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Abstract—Good performance and high efficiency are both
critical for estimating human pose in practice. Recent state-of-
the-art methods have greatly boosted the pose detection accuracy
through deep convolutional neural networks, however, the strong
performance is typically achieved without high efficiency. In this
paper, we design a novel network architecture for human pose
estimation, which aims to strike a fine balance between speed
and accuracy. Two essential tasks for successful pose estimation,
preserving spatial location and extracting semantic information,
are handled separately in the proposed architecture. Semantic
knowledge of joint type is obtained through deep and wide sub-
networks with low-resolution input, and high-resolution features
indicating joint location are processed by shallow and narrow
sub-networks. Because accurate semantic analysis mainly asks
for adequate depth and width of the network and precise spatial
information mostly requests preserving high-resolution features,
good results can be produced by fusing the outputs of the sub-
networks. Moreover, the computational cost can be considerably
reduced comparing with existing networks, since the main part of
the proposed network only deals with low-resolution features. We
refer to the architecture as “parallel pyramid” network (PPNet),
as features of different resolutions are processed at different levels
of the hierarchical model. The superiority of our network is
empirically demonstrated on two benchmark datasets: the MPII
Human Pose dataset and the COCO keypoint detection dataset.
PPNet outcompetes all recent methods by using less computation
and memory to achieve better human pose estimation results.

Index Terms—PPNet, hierarchical representation, high effi-
ciency, human pose estimation.

I. INTRODUCTION

ETTING the pixel location of important joints of human
body plays a key role to understand people in images and
videos. Accurate 2D human poses offer great convenience for
high-level tasks such as 3D pose estimation [!], [2], motion
prediction [3], [4], and action recognition [5], [6]. In addition,
human pose estimation can be a fundamental tool utilized in
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Fig. 1. A comparison of computational efficiency between PPNet, HRNet,
and SimpleBaseline with the input size 384 x 288. Whether for small networks
or big networks, our PPNet can always deliver better performance with fewer
GFLOPs.

multiple applications like human-computer interaction. Thus
strong performance is the basic requisite for a good pose
estimation model. What’s more as pose estimation systems
may be deployed on various platforms with limited computing
capability and memory capacity, high efficiency is also very
important for an usable pose estimation algorithm.

Great progress has been made by recent developed meth-
ods, particularly those adopting deep convlutional neural
networks [7], [8]. Several state-of-the-art models are able
to produce accurate results on both the MPII [9] and the
COCO [10] benchmark datasets. Better performance is still
an overwhelming desire to design more sophisticated pose
estimation systems, however, as exhibited on the leaderboard
of the MPII' and the COCO? benchmarks, the leading models
usually make limited improvement at the price of much heav-
ier computation. Considering the quality of poses delivered
by recent methods already meets the requirements in most
application scenarios, it may be more desirable to develop a
pose estimation model, that gives the performance on a par
with the state-of-the-art methods but uses less computation
and memory, as shown in Fig. 1.

A direct idea to achieve high efficiency is to use light-

Uhttp://human-pose.mpi-inf.mpg.de/#results
Zhttp://cocodataset.org/#keypoints-leaderboard
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Fig. 2. Illustration of representative networks for human pose estimation that
couple spatial information preserving with semantic information acquisition.
For both Hourglass in (a) and HRNet in (b), a high-to-low process is
adopted to acquire semantics and the high-resolution features in low levels
are preserved by skip connections or additional convolutions.

weight backbones like MobileNets [ 1] for pose estimaiton.
Nevertheless, the results produced by these networks can be
fairly poor. Alternatively, network compression techniques like
knowledge distillation [12] can be resorted to, but a big
teacher network is still needed to be trained ahead. This
paper proposes a novel network architecture, which increases
efficiency without reducing accuracy. Learning from the-state-
of-the-art systems [13], [14], accurate semantic acquisition
and precise spatial information preserving are two key factors
in the success of keypoint localization. The existing deep
models of pose estimation [13], [14], [15], [16] broadly refer
to the classic networks such as ResNet [8] and VGG [17]
developed for ImageNet classification [18]. Specifically, the
network takes high-resolution inputs and gradually decreases
resolution and increases width while going deep. To keep spa-
tial location in the process, skip connections [13] or additional
convolution layers [14] are utilized to retain low-level high-
resolution features. That is to say, preserving spatial location
is coupled with extracting semantic features in these networks.
We show the architectures of the representative networks of
pose estimation in Fig. 2.

Aiming to strike a fine balance of strong performance and
high efficiency for human pose estimation, we propose to sep-
arate spatial information preserving from semantic acquisition.
In our architecture, only low-resolution features are taken as
input and processed to conduct semantic analysis. For accurate
semantic extraction, we make the network deep and keep a big
width throughout. A separate sub-network is utilized to hold
spatial locations with high-resolution input, and the network
is shallow and narrow. We fuse the outputs of sub-networks
to produce the final representations for pose estimation. Fig. 3
illustrates the network structure. Convolutional layers of dif-
ferent depths and widths build a “parallel pyramid” network
(PPNet), and features of different resolutions are computed
in parallel within the pyramids. For easier training and better
performance, we introduce intermediate supervision after the
output of each pyramid.

The design feature of separating semantic and spatial in-
formation enjoys substantial benefits. (1) Strong performance
can be guaranteed. Because the robustness of semantic features
mainly relies on the depth and width of the network, and pre-
cise spatial location is maintained by high-resolution features.
The proposed network meets both requirements to produce
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Fig. 3. An illustration of a single “parallel pyramid” module. The module
is constructed by several parallel branches, and each branch takes in and
processes features of different resolutions. The bottom branch containing
deep and wide sub-networks only processes low-resolution features, and high-
resolution features are only dealt with in the top branch containing narrow
and shallow networks. At the end of each module, the features of different
resolutions are fused to give the output. Multiple modules can be stacked to
form a parallel pyramid network.

accurate results. (2) High efficiency is able to be achieved.
Comparing to the existing networks [13], [14], [15], [16]
for pose estimation, our network mainly makes calculation
on low-resolution features. Hence to give the same level of
performance, less computation and memory is required. We
conduct extensive experiments on two widely-used benchmark
datasets: the MPII Human Pose dataset [9] and the COCO
keypoint detection dataset [10]. The proposed network demon-
strates the consistent superiority of efficiency over the-state-
of-the-art models, using about two thirds of the computation
cost and half of the parameter size to deliver better keypoint
localization performance.

II. RELATED WORK

Estimating human pose efficiently in images or videos
is a long-standing ambition in computer vision. Traditional
methods utilize hand-crafted features like HOG [19] and
Classifiers such as SVM [20] to detect body parts in images,
then probabilistic graphical models [21], [22], [23] depicting
the constrains of body structure are adopted to infer the most
probable part locations. The pictorial structure models [24],
[25], [26] and the deformable part models [27], [28], [29] are
the representative methods. With the great power shown by
deep convolutional neural networks (ConvNets) [30] on many
computer vision tasks, the research nowadays on human pose
estimation has been dominated by deep models. Toshev et
al. [31] propose “DeepPose” to directly regress the coordinates
of joints from images. Though it is a brutal utilization of deep
networks on pose estimation, the performance surpasses most
traditional methods. Inspired by the pictorial structure model,
Tompson et al. [32], [33] replace HOG features and SVM
classifiers with ConvNets, and generate heatmaps of joints
by conducting convolutions at multiple image scales. Another
feature of their method is jointly using a graphical model with
a ConvNet to learn spatial relationships between joints. The
final z, y coordinates of joints are obtained by inferring on the
heatmaps with the graphical model. Several other works [34],
[35] follow the framework and make refinements mainly on
how to better combine graphical models with ConvNets. As the
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ability of ConvNets is further improved by the smart designs
like VGGNet [17] and ResNet [8], recent works [13], [14],
[15], [16], [36] no longer make use of graphical models to
help infer the coordinates of joints from heatmaps. Because a
very deep ConvNet can have a large receptive field to perceive
abundant information in an image, the spatial relationships of
joints are also able to be learned by ConvNets. The latest
methods [37], [38], [39], [40] all produce impressive results,
and only simple post-processing techniques are utilized to get
joint locations.

