10 of each class) are labeled.

Index Terms—Hyperspectral image (HSI) classification, Semi-
supervised learning, Poisson Learning, Graph updating.

I. INTRODUCTION

PERSPECTRAL image (HSI) classification aims to clas-
sify every pixel (i.e., example) in a given HSI into some
pre-defined land-cover types (i.e., classes) such as grassland,
road, water, etc. To conduct HSI classification, one has to
manually label part of examples for training classifiers, which
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requires expensive real-time survey and image interpretation
by professionals. Up to now, lots of existing HSI classification
methods can achieve more than 99% overall accuracy when
there are sufficient labeled pixels [1]-[5].

Nevertheless, the performance of most methods will be
largely degraded when the number of labeled pixels decreases.
For example, deep neural networks have the ability to learn
more complex models than shallow ones [6]. Several deep
learning-based methods have been widely developed for HSI
classification. However, when there are only limited labeled
pixels, the deep learning-based models could easily be trained
to zero training error by simply “memorizing” the training
set without any generalization ability. This phenomenon has
been theoretically studied in [7] and empirically verified in [8].
Therefore, it is important to develop classification methods
with satisfactory performance when there are only limited
labeled examples. Many methods have been proposed to
address the abovementioned over-fitting problem. For instance,
some methods improve the generalization ability via using
different data augmentation strategies, including image patch
transformation [1], adding regularization operators [9], and
extending the pixel neighborhood information [10], [11]. In
addition, some methods conduct the dimensionality reduction
or feature extraction in the pre-processing phase to improve
the classification accuracy [12]-[14]. However, as discussed
in [10], these methods largely increase the computational
complexity and still obtain unsatisfactory performance when
the label rate is very low.

Except for the above supervised methods, some semi-
supervised methods have also been proposed to utilize only
a handful of labeled examples (usually ~30 in each class)
along with the remaining massive unlabeled examples for HSI
classification [15]-[17]. In addition, few-shot learning [18] is
adopted to construct a global representation from the labeled
examples in base classes to aid the learning of scarce labeled
examples in new classes. However, in some cases, due to the
limitations in imaging such as bad atmospheric conditions
and geographical factors (e.g., border or other inaccessible
regions), it is still difficult to collect ~30 labeled examples for
each class. In such extreme conditions, as reported in our ex-
periments, a conventional semi-supervised method [19] could
not achieve satisfactory classification performance due to the
very limited supervisory information. Therefore, designing a
new algorithm that still works with extremely scarce labeled
pixels (e.g., 3 ~ 10 in each class) is highly demanded.
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Currently, graph-based semi-supervised methods [15]-[17]
have widely been applied in solving the issue of small-sized
labeled data. Among them, the examples are represented by
graph nodes, and the label information is propagated from the
labeled nodes to the unlabeled ones via graph edges under
the regularization of graph smoothness. However, traditional
semi-supervised methods still face two main challenges at
extremely low label rates. The first challenge is that traditional
propagation algorithms degenerate at an extremely low label
rate [20], [21]. The second one is that graph propagation is
usually conducted on a single and fixed graph [15], [16]. To
solve the above challenges, in this paper we propose a graph-
based “Dynamic Spectral-Spatial Poisson Learning” (DSSPL)
algorithm. Specifically, DSSPL includes three novel proce-
dures to fully exploit the very limited supervisory information,
which are:

1) Poisson Learning (PL) [22] is employed for propagat-
ing labels on graphs. In the situation of scarce la-
beled examples, traditional Laplace equation based label
propagation methods [15], [17], [19] will produce an
almost constant solution, so the “propagation power” of
scarce labels is quite limited, leading to nearly constant
label values on unlabeled examples with sharp spikes
at the labeled examples. To address this issue, PL is
utilized as it can remove average label values and center
the labels of all examples at zero when conducting
label propagation. Therefore, the propagation power is
strengthened and unlabeled examples can receive proper
label assignments.

2) Spectral and spatial graphs are constructed and then
fused in the iterative label propagation procedure.
Specifically, DSSPL constructs two different graphs ac-
cording to the spectral and spatial feature similarities
of HSI. As a sequel, the global and local connective
relationships among pixels can be fully exploited, and
then the two graphs are fused according to the label
propagation results in each iteration.

3) A feedback strategy is proposed by our DSSPL to dy-
namically update the fused graph according to the label
information generated by each iteration. Specifically, due
to the extremely limited labeled examples, the similar-
ities between pairwise examples revealed by the initial
graph are inaccurate for classifying unlabeled examples.
Consequently, DSSPL refines the graph by strengthening
the correlation among examples with similar labels in a
feedback way, and the updated graph in turn improves
the label propagation results. Thus graph refinement and
label determinations reinforce each other iteratively and
make up for insufficient supervisory information.

In summary, our DSSPL adapts to the small-sized training
example problem by employing the PL scheme, fusing the
spatial and spectral graphs, and designing a feedback strategy
for graph updating.

The remainder of this paper is organized as follows: The
related works on HSI classification are briefly reviewed in Sec-
tion II. Section III describes the details of the proposed DSSPL
and explains the key procedures including graph construction,

spectral-spatial graph fusion, and dynamic graph updating with
feedback. Section IV computes the time complexity of the
proposed DSSPL. In Section V, the experimental results of
DSSPL are shown when compared with seven representative
HSI classification methods on three public HSI datasets.
Finally, Section VI concludes the entire paper.

II. RELATED WORKS

In this section, we briefly review existing methods for
solving the small-sized labeled examples problem in HSI
classification, and introduce the typical learning algorithms on
graph.

A. Small-Sized Example Problem in HSI Classification

There are two main groups of methods proposed to handle
the situation where only limited training examples are avail-
able for HSI classification, namely graph-based and pseudo
labeling methods.

Graph-based methods usually follow the semi-supervised
paradigm. Camp-Valls er al. [23] firstly introduced graph-
based semi-supervised learning into HSI classification, which
assigns relative importance values to the labeled examples
by using a kernel-based graph. To avoid the inference of
data noise, researchers constructed sparse graphs [24], [25]
to select more discriminative neighbors in the feature space.
In addition, graph construction was improved by graph fusion
and hypergraph construction methods [26], [27]. For instance,
Liao et al. [26] proposed a local graph-based fusion method
to integrate spectral and spatial graphs, which yields a clear
improvement over the prior approaches. Liu et al. [27] adopted
low-rank representation to represent HSI data and constructed
a hypergraph model to effectively capture high-order relation-
ships among examples. However, most of the above methods
focus on extracting effective features from HSIs based on fixed
graphs, which do not contain a graph updating procedure to
further improve HSI classification performance.

Pseudo labeling has also been used for addressing the
small-sized labeled data problem. For example, considering
the fact that deep learning methods generally require a large
number of labeled examples, Wu et al. [28] proposed a deep
convolutional recurrent neural networks by using the pseudo
labels for HSI classification. To extract pseudo labels with
high quality, a constrained Dirichlet process mixture model
was proposed, and then the network was pre-trained using
pseudo labels and fine-tuned on limited labeled examples.
Besides, Sellars et al. [29] proposed a graph-based learning
method with superpixel-based pseudo labeling for HSI clas-
sification with a low label rate. The main concept is that the
pixels belonging to the same superpixel may share the same
labels with a high probability, therefore pseudo labels were
decided according to image segmentation results, and graph-
based learning was then conducted for final classification.
However, inaccurate pseudo labels will cause an accumulation
of classification error, and thus the labels should be carefully
decided.
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Fig. 1. The framework of our proposed DSSPL. (a) represents superpixels segmented on the original HSI. (b) denotes the construction of spectral and spatial
graphs based on three features extracted from superpixels. In the iteration process, (c) and (d) constitute an iterative process, where (c) updates the fused
graph by combining spectral and spatial graphs according to the updated labels in a feedback way, and (d) represents the Poisson Learning process for label

propagation on the fused graph.

