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Abstract— To enhance the effectiveness and efficiency of
subspace clustering in visual tasks, this work introduces a novel
approach that automatically eliminates the optimal mean, which
is embedded in the subspace clustering framework of low-rank
representation (LRR) methods, along with the computationally
factored formulation of Schatten p-norm. By addressing the
issues related to meaningful computations involved in some
LRR methods and overcoming biased estimation of the low-rank
solver, we propose faster nonconvex subspace clustering methods
through joint Schatten p-norm factorization with optimal
mean (JS pNFOM), forming a unified framework for enhancing
performance while reducing time consumption. The proposed
approach employs tractable and scalable factor techniques, which
effectively address the disadvantages of higher computational
complexity, particularly when dealing with large-scale coefficient
matrices. The resulting nonconvex minimization problems are
reformulated and further iteratively optimized by multivariate
weighting algorithms, eliminating the need for singular value
decomposition (SVD) computations in the developed iteration
procedures. Moreover, each subproblem can be guaranteed
to obtain the closed-form solver, respectively. The theoretical
analyses of convergence properties and computational complexity
further support the applicability of the proposed methods in
real-world scenarios. Finally, comprehensive experimental results
demonstrate the effectiveness and efficiency of the proposed
nonconvex clustering approaches compared to existing state-of-
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the-art methods on several publicly available databases. The
demonstrated improvements highlight the practical significance
of our work in subspace clustering tasks for visual data analysis.
The source code for the proposed algorithms is publicly accessible
at https://github.com/ZhangHengMin/TRANSUFFC.

Index Terms— Low-rank representation (LRR), matrix factor-
ization, optimal mean, Schatten p-norm, subspace clustering.

I. INTRODUCTION

IN RECENT years, low-rank matrix learning has garnered
significant interest in various domains, including pattern

recognition, machine learning, and data mining [1], [2]. These
approaches have found applications in diverse areas, such
as robust process monitoring [3], thermography diagnosis
systems [4], and manufacturing process monitoring [5].
To address these practical applications, researchers have made
progress in both convex and nonconvex relaxation of the rank
function [6], [7], [8], [9], [10], [11], [12] for collaborative
filtering, image processing, face recognition, and motion
segmentation. However, solving low-rank matrix learning
problems using the discrete and nonconvex nature of the rank
function is generally NP-hard. Consequently, methods have
been developed to address the related convex envelope of the
rank function, known as the nuclear norm of the matrix [13],
[14], [15]. Nonetheless, optimization problems involving the
nuclear norm can lead to biased solutions due to the uniform
treatment of singular values.

To overcome this limitation, the nuclear norm has been
generalized to the Schatten p-norm [11], [16], [17], [18],
where 0 < p < 1 yields a nonconvex problem that better
approximates the rank function than the convex nuclear norm
in most cases. Several nonconvex rank surrogates have been
developed to address this point, including truncated/weighted
nuclear norm [19], [20], [21], aiming to achieve better low-
rank solutions. Some standard examples of low-rank matrix
learning methods using these surrogates include efficient
Schatten p-norm minimization (ESpNM) [22], bilinear
robust principle analysis (BiRPCA) [16], logarithmic low-
rank representation (LogLRR) [23], fast universal low rank
representation (FULRR) [24], latent low-rank representation
(LatLRR) [25], low-rank sparse subspace clustering (LRRSC)
[26], nonnegative subspace clustering (NSC) [27], smoothed
low-rank representation (SmLRR) [28], Schatten p-norm
factorized low-rank representation (SpNFLRR) [29], as well
as other spectral clustering methods without involving rank
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TABLE I
SCHATTEN p-NORM AND THEIR FACTORED FORMULATIONS
8p(U,V) WITH THREE SELECTED p-VALUES, RESPECTIVELY

relaxation functions, such as sparse subspace clustering (SSC)
[30] and structured graph learning (SGL) [31].