Recent research on human pose estimation mainly focuses
on how to design the network, aiming to produce more
precise heatmaps. There are two mainstream paradigms to
obtain poses of multiple people in an image, two-stage top-
down [14], [15] and one-stage bottom-up [4 1], [42], [43], [44],
the difference is whether bounding boxes of persons are used.
Nevertheless, the network for generating heatmaps is always
shared, for example both the state-of-the-art top-down [40] and
bottom-up methods [44] use the same network HRNet [14].
Hence we review closely-related network design techniques of
human pose estimation developed mainly under the top-down
paradigm, i.e. methods for single-person pose estimation. A
successful network generally needs to acquire semantic and
spatial information about joints to serve pose estimation, we
talk about related works from these two aspects.

Semantic information acquisition. From early networks
like AlexNet [7] for ImageNet [18&] classification competition,
accurate semantic information acquisition is always one of
the most important goals of network design. Typically, a
network outputs the final low-resolution high-level features to
depict semantic information. ResNet [8] gradually decreases
feature resolution and increases channels while the network
goes deeper. This strategy demonstrates its effectiveness to
produce good high-level representations on various tasks such
as object detection [45] and semantic segmentation [46].
Utilizing RseNet as the backbone, both Chen et al. [16] and
Xiao et al. [15] successfully estimate human pose in images.
Hourglass [13] adopts an encoder-decoder architecture to do
human pose estimation, and semantic information is explored
in its encoder structure. Different from ResNet, because hour-
glass uses a more symmetric topology to conduct bottom-up
and top-down processing, multiple hourglasses are stacked to
make the network deep enough to produce excellent high-level
representations. As hourglass provides an elegant framework
for human pose estimation, various works make refinements
based on it. Chu et al. [47] propose a multi-context attention
mechanism to make hourglass explore more precise semantics.
Yang et al. [48] introduces a feature pyramid module to replace
the basic residual block of hourglass, which hopes to enlarge
receptive field. Chen et. al [49] utilize adversarial learning [50]
to better train the Hourglass network. All these works make
Hourglass generate better results. Like ResNet, HRNet [14]
also progressively decreases feature resolution and increases
channels to get the final high-level representation. Increasing
the width of the sub-networks in HRNet is demonstrated to be
able to acquire more accurate semantic information, making
better results [51]. Mutli-scale attention is also introduced by
Jiang et al. [52] into HRNet to further boost the performance.

Spatial information preserving. Like semantic segmenta-
tion [46], human pose estimation requires pixel-level under-
standing of the input image to give the coordinates of joints.
Thus high-resolution representations are needed to be recov-
ered from low-resolution semantics. Xiao et al. [15] utilize
a light upsample process with just dilated convolutions to
obtain high-resolution heatmaps. Though this simple strategy
produces acceptable results, recent studies [14], [16], [53]
show fusing mutli-scale high-level and low-level features can
bring benefits, since spatial information is preserved in the
low-level high-resolution features. Learning from PSPNet [54]
and DeepLab [55] for semantic segmentation, Chen et al. [16]
combine the pyramid features at the different stages of ResNet
in the low-to-high upsample process. Hourglass [13] uses skip
connections to copy the high-resolution features in low-level
layers to the mirrored layers in its symmetric architecture.
This fusion technique also can be found in U-Net [56] and
encoder-decoder [57]. With the goal to produce excellent high-
resolution representations, HRNet [14] proposes to maintain
the resolution of low-level features by extra convolutional
layers while the high-to-low downsample process proceeds
to acquire semantics. And after every several convolutional
layers, features in multiple scales are fused. Inspired by deep
fusion [53], the whole network repeats multi-scale fusion quite
a lot times to give the final high-resolution representations.

Our parallel pyramid network. Our approach learns from
successful experience of the above works for human pose
estimation, and tries to deliver the same level performance
with less memory usage and computational cost. The main d-
ifference lies in how to efficiently acquire semantic and spatial
information. The existing networks such as Hourglass [13] and
HRNet [14] all utilize a high-to-low downsample process to
get high-level representations, spatial information preserving
is coupled with semantic acquisition. Our network handles
these two tasks separately, semantic acquisition is achieved
only with low-resolution features and high-resolution spatial
information is independently taken care of. We adopt multi-
scale fusion to give the final results like other works for
dense prediction [14], [16], [54], [55]. From “DeepPose” [31]
to the work of Tompson et al. [32] and follow-ups [I3],
[14], [40], the mutli-channel heatmap representation of joints
disentangles semantics from spatial coordinates, which secures
significant improvement of performance. In this paper, we
bring the idea of separating spatial information preserving
from the acquisition of semantics into the design of network
architecture, hoping this can promote efficiency.

IIT. PARALLEL PYRAMID NETWORKS

We follow the widely-used pipeline by contemporary state-
of-the-art networks [13], [14], [15], [36] to do human pose
estimation. Taking an image I of size W x H x 3 as input,
the network outputs K heatmaps {H;,Hs, -+ ,Hg}, where
H; is the heatmap of the kth joint. The final coordinate
x,y of each joint is obtained from its corresponding heatmap
by simple post-processing operations. This paper mainly pays
attention on the efficiency of human pose estimation with the
aim of designing a new network, achieving the same-level
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Fig. 4. The performance variation caused by different resolutions of the input
image. The detailed AP values obtained by two networks SimpleBaseline [15]
and HRNet [14] from AP®° to AP%® are shown in the figure. The COCO
validation set is used for evaluation.

performance as current state-of-the-art methods by using less
computation and memory.

A. Motivation

The performance of nowadays human pose estimation al-
gorithms [14], [42], [58] has reached the level which can
provide reliable results for high-level computer vision tasks
like action recognition [59]. And trying to further improve the
performance of the famous networks such as Hourglass [13]
and HRNet [14] usually needs to pay the cost of considerably
more computation. Because the efficiency of a method is also
very important for practical applications, this drives us to
present a low-cost but good-performance network for human
pose estimation.

A direct idea to increase efficiency is to use a lower-
resolution input. However, the difficulty lies in maintaining
strong performance. Fig. 4 shows standard average precision
(AP) obtained by two recent networks SimpleBaseline [15]
and HRNet [14], tested on the COCO [10] validation dataset.
Clearly for both networks, the APs decrease with lower-
resolution inputs. But if we only look at the APs at relatively
low OKS (Object Keypoint Similarity, OKS < 0.70), for both
networks, the performance degradation caused by lower reso-
lution is not obvious. This indicates an interesting direction to
increase efficiency. Because the APs at relatively low OKS like
AP®® (AP at OKS = 0.50) depict the accuracy of keypoint
detections with not very high localization precision, i.e. the
semantics of keypoint detections is right and just the spatial
coordinates are not extremely close to the ground truth, we
can have a conjecture that semantics is able to be acquired
using a moderately low resolution input. It also accords with
our intuition, as a human body in a low-resolution image still
holds its shape and appearance. On the other hand, semantics
is mainly represented by high-level features in a deep model.
Hence we can put forward a hypothesis that semantics can be
obtained through a deep and wide network but with a low-
resolution input.

Except for accurate semantic information acquisition, p-
reserving the spatial location of features is also essential
for human pose estimation. And it asks for high resolution
features to keep spatial information, which seems contrary to
the expectation of using low-resolution features throughout the
model. Nevertheless, learning from successful models such
as Hourglass [13] and HRNet [14], spatial information can

be well obtained in low-level features, i.e. we can utilize a
shallow network to process high-resolution features for the
preservation of spatial location. This means the requirements
of semantic and spatial information acquisition are not highly
correlated. It motivates us to introduce a novel network archi-
tecture that takes care of semantics and the spatial location
of features separately, and we propose a “parallel pyramid”
network (PPNet) with the aim of increasing the efficiency of
human pose estimation.

B. Parallel Pyramid Network Design

Coupled spatial information with semantics. Existing
networks all use low-level high-resolution features to preserve
spatial location. And high-level low-resolution features rep-
resenting semantics are also obtained from low-level features
through a sequence of convolutions, decreasing the resolution
gradually in the process. Let F¥¢ be the feature of resolution
s, this process (e.g. containing three resolutions si, sg, and
s3) can be denoted as:

F" - F5 - s = @ — FoUt
N FR o - (D
N F2 2

The resolution of features F** and F°* is also s;. Typically
down-sample layers are utilized to halve the resolution, thus

$9 = is; and S3 = %32. It is obvious that all the features,

especijlly F*1 and F*2, need to present both semantic and
spatial information well. To give good performance, widely-
used networks such as ResNet [8] and HRNet [14] all put
heavy computation on the features of the relatively high
resolutions i.e. s; and ss.