B. Learning on Graphs

Graph theory has been utilized to solve various machine
learning problems, such as classification [30]-[32], cluster-
ing [33], and dimension reduction [34]. Due to the ability
to represent data manifold and encoding pairwise similarities
between examples, graph-based label propagation is a com-
mon strategy to solve semi-supervised learning problems. In
this case, labels from scarce labeled data are propagated to
unlabeled ones over a graph [35].

There are several algorithms proposed for single graph input
such as Gaussian Field and Harmonic Functions (GFHF) [19]
and Flexible Manifold Embedding (FME) [36]. To handle
ambiguous examples, Gong et al. [37] introduced a local
smoothness term called deformed graph Laplacian, which
effectively prevented erroneous label propagation by suppress-
ing the labels of ambiguous examples. A Teaching-to-Learn
and Learning-to-Teach label propagation strategy was then
proposed in [38], where label propagation was conducted
from simple examples to more difficult ones to avoid tack-
ling ambiguous examples in the primary propagation stage.
In addition, lots of graph-based neural networks were also
proposed for classification on graph nodes. For example,
Gori et al. [39] first introduced the concept of Graph Neural
Network (GNN), which can aggregate the node features in a
graph and properly embed the entire graph in a new discrimi-
native space. Bruna et al. [40] proposed graph-based analogues
of convolutional architectures, called Graph Convolutional
Network (GCN), which reduced the number of parameters in
GNN without worsening the testing error. Afterwards, a lot of
modification methods of GCN were proposed, such as [41]-
[43]. In [44], a GCN model is constructed using the multi-

layer convolutional features extracted by a pre-trained CNN,
which can mine the CNN-GCN contextual information from
hyperspectral image patches.

Moreover, due to the fact that a single graph cannot han-
dle the data with multiple types of features, several multi-
graph fusion methods are proposed to handle the multi-view
data and improve the classification result. For example, an
adaptive multi-modal graph fusion method was proposed by
Cai et al. [45], which integrates heterogeneous visual features
by learning a commonly shared class indicator matrix and
graph weights simultaneously. Karasuyama et al. [46] pro-
posed a linear combination method of multiple graphs with
sparse weights, in which the sparse weights are beneficial
for eliminating irrelevant graphs and identify important ones.
In [47], [48], curriculum learning was employed for multi-
modal learning. Specifically, each modality is associated with
a “teacher”, and all the teachers cooperate with each other
to establish an accurate curriculum sequence and improve
label propagation quality. These multiple graph-based learn-
ing methods have been proved to outperform the learning
approaches on a single graph. In our proposed DSSPL, a
graph fusion process is implemented from the spectral and
spatial graphs for HSI classification, and the fusion guides the
label propagation process, forming a unified framework that
iteratively refines pixel labels and updates the fused graphs.

II1. THE PROPOSED METHOD

This section provides the details of our proposed DSSPL
method. Fig. 1 presents the overall diagram of DSSPL, which
consists of four stages. Firstly, the original HSI is over-
segmented to a certain amount of compact small regions
(Section III-A). Secondly, the spectral graph and spatial graph
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are respectively constructed based on different features (Sec-
tion III-B). Thirdly, PL is exploited for label propagation
on a graph with scarce labeled examples (Section III-C).
Finally, spectral graph and spatial graph are fused and updated
according to a feedback strategy (Section III-D). These two
stages of label propagation and graph updating alternate and
compose an iterative process, which is the core component of
our DSSPL.

A. Superpixel Generation

First of all, a segmentation process is conducted on the origi-
nal HSI to generate compact image regions (a.k.a. superpixels),
in which Simple Linear Iterative Clustering (SLIC) [49] is
adopted to produce homogeneous regions containing spatial
neighboring pixels with very similar spectral features. SLIC
initializes cluster centers by sampling pixels at a regular grid,
then repeatedly assigns pixels to the best matching centers
and computes new cluster centers. After segmentation, each
superpixel is regarded as a graph node, and the features of
the superpixels are extracted for graph construction. In this
way, the number of graph nodes can be largely reduced, and
thus the heavy computational burden is alleviated. It should be
noted that if one superpixel contains the most pixels belonging
to a certain class, then this class label is assigned to the whole
superpixel. In HSI classification, image segmentation has been
proved to produce better classification maps than directly using
raw HSI data [50], [51].

B. Graph Construction

After superpixel generation on an HSI, NV superpixels are
obtained which are denoted by {S;}¥ ;. Each superpixel S;
contains n; pixels. The spectral feature of the j-th pixel in S;
is denoted as x;;, which is the original spectral reflectance of
each pixel in the raw HSI data. The position of the j-th pixel
is denoted as p;; (j = 1,2,...,n;). For each superpixel 5;,
its local spectral feature £;7°°, spatial location feature f;” at
and contextual spectral feature f{ are extracted by deploying
the mean of spectral features, mean of pixel locations, and
weighted combination of neighbor spectral features [29], [52],
which are:

n;

1
Spec
7= — > xij
ng <
J=1
1 &
spat __
£ = — E Pijs (1)
n; <
J=1
spec
fr= > i £,
S EeN=Pat(S;)

where A/$P9%(S;) denotes the set containing all the adjacent
superpixels of S;, and £7°°, £77" and f{ are column vectors.
The coefficient «;; is defined according to the distance be-
tween the spatial location features of superpixels S; and S,
which is computed by:

exp(— |17 — £57|)

Qi =
ZS]‘ENST"""(Si) eXp(— ‘

Q)
)

spat spat
|£7790 — £

Then the complete feature vector f; characterizing S; is
obtained by cascading the above features, namely:

£ = 67 677 £, )

where “[-;-;-]” denotes the operation of vector concatenation
in column. After feature normalization, the similarity between
the two superpixels S; and .S; can be expressed as:

wy = exp (41 — 5 /d(EN(S))?) . @)

where d(f;, Ny (S;)) is the Euclidean distance between f; and
the feature vector of the k-th nearest neighbor of S;. It is
noteworthy that f7°° and f?** are both “inner-superpixel”
features, while f is an “intra-superpixel” feature. To summa-
rize, the similarity w;; is measured based on a synthetic eval-
uation of spectral consistency, spatial distance, and similarity
of adjacent superpixels.

Afterwards, two k-Nearest Neighbors (k-NN) graphs are
constructed by utilizing the above similarity. Specifically, k-
NN can be viewed from the perspective of either spatial
distance or spectral distance. These two perspectives respec-
tively induce spectral graph and spatial graph defined as
gsree = (V,E%¢¢) and Gt = (V,E5P%), where V and
& are the sets of nodes and edges accordingly. It is noted
that in our proposed DSSPL, G*P¢¢ and G*P% share the same
set of nodes, namely V = {S51,5,,...,Sn}, but £%P¢¢ and
£%Pat are different, as they correspond to the spectral and
spatial connective relationship among superpixels. The two
graphs G°P¢¢ and G°P?' are represented by the adjacency
matrices W*P¢¢ and W P4 respectively, in which the (7, j)-th
elements in them are respectively expressed as:

spec |} Wijs if S; € N‘g])e(:(Sj) or Sj S Nspec(si) )
@ )0 , otherwise ’
spat ) Wij> if S; € NSpat(Sj) or Sj S NSpat(Si) ©)
W )0 , otherwise ’

where spectral neighbor set N*P¢¢(S;) contains k nearest
neighbors regarding spectral features. According to [22], k
is set to 10 in DSSPL. As shown in Fig. 1, the two graphs
G*Pe¢ and G*P* are dynamically fused according to the learned
labels in each iteration. It is worth noting that the iterative
process initializes with G*P%¢ for label propagation.