To the best of our knowledge, most low-rank matrix learning
methods often involve solving rank-relaxed minimization
problems, which can lead to higher computational complexity,
particularly for large-scale matrix sizes. To address this
issue, various factorization techniques have been proposed to
replace the rank relaxation norms. For instance, the factored
nuclear norm [12], [32] can be expressed as the sum of
two Frobenius norms, and the factored Schatten p-norm [16]
can be expressed as the sum of two nuclear norms when
p = 1/2, and one nuclear norm and one Frobenius norm
when p = 2/3. The corresponding representation formulas are
provided in Table I, where ∥Z∥p

Sp
with the three p-values are

replaced by 8p(U,V). Without loss of generality, we assume
that Z = UV⊤ ∈ Rm×n , where U ∈ Rm×d , V ∈ Rn×d ,
and r < d ≪ min(m, n) is an upper bound of the rank
number. Furthermore, we investigated the use of ℓ2,p-norm-
based objective functions for the residual term, as discussed
in [33] and [34]. In this work, the choice of p-values depends
on the specific cases of interest, with a focus on commonly
studied cases of p ∈ {1, 2/3, 1/2}. However, it is worth noting
that other values of p can also be considered, as long as they
satisfy p ∈ (0, 1), especially when dealing with nonconvex
cases. To make further comparisons, Table II lists several
existing works, such as optimal mean RPCA (OMRPCA)
[35] and OM robust active representation (OMRAR) [34],
which are designed to correct the incorrect mean calculation
by automatically removing the optimal mean. These methods
are useful in mitigating the effects of outliers, resulting in
higher efficacy and efficiency compared to methodologies
that do not incorporate them. Naturally, incorporating the
mean calculation process in certain low-rank matrix learning
problems, along with factorization strategies as presented in
[24], [29], and [36], can boost performance and enhance
efficiency.

A. Related Works

To provide a comprehensive understanding of our proposed
method and its distinctions and connections to several existing
works mentioned above, we will conduct an analysis and
comparison with the most relevant methods involving Schatten
p-norm, ℓ2,p-norm, ℓp-norm, and/or optimal mean, as listed
in Table II. We will focus on four specific aspects, where
the variables involved have compatible meanings, and their
definitions and explanations can be found in the respective

references. Below is a summary of existing methods, presented
from three different perspectives.

1) Variants of Low-Rank Representation (LRR) Methods:
These methods are specifically designed for unsuper-
vised clustering tasks [7] and typically involve rank
relaxed optimization problems. Various rank substitutes
can lead to different spectral clustering models.
Some factored Schatten p-norm matrix relaxations
for 0 < p ≤ 1 have been demonstrated to offer
higher computational efficiency [5], [12], [16], [29],
[36], [37] compared to the original low-rank matrix
learning models. Additionally, to enhance performance,
different types of information have been integrated
into mathematical models [3], [4], [24], [25], [38].
Furthermore, non-factored solutions, such as those
proposed in [22] and [28], do not require singular value
decomposition (SVD) computations for singular value
threshold operators, leading to improved computational
efficiency. However, it is essential to note that prior
research on low-rank matrix recovery problems has
indicated that non-factored solutions generally exhibit
lower efficiency compared to factorized solutions.

2) Applications of Optimal Mean: Several existing meth-
ods, such as OMRPCA, FULRR, and OMRAR [24],
[34], [35], have incorporated the similar processing
techniques for automatically removing optimal means,
particularly for group sparse coding and low-rank
matrix recovery problems. For example, OMRAR [34]
establishes a relationship between optimal mean robust
PCA and sample selection by mimicking the self-
contained regressions of PCA studied for the optimal
mean-centering problem. Moreover, it can use ℓ2,p-norm
to regulate the group sparsity of the residual function in
[17], [39], and [40]. Empirical results have validated the
improved performance on single and multiple subspaces,
further motivating us to introduce the concept of optimal
mean to clustering methods.

3) Optimizations of LRR Models: Several first-order
optimization algorithms are commonly used to optimize
learning problems related to low-rank matrices. Among
these algorithms, the alternating direction multiplier
method (ADMM) and its linear versions [41], [42],
[43], [44], accelerated proximal gradient (APG) [45],
[46], [47], iteratively reweighted methods (IRwMs)
[11], [48], [49], and proximal alternating linearized
minimization (PALM) [50], [51] are widely applied
and extensively studied. To provide more details,
ADMM requires the introduction of Lagrange multiplier
variables and a penalty parameter to formulate multi-
variate unconstrained problems, while both APG and
IRwM typically optimize unconstrained single-variable
minimization problems. The penalty function strategies
[50], [52] can be incorporated to transform constrained
problems into unconstrained ones. However, the SVD
computations involved in the iterative process lead
to higher computational complexity. Thus, developing
efficient solvers can address this issue more effectively.
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TABLE II
COMPARISON OF SEVERAL METHODS RELATED TO SCHATTEN p-NORM, ℓ2,p -NORM, ℓp -NORM, AND/OR OPTIMAL MEAN FROM VARIOUS ASPECTS