Separating Spatial information from semantics. We use
separate subnetworks to deal with semantic acquisition and
the preserving of spatial locations. The input feature Fi" is
directly downsampled to several features of relatively low
resolutions. The feature of the lowest resolution is processed
to get semantics, while the feature of the highest resolution
is taken care of to keep spatial information. We also make
use of the features of the middle resolutions to provide more
information for strong performance. An illustration of our
design, using three resolutions, is given as follows:

F* - F — @ — Fo,
N B 2)
NOFY
In this structure, most computation will be put on semantic
acquisition from the features of the relatively low resolutions,

and only limited computation will be made to preserve spatial
location on the features of the highest resolution .

- ——>

C. Parallel Pyramid Network Instantiation

Following the common network structure of human pose
estimation [13], [15], [32], the proposed parallel pyramid
network consists of three parts, a stem bringing the resolution
of features to a quarter of the input resolution, a main body
outputting the high-level features with both semantic and
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Fig. 5. Tlustrating the residual module and the residual block used in PPNet.

spatial information of keypoints, and a regressor producing
the heatmaps. We mainly put effort into the design of the
main body, presenting a novel architecture to increase the
efficiency while keeping strong performance without any bells
and whistles.

Stem. The stem network takes an image as input and
provides preliminary features for the main body. It starts with
two consecutive 3 X 3 convolutional layers with stride 2,
decreasing the resolution down to a quarter of the input. Like
the ResNet-50 [8] and Hourglass [13], four subsequent residual
modules (shown in Fig. 5(a)) with the width 64 are utilized
for more convolutions. Finally, several 3 x 3 convolutions with
stride 1 or 2 are followed to change the resolution and width of
feature maps, meeting the demands that the parallel pyramid
module makes on its input.

Parallel Pyramid Module. The parallel pyramid modules
form the main body of the network. There are three parallel
branches (indexed by 7 = 1,2,3 from top to bottom) in a
parallel pyramid module, each branch is an independent sub-
network and processes the feature maps of one resolution
throughout. The resolution of feature maps in the branches de-
creases from top to bottom. Let s; be the resolution of feature
maps in each branch, for simplicity and easy implementation,

we set
1

Si+1 = 531% 3)

s1 is equal to a quarter of the resolution of the input image. In
contrast, the depth (the number of convolutional layers) and
width (the number of channels) of the sub-networks increase
from top to bottom. Following a common practice, both the
ratio of depth and width between two adjacent branches is
2. Using D; and W; to denote the depth and width of each
sub-network, the relation can be written as:

Di+1 = 2Di;
Wip1 = 2W;.

Hence both the shape of feature maps and the architecture
of sub-networks in a module resemble a pyramid (as shown
in Fig. 3), which inspires us to name the design a parallel
pyramid module.

We make extensive use of residual blocks to construct the
network. Fig. 5(b) gives an illustration of the block, there are
two 3 X 3 convolutions in each block, and each convolution is
followed by batch normalization and the non-linear activation
ReLU. The convolutions are with the stride 1 and the number
of channels (the width) is kept the same. We use n residual
blocks with the width C' to make up the top branch of a parallel
pyramid module, thus the middle and bottom branch contain
2n and 4n blocks with the width 2C" and 4C' respectively. The

“4)

size of a parallel pyramid module is represented as Dn-WC,
where n and C are the depth and width of the top sub-network.
For example, D2-W32 means there are 2, 4, and 8 residual
blocks in the three sub-networks and the width are 32, 64,
and 128 respectively.

The output of the sub-networks are fused at the end of
a parallel pyramid module. Like the mutli-scale fusion in
HRNet [14], the output of each branch is aggregated with
the outputs of the other two branches, and the aggregated
feature maps are still with the same resolution and width of
its corresponding branch. Denoting the outputs of the sub-
networks before fusion as: {X;,Xz, X3}, the outputs after
fusion still contain 3 feature maps: {Y1, Y2, Y3}, where the
resolution and width of Y; are the same as X;. The fusion is
conducted as follows:

3

Yo=Y F(Xpi), i =123 )

j=1

f(X,,4) changes the resolution and width of X; to that of
X;. If 5 = 1, it is just an identify connection. When j > <,
we simply use nearest neighbour interpolation for upsampling
and a 1 x 1 convolution to align the number of channels. 3 x 3
convolutions with the stride 2 are adopted in case of j <
1, 2x downsampling needs one strided convolution and 4x
downsampling asks for two.

Heatmap regressor. Heatmaps are predicted only from
the feature maps of the highest resolution, i.e. Y;. Two
consecutive rounds of 3 x 3 convolutions are applied to further
process the feature maps, then a 1 x 1 convolution is utilized
to produce the heatmaps.

Intermediate supervision. The main body of our network is
built by connecting multiple parallel pyramid modules end-to-
end, feeding the fused outputs of one module as input into the
next. Intermediate supervision is exercised after each module,
when the prediction of intermediate heatmaps are able to be
made and a loss can be applied on. As demonstrated by early
works [13], [36], stacking multiple modules is able to make
subsequent modules process features at both local and global
context and reconsider the overall coherence of the features
for more accurate predictions. Intermediate supervision allows
for multiple re-evaluation of the high-level features partway
through the full network, which makes the training easier and
more stably.

The intermediate heatmaps are re-integrated back into the
feature space by using a 1 x 1 convolution to align the
number of channels. Same to Hourglass [13], we also add
these intermediate features along with the input of the current
parallel pyramid module. And all these integrated features
make up the input of the following parallel pyramid module.
We illustrate this process of intermediate supervision in Fig 6.

An illustration of the proposed parallel pyramid network
is given in Fig. 7. For the sake of simplicity, all parallel
pyramid modules used in our network are of the same size and
structure, but the weights are not shared across the modules.
And each parallel pyramid module produces the predictions of
heatmaps. We apply a loss to the predicted heatmaps of each
module with the same ground truth. Let m be the number of
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Fig. 6. Illustration of the intermediate supervision process in PPNet. Inter-
mediate heatmaps are obtained on the top branch with the highest feature
resolution, and a loss is applied. The intermediate heatmap will be re-
integrated into the feature space, and these features will be added with the
input of the current parallel pyramid module to make up the input of the next
module.

Fuse

parallel pyramid modules used in the network, Mm-Dn-WC'
indicates the size of the whole network. For example, M4-D2-
W32 depicts a parallel pyramid network of small size, which
we will discuss in the experiments.

D. Analysis

The proposed parallel pyramid network draws upon several
valuable experience of previous works to deliver a good per-
formance on human pose estimation. Our main contribution is
the proposal of disentangling semantic and spatial information
in the design of the network, and this idea promotes efficiency
while doing no harm to the performance. Here we give some
analysis about the similarities and differences between our
network and previous models, especially two most famous
and successful ones including Hourglass [13] and HRNet [14].
All three networks are able to produce high-level features with
accurate semantics and preserve the spatial location of features
in the process, which makes all models give promising results
without big gap. The main difference lies in the mechanism
and thus the efficiency to achieve these. We compare the
proposed network with the other two separately in detail
below. The architectures of the three networks are shown in
Fig. 2 and Fig. 3.

The structure of the stacked Hourglass network [13] is
a single pipeline, and an encoder-decoder architecture with
symmetric topology is utilized. It preserves spatial information
by skip layers during semantic acquisition. Our model adopts
several parallel pipelines to construct the network, spatial and
semantic information is processed with different resolutions
in separate pipelines. Because most computation in our model
is carried out on low-resolution features, less time is taken to
get results of similar accuracy. Both models leverage modular
design to develop a flexible network structure, and the inter-
mediate supervision is able to be adopted for stable training
of the networks. In addition, the shapes of the modules in two
networks resemble a hourglass and a pyramid respectively,
which makes both networks look quietly elegant.

The high-resolution network [14] explores the feasibility of
dealing with features in different resolutions by multiple paral-
lel pipelines. It still utilizes a high-to-low process to generate
high-level and low-resolution representations, the high-to-low
resolution sub-networks are added gradually one by one and
connected in parallel. Because the features of each resolution

are always maintained using convolutional layers in the cor-
responding pipeline, there is no explicit low-to-high process
to recover high-resolution representations. Nevertheless the
convolutions on high-resolution features have to be conducted
from start to end, which can be resource intensive. We also
adopt multiple pipelines to build the network, however, there
is no high-to-low process either in our architecture. High-
level semantics are obtained only using the features of low
resolution, and only limited resources are put on the features
of high resolution to preserve the spatial location. This design
idea of separating spatial location from semantic information
makes our algorithm more efficient. Moreover, it can be much
more convenient for our model to adjust its size. Because
modular design is utilized in the network, we can easily have
small or big models just by modifying the size and number of
modules, but not only changing the width.