C. Poisson Learning

After the initial graph of HSI (i.e., G*P%!) is acquired,
PL is applied to handle the extremely limited labels on the
graph. Most of the existing approaches are not specifically
designed for the classification on an extremely low label rate,
so their performance in this situation largely deteriorates.
In contrast, PL explores the degeneration process of label
propagation when there are very few labeled examples, and
deploys a specific strategy to optimize the classifier. Con-
sidering a graph with N nodes including m labeled nodes
across ¢ classes, let the label matrix dubbed as YN*¢ =
(Y1, s YmsYmat1,---,YN) |, in which the first m column
vectors represent the labels of m labeled nodes. Besides, in the
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initial label matrix Y(©) for propagation, the (i, j)-th element
is expressed by

) 1,if 1 <i¢<m and S; € class j
(Y)ij = wij = ) !
0, otherwise
In this study, we use a classical label propagation method,
namely GFHF [19], to conduct label propagation. Thus, it
needs to solve the following problem:

u(S;) =yi,i=1,2,...,m
L(u(S;)=0,i=1,...,N’

where u is the mapping function for each graph node, and the
unnormalized graph Laplacian operator £ is given by

N
=D wij(u(S)

Although the above Laplacian equation-based GFHF has
been widely used for semi-supervised learning, its perfor-
mance dramatically decreases when the label rate is extremely
low [20], [21]. The main reasons can be explained from the
following two aspects:

1) Theoretical proof: Nadler et al. [53] presented a theoret-
ical study of Laplacian equation-based label propagation on a
high-dimensional graph model. Let the margin density p(.S)
be an unknown smooth density on a compact domain w C R¢
and d > 2. For N — oo, there exist continuous functions
u(S) satisfying the constraints in Eq. (8), but u(S) — ¢ for
all S;,i = (N —m),..., N, in which ¢ is a constant. This
theorem implicates that as the number of unlabeled examples
increases, the solution of Eq. (8) has the form of an almost
everywhere constant function, leading to an inaccurate label
propagation.

2) Random walk interpretation: A more intuitive way of the
issues with Laplacian learning at a low label rate comes from
the interpretation of random walk, which also leads to the
original concept of Poisson Learning [22]. We release random
walkers from labeled nodes and let them explore the graph
with the transition probabilities from the j-th node to i-th
node, which can be expressed as:

P(Xi = Si|XIZ71 = Sj)

®)

—u(S)))*. ©)

= d; 'wij, (10)
where d; is the degree of the j-th node with d; = Zi\; Wi,
and X denotes the position of the random walker released
from the j-th labeled node in the k-th iteration. Each random
walker X7 carries its label information y; when exploring the
graph. Then the solution of Eq. (8) could be described by the
expectation of the labels y; of all the X that visit .S; with
0<k<tand 1< j<m, which is [54]:

= Z ZYjP(Xi = 5i).

k=0 j=1

(1)

When there are enough labeled nodes, the random walkers
with label information could reach all the nodes in a short time.
However, when there are very few labeled nodes, it takes a
long time for a few random walkers to traverse every node
in the graph. It is also worth noting that if the walking takes

much time, the distribution of X ,JC is very close to an invariant
distribution:

d;
Zi\; di'

In this case, the above solution records a blind average of
existing labels, which is [22]:
Z Yi-

XJ: ~
Z” ‘ z d =

This suggests that when the Walklng time is too large, the
solution of Laplace equation does not depend on the structure
of a graph but only reflects a blind average of labels. As a
result, Laplace equation-based GFHF returns almost identical
labels for all unlabeled nodes, which conveys very little useful
class information.

To address the above problem, PL is utilized to replace the
Laplace equation (as in Eq. (8)) with the following Poisson
equation:

lim P(X] = S;) =

k— o0

12)

(13)

=2

Jj=1

where Y | d;u(S;) = 0. The average label vector y is

defined as y = ;- >°7" | y;, and d;; is 1 if and only if i = j.

The Poisson equation is also solved from the view of random

walk. Based on Eq. (11), PL proposes to subtract off the tail

behavior from u(.S;) to avoid the solution dominated by the

average of labels. Meanwhile, PL normalizes u:(S;) by d;,
which achieves the process by:

3 S - R = )

kOjl

¥)0;; fori=1,2,..., N, (14)

15)

Considering the transition probability of random walkers,
we have

k=0j=1
t m N wy)
=D yi-9)D PXL=5) (16)
k=0 j=1 =1
N w
=1
Therefore, u:41(.5;) can be expressed by u.(S;) as
t+1 m
w1 (Si) = d; Y Y (v — 9)P(X] = S))
k=0 j=1
m N
=d;* Z(Yg ¥)6ij +d; * Z —ut(S1)
j=1 =1 "
=d;"y (v; —¥)0i; + (u(S)) "L(u(S5)))
=1
= ut(SZ) + dz_l Z<YJ y)(Sl] ‘C(ut(s ))
=1
)
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It has been proved in [22] that when ¢ — oo, we have u; —
u with u being the unique solution of the Poisson equation in
Eq. (14). From Eq. (15) we can see that the solution of Poisson
equation only records the short-time behavior of the random
walkers, avoiding the interference of the shift bias caused by
the long walking time. According to Eq. (17), the PL problem
can be solved via an iterative process as:

YD —Yy®O 4D YBT - (D-W)Y®),  (18)

where B = [Y — 1V*1yT 0o*(N=m)] "and D is a diagonal
degree matrix with D;; = d;.

D. Graph Updating via a Feedback Strategy

The PL algorithm improves the performance of label prop-
agation when there are only a few labeled examples available.
However, PL only works on a fixed pre-established graph,
which may not be accurate when the supervisory informa-
tion is very limited. To alleviate the issue, we introduce a
graph updating operation to timely extract and strengthen
the supervisory information during the iteration process. In
Section III-B, G*P¢¢, and G*P** have been constructed, which
record the spectral and spatial connection relationship among
nodes. As introduced in Section III-B, G%P¢ and G°P%' are
both sparse graphs, which record the nearest neighbors of
graph nodes in terms of spectral feature and spatial location. To
synthetically capture the graph structure, a multi-graph fusion
method is proposed. In the fusion strategy, the label propaga-
tion is modeled by multivariate Gaussian, and the individual
graph distribution is modeled by using the Ising model [55].
Thus, the fusion parameter is estimated by maximizing the
posterior probability of multi-graph under the condition of
labels by Bayesian theory. The fused graph is denoted as
G = (V,&%%) with the spectral-spatial adjacency matrix
W?%. Moreover, the up-to-date labels are fed back to refine
the graph for emphasizing the connection between nodes with
similar label vectors. The details are explained as follows.