B. Main Contributions

In this work, our primary objective is to develop efficient
subspace clustering methods by combining Schatten p-norm
factorization and optimal mean into a unified framework,
which provides a more accurate solution with lower
computational complexity. Our work is mostly related to
various important aspects, such as nonconvex low-rank matrix
learning, unsupervised clustering learning, matrix factoriza-
tion, and alternating iteration optimization. By providing
this comprehensive overview, readers will have a better
understanding of the diverse aspects our work addresses in
the field of applying low-rank matrix recovery methods to
subspace clustering applications. After carefully examining the
statements presented above and making further comparisons,
we differentiate this work more distinctly from others based on
several aspects listed in Table II, including model formulation,
algorithmic procedure, and critical techniques. The main
strengths of our work lie in demonstrating the effectiveness
of nonconvex representation models based on optimal mean
and the efficiency of our optimization algorithms, which
are distinct from existing LRR models and their solutions.
In summary, we highlight the contributions of our work as
follows.

1) To improve the accuracy of clustering, we propose
a modified nonconvex LRR framework that combines
Schatten p-norm with optimal mean. This framework
becomes more general and unbiased in characterizing
residual and coefficient terms due to its flexible
p-choices and reliable mean calculation capability.
Moreover, we directly factorize the Schatten p-norm,
resulting in reduced computational complexity at each
iteration by reformulating the multiplication of two
smaller factor matrices.

2) To avoid the use of Lagrange multiplier variables such
as ADMM in solving multivariate constraint problems,
we adopt a penalized function strategy and develop

an iteratively alternating reweighted splitting algorithm.
Notably, our approach features closed-form solvers for
all subproblems that do not require SVD computations
during low-rank matrix recovery, setting it apart from
other methods and allowing for faster convergence
rates. Importantly, we also provide a comprehensive
explanation of the convergence guarantees of our
proposed optimization algorithm, which involves opti-
mizing multiple variables. The derivation and analysis
are now elaborated, establishing a solid theoretical
foundation for our proposed methods in supporting
practical applications. By employing these technologies
into the unified framework, we facilitate efficient
computations, reduce the computational complexity, and
achieve faster convergence, enhancing the practical
applicability of our methods.

3) Based on the experiments conducted on several real-
world databases, along with theoretical verifications and
comparisons of computational efficiency and clustering
accuracy, we demonstrate the theoretical consistency
and superior performance of our proposed method.
We achieve this by comparing it with benchmark
methods and the latest clustering works based on
nonconvex and factorized low-rank matrix learning
methods. The performance of our method is supported
by both numerical and visual results, particularly in
the context of unsupervised clustering tasks. Moreover,
our unified framework allows for efficient and effective
applications with further extensions to tensors, opening
up possibilities for exploring additional information and
inspiring other image low-level vision applications in
this area.

C. Outline of This Article

The structure of this article is organized as follows.
In Section II, we present our proposed efficient subspace
clustering models, which are induced by combining Schatten
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p-norm factorization with optimal mean, and we also
provide a proposition for the computations of involved
variables. Section III focuses on devising faster solutions to
unconstrained nonconvex minimization problems and provides
their computational complexity and convergence properties
under milder assumptions. In Section IV, we analyze the
performance and efficiency of the proposed algorithms through
numerical and extensive experiments, offering both quantita-
tive and qualitative comparisons. Finally, Section VI concludes
this work and outlines future research directions. Additionally,
for completeness, detailed proofs of the convergence properties
and rates are provided in the Supplementary Materials.

D. Notations

The definitions of some symbols in this article are provided
as follows: uppercase bold letters represent matrices, e.g., X,
and lowercase bold letters represent vectors, e.g., x. SVD
denotes the singular value decomposition of a matrix, and
σi is the i th singular value. b represents an optimal mean
vector, and 1 represents a column vector of ones. I is a
diagonal matrix with all diagonal elements set to 1. Rm×n

r
denotes the set of m × n matrices with rank at most r , where
d is the upper bound of the rank r , and rank(X) is defined as
the number of nonzero singular values of X. The Frobenius
norm of a matrix X is denoted as ∥X∥2

F =
∑

i ∥Xi
∥

2
2 =

∑
i σ

2
i ,

the ℓ2,p-norm as ∥X∥p
2,p =

∑
i ∥Xi
∥

p
2 , and the Schatten

p-norm as ∥X∥p
Sp
= tr(X⊤X)(p/2) =

∑
i σ

p
i , where Xi is the

i th column of X. The L2,1-norm and nuclear norm, denoted as
∥X∥2,1 and ∥X∥∗, respectively, are special cases where p = 1.
Furthermore, we define Wu , Wv , and We as weighted matrices
related to U, V, and E, respectively. These matrices will be
introduced later in the iteration procedures.