IV. EXPERIMENTS

Datasets. The Experiments are conducted on two most
widely-used datasets for human pose estimation, the MPII Hu-
man Pose dataset [9] and the 2017 Microsoft COCO keypoint
dataset [10]. No additional datasets like Al Challenger [60]
will be used for training a better model, as we want to simply
demonstrate the efficiency of the proposed algorithm.

The state-of-the-art networks for comparison. We com-
pare our Parallel Pyramid Networks (PPNet) to three repre-
sentative and the best models in the literature, described as
follows:

o SimpleBaseline [15]: This model utilizes ResNet [8] as its
backbone, and the predictions of heatmaps are obtained
only by several deconvolutional layers. Although the
structure is surprisingly simple, its performance surpasses
other works like CPN [16] based on ResNet. Hence
SimpleBaseline is the representative model of works
using ResNet as the backbone network, and makes the
baseline of human pose estimation.

o Hourglass [13]: With its elegant architecture and strong
performance, Hourglass may be the most popular network
for human pose estimation. Numerous best-performing
methods on the MPII dataset [9] are based on Hourglass.

e HRNet [14]: It is the current state-of-the-art network
of human pose estimation. The latest works such as

DARK [61] and UDP [62] that report the best results on
the COCO dataset [10] all use HRNet as the backbone
model.

Although various methods has been proposed to push the
boundaries of human pose estimation, the backbone model
of these works is generally one of the three networks. We are
interested in a more efficient backbone network for human
pose estimation, experiments are carried out thoroughly to
demonstrate the superiority of the proposed PPNet over the
above three networks. PPNet can certainly benefit from the
model-agnostic refinement techniques, such as attention mech-
anism [63], distribution-aware coordinate representation [61],
and unbiased data processing [62]. Nonetheless, pursuing the
best results on the MPII or COCO benchmark is not the goal
of this paper.
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Fig. 7. The framework of using PPNet to do human pose estimation. Our main work is the design of the architecture of the proposed parallel pyramid

network, which makes the main body of the framework.

Instantiated models of PPNet. We are able to build a
variety of models by setting different depth and width of
the parallel pyramid module. Besides, the number of modules
can be adjusted to change the model size. As described in
Section III-C, we use Mm-Dn-WC' to express the size of a
PPNet model, where m, n, and C' are the parameters. In the
experiments, eight different networks of PPNet are constructed
by taking two different values for each of the three parameters,
ie.m = 24, n = 2,3, and C = 32,48. We will mainly
study several of them. M2-D2-W32 is the smallest network
providing the highest efficiency, and the biggest one is M4-
D3-W48 delivering the best performance.

Experimental settings. Model-agnostic improvements may
significantly affect the results of human pose estimation.
Some examples demonstrated effectiveness include more data
augmentation [64], specialized data-processing [62], or multi-
scale testing [47]. To reveal the pure model performance and
make fair comparisons, we train and test all networks under
the same standard settings, excluding any discrepancies except
for the model that can potentially account for differences
in the reported accuracy. All compared networks, including
our PPNet, are implemented in Python with Pytorch 1.0,
and executed on a machine with one NVIDIA 2080Ti GPU.
For SimpleBaseline [15] and HRNet [14], we directly use
their public code. For Hourglass [13] and our PPNet, we
implement them exactly according to the description in the
paper. All models share the same code for data augmentation
and post-processing. ImageNet pre-training is well-known to
bring benefits, however, pre-training all the compared models
on such a large dataset is beyond the capacity of our resource.
In order to be fair and truly reflect the power of the models,
we train all networks by initializing the weights from normal
distribution. The source code and trained models of PPNet will
be public available at https://github.com/sharling-1z/ppnet.

A. Evaluation on COCO Keypoint Detection

The performance on the COCO keypoint dataset [10] is
the current touchstone of a good model. The dataset presents
naturally challenging imagery data with unconstrained en-
vironments, different scales, and various occlusion patterns.
Each person instance is labelled with 17 keypoints. We train
all models on COCO train2017 dataset, which contains 57K
images and 150K person instances. The evaluation of our
approach is made on both the val2017 set and test-dev2017
set, containing 5K and 20K images respectively.

Evaluation metric. The standard average precision (AP)
and average recall (AR) scores based on Object Keypoint
Similarity (OKS) are utilized to evaluate the performance.
OKS is defined as a similarity measure of poses mimicking
IoU in object detection, which is formulated as:

> exp(—d?/2s?k?)d(vi > 0)
S0 =0

where d; is the Euclidean distance between each detected
keypoint and its corresponding ground truth, s is the object
scale, k; is a keypoint-specific constant that controls falloff,
v; is the visibility flag of the ground truth. We report AP
(the mean of AP scores at OKS = 0.50,0.55,...,0.90,0.95),
AP®® (AP at OKS = 0.50), AP™, APM (medium objects),
AP (large objects) and AR (the mean of AR scores at
OKS = 0.50,0.55,...,0.90,0.95). To compare the complexi-
ty of a model, we give the number of parameters and FLOPs.
In addition, the speed of training (samples/s) is presented to
directly reflect the efficiency.

Training. The image of each person instance is cropped
using the corresponding bounding box, and the aspect ratio
of height and width is fixed as 4 : 3. The image is resized to
256 %192 or 384 x 288 after cropping. We use the standard data
augmentation including random horizontal flipping, scaling
([.65,1.35]), and rotation ([—45°,45°]).

All models are trained following the same learning schedule
of HRNet [14]. The total number of epochs is 210, the base
learning rate is decayed by a factor of 10 at the 170th
and 200th epochs, respectively. For SimpleBaseline[]5] and
HRNet [14], the Adam optimizer [65] is utilized and the base
learning rate is set as le — 3. For Hourglass [13] and PPNet,
we adopt RMSProp [66] for optimization with a learning rate
of 2.5e — 4. The batch size of 32 is used for training, except
for the very large models, we decrease the batch size to 24 or
16 as the memory of GPU will exceed.

Testing. The common two-stage top-down paradigm [14],
[15], [16] is used during testing. For both validation set
and test-dev set, we use the person detections released by
SimpleBaseline [15]. Following the standard post-processing
protocol of testing, the heatmaps from the original and flipped
images are averaged to compute the heatmap. And the keypoint
location is predicted by applying a quarter offset to the location
of the highest heatvalue in the direction from the highest
response to the second highest response.

Results on the validation set. All the compared models
are divided into four categories according to the complexity

OKS =

(6)
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and efficiency, and we compare the results of the models in
each category. We want to see whether our PPNet can achieve
a better balance between accuracy and efficiency comparing
to the existing models. Table I presents the results produced
by models of mini-size. The models in this category can
process around 200 images per second with the input size
256 %192 on our machine (one NVIDIA 2080Ti GPU). Among
the models of the compared networks, only SimpleBaseline
using ResNet-50 as the backbone reaches the standard. Our
PPNet using both the backbones of M2-D2-W32 and M2-
D3-W32 can be trained at a higher speed, and the number
of parameters and GFLOPs are much lower. The smallest
one PPNet (M2-D2-W32) reaches a speed of 235samples/s
and uses 4.8x fewer parameters and 2.7x fewer GFLOPs than
SimpleBaseline (ResNet-50). Nonetheless, it improves AP by
1.0 and 1.5 points under the input size 256 x 192 and 384 x 288
respectively. Our a little bigger model PPNet (M2-D3-W32)
further increases accuracy, while its complexity and training
speed are still competitive.