Firstly, the fusion of graphs is based on the assumption that
the spectral-spatial adjacency matrix W?** can be obtained by
a linear combination of W*P¢¢ and W*P4! [56], namely:

W** = (1 — )W"Pee + gW Pt (19)

where 0 is a trade-off coefficient, and it is critical to decide the
proper value of 6. Analogously, L®® is a linear combination
of Laplacian matrices L5P¢¢ and L5P% as:

LSS = (1 _ Q)Lspec + eLspat. (20)

According to [19], the propagation of label vector y; =
(Y14, Y2i, - -, yni) | with i = 1,...,c on each graph can be
regarded as a Gaussian process, in which the covariance matrix
equals to the corresponding Laplacian matrix. Based on our
assumption that the adjacency matrix of fused graph is a linear
combination of adjacency matrices of all individual graphs, the
likelihood probability p(Y|W*#*) can be written as

I~ .
p(Y[W??) o< exp (—2 > oyl + I/lz)Yi> , 2D
=1

where L** + I/I? is the regularized Laplacian matrix with
l being the regularization parameter, and I is an identity
matrix. According to the classical Ising model [57], the prior
probability of W#% can then be expressed as:

ss ., T
E Wi;¥i ¥Yi|»
(i,5)€€=s

p(W?*?) o exp (22)

where w? is the (i,)-th element of W**. To construct the
model of graph fusion under the condition of specific labels,
the posterior probability of W#° can be computed according

to the Bayesian theory as
pP(W?|Y) o< p(W**)p(Y|W*)
=p(W*Y) x

C

SS 1 koS SS 3

exp | Y wyly; -5 ) ¥ (L +I/E)y
=1

(i,5)€€ss
(23)
In each iteration, given the predicted label matrix Y, the
optimal fused graph is supposed to show the highest posterior
possibility in describing the labels. Consequently, the optimal
0* can be obtained by solving the following problem:

0" = argmax p(W*|Y). (24)
6

Therefore, the parameter 6 varies according to the current
propagation result, which leads to a dynamic spectral-spatial
description on the investigated HSI with the highest posterior
probability p(W**|Y).

Moreover, the spectral-spatial adjacency matrix W*° is
further improved by fusing the information extracted from the
output labels in each iteration [58]. Specifically, the learned
label matrix Y contains the information about class labels,
and the correlation of these labels YY ' can be viewed
as the similarity between data points in the label space.
This correlation is fed back into the input adjacency matrix
to emphasize the relationship among the nodes with high
similarity, where the feedback process can be expressed as:

W = W (W £ BYY ) (W**)T + A, (25

where [ is a pre-defined nonnegative coefficient, and I is
an identity matrix. Thus, the graph is refined by the output
labels in the previous iteration and the refined graph in turn
improves label propagation results in the next iteration. The
implementation of DSSPL is summarized in Algorithm 1.

IV. COMPLEXITY ANALYSIS

In the iteration phase of our DSSPL, Eq. (24) can be solved
by the linear programming with the computational complexity
of O(N?) [59], where N is the number of graph nodes (i.e.,
the number of superpixels). The update of the graph W in
Eq. (25) can be accelerated using the sparsity of W, and
thus the computational complexity is O(kN?) [60], where
k is the number of nearest neighbors in adjacency matrices
WsPe¢ and W*P%t For the propagation of labels using PL
via Eq. (18), the computational complexity is O(N?) [22]. To
summarize, since the proposed DSSPL takes 7 iterations, the
overall computational complexity is O(kT N?),where k < N
and T < N.
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Algorithm 1 The Proposed DSSPL Algorithm

Input:  Hyperspectral image H; initial label matrix Y (%);
number of superpixels N; number of iterations 7T ;
1: Segment H into N superpixels {S;}¥ ; via SLIC;
2: Construct the initial k-NN spectral graph W#P¢¢ and
initial £-NN spatial graph W*P%¢ via Eq. (5) and Eq. (6);
3: fort=1to 7 do
4:  Decide the value of 6 via Eq. (24);
5:  Update the fused spectral-spatial graph W?*° via
Eq. (19);
6:  Update W based on W*° and the feedback of posterior
label correlation via Eq. (25);
7. Update degree matrix D;
8:  Propagate labels using PL via Eq. (18);
9:  Compute binary label vectors {y;}¥ ;;
10: end for
Output:

Predicted label for each unlabeled pixel.

1. Alfalfa

2. Corn-notill
3. Corn-mintill
4.Com

5. Grass-pasture
6. Grass-trees

7. Oats

8. Hay-windrowed
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10. Soybean-notill

11. Soybean-mintill

12. Soybean-clean
1
1
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15. Bldg-grass-trees-drives
] 16. Stone-steel-towers
W 17.BKG

(a) Indian Pines scene

(b) groundtruth map (c) classes by col-

ors

Fig. 2. Indian Pines dataset with 16 classes.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we conduct experiments to show the effec-
tiveness of the proposed model. We first introduce the datasets
for our experiments as well as the experimental settings. Then,
we provide the experimental results, parameter sensitivity
analysis, and ablation study.

A. Datasets

Three real-world hyperspectral image datasets', i.e., the
Indian Pines, Salinas, and University of Pavia, are used in
our experiments. The details of each dataset are provided as
follows.

1) Indian Pines: This is a well-known Airborne Visi-
ble/Infrared Imaging Spectrometer (AVIRIS) image dataset.
Figs. 2 (a)(b)(c) show the image data, the corresponding
groundtruth, and class colors, respectively. The image was
recorded in June 1992 from an area of mixed agriculture and
forestry in Northwestern Indiana, USA with the wavelength in
the range of 0.4 pum to 2.5 pm and spatial resolution of 20 m.
It has the size of 145 x 145 pixels with 220 bands, in which
20 water absorption bands (bands 104-108 and 150-163, 220)
were removed.

Al datasets are available at http://www.ehu.eus/ccwintco/index.php?title=
Hyperspectral_Remote_Sensing_Scenes
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g. 3. Salinas dataset with 16 classes.
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(b) ground-truth map
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Fig. 4. University of Pavia dataset with 9 classes.

2) Salinas: This dataset was collected by the AVIRIS sen-
sor over the Salinas Valley, California, with a spatial resolution
of 3.7 m per pixel and the spectral resolution of 10 nm. It has
a size of 512 x 217 with 224 bands, consisting of 16 vegetation
classes. Figs. 3 (a)(b)(c) show the Salinas scene, groundtruth,
and the corresponding groundtruth class labels, respectively.

3) University of Pavia: This dataset captures the Pavia
University of Italy with the ROSIS sensor. It consists of
610 x 340 x 115 pixels with a spatial resolution of 1.3 m
and a spectral coverage ranging from 0.43 pm to 0.86 pum
with a spectral resolution of 4 nm (12 most noisy channels
were removed before experiments). Fig. 4 (a) shows the scene
of the University of Pavia, and nine classes of interest are
considered for this image as shown in Fig. 4 (b) and (c).