II. PROBLEM FORMULATIONS

Suppose that D ∈ Rm×n and Z ∈ Rn×n
r are the

data matrix and coefficient matrix, respectively. Additionally,
E ∈ Rm×n denotes the residual matrix. Based upon [7] and
[50], the original LRR methods are primarily designed to
address the regularized rank minimization problems, which
can be expressed as

min
Z,E

λrank(Z)+ ∥E∥ℓ, s.t. D− AZ = E (1)

where the regularized parameter λ > 0 is used along with
the residual term ∥E∥ℓ to characterize various noise styles in
the objective function. Although A can be replaced by D,
doing so may result in lower computational efficiency for
large n. To address this issue, faster versions of LRR have
been proposed. To this end, several related works replace
the rank function with Schatten p-norm using 0 < p ≤ 1.
For more detailed descriptions, please refer to the following
explanations.

1) The discrete and nonconvex nature of the rank
function makes problem (1) NP-hard [13], [53], [54].
To overcome this issue, nuclear norm and other
nonconvex rank relaxations [7], [18], [23], [29], [33]
have been widely used as substitutes for the rank
function in subspace clustering tasks. These proper

Fig. 1. Proposed model scheme is designed for subspace clustering and
employs a computationally efficient factored formulation of Schatten p-norm,
as well as automatic removal of optimal mean.

relaxations can lead to LRR variants’ solutions that are
closer to the true low-rank solution compared to the
nuclear norm.

2) The traditional LRR methods center the data with the
mean calculated using the ℓ2-norm, which may not be
accurate since ℓ21-norm is used to measure the residual
function [7], [42]. To address this, incorporating a term
that automatically removes the optimal mean [17], [24],
[35] can be beneficial in correcting the mean calculation.

3) The SVD computations are typically involved in
optimizing problem (1) for achieving the coefficient
matrix Z [24], [29], [36]. This can result in high
computational complexity, especially when dealing with
large-scale coefficient matrices.

The statements above motivate us to improve the for-
mulation of problem (1) for better ease of calculation,
accuracy, and efficiency. To address these issues, we propose
a more generalized LRR model that incorporates Schatten
p-norm regularization of the ℓ2,p-norm and optimal mean,
as previously proposed in [24], [29], and [34]. This model
provides flexibility in the selection of p-values and is
formulated as follows:

min
Z,E

λ∥Z∥p
Sp
+ ∥E∥2,p, s.t. D− AZ− b1⊤ = E (2)

where we subtract the optimal matrix b1⊤ from the constrained
equation, which improves its accuracy. When p = 1 and
b = 0, Problem (2) reduces to standard single and multiple
subspace methods, such as RPCA [55] when A is an identity
matrix, or LRR [7] when A is a dictionary matrix or substituted
by a data matrix. However, optimizing Problem (2) can be
computationally intensive, particularly when it involves SVD
computation for large-scale coefficient matrices.

To address the third problem mentioned above, we approxi-
mate ∥Z∥p

Sp
by 8p(U,V) using the bilinear factor matrices

presented in Table I. By combining this technique with
the optimal mean for the coefficients and residual matrices,
as outlined in Fig. 1, we can achieve a more effective and
efficient clustering method. In the following, we present a
factorized and improved formulation of the LRR problem:

min
U,V,Z,b,E

fλ,p(U,V,E) = λ8p(U,V)+ ∥E∥2,p

s.t. Z = UV⊤, D− AZ− b1⊤ = E (3)
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where we aim to solve the optimization problem (3) efficiently
without introducing Lagrange multiplier variables such as
ADMM in the augmented Lagrange function to solve (3)
indirectly. The optimization problems presented in [29] are
specific instances of (3) with different p-values and b = 0.
Here, we have observed the need for a more comprehensive
discussion of the costs and constraints related to implementing
complexity reduction. The related discussion and analysis can
be detailed from the following two aspects.

1) On the one hand, the adoption of complexity reduction
strategies necessitates matrix factorization, such as
Z = UV⊤. This motivates us to utilize the widely studied
Schatten p-norm factorization, as other nonconvex
rank relaxation functions may lack readily available
factorization formulas. The existence of closed-form
or analytic solutions for the involved subproblems
facilitates efficient computation, as demonstrated in
Proposition 1 and [10], [18], and [29]. Therefore,
we stress that both factorization formulas and closed-
form/analytic solutions are critical prerequisites for
the successful implementation of complexity reduction
strategies.