The second category contains models of small size, includ-
ing SimpleBaseline (ResNet-101), Hourglass (2-stage), and
PPNet (M4-D2-W32). We give the results of these models
in Table II. Compared to SimpleBaseline (ResNet-101), our
PPNet (M4-D2-W32) shows absolute superiority. Though the
number of parameters and GFLOPs is 4.2x fewer and 2.5x
fewer respectively, the improvement in AP is 1.5 points and
1.3 points under the input size 256 x 192 and 384 x 288,
respectively. Compared to Hourglass (2-stage), PPNet (M4-
D2-W32) has slightly more parameters, but uses less GFLOPs
and trains faster. For the input size 256 x 192, AP obtains 1.0
points gain from 71.7 to 72.7. The input size 384 x 288 is
not trained and tested on Hourglass, because the Hourglass
network needs a 64x down-sampling to its lowest resolution,
and it can not be achieved on this resolution.

The results of the models in medium size are compared in
Table III. Except for SimpleBaseline, the other three methods
(i.e. Hourglass, HRNet, and PPNet) deliver a performance
on a par with each other under the input size 256 x 192.
Nevertheless, our PPNet (M4-D3-W32) can be trained at a
speed of 130 samples/s, which is 1.7x faster than Hourglass
(4-stage) and 1.3x faster than HRNet (W32). For the input size
384 x 288, PPNet (M4-D3-W32) achieves a score of 74.7 AP,
outperforming HRNet (W32) by 0.8 AP. At the same time,
PPNet (M4-D3-W32) still maintains its higher efficiency.

We compare the large models finally in the fourth category.
Models of this size are used to compete for the state-of-
the-art performance, but the cost of computation is usually
huge. Table IV reports the results for comparison. Hourglass
(8-stage) obtains the highest score of 74.8 AP for the in-
put size 256 x 192°. The result of PPNet (M4-D3-W48) is
slightly worse, however, its efficiency far surpasses Hourglass
(8-stage). For the training speed, PPNet (M4-D3-W48) can
maintain a speed of 95 samples/s, but the speed of Hourglass
(8-stage) is just 37 samples/s. HRNet (W48) is the state-of-

3The result reported in other papers [16], [14], [62] is just 66.9 AP. This
can not be the right score of 8-stage Hourglass. We guess the difference may
be caused by unfair comparisons such as using different data processing and
person detectors.

the-art model under the input size 384 x 288. PPNet (M4-
D2-W48) already makes an improvment by 0.5 AP with less
than half of the parameters and two thirds of the GFLOPs.
Making the backbone a litter bigger, PPNet (M4-D3-W48)
further achieves 0.3 points gain, while keeping its advantage
in complexity and efficiency over HRNet (W483).

Conducting a comprehensive analysis of the performance
by the four compared networks, we can find that SimpleBase-
line [15] consistently gives the worst results. Looking at the
score of AP, there is no obvious gap between the result
of SimpleBaseline and the other three methods, however, the
score of AP™ reported by SimpleBaseline can be signifi-
cantly lower. This indicates the inability of SimpleBaseline
to preserve precise spatial locations of keypoints, since only
dilated convolutions are utilized to recover high-resolution
heatmaps. All other three methods take advantage of multi-
scale fusion to maintain the spatial information from low-level
features, which demonstrates its necessity and effectiveness.
But from the perspective of efficiency, though the number
of parameters and GFLOPs of SimpleBaseline may be much
larger than HRNet [14] or Hourglass [13], the training speed
is surprisingly faster. The reason may lie in the repeated
multi-scale fusion in the process, and it can be quite time-
consuming. Thus it would be misleading if only the numbers
of parameters and GFLOPs are presented for comparison. Our
PPNet finds a fine balance between accuracy and efficiency,
which reaches faster training speeds than SimpleBaseline [15]
and delivers even stronger performance than Hourglass [13]
and HRNet [14].

Results on the test-dev set. Here we only compare the
results of large models of each network. Table V reports
the results for comparison. The performance of several other
methods that are listed on the leader board” is also exhibited
for reference. The results are consistent with the conclusion
reached on the validation set. Our most efficient model PPNet
(M4-D2-W48) achieves a score of 74.8 AP, outperforming the
state-of-the-art model HRNet (W48) 0.3 AP. Taking model
size (#Params) and computation complexity (GFIOPs) into
account, PPNet undoubtedly demonstrates its outstanding net-
work design and can be a better backbone for human pose
estimation.

B. Evaluation on MPII Human Pose Estimation

The MPII Human Pose Dataset [9] is constructed from video
frames depicting a wide-range of real-world activities. Each
person instance is annotated with a ground-truth bounding
box and 16 keypoints. There are about 25K images and 40K
person instances, where 28K subjects are used for training.
Because the scales of person instances in MPII are mostly
large and the crowding is not as heavy as in the COCO dataset,
it is relatively easy to deliver good performance on this dataset.
We follow the standard train/val split as in other works [32],
and the evaluation is conducted on the validation set.

Evaluation Metric. We use the standard metric PCKh
(head-normalized Percentage of Correct Keypoints). The head
size [ is used to normalize the distance, which corresponds

“http://cocodataset.org/#keypoints-leaderboard
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TABLE I
COMPARING THE MODELS OF MINI-SIZE ON THE COCO VALIDATION SET. OUR SMALLEST MODEL PPNET (M2-D2-W32) SURPASSES SIMPLEBASELINE
(RESNET-50) BY OVER 1.0 POINTS IN AP, ONLY USING 4.8x FEWER PARAMETERS AND 2.7x FEWER FLOPS. AND THE TRAINING SPEED CAN BE MUCH
FASTER. THE A LITTLE BIGGER MODEL PPNET (M2-D3-W32) FURTHER IMPROVES THE PERFORMANCE, WHILE THE EFFICIENCY IS STILL GREATER.
THE UNIT OF TRAIN SPEED IS IN SAMPLES PER SECOND (samples/s).

Method Backbone Input size | Params | FLOPs | Train Speed AP AP®0 AP APM  APL AR
SimpleBaseline [15] ResNet-50 33.9M 8.9G 190 sam/s 69.9 88.4 77.5 66.3 76.9  75.8
PPNet M2-D2-W32 | 256 x 192 7.0M 3.3G 235sam/s 70.9 88.6 78.4 67.7 774 76.7
PPNet M2-D3-W32 9.7M 4.1G 205 sam/s 71.5 88.8 78.4 68.2 78.0 77.1
SimpleBaseline [15] ResNet-50 33.9M | 20.2G 90 sam/s 70.8 88.7 77.4 66.6 78.6 76.4
PPNet M2-D2-W32 | 384 x 288 | 7.0M 7.5G 110sam/s | 72.3 88.8 79.1 68.6 79.2  77.6
PPNet M2-D3-W32 9.7M 9.2G 95 sam/s 73.2 88.9 80.0 69.5 80.1 78.4
TABLE II

COMPARING THE MODELS OF SMALL SIZE ON THE COCO VALIDATION SET. PPNET (M4-D2-W32) IS ABLE TO PRODUCE THE BEST RESULT WITH THE
FASTEST TRAINING SPEED. WHETHER UNDER THE INPUT SIZE 256 X 192 OR 384 X 288, THE PROMOTION IS MORE THAN 1.0 AP. NONETHELESS, THE
NUMBER OF PARAMETERS AND FLOPS IS SIGNIFICANTLY LESS THAN SIMPLEBASELINE (RESNET-101). WHILE THE PARAMETERS OF PPNET
(M4-D2-W32) IS A LITTLE LARGER THAN HOURGLASS (2-STAGE), THE FLOPS IS SMALLER.

Method Backbone Input size Params | FLOPs | Train Speed AP AP®0 AP APM APLM AR

SimpleBaseline [15] ResNet-101 53.0M 12.4G 135sam/s 71.2 89.1 78.9 67.9 78.1 7.2

Hourglass [13] 2-stage HG 256 x 192 6.7TM 6.3G 135sam/s 1.7 88.8 78.9 68.4 783 77.2

PPNet M4-D2-W32 12.7M 5.0G 150 sam/s 72.7 89.4 79.8 69.4 79.3 78.2

SimpleBaseline [15] | ResNet-101 384 x 288 53.0M | 27.9G 60 sam /s 73.0 89.3 79.7 69.3 80.5  78.7

PPNet M4-D2-W32 12.7M | 11.3G 75 sam/s 74.3 89.6 81.0 70.7 81.1 79.4
TABLE III

COMPARING THE MODELS OF MEDIUM SIZE ON THE COCO VALIDATION SET. ALL THE FOUR COMPARED NETWORKS COMPETE VIGOROUSLY IN THIS
CATEGORY. OUR PPNET (M4-D3-W32) STILL DELIVERS THE BEST PERFORMANCE WITH THE LOWEST COMPLEXITY AND HIGHEST EFFICIENCY.
COMPARED TO HRNET (W32), PPNET (M4-D3-W32) HAS 1.6x FEWER PARAMETERS, AND THE TRAINING SPEED IS 1.3x FASTER.