B. Experimental Settings

To evaluate the performance of the proposed DSSPL, three
traditional HSI classification methods, including SVM [61],
GFHF [19], and PL [22], are employed for comparison. In
addition, we compare the proposed DSSPL with a method
based on spectral-spatial feature extraction, i.e., Fusion of
Spectral-Spatial (FSS) [62], a linear regression-based method,
i.e., Superpixel-guided Training Sample Enlargement Distance
Weighted Linear Regression (STSE-DWLR) [63], together
with a graph-based method, i.e., Superpixel Graph Learning
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TABLE I
THE HYPERPARAMETER SETTINGS OF OUR DSSPL ON DIFFERENT
DATASETS.
N B8 A
Indian Pines 1400 0.1 0.01
Salinas 1400 0.1 0.1
University of Pavia 2200 0.1  0.01

(SGL) [29]. It is worth noting that both STSE-DWLR and
SGL are designed for the limited label situation for HSI clas-
sification. Meanwhile, we also compare the proposed DSSPL
with a Convolutional Neural Network (CNN)-based method,
i.e., deep CNN using Pixel-Pair Features (CNN-PPF) [10].
To comprehensively evaluate the performance of the pro-
posed method on a small number of labeled examples, dif-
ferent numbers of labeled pixels (e.g., 3, 5, or 10) of each
class are randomly selected in our experiments. Furthermore,
to validate the performance of our DSSPL on large size of
labeled data, 30 labeled pixels of each class are also selected
in our experiment. We adopt four metrics for performance
evaluation, including individual class accuracy, Average Ac-
curacy (AA), Overall Accuracy (OA), and kappa coefficient.
In addition, classification maps are presented as a qualitative
demonstrations to further evaluate all the compared methods.
Due to the random selection of labeled examples, all methods
are conducted ten times with different labeled pixels on each
dataset, and the mean accuracies and standard deviations over
the ten implementations are reported. The hyperparameter
settings of our DSSPL on each dataset are listed in Table I.

C. Experimental Results and Analyses

1) Classification Results on Classes: Tables II- IV tabulate
the accuracies of each class, AAs, OAs, and kappa coeffi-
cients produced by the eight classification methods on the
three datasets. The best result is highlighted in bold. The
classification maps of all these methods on the three datasets
are visualized in Figs. 5-7, in which the areas with significant
improvement by our DSSPL are marked via red or yellow
rectangles. From these comparison results, it can be observed
that our DSSPL obtains the best performance in terms of AA,
OA and kappa among all the competitors. For instance, in
terms of OA, our DSSPL achieves 4.49%, 0.45%, and 1.05%
improvements over the second best method on the Indian
Pines, Salinas, and University of Pavia datasets, respectively.

For the performance on individual classes on the Indian
Pines dataset, our DSSPL achieves the highest accuracies
across 10 out of 16 classes when compared with other meth-
ods. Specifically, Classes 2, 3 and 4 represent the categories
of “corn-notill”, “corn-mintill” and “corn”, respectively, in
which the spectrum is quite similar with each other. For the
presence of limited labeled examples, some methods neglect
the spatial correlation of pixels, such as SVM, thus they
cannot obtain good performance. As a sequel, it is important to
introduce spatial information to cooperate with limited spectral
features, and this is the main reason that FSS and DSSPL can
obtain relatively high accuracies on the three classes, as shown

in Table II. Specifically, DSSPL improves the accuracies of
the three classes, and the records are 70%, 78% and 85%
correspondingly. For Class 15 (i.e., “buildings”), it is worth
noting that the accuracy is significantly improved, from 28%
of SVM and 43% of CNN-PPF to 88% of DSSPL. Moreover,
the Indian Pines dataset is a typical dataset with imbalanced
classes. Specifically, there are four classes with less than 100
examples, i.e., class 9 with 20 data points, class 7 with 28
data points, class 1 with 46 data points, and class 16 with
93 data points. From Table IV, it can be noted that DSSPL
achieves more than 98% accuracy on all these four classes,
and obtains higher performance over other compared methods
in classes 1, 7, and 16. For class 9, DSSPL reaches more than
99% accuracy, which is only slightly lower than SGL.

In the Salinas dataset, since the scene is simpler when
compared with the other two datasets, most of the compared
methods achieve more than 94% in terms of OA. In this case,
DSSPL still outperforms other methods and improves AA,
OA and kappa by 0.52%, 0.45%, 0.49% when compared with
STSE_DWLR, which performs the second best. Specifically,
DSSPL achieves 11 best results out of a totally 16 classes.
The Salinas dataset does not show an obvious imbalanced
data issue, and the accuracies of DSSPL in all the classes
are larger than 90%, which proves the robustness of our
proposed method. For Classes 8 and 15, which correspond to
“grapes untrained” and “vinyard untrained”, DSSPL improves
the accuracies by more than 41% and 33% when compared
with SVM.

Different from the Indian Pines and Salinas datasets, the
regions of different classes are usually small fragments in
the University of Pavia dataset, such as “buildings”, “trees”
and “roads”. In this case, DSSPL still outperforms the second
best method by 1.68%, 1.05%, and 6.21% on AA, OA and
kappa coefficient, respectively. It is worth noting that DSSPL
achieves 5 best results out of 9 classes. Specifically, for Class
4 (i.e., “tree”), the accuracies of other methods are all lower
than 65%, while DSSPL achieves more than 82% accuracy.
Similar to the Salinas dataset, there are no particularly small-
sized classes, and our DSSPL shows the accuracies of more
than 80% on all the classes, which implies the stability of the
proposed DSSPL. Overall, the results demonstrate that DSSPL
performs the best among all compared approaches across
the three datasets in the extremely limited labeled example
situation.

2) Impact of the Number of Labeled Examples: To investi-
gate the impact of the numbers of labeled examples, Table V
reports the OAs performance of the proposed DSSPL and
the compared methods under different numbers (e.g., 3, 5,
10 and 30) of labeled examples in each class. In the Indian
Pines dataset, since there are two classes that only contain less
than 30 pixels, we instead select 15 pixels from these classes
as labeled examples. From the results, we can draw several
observations as follows:

e The performance (i.e., OAs) of all methods can be

improved by increasing the number of labeled examples.

o Our DSSPL outperforms most of the compared methods

on the three datasets when there are 10 or fewer labeled
pixels of each class. Although STSE_DWLR achieves the
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TABLE 11
PER CLASS ACCURACIES, AAS, OAS, AND KAPPA COEFFICIENTS OF DIFFERENT METHODS ON THE INDIAN PINES DATASET WITH 5 TRAINING
EXAMPLES OF EACH CLASS.
class SVM [61] CNN-PPF [10] GFHF [64] PL [22] FSS [62] SGL [29] STSE_DWLR [63] DSSPL