2) On the other hand, adopting the factorization strategy for
low-rank matrices introduces multiple variables, making
the theoretical analysis of convergence guarantees
challenging, as previously noted in the work [44].
In contrast to commonly used methods like ADMM,
we address this challenge by employing a primal
iteration scheme and providing theoretical support.
Importantly, dealing with multiple variables naturally
increases the computational burden. However, it is worth
noting that the size of the factor matrices is much smaller
compared to the learned low-rank matrix, which is
very essential and necessary for reducing computational
complexity.

To address the above twofold concerns, we need to
transform (3) into an unconstrained problem, represented as

min
U,V,Z,b,E

Hp
λ,µ(U,V,Z,b,E)

= fλ,p(U,V,E)

+
µ

2

(∥∥Z− UV⊤
∥∥2

F +
∥∥D− AZ− b1⊤ − E

∥∥2
F

)
(4)

where we introduce the parameter µ > 0 using a continuation
strategy [56], [57]. We initialize µ with a small value
µ0 and update it at each iteration by multiplying it with
ρ (i.e., µk

= µ0ρk , where k is the number of iterations).
As µ increases, the solution of (4) converges to (3), and
the penalty function’s value approaches zero. The step-size
parameter ρ plays a critical role in balancing the convergence
rate and clustering performance. Larger ρ values lead to
faster convergence but may compromise accuracy, while
smaller values will slow down convergence. Based upon
suggestions in the literature, we empirically choose values
of ρ = {1.1, 1.2, . . . , 1.8, 1.9} and initial values of µ0 from
the range {10−6, 10−5, . . . , 101, 102

}. Through experimental
comparisons, we identify optimal values for both ρ and
µ0 that yield the best performance. Regarding the choice of the
penalty function, one can assume that the residual functions

Z − UV⊤ and D − AZ − b1⊤ − E follow either Gaussian
or Laplace distributions. If the residuals follow a Gaussian
distribution, then measuring them by the squared Frobenius
norm is appropriate and easily optimized. However, if they
follow a Laplace distribution, a better option would be to
measure the noise using the ℓ1-norm. Then, we specifically
focus on the scenario where the residuals follow a Gaussian
distribution, as it has been studied in [33], [58], and [59].

Notably, when solving subproblems based on nuclear norm
or nonconvex rank relaxation functions, it is common practice
to use singular value thresholding (SVT) operators. The
same approach can be applied to the proposed problem (4)
when p = 1, 2/3, and 1/2. However, involving SVD
computations in the iteration procedures can lead to higher
computational complexity. To avoid this limitation, one can
employ equivalent model formulations and establish rigorous
connections, as demonstrated in the following proposition,
as outlined in [34], [37], and [60]. This allows us to optimize
the problem without the need for costly SVD computations.

Proposition 1: Observed from Table I that ∥U∥∗ only exists
for 1/2, ∥V∥∗ exists for p = 2/3 and 1/2, and ∥E∥2,p exists
for the three p-values, i.e., 1, 2/3 and 1/2, then fλ,p(U,V,E)
of both (3) and (4) can be replaced by:

1) (λ/2)(∥U∥2
F + ∥V∥

2
F )+ ∥E

√
We∥

2
F ;

2) (λ/3)(∥U∥2
F + 2tr(VWvV⊤))+ ∥E

√
We∥

2
F ;

3) (λ/2)(tr(UWuU⊤)+ tr(VWvV⊤))+ ∥E
√

We∥
2
F ,

where both Wu = (1/2)tr(U⊤U)−(1/2) and Wv =

(1/2)tr(V⊤V)−(1/2) have similar representation formulas.
Meanwhile, we compute We by the diagonal matrix according
to 

p
2
∥e1∥

p−2
2

p
2
∥e2∥

p−2
2

. . .
p
2
∥en∥

p−2
2

 (5)

where ei (1 ≤ i ≤ n) is the i th column vector of E, and the
elements of non-diagonal locations are all zeros.

It is worth mentioning that Proposition 1 plays a crucial
role in updating the factor and error variables. Below are some
illustrations from two different perspectives.

1) Proposition 1 is derived from equivalent formulations
of the nuclear norm and ℓ2,p-norm. It focuses on
matrix-level computations during the iterative process
by introducing weighting matrices Wu , Wv , and We,
instead of using threshold operators to achieve the
desired variables.

2) The proposed optimization algorithm involves repeated
matrix inversion and multiplication during iterative
procedures. This work employs a weighted strategy to
transform the objective functions under three various
p-values and obtain the factor matrices.