Method Backbone Input size | Params | FLOPs | Train Speed | AP AP0 AP APM APl AR
SimpleBaseline [15] ResNet-152 68.6M 15.7G 100 sam/s 71.3 88.9 78.9 68.0 781 77.2
Hourglass [13] 4-stage HG 256 x 192 13.0M 10.7G 75sam/s 73.5 89.5 80.9 70.2 80.0 789
HRNet [14] HRNet-W32 28.5M 7.1G 100 sam/s 73.4 89.5 80.7 70.2 80.1 78.9
PPNet M4-D3-W32 18.1M 6.5G 130sam/s | 73.6  89.4 80.8 70.2 80.1 78.9
SimpleBaseline [15] ResNet-152 68.6M 35.4G 45 sam/s 73.0 88.9 79.8 69.3 80.5 78.7
HRNet [14] HRNet-W32 | 384 x 288 | 28.5M 16.0G 50 sam/s 73.9 89.6 80.7 70.2 81.0 794
PPNet M4-D3-W32 18.1M | 14.7G 65 sam/s 74.7  89.7 81.2 70.9 81.7  79.7
TABLE IV

COMPARING THE MODELS OF LARGE SIZE ON THE COCO VALIDATION SET. OUR PPNET (M4-D3-W48) USES 1.6x FEWER GFLOPS AND TRAINS 2.6x
FASTER THAN HOURGLASS (8-STAGE), PRODUCING CLOSE RESULTS. COMPARED TO HRNET (W48), PPNET (M4-D2-W48) 1S ABLE TO INCREASE THE
SCORE BY 0.5 AP, WHILE USING LESS THAN HALF OF THE PARAMETERS AND TWO THIRDS OF THE GFLOPS.

Method Backbone Input size Params | FLOPs | Train Speed AP AP®0 AP  APM  APL AR
Hourglass [13] 8-stage HG 25.5M 19.6G 37sam/s 74.8 89.8 82.0 71.3 81.5 80.0
HRNet [14] HRNet-W48 256 x 192 63.6M 14.6G 70sam/s 74.7 89.9 82.1 71.2 81.5 80.1
PPNet M4-D3-W48 39.2M 12.5G 95 sam/s 74.4 89.9 81.2 71.0 81.1 79.7
HRNet [14] HRNet-W48 63.6M | 32.9G 32sam/s 75.0 90.0 81.9 72.0 81.4 80.9
PPNet M4-D2-W48 | 384 x 288 | 27.1M | 20.6G 53 sam/s 75.5 89.8 82.1 71.7 82.5 80.5
PPNet M4-D3-W48 39.2M 28.1G 42sam/s 75.8 90.0 82.4 72.1 82.6 80.8
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COMPARISONS ON THE COCO TEST-DEV SET. COMPARED TO THE BEST COMPETITOR (HRNET), PPNET MANIFESTS CONSISTENT SUPERIORITY BY

TABLE V

PRODUCING BETTER RESULTS WITH MUCH FEWER PARAMETERS AND GFLOPs.

Method Backbone Pretrain | Input size Params | FLOPs AP AP0 AP APM  APM AR
G-RMI [67] ResNet-101 - 353 x 257 | 42.6M 57.0G 64.9 85.5 71.3 62.3 70.0 69.7
CPN [16] ResNet-Inception - 384 x 288 - - 72.1 91.4 80.0 68.7 772 785
RMPE [58] PyraNet [48] - 320 x 256 | 28.1M 26.7G 72.3 89.2 79.1 68.0 78.6 -

SimpleBaseline [15] ResNet-152 N 384 x 288 | 68.6M 35.4G 72.6 91.1 80.4 69.4 787 78.1
Hourglass [13] 8-stage HG N 256 x 192 | 25.5M 19.6G 73.9 91.9 81.9 70.8 79.5  79.2
HRNet [14] HRNet-W48 N 384 x 288 | 63.6M 32.9G 74.5 92.0 82.2 71.0 80.5 79.9
PPNet M4-D2-W48 N 384 x 288 | 27.1M | 20.6G | 74.8 92.0 82.2 71.5 80.6 79.9
PPNet M4-D3-W48 N 384 x 288 | 39.2M 28.1G | 74.9 92.0 82.3 71.5 80.7  80.0

to 60% of the diagonal length of the ground-truth head TABLE VII

bounding box. If the distance between a predicted joint and the
corresponding ground-truth position is less than «l pixels, the
prediction is regarded as correct. «v is a parameter to control
the strictness of the metric, we report the PCKh@0.5 (a = 0.5)
score.

Training. The procedure of data processing for training is
almost the same as that in COCO, except that the input size
is adjusted to 256 x 256 as a common setting on MPIIL. The
training strategy is also similar to that in COCO. Because the
number of training samples is much less, the total number of
epochs is changed to 160 and the learning rate is decayed at
the 120th and 150th epochs, respectively.

Testing. The testing procedure is identical to that in COCO.
Because ground-truth person boxes are provided in MPII, per-
son detectors are not needed. This can remove the influence of
person detection on the final result of human pose estimation,
and the performance of human pose estimation models can be
purely reflected.

Results on the validation set. Table VI shows the results
of several typical models of each compared network. Hour-
glass [13] is able to obtain the highest accuracy. But taking
the efficiency into consideration, PPNet can still be the better
method. Comparing our PPNet (M4-D2-W32) with Hourglass
(2-stage), we use 1.7G fewer FLOPs (6.7G versus 8.4G)
but increase the PCKh@Q.5 score by 0.5 (89.2 to 89.7). The
performance of PPNet (M4-D3-W32) and Hourglass (4-stage)
is at the same top level, but PPNet is much more efficient in
terms of computation complexity (8.7G versus 14.3G FLOPs).
Compared to HRNet (W32), PPNet enjoys the advantage of
both better performance and higher efficiency. Taking the
relatively small model (PPNet M4-D2-W32) as an example,
the improvement of the PCKh@0.5 score is 0.2 and the number
of GFLOPs is 1.4x fewer. For all the methods, using larger
backbone networks, such as HRNet W48 and PPNet M4-
D3-W48, does not bring considerably higher accuracy. The
reason may be that the performance is relatively easy to get
saturated on this dataset, since its size is much smaller and
the conditions are not as challenging as that in COCO.

C. Discussion

The main design choices of the proposed parallel pyramid
network are explored. We investigate the difference made by
using different building blocks (residual module or residual

COMPARISON OF PERFORMANCE AND COMPLEXITY BETWEEN MODELS
CONSTRUCTED BY RESIDUAL MODULES AND RESIDUAL BLOCKS. THE
EXPERIMENTS ARE CONDUCTED ON THE COCO VALIDATION SET [10].
THE INPUT IMAGE SIZE IS 256 X 192. RES. B = RESIDUAL BLOCK, RES.
M = RESIDUAL MODULE.

Model Res. B | Res. M | Parmas | GFLOPs AP
M2-D2-W32 v 7.0M 3.3 70.9
v 10.8M 5.4 71.6

MA-D2-W32 v 12.7M 5.0 72.7
v 20.9M 8.6 73.6

bock). And the suitable number of parallel branches and
pyramid modules to build a network is discussed. The con-
figurations of PPNet mainly contain the depth, the width, and
the feature resolution of each parallel branch. Thus we will
compare different depth and width increase ratios between two
adjacent branches. In addition, using the input size 384 x 288,
different down-sample factors of the feature resolution will be
analysed. The experiments are conducted on COCO validation
set [10] using the input size of 256 x 192 unless otherwise
specified.

Residual block or residual module. In the above ex-
periments, the PPNet models are all constructed by residual
blocks (Fig. 5(b)). However, residual modules (Fig. 5(a)) are
also can be used to build the models. Taking PPNet M2-
D2-W32 and M4-D2-W32 as examples, Table VII presents
a comparison of performance and complexity between the
models constructed by residual blocks and residual modules.
Using residual modules gives a little better performance,
but the number of parameters and GFLOPs are also larger.
Considering the balance between accuracy and efficiency, we
choose residual blocks to build PPNet.