1 0.8848+0.0503  0.6610+0.4565  0.8609+0.0092  0.9130+0.0939  0.7715+£0.2624  0.9652+0.0174 0.9848+0.0179 0.9913+0.0052
2 0.2759+0.0820  0.0806+0.0661  0.5564+0.1059  0.4863+0.1156  0.8388+0.1671  0.4856+0.0666 0.4791+0.1938 0.7078+0.1223
3 0.3899+0.1103  0.0856+0.0720  0.5141+0.1133  0.4592+0.1468  0.7759+0.1931  0.5749+0.1588 0.6425+0.1005 0.7829+0.1365
4 0.5586+0.1462  0.5746+0.4312  0.7460+0.1827  0.8468+0.1410  0.7965+0.2227  0.8384+0.1181 0.8350+0.2765 0.8540+0.1922
5 0.6031+0.1702  0.0720+0.1228  0.7714+0.0831  0.7979+0.0963  0.6907+0.3308  0.8110+0.0896 0.8025+0.0953 0.8170+0.0941
6 0.7207+0.1287  0.2265+0.2612  0.7011£0.1765  0.8192+0.1276  0.8138+0.2669  0.8301+0.1206 0.9116+0.1366 0.8940+0.1971
7 0.9286+0.0238  0.4435+0.3174  0.9714+0.0151  0.9429+0.0811  0.7264+0.3080  0.9679+0.0107 0.9786+0.0184 0.9821+0.0189
8 0.7144+0.0947  0.5476+0.3179  0.9920+0.0057  0.9973+£0.0043  0.9129+0.1154  0.9969+0.0058 0.9994+0.0010 0.9987+0.0011
9 0.8750+0.1007  0.5800+0.4445  0.9525+0.0368  0.8647+0.0787  0.6610+0.4341  1.0000+0.0000 0.9900+0.0316 0.9900+0.0316
10 0.4840+0.1594  0.3065+0.2118  0.7213+0.1368  0.7267+0.1522  0.7508+0.1868  0.8110+0.0833 0.6989+0.2337 0.8148+0.2131
11 0.3906+0.1404  0.2621+0.1825  0.6360+0.0879  0.6475+0.0725  0.9042+0.0508 0.6610+0.1068 0.8329+0.1925 0.8290+0.1099
12 0.3745+0.0927  0.0954+0.0771  0.6440%£0.1784  0.6125+0.1700  0.7921+0.2153  0.6857+0.1333 0.7764+0.1543 0.7248+0.1270
13 0.9254+0.0435  0.6010+0.4274  0.8951+0.0000  0.9906+0.0015  0.8855+0.1820  0.9951+0.0000 0.9951+0.0000 0.9951+0.0000
14 0.6917+0.1135  0.7606+0.2984  0.7324+0.1355  0.8283+0.1297  0.7483%£0.2947  0.8603+0.1060 0.8304+0.0971 0.8712+0.1187
15 0.2803+0.0653  0.4328+0.2344  0.7554+0.0972  0.7902+0.1310  0.6480+0.3557  0.8166+0.0777 0.8728+0.0715 0.8806+0.1173
16 0.8903+0.0433  0.9000+0.0970  0.8903+0.0034  0.9892+0.0000  0.8963+0.1414  0.9806+0.0065 0.9514+0.0045 0.9903+0.0034
AA 0.5276+0.0489  0.4144+0.1913  0.7057+0.0221  0.8033+0.0183  0.7883%0.2071  0.8300+0.0244 0.8576+0.0345 0.8702+0.0312
OA 0.4879+0.0355  0.3087+0.1396  0.6499+0.0273  0.7060+0.0356  0.8142+0.0112  0.7270+0.0393 0.8052+0.0598 0.8591+0.0484
Kappa 0.4310+0.0355 0.2488+0.1193  0.6641+0.0301  0.6592+0.0395  0.8028+0.0127  0.6940+0.0411 0.7868+0.0641 0.8332+0.0535

(e)FSs

() SGL

(e) STSE-DWLR

(h) DSSPL

(i) Groundtruth

Fig. 5. Groundtruth map and classification maps on the Indian Pines dataset using 5 training examples of each class produced by eight classification methods.

best performance with 10 labeled pixels of each class
on the Indian Pines dataset, our DSSPL also obtains the
competitive performance and outperforms other methods
by a large margin. Overall, the proposed DSSPL performs
better than existing HSI classification methods in the
situation of the small-sized labeled examples.

e The proposed DSSPL achieves the competitive perfor-
mance and outperforms most of the compared methods in
the situation of 30 labeled pixels of each class. Although
FSS achieves the highest accuracies on the Indian Pines
and University of Pavia datasets, our DSSPL still ranks
the second place and performs better than other methods.
On the other hand, DSSPL ranks the first place over all

compared methods on the Salinas dataset. This could be
interpreted by the characteristics of the three datasets.
It is noted that when utilizing the same amount of
labeled examples, the performance of OA is higher on
the Salinas dataset than on the other two datasets. This
indicates that the Salinas is an “easier” dataset than
the other two datasets. It can be also observed that the
Indian Pines and University of Pavia datasets contain
underlying “more complex” data structure than Salinas.
In this circumstance, over-segmentation will lose more
information than independent treatment over every pixel.
Therefore, superpixel-based DSSPL could perform worse
than pixel-wise FSS when there are relatively abundant
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TABLE III

PER CLASS ACCURACIES, AAS, OAS, AND KAPPA COEFFICIENTS OF DIFFERENT METHODS ON THE SALINAS DATASET WITH 5 TRAINING EXAMPLES
OF EACH CLASS.

class SVM [61] CNN-PPF [10] GFHF [19] PL [22] FSS [62] SGL [29] STSE_DWLR [63] DSSPL
1 0.9719+0.0130  0.7510+0.4070  0.9985+0.0000  0.9985+0.0000  0.9370+0.0951  0.9905+0.0240 1.0000+0.0000 1.0000+0.0000
2 0.9159+0.1016  0.5708+0.4024  0.9888+0.0062  0.9606+0.0457  0.9679+0.0348  0.9786+0.0166 1.0000+0.0000 1.0000+0.0000
3 0.8261+0.1421  0.2613+0.4114  0.9958+0.0033  1.0000£0.0000  1.0000+0.0000  0.9613+0.0810 1.0000+0.0000 1.0000+0.0000
4 0.9907£0.0039  0.1148+0.3015  0.9753+0.0247  0.9799+0.0068  0.9625+0.0618  0.9799+0.0065 0.8911+0.2440 0.9714+0.0778
5 0.9077+£0.0706  0.3869+0.4996  0.9585+0.0600  0.9599+0.0289  0.9814+0.0273  0.9677+0.0245 0.9942+0.0019 0.9564+0.0378
6 0.9759+0.0127  0.7805+0.4120  0.9942+0.0000  0.9942+0.0000  0.9655+0.0414  0.9948+0.0017 0.9887+0.0300 0.9981+0.0004
7 0.9824+0.0160  0.3983+0.3579  0.9971+0.0019  0.9961+0.0027  0.9439+0.0318  0.9960+0.0038 0.8517+0.1988 0.9884+0.0113
8 0.5439+0.1453  0.2916+0.3459  0.9048+0.0457  0.8592+0.0343  0.9093+0.0854  0.8836+0.0659 0.9517+0.0466 0.9586+0.0452
9 0.9493+0.0114  0.7770+£0.4097  0.9991+0.0004  0.9495+0.0733  0.9162+0.0913  0.9802+0.0282 1.0000+0.0000 0.9985+0.0046
10 0.6873+£0.0931  0.1750£0.2060  0.7322+0.0510  0.7729+0.0792  0.9439+0.0675  0.7939+0.0901 0.8883+0.2688 0.9546+0.0771
11 0.8460+0.1069  0.2826+0.3331  0.9562+0.0099  0.9522+0.0059  0.9516+0.0428  0.9355+0.0440 0.9326+0.0850 0.9583+0.0435
12 0.9524+0.0402  0.2534+0.2426  1.0000+0.0000  0.9485+0.0397  1.0000+0.0000  1.0000+0.0000 1.0000+0.0000 1.0000+0.0000
13 0.9798+0.0158  0.6232+0.4727  0.9771+0.0000  0.9796+0.0148  0.9780+0.0359  0.9781+0.0029 0.9152+0.1527 0.9028+0.1450
14 0.8823+0.0519  0.5114+0.3886  0.9407+0.0135  0.9062+0.0603  0.9488+0.0542  0.9149+0.0437 0.9600+0.0296 0.9621+0.0264
15 0.6401+0.1260  0.0334+0.0607  0.9266+0.0408  0.9603+£0.0425  0.9313+0.0620  0.9670+0.0315 0.9783+0.0280 0.9797+0.0235
16 0.8345+0.1022  0.3582+0.3672  0.9792+0.0028  0.9956+0.0047  0.9514+0.0314  0.9904+0.0174 1.0000+0.0000 1.0000+0.0000
AA 0.8679+0.0139  0.4106+0.2100  0.9590+0.0065  0.9508+0.0130  0.9556+0.0518  0.9570+0.0072 0.9595+0.0458 0.9647+0.0220
OA 0.7981+0.0267  0.3943+0.2196  0.9473+0.0100  0.9347+0.0129  0.9549+0.0074  0.9469+0.0122 0.9630+0.0349 0.9675+0.0178
Kappa 0.7764+0.0291  0.3499+0.2210  0.9414+0.0111  0.9276+0.0142  0.9498+0.0082  0.9411+0.0135 0.9589+0.0387 0.9638+0.0199

(a) SVM

(b) CNN-PPF (c)LP (d) PL

(e) FSS

(f) SGL (¢) STSE-DWLR (h) DSSPL (i) Groundtruth

Fig. 6. Groundtruth map and classification maps on the Salinas dataset using 5 training examples of each class produced by eight classification methods.

labeled examples. Besides, DSSPL yields a higher OA,
AA, and kappa coefficient than SGL and STSE_DWLR
that are designed for HSI classification problem under
small-sized labeled data. Therefore, the results indicate
the effectiveness and stability of the proposed DSSPL.