III. OPTIMIZATION SCHEME

In this section, we will provide the entire iterative procedure
of (4) for three p-values, respectively. Following the updated
rules in [50], [52], and [59], we can alternately optimize the
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subproblems related to each of the variables in (U,V,Z,b,E),
where we aim to obtain Z∗ for constructing the affinity matrix.
Given the kth iteration variables, i.e., (Uk,Vk,Zk,bk,Ek), the
(k + 1)th iteration variables can be updated by

Uk+1
= argminUλ8p

(
U,Vk)

+
µ

2

∥∥∥Zk
− U

(
Vk)⊤∥∥∥2

F
(6)

Vk+1
= argminVλ8p

(
Uk+1,V

)
+
µ

2

∥∥Zk
− Uk+1V⊤

∥∥2
(7)

Zk+1
= argminZ

∥∥∥Z−Uk+1(Vk+1)⊤∥∥∥2
+ g

(
Z,bk,Ek) (8)

bk+1
= argminbg

(
Zk+1,b,Ek) (9)

Ek+1
= argminE∥E∥2,p +

µ

2
g
(
Zk+1,bk+1,E

)
(10)

where we define the function g(Z,b,E) = ∥D−AZ− b1⊤−
E∥2

F to relate the computations of the involved variables. The
closed-form solvers of sub-problems (6)–(10) can be computed
using the formulas of both Table I and Proposition 1. Naturally,
different p-values lead to the various solver formulations for
Uk+1 and Vk+1 along with some modifications for updating
the variables to the nuclear norm and ℓ2,p-norm. Among them,
we have some formulas presented below.

1) Updating Uk+1 in (6): Fixing the kth iteration variables
and omitting unrelated variables with U in 8p(U,Vk)

for various p-values provided in Table I, we can choose
the function formulas as

8′p(U) ∈
{

1
2
∥U∥2

F ,
1
3
∥U∥2

F ,
1
2
∥U∥∗

}
(11)

where we will give the closed-form solvers with respect
to the chosen p-values. The detailed steps are provided
as below.

a) When p = 1 and 2/3, Uk+1 can be denoted as

Uk+1
= ZkVk

(
λ

µ
I+

(
Vk)⊤Vk

)−1

(12)

Uk+1
= ZkVk

(
2λI
3µ
+

(
Vk)⊤Vk

)−1

. (13)

b) When p = 1/2, it follows from Proposition 1 that
Uk+1 can be computed by solving the minimization
problem:

min
U

λtr
(
UWk

uU⊤
)

+µtr
((

Zk
− U

(
Vk)⊤)⊤(Zk

− U
(
Vk)⊤))

(14)

where Wk
u = (1/2)((Uk)⊤Uk)−(1/2) is defined but

relied on Uk . Computing the derivative of (14) with
respect to U and let it be 0, it is easy to obtain

Uk+1
= ZkVk

(
λ

µ
Wk

u +
(
Vk)⊤Vk

)−1

. (15)

2) Updating Vk+1 in (7): Similar to the processing way
used in a) at first, we here redefine the proper formulas
of 8p(Uk+1,V) followed by:

8′p(V) ∈
{

1
2
∥V∥2

F ,
2
3
∥V∥∗,

1
2
∥V∥∗

}
. (16)

a) When p = 1, Vk+1 can be denoted as

Vk+1
=

(
Zk)⊤Uk+1

(
λ

µ
I+

(
Uk+1)⊤Uk+1

)−1

.

(17)

b) When p = 2/3 and p = 1/2, combining (14)
with (7), Vk+1 can be, respectively, computed as

Vk+1
=

(
Zk)⊤Uk+1

(
4λWk

v

3µ
+

(
Uk+1)⊤Uk+1

)−1

(18)

Vk+1
=

(
Zk)⊤Uk+1

(
λ

µ
Wk

v +
(
Uk+1)⊤Uk+1

)−1

(19)

where Wk
v = (1/2)((Vk)⊤Vk)−(1/2). Following

from both (14)–(16), the differentiable property is
employed again to guarantee the analytic solvers
directly.

Algorithm 1 Solutions of Problem (4)
Input: D, d , p ∈ {1, 2/3, 1/2}, λ, and ρ.
Initialize: U = rand (m, d), V = rand (n, d),
Z0
= UV⊤, b0

= 0, E0
= 0, and µ0.