The number of parallel branches. Our PPNet contains 3
parallel branches, that is to say two times of down-sampling
are conducted in the main body of the network. As we know,
the existing networks such as ResNet [8] and HRNet [14]
typically do down-sampling three times in the process. Thus
whether adding one branch to PPNet can be a better choice. To
do the experiment, a miniature network PPNet M2-D2-W32
and a small network PPNet M4-D2-W32 are selected as the
baselines. Fig. 8 presents the results of adding one branch.
Compared to both baselines, using four parallel branches
significantly increases the number of parameters and GFLOPs,
but the promotion of performance is very limited. The reason
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TABLE VI
COMPARISONS ON THE MPII VALIDATION SET. THE PERFORMANCE OF PPNET IS ON A PAR WITH HOURGLASS AND HRNET, BUT IT USES MUCH LESS
PARAMETERS AND GFLOPS TO REACH HIGH LEVEL.

Method Backbone Params | FLOPs Hea Sho Elb Wri Hip Kne Ank | Mean
SimpleBaseline [15] | ResNet-152 | 68.6M | 21.0G | 96.3 951 88.8 823 883 836 79.6 88.3
Hourglass [13] 2-stage HG 6.7M 8.4G 96.3 954 895 84.7 88.7 84.8 81.1 89.2
Hourglass [13] 4-stage HG 13.0M | 143G | 97.0 96.0 905 86.3 894 86.5 829 | 90.2
HRNet [14] HRNet-W32 | 28.5M 9.5G 96.8 958 898 84.8 889 8.6 81.6 89.5
PPNet M4-D2-W32 | 12.7M 6.7G 969 958 90.1 852 88.8 85.6 818 89.7
PPNet M4-D3-W32 | 18.1M 8.7G 969 96.0 904 855 894 86.3 825 90.0
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Fig. 8. Comparison of model complexity and validation accuracy while PPNet
uses three branches and four branches. Two networks of different sizes M2-
D2-W32 and M4-D2-W32 are selected to do the evaluation.

may be features in a very low resolution like 8 x 6 can not
provide enough information, and it is not worth to do deep
processing.

The suitable number of modules. To explore the effect
of using different number of modules, we must ensure the
change in performance is caused by changing the architecture
shape but not attributed to an increase in network size.
For this purpose, PPNet with the backbone M4-D2-W32 is
utilized as the baseline network, which consists of 4 parallel
pyramid modules and the depth of each module is 2. To make
the comparison, we change the architecture of the baseline
network to have two variations M1-D8-W32 and M2-D4-
W32, respectively. Hence it is able to see, with the same
network size, whether increasing the number of modules but
decreasing the module size can produce better performance.
The comparison of the three networks is illustrated in the left
part of Fig. 9. As can be seen, there is a wide gap (1.2 AP)
between the performance of PPNet M1-D8-W32 and M2-D4-
W32. This demonstrates the necessity of stacking multiple
modules, because the multi-scale fusion and intermediate
supervision after each module can make subsequent modules
take in more information and do a deeper reconsideration
of the features. Increasing the number of modules from 2
to 4 further brings 0.1 AP improvement, which shows more
modules can be better. This raises a question if increasing the
number of modules can always get better results. The right part
of Fig. 9 shows the results of PPNet M4-D4-W32 and M8-D2-
W32. The performance of these two networks is almost the

left part are the same size, the size of the two networks in the right part is
two times of those in the left part.

same. Considering using more modules will slightly increase
the number of parameters and GFLOPs, 4 modules can be
a better choice. This is why we use 2 modules to construct
PPNet in mini size and 4 modules to build bigger networks.
The depth increase ratio. With the goal of improving
efficiency, we make the first parallel branch (processing high-
resolution features) of PPNet shallow and the last parallel
branch (processing low-resolution features) deep. Thus it
needs to set a suitable depth increase ratio between two
adjacent branches, taking both performance and efficiency
into consideration. Based on PPNet M2-D2-W32, we compare
four depth increase ratios, 2-2, 2-3, 3-2, and 3-3. Taking the
increase ratio 2-3 as an example, because in PPNet M2-D2-
W32 the first branch has 2 residual blocks, there are 4 and 12
residual blocks in the second and third branches respectively.
The width increase ratio between adjacent branches is kept as
2. Fig. 10 compares the model complexity and performance
between the four depth increase ratios. Larger depth increase
ratios improve the model accuracy, however, the number of
parameters and GFLOPs also becomes larger. We select the
depth increase ratio 2 between adjacent branches, because
efficiency is the main priority of building a PPNet network.
The width increase ratio. Like the depth increase ratio,
we also need to set a suitable width increase ratio between
adjacent parallel branches of PPNet. The experiments are
still conducted based on PPNet M2-D2-W32, and the same
four width increase ratios, 2-2, 2-3, 3-2, 3-3, are compared,
keeping the depth increase ratio between adjacent branches
as 2. The model complexity and performance using different
width increase ratios is shown in Fig. 11. The APs, the number
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Fig. 10. Comparison of the model complexity and performance using different
depth increase ratios. D2-4-8 corresponds to the depth increase ratio 2-2, and
means the depth of the three parallel branches are 2, 4, and 8 respectively.
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Fig. 11. Comparison of the model complexity and accuracy using different
width increase ratios. W32-64-128 corresponds to the width increase ratio
2-2, and means the width of the three parallel branches are 32, 64, and 128
respectively.

of parameters, and GFLOPs all consistently increase with
larger width increase ratios. Making the width increase ratio
between the first and second branch as 3 other than 2, the
improvement of model performance is obvious. Thus, it may
be better to set a larger number for the channels of the second
branch. However, we still make 2 as the width increase ratio
between all adjacent branches because of efficiency, and this
choice also follows the common practice used in well-known
networks such as VGG [7] and ResNet [18].

The feature resolution decrease ratio. The accuracy and
the number of GFLOPs of a model are highly correlated to the
resolution of features. Using PPNet M2-D2-W32, we conduct
experiments to compare three feature resolution decrease ratios
between adjacent branches, 2-2, 2-3, and 3-2, with the input
size of 384 x 288. A larger decrease ratio means lower feature
resolution in the next parallel branch of PPNet. For example,
if the decrease ratio 3-2 is used, the feature resolutions in
the three branches will be 96 x 72, 32 x 24, and 16 x 12
respectively. The model performance and GFLOPs under each
feature resolution decrease ratio are given in Table VIII. Using

TABLE VIII
COMPARISON OF MODEL PERFORMANCE AND GFLOPS USING DIFFERENT
FEATURE RESOLUTION DECREASE RATIOS BETWEEN ADJACENT PARALLEL
BRANCHES OF PPNET. THE RESULTS ARE OBTAINED BASED ON PPNET
M2-D2-W32 WITH THE INPUT SIZE 384 X 288.

Decrease ratio | GFLOPs AP AP®0 | APTS
2-2 7.57 72.3 88.8 79.1
2-3 5.88 71.9 88.6 78.7
3-2 5.20 71.4 88.7 78.5

a lager decrease ratio will slightly lower the mean AP, but the
reducing of GFLOPs is considerable. We choose the decrease
ratio 2 between all adjacent branches of PPNet, as this is the
most used down-sampling factor.

As discussed above, the networks of PPNet can be built
flexibly by various choices. For the depth and width increase
ratio between two adjacent branches, it is hard to determine
the best value, and we just use 2 to follow common practices.
There is a high probability other values (not limited to integer)
can deliver stronger performance with greater efficiency. We
need to consider the depth, the width, and the feature reso-
lution of each parallel branch together, and determine their
suitable values simultaneously. Nowadays neural architecture
search (NAS) [68] proves high effectiveness in the design of
task-specific convolutional networks. Based on the architec-
ture of SimpleBaseline [15] EvoPose2D [69] carries out the
search and gets very efficient networks. Because our PPNet
demonstrates to be a more elegant architecture and there is
much more freedom of search, we believe better configurations
of PPNet can be obtained by NAS, outputting very efficient
networks.

V. FURTHER ANALYSIS
A. Support for The Motivation

With the purpose of increasing efficiency, the design of
PPNet tries to separate semantic and spatial information into
low-resolution and high-resolution feature maps respectively.
Here, we conduct investigation on the feature pyramids of
PPNet, aiming to support the motivation by providing more
empirical evidence.