D. Convergence Analysis

Fig. 8 demonstrates the convergence curves of the proposed
DSSPL on all used datasets. Specifically, we plot the stopping
criteria e in each iteration, in which e is defined as the percent-
age of changed classification area comparing the classification
map in this iteration to the one in the last iteration. It can
be observed that the value e decreases when the number of
iterations n™*€" increases on all three datasets, and our model
converges in about 6-13 iterations. Therefore, this is proved
that the proposed DSSPL converges within a small number of
iterations.

E. Parameter Sensitivity

In this experiment, we will evaluate the parameter sensitivity
of the classification performance to different experimental
settings of our DSSPL. Fig. 9 shows the OAs of our DSSPL
with respect to the different numbers of superpixels /N on the
three datasets. From the curves presented in Fig. 9, it can be
seen that OA increases when the number of superpixels (i.e.,
N) varies from 200 to 1400 on the Indian Pines and Salinas
datasets, and we can obtain satisfactory performance with 1400
superpixels on the two datasets. Besides, for the University of
Pavia dataset, OA starts to fluctuate after N reaches about
2200. Thus, in our experiment, N is set to 1400 for both the
Indian Pines and Salinas datasets, and 2200 for the University
of Pavia dataset.

Fig. 10 exhibits the OAs of the proposed DSSPL with
respect to different values of the coefficients 5 and A. Here,
we report the average results over ten repetitions. From the
results in Fig. 10, it can be observed that we obtain stable
OA performance, i.e., higher than 80% for the Indian Pines
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TABLE IV

PER CLASS ACCURACIES, AAS, OAS, AND KAPPA COEFFICIENTS OF DIFFERENT METHODS ON THE UNIVERSITY OF PAVIA DATASET WITH 5 TRAINING
EXAMPLES OF EACH CLASS.

class SVM [61] CNN-PPF [10] GFHF [19] PL [22] FSS [62] SGL [29] STSE_DWLR [63] DSSPL
1 0.6662+0.0718  0.7414+0.0653  0.7078+0.0608  0.7450+0.0576  0.7000+0.1787  0.8013+0.0912 0.7769+0.0442 0.8072+0.0749
2 0.5282+0.1606  0.4258+0.0459  0.7907+0.1194  0.7905+0.1154  0.7947+0.0826  0.8080+0.0585 0.8225+0.1137 0.9273+0.0509
3 0.5264+0.1406  0.7805+0.1541  0.9795+0.0257  0.9123+0.0598  0.9506+0.1027  0.9986+0.0019 0.9812+0.0243 0.9524+0.3424
4 0.6227+0.1229  0.9143+0.0246  0.5192+0.1345  0.5348+0.0955  0.3285+0.1200  0.6478+0.1248 0.5944+0.1624 0.8283+0.0610
5 0.9659+0.0580  0.9937+0.0044  0.8871+0.0026  0.8695+0.0286  0.9547+0.0749  0.9680+0.0086 0.9854+0.0050 0.9631+0.0300
6 0.5730+0.1285  0.4460+0.0646  0.9676+0.0309  0.9337+0.0861  0.9738+0.0194  0.7775+0.0851 0.9774+0.0272 0.9929+0.0003
7 0.8474+0.0838  0.9362+0.0268  0.8754+0.0631  0.8759+0.0178  0.9967+0.0070  1.0000+0.0000 0.8842+0.0958 0.8806+0.3001
8 0.6559+0.1267  0.7063+0.1303  0.8463+0.1587  0.8798+0.1598  0.8772+0.0276  0.7773+0.1492 0.7512+0.0140 0.8329+0.1557
9 0.9982+0.0013  0.9843+0.0107  0.9860+0.0062  0.9989+0.0000  0.3041+0.1080  0.9989+0.0000 0.9989+0.0000 0.9989+0.0000
AA 0.7315+£0.0261  0.7698+0.0173  0.7744+0.0233  0.8078+0.0327  0.8378+0.0330  0.8653+0.0698 0.8769+0.0403 0.8937+0.0507
OA 0.6209+0.0588  0.5996+0.0189  0.7252+0.0520  0.7151+0.0451  0.8039+0.0449  0.8569+0.0368 0.8302+0.0398 0.8674+0.0231
Kappa  0.5335+0.0583  0.5213+0.0202  0.7774+0.0621  0.7641+0.0521  0.7774+0.0540  0.7608+0.0300 0.7884+0.0450 0.8405+0.0286

Y
(f) SGL

(¢) FSS

(¢) STSE-DWLR

y
4 -

(&) GFHF

>
(h) DSSPL

(i) Groundtruth

Fig. 7. Groundtruth map and classification maps on the University of Pavia dataset using 5 training examples of each class produced by eight classification

methods.

and University of Pavia datasets, and higher than 90% for
the Salinas dataset, with respect to 8 € {0.05,0.1,0.15,0.2}
and A € {0.001,0.01,0.1}. It suggests that the classification
performance is not very sensitive to the two hyperparameters.
In this study, the coefficient A is set to 0.01 for both the Indian
Pines and University of Pavia datasets, 0.001 for the Salinas
dataset, and [ is set to 0.1 for all three datasets.

F. Ablation Study

The proposed DSSPL consists of three key components for
improving HSI classification performance, i.e., PL-based label

propagation, dynamic graph fusion, and feedback strategy.
To verify the effectiveness of the three key components, we
compare the proposed DSSPL with different models in this
ablation study. These compared models include: 1) Dynamic
Spectral-Spatial GFHF (D-SS-GFHF), where GFHF is used
instead of PL with the same dynamic spectral-spatial graph
fusion and feedback strategy; 2) Dynamic Spectral PL (D-
Spec-PL), in which PL is conducted on a single spectral graph
with the feedback strategy; 3) Dynamic Spatial PL (D-Spat-
PL), in which PL is conducted on a single spatial graph
with the feedback strategy; 4) Spectral-Spatial PL (SS-PL),
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TABLE V

OAS OF DIFFERENT METHODS ON THE INDIAN PINES, SALINAS AND UNIVERSITY OF PAVIA DATASETS WITH DIFFERENT NUMBERS OF TRAINING
EXAMPLES OF EACH CLASS nt".