Output: Z∗← Zk+1.
1: Let k = 0.
2: while not converged do
3: ♯1: update Uk+1 and Vk+1

4: if p = 1
5: Update Uk+1 by (12);
6: Update Vk+1 by (17);
7: elseif p = 2/3
8: Update Uk+1 by (13);
9: Update Wk

v =
1
2 ((V

k)⊤Vk)−
1
2 ;

10: Update Vk+1 by (18);
11: else
12: Update Wk

u =
1
2 ((U

k)⊤Uk)−
1
2 ;

13: Update Wk
v =

1
2 ((V

k)⊤Vk)−
1
2 ;

14: Update Uk+1 by (15);
15: Update Vk+1 by (19);
16: end
17: ♯2: update Zk+1 by (20);
18: ♯3: update bk+1 by (21);
19: ♯4: update Wk

e by (5);
20: ♯5: update Ek+1 by (23);
21: ♯6: update µk+1 by min(ρµk, 108);
22: k ← k + 1
23: end while

3) Updating Zk+1 in (8): By computing the objective
function of (8) with Z and set it to be 0, we have the
simplified representation formula

Zk+1
=

(
I+ A⊤A

)−1(
ϕk+1 + A⊤ψk

)
(20)

where ϕk+1 = Uk+1(Vk+1)⊤ and ψk = D− bk1⊤ − Ek .
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TABLE III
FORMULAS OF DERIVATIVES RELATED WITH CONVEX AND

NONCONVEX NORMS. NOTE THAT f (Z,b,E) = AZ+ b1⊤ + E

4) Updating bk+1 in (9): We here let the derivative of
g(Zk+1,b,Ek) with respect to b be 0, we can get

bk+1
=

(
D− AZk+1

− Ek)1
(
1⊤1

)−1
. (21)

5) Updating Ek+1 in (10): It can be concluded from (10)
together with Proposition 1 that we need to optimize the
minimization problem followed by

min
E

∥∥∥∥E
√

Wk
e

∥∥∥∥2

+
µ

2

∥∥E−
(
D− AZk+1

− bk+11⊤
)∥∥2

F

(22)

where Wk
e is a diagonal matrix derived from Ek , and

we use ek
i to substitute ei of (5). Then, we have the

following solver formula, represented as

Ek+1
=

(
D− AZk+1

− bk+11⊤
)(2Wk

e

µ
+ I

)−1

. (23)

Based upon 1)–5) given above, we can summarize
the iterative rules of the optimization scheme in
Algorithm 1. Only the U and V variables need to
be updated according to various p-values. The other
variables remain fixed, as shown above. The proposed
algorithm can be considered as an unconstrained
extension of [29], with the optimal mean incorporated.
After updating all the variables, the iterations will be
repeated until the stopping criteria are met, i.e.,∥∥g

(
Zk+1,bk+1,Ek+1)∥∥

∞
< ϵ (24)

where we empirically set ϵ = 1e−8 in (24) or
the number of maximum iterations is reached before
stopping.

IV. THEORETICAL ANALYSIS

In this section, we next present the computational
complexity and convergence properties of Algorithm 1,
which rely on the updated rules and properties of the
objective function. The analysis is presented in the following
manner.

1) For the computational complexity of updating U, V, Z,
b, and E, they mainly depend on the values of p and
are, respectively, given as follows.

a) The computational complexity of updating U is
o(2d3

+ n2d + 3nd2) for p = 1/2, and o(d3
+

n2d + 2nd2) for both p = 1 and 2/3.
The computational complexity of updating V is
o(d3
+ n2d + 2nd2) for both p = 1, and o(2d3

+

n2d + 3nd2) for both p = 1/2 and 2/3. Here,

Fig. 2. Partially selected images from various experimental databases,
including AR, ExtYaleB, COIL10, USPS, MNIST, FLAVIA, and Hopkins 155,
are shown from top to bottom rows.

TABLE IV
STATISTICS OF SEVERAL IMAGE DATABASES AND HOPKINS 155

DATABASE USED IN THE EXPERIMENTS

given that d ≪ min{m, n}, the above-computed
complexity can omit o(d3).

b) The computational complexity of updating Z, b,
and E is o(2mn2

+ 2n3
+ n2d + mn), o(mn2

+

mn + n), and o(2mn2
+ mn + n3), respectively.

2) For the convergence analysis, we next present a sketch
of the evidence from three aspects.

a) First, we prove the non-increasing property
of the objective function provided by the
problem (4).

b) Second, we prove that the change of variables in
adjacent iterations tend to be zero.

c) Third, we prove that any accumulation point
(U∗,V∗,Z∗,b∗,E∗) of {Uk,Vk,Zk,bk,Ek

} is a
stationary point of problem (4).