First, we investigate the feature maps of PPNet to see
whether the spatial and semantic information is processed
separately in different resolutions. To do the verification, the
feature maps produced by the last parallel pyramid module
of PPNet are visualized. We present both the feature maps of
the highest resolution and the lowest resolution in a feature
pyramid. The corresponding feature maps generated by HR-
Net [14] and ResNet (SimpleBaseline [15]) are also visualized
for comparison. For the visualization, we use images of size
256 x 192 as the input, then the sizes of the highest and lowest
resolution feature maps are 64 X 48 and 16 x 12 respectively.
We compare the feature maps from three networks, PPNet
M4-D2-W32, HRNet-W32 and ResNet-101, as these three
models are of similar size. The visualization of the feature
maps is shown in Fig. 12. Comparing the lowest resolution
feature maps of the three networks, the features of PPNet look
similarly to the other two, all of them give responses mainly
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Fig. 12. Visualization of different resolution feature maps in PPNet. The
corresponding feature maps in HRNet [14] and ResNet (SimpleBaseline [15])
are also presented for comparison. The feature maps of PPNet are from the last
parallel pyramid module of PPNet M4-D2-W32, the feature maps of HRNet
are from the last stage of HRNet-W32, and the feature maps of ResNet are
from the C4 layer of ResNet-101 and the last deconvolution layer. We show
the feature maps after using 1 X 1 max pooling on the channels.

ResNet

(SimpleBascline)

to the area of the target human body. Because both HRNet and
ResNet utilize a high-to-low process to generate low-resolution
features, and these high-level representations are considered
mainly contain semantic information. We argue that the lowest
resolution features of PPNet also mainly include semantic
information, though there is not a high-to-low process in
PPNet.

From the highest resolution feature maps, the keypoints of
interesting on human body can be easily noticed. PPNet and
HRNet [14] both get the final high-resolution representation
by fusing multi-scale features. SimpleBaseline [15] only uses
several deconvolutions to generate the high-resolution repre-
sentation from the low-resolution features. In Fig. 12, we can
see that the highest resolution features of PPNet and HRNet
can more precisely indicate the locations of keypoints than
those of ResNet. HRNet [14] has explained that its ability
to maintain high-resolution makes the representation more
spatially precise. PPNet only utilizes shallow sub-networks to
process high-resolution features, and the final high-resolution
representation is also spatially precise. Hence the spatial
information is well preserved in the high-resolution features
of PPNet.

B. ImageNet Pre-training

Using ImageNet [18] to pre-train models then fine-tuning
on specific down-stream tasks such as object detection [45]
and human pose estimation [14] is usually able to get better
performance. We conduct experiments to test how the perfor-
mance of PPNet can be improved by ImageNet pre-training.
Two models of PPNet, M2-D2-W32 and M4-D2-W32, are pre-
trained on ImageNet, then the COCO keypoint dataset [10] is
used for fine-tuning. All other training and testing details are
the same as described in Section IV-A. To better demonstrate
the capability of PPNet, the results of SimpleBaseline [15]
using ImageNet pretraining are given for comparison. We
select two models of SimpleBaseline, ResNet-50 and ResNet-
101, to do the comparison, because they have similar size to

TABLE IX
THE PERFORMANCE OF PPNET MODELS PRE-TRAINED ON IMAGENET.
EXPERIMENTS ARE CONDUCTED ON THE COCO KEYPOINT DATASET, AND
THE COCO VALIDATION SET IS USED FOR TESTING. THE RESULTS OF
SIMPLEBASELINE MODELS PRE-TRAINED ON IMAGENET ARE ALSO
GIVEN FOR COMPARISON. SB = SIMPLEBASELINE.

Method Backbone Input size | AP AP0 AP
M2.D2waz | 296 %192 | 721 89.0 795
384 x288 | 73.8 89.7 804
PPNt 256 x 192 | 73.8  89.8  81.1
M4-D2-W32 x : : :
384 %288 | 75.7  90.1  82.2
ResNet50 | 206 %192 [ 704 886 783
SB [15] 384 x288 | 722 893 789
ResNet101 | 206 %192 | 714 893 793
384 x 288 | 73.6 89.5  80.5
TABLE X

COMPARISON OF INFERENCE SPEED. THE INFERENCE TIME OF PPNET
AND SEVERAL OTHER NETWORKS ARE GIVEN. WE REPORT THE TIME A
MODEL TAKES TO DO THE INFERENCE OF A BATCH. THE EXPERIMENTS
ARE DONE ON PYTORCH 1.0 USING A SINGLE 2080T1 GPU, THE BATCH

SIZE IS 32. SEC. = SECONDS, SB = SIMPLEBASELINE [15], HG =
HOURGLASS [13], HRNET = HRNET [14].
Model GFLOPs | Input size (Isléié;bzgﬁ) AP
PPNet M2-D2-W32 3.3 0.073 70.9
SB ResNet-50 8.9 256 x 192 0.074 69.9
PPNet M4-D2-W32 5.0 0.080 72.7
HG 2-stage 6.3 0.102 71.7
PPNet M4-D2-W48 20.6 0.193 75.5
SB ResNet-152 35.4 384 x 288 0.250 73.0
HRNet W48 32.9 0.297 75.0

PPNet M2-D2-W32 and M4-D2-W32 respectively. Table IX
shows the results of all compared models. Compared to the
results in Table I and Table II, pre-training PPNet models on
ImageNet can improve AP by more than 1.0 points, whether
the input size is 256 x 192 or 384 x 288. Making a comparison
between ImageNet pre-trained models, PPNet still outperforms
SimpleBaseline by a large margin.

C. Inference Speed

Other than the training speed, inference speed is also impor-
tant to reflect the efficiency of models. Table X compares the
inference time of PPNet with other networks. The experiments
are conducted on the COCO validation dataset [10], and we
use a single 2080Ti GPU. The batch size is 32 for both
the input size 256 x 192 and 384 x 288. PPNet takes lower
inference runtime cost compared to other networks of similar
size. This is consistent with the efficiency reflected by the
training speed given in Tables of Section IV.

D. Impact of data processing

In above experiments, the results of PPNet are obtained with
the standard data processing [14], [15] for fair comparison
with other methods. Recent works Dark [61] and UDP [62]
show that unbiased data processing can increase the accuracy
of human pose estimation, and these technologies are model
agnostic. We conduct experiments to see how the performance
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TABLE XI
THE IMPROVEMENT PPNET CAN BE OBTAINED BY USING UNBIASED DATA
PROCESSING DARK [61] AND UDP [62]. THE EVALUATION IS
CONDUCTED ON THE COCO VALIDATION SET. COMPARING TO THE
CORRESPONDING RESULTS IN TABLE I AND II, THE APS ARE IMPROVED
BY ABOUT 0.5 TO 1.0 POINTS USING UNBIASED DATA PROCESSING, THE
IMPROVEMENT ON THE INPUT SIZE 256 X 192 CAN BE A LITTLE BIGGER.

Backbone Input size | Dark | UDP | AP AP0 AP7>
26102 | |10 h e
M2-D2-W32 v 72.7 88.8 79.2
4x2 : : :
384 x 288 v | 726 887 791
R I I e S
Md-D2-W32 v 74.3 89.4 80.6
384 x 288 : : :
x v | 7a7 896 811

of PPNet can be improved with these technologies. The models
of PPNet M2-D2-W32 and M4-D2-W32 are trained using both
Dark [61] and UDP [62] on the COCO keypoint Dataset.
Table XI gives the results of using unbiased data processing
with the input size of 256 x 192 and 384 x 288. For both
PPNet models, the accuracy can be improved by about 0.5
to 1.0 AP whether using Dark or UDP. The improvement on
the input size 256 x 192 is a little bigger than 384 x 288.
These results are consistent with the improvement obtained
on other backbone networks such as SimpleBaseline [15] and
HRNet [14].

VI. CONCLUSION

In this paper, we demonstrate the efficiency of a parallel
pyramid network for human pose estimation. The network
features separating spatial location preserving from seman-
tic information acquisition in architecture design. With this
unique design, superior performance is able to be delivered
by using less parameters and GFLOPs comparing to the
existing network architectures in the literature. In addition, our
proposed PPNet has great freedom to build models of different
sizes, meeting various requirements in practical applications.
In future work, PPNet will be applied to other dense pre-
diction tasks, such as semantic segmentation, facial landmark
detection, and super-resolution. And based on the architecture
of PPNet, we will try neural architecture search to get more
efficient networks.
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