ntr SVM [61]  CNN-PPF [10] GFHF [19] PL [22] FSS [62] SGL [29] STSE_DWLR [63] DSSPL
3 0.4062+0.1053 0.2169+0.1122 0.6056+0.0561 0.6251+0.0718 0.7043+0.0245 0.6882+0.0845  0.7514+0.0597  0.7924+0.0514
Indian Pines 5 0.4879+0.0355 0.3087+0.1396 0.6499+0.0273 0.7060+0.0356 0.8142+0.0112 0.7270£0.0393  0.8052+0.0598  0.8591+0.0484
10 0.5562+0.0349 0.6132+0.0435 0.7125+0.0315 0.7238+0.0367 0.8691+0.0126 0.7695+0.0268  0.8829+0.0217  0.8810+0.0359
30/15" 0.6939+0.0122 0.7986+0.0139 0.8026£0.0169 0.7948+0.0258 0.9666+0.0073 0.8570+0.0144  0.9265+0.0156  0.94330.0130
3 0.7091+0.0836 0.1168+0.0824 0.8124+0.0716 0.8347+0.6920 0.8528+0.0156 0.8831+0.0597  0.9259+0.0498  0.9358+0.1240
Salinas 5 0.7981£0.0267 0.3943+0.2196 0.9473+0.0100 0.9347+0.0129 0.9549+0.0074 0.9469+0.0122  0.9630+0.0349  0.9675+0.0178
10 0.8863+0.0283 0.7765+0.0289 0.9547+0.0245 0.9412+0.0148 0.9789+0.0054 0.9617+0.0107  0.9745+0.0145  0.9799+0.0164
30 0.8813+0.0210 0.9051+0.0037 0.9723+0.0086 0.9622+0.0050 0.9860+0.0029 0.9695+0.0083  0.9814+0.0043  0.9887+0.0041
Universit 3 0.5584+0.0718 0.4780+0.0359 0.7015+0.1482 0.7098+0.0561 0.7482+0.0388 0.7581+0.0892  0.7931+0.0581  0.8419+0.0426
of‘ Y 5 0.6209+0.0588 0.5996+0.0189 0.7252+0.0520 0.7151+0.0451 0.8039+0.0449 0.8569+0.0368  0.8302+0.0398  0.8674+0.0231
Pavia 10 0.6831+0.0648 0.7417+0.0272 0.7524+0.0485 0.7418+0.0659 0.8517+0.0128 0.8826+0.0259  0.9218+0.0224  0.9242+0.0300
30 0.8130£0.0223 0.8919+0.0154 0.8269+0.0395 0.8325+0.0517 0.9564+0.0131 0.9234+0.0140  0.9369+0.0187  0.9429+0.0094

* In the Indian Pines dataset, 15 pixels are selected from Classes 7 and 9 respectively, because they contain less than 30 pixels.

TABLE VI

OAS, AAsS, AND KAPPA COEFFICIENTS OF DIFFERENT GRAPH UPDATING AND LABEL PROPAGATION METHODS ON THE INDIAN PINES, SALINAS AND
UNIVERSITY OF PAVIA DATASETS WITH 5 TRAINING EXAMPLES OF EACH CLASS.

D-SS-GFHF D-Spec-PL D-Spat-PL SS-PL DSSPL
AA 0.8152+0.0435  0.7939+0.0481  0.8426+0.0282  0.8012+0.0458  0.8702+0.0312
Indian Pines OA 0.8015+0.0394  0.7660+0.0531  0.8249+0.0321  0.7825+0.0625  0.8591+0.0484
Kappa  0.7649+0.0398  0.7568+0.0614  0.7935+0.0518  0.7529+0.0739  0.8332+0.0535
AA 0.9501+0.0254  0.9428+0.0265  0.9586+0.0219  0.9551+0.0267  0.9647+0.0220
Salinas OA 0.9485+0.0204  0.9406+0.0319  0.9536+0.0351  0.9490+0.0236  0.9675+0.0178
Kappa  0.9435+0.0288  0.9397+0.0281  0.9480+0.0262  0.9411+0.0274  0.9638+0.0199
University AA 0.8345+0.0479  0.8258+0.0518  0.8691+0.0620  0.8426+0.0728  0.8937+0.0507
of OA 0.8013+0.0341  0.8069+0.0465  0.8507+0.0422  0.8212+0.0423  0.8674+0.0231
Pavia Kappa  0.7896+0.0382  0.7912+0.0346  0.8349+0.0395  0.8110+0.0473  0.8405+0.0286
TABLE VII
RUNNING TIME COMPARISON (IN SECONDS) AMONG DIFFERENT METHODS.
SVM [61] CNN-PPF [10] GFHF [19] PL [22] FSS[62] SGL [29] STSE_DWLR [63] DSSPL
Indian Pines 4.65 1495.12 6.00 6.18 46.30 12.43 15.26 6.25
Salinas 6.12 1769.52 29.83 30.10 106.27 48.06 61.49 35.89
University of Pavia 6.85 1545.26 112.63 125.14 197.14 174.28 185.56 130.26
in which PL is conducted on spectral-spatial fusion graph
1 without the feedback strategy. The settings of hyperparameters
09 o ndian Pines are the same with Table 1. Table VI shows the comparison
08 Universty of Pavia ] | results of the ablation study on the three datasets. From
o ] the results, it can be observed that DSSPL achieves signifi-
= o6 | cant improvements over D-SS-GFHF, which demonstrates the

%05 | effectiveness of PL in handling the situation of extremely

£ scarce labels. Moreover, DSSPL significantly improves the

204 q .

8 OAs, AAs, and kappa coefficients over D-Spec-PL, D-Spat-
2 PL, and SS-PL models, indicating the effectiveness of our
o2 ] dynamic graph fusion and feedback strategy. Thus, the PL-
o ~—a 1 based label propagation, dynamic graph fusion, and feedback

0 2‘ N e s 10 1 1 strategy work collaboratively to improve the HSI classification

Number of iterations

performance in our DSSPL.

Fig. 8. Convergence of the proposed DSSPL on the Indian Pines, Salinas,
and University of Pavia datasets.
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Fig. 10. Sensitivity study on the hyperparameters 5 and A on the Indian Pines, Salinas, and University of Pavia.

G. Running Time

To further investigate the efficiency of our DSSPL to the
baseline methods, Table VII reports the running time of
DSSPL and all the compared methods, where the number of
labeled pixels is 5 for each class. Except for the experiments
employing CNN-PPF, all the other compared methods were
run under the same conditions using an Intel Core 17-9700
CPU and 16 GB of RAM. For CNN-PPF, the running time was
reported on a server with a 3.60-GHz Intel Xeon CPU with
264 GB of RAM. Table VII shows that the running time of
DSSPL is comparable to the other two traditional graph-based
methods, i.e., GFHF and PL, and is significantly less than
CNN-PPF, FSS, SGL and STSE_DWLR. The high efficiency
of our DSSPL is largely due to the superpixel-based graph
construction and high convergence speed. Therefore, DSSPL
shows both efficacy and efficiency among all the compared
methods.

VI. CONCLUSION

In this paper, we propose a novel DSSPL framework to
handle the challenge of extremely limited labeled data in HSI
classification. The proposed DSSPL utilizes PL to remove the
interference of the average constant output labels caused by
extremely scarce examples, which can improve the efficiency
of label propagation. Besides, graph fusion is conducted on
spectral and spatial graphs to thoroughly describe spectral-
spatial connective relationship of pixels. Further, the correla-
tion of pixels can be computed using output labels and then
fed back to update the fused graph, which comprehensively
utilizes all the supervision information from labeled and unla-
beled examples. Experimental results on three public datasets
show the effectiveness of our proposed DSSPL in handling

the situation of extremely scarce labels (i.e., only 3, 5, or
10 pixels are labeled in each class). More importantly, the
proposed DSSPL also achieves competitive results when more
labeled examples are used in HSI classification.
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