Subsequently, we present the first-order optimality condi-
tions, along with the related subproblems in Algorithm 1,
which will be used repeatedly. We then use (4) and (6)–(10)
to compute the (sub)derivative of Hp

λ,µ(U,V,Z,b,E) with
respect to each variable, leading to representation formulas.
Using the fact that Uk+1, Vk+1, Zk+1, bk+1, and Ek+1 are the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on December 09,2023 at 10:20:30 UTC from IEEE Xplore.  Restrictions apply. 



8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE V
COMPARISON OF CLUSTERING EFFICACY AND EFFICIENCY AMONG VARIOUS METHODS FOR THE AR, EXTYALEB, AND COIL10 DATABASES

minimized solutions, then we have

0 = ∇λ8′p(U)
∣∣
U=Uk+1 − µ

(
Zk
− Uk+1(Vk)⊤)Vk (25)

0 = ∇λ8′p(V)
∣∣
V=Vk+1 − µ

(
Zk
− Uk+1(Vk+1)⊤)⊤Uk+1

(26)

0 = Zk+1
− Uk+1(Vk+1)⊤

+∇g
(
Z,bk,Ek)∣∣∣

Z=Zk+1
(27)

0 = ∇g
(
Zk+1,b,Ek)∣∣

b=bk+1 (28)

0 = ∇∥E∥2,p

∣∣E=Ek+1 + µ∇g
(
Zk+1,bk+1,E

)∣∣
E=Ek+1 (29)

where in (11) and (16), 8′p(U) and 8′p(V) are both defined,
respectively, and ∇ represents the derivative of differentiable
functions. Proposition 1 shows that each of the subproblems
is differentiable, and we omit the existence of the penalty
parameter µ in (27) and (28), as it has no effect on the
satisfaction of “=.” The derivatives of the differentiable
function g(Z,b,E) with respect to each variable can be
computed easily. Some concrete derivatives are provided
in Table III, which are used in algorithmic designs and
convergence analysis. The theoretical proofs are provided in
the Supplementary Materials.

V. EXPERIMENTAL RESULTS

In this section, we mainly present experimental validations
to demonstrate the computational efficiency and clustering
accuracy of our proposed joint Schatten p-norm factorization
with optimal mean (JSpNFOM) methods with three selected
p-values: p ∈ {1, 1/2, 2/3}. We conduct these experiments
on image databases and the Hopkins155 database for
comprehensive evaluation. Fig. 2 displays partial images from
seven databases, and their statistics are listed in Table IV.
These datasets are subsets of the original databases, and we
provide brief descriptions of each below for reference.

1) Two face databases, AR and ExtYaleB, are used for the
clustering tasks. These databases contain images with
variations in illuminations, occlusions, expressions, etc.

2) Two object databases, COIL10 and FLAVIA, are used
to evaluate the performance of the involved methods,
similar to other image databases.

3) Two digital databases, USPS and MNIST, are employed
to validate comparisons, with the numbers ranging from
“0” to “9,” respectively.

4) The Hopkins155 database serves as a widely used
benchmark for motion segmentation. It consists of
155 video sequences, each containing two or three
motions corresponding to two or three low-dimensional
subspaces.

To conduct the evaluations, we selected several databases,
with all of them being subsets of the original databases,
except for the Hopkins155 database. To categorize the selected
subsets based on their sample dimensions, we divided them
into two groups: one with larger sample dimensions than
sample numbers and the other with smaller sample dimensions
than sample numbers. These subsets are commonly used for
testing subspace clustering methods. We then compared the
involved methods across three classes, as described below.

1) Traditional Clustering Methods: This class includes
traditional clustering methods such as SSC [30] and
LRR [7], as well as their improved variants like LatLRR
[25] and LRRSC [26], all of which were incorporated
to enhance clustering performance.

2) Nonconvex Clustering Methods: We considered methods
optimized using IRLS [28], which extends LRR
based on Schatten p-norm and ℓ2,p-norm, as well as
ARM [61], a nonconvex clustering method based on the
arctangent rank function. We also compared the recently
proposed clustering methods, such as NSC [27] and
SGL [31].

3) Factorization Methods: In this class, we compared
the recently proposed factorization methods, including
FULRR [24] and LogLRR [23]. Additionally, we consid-
ered previously proposed methods like SpNFLRR [29]
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Fig. 3. Visual results of the proposed methods on the image databases are shown in (a) convergence curves of stopping criteria for AR, (b) block-diagonal
structures, and (c) selected column vector of the coefficient matrix for ExtYaleB. (d) 3-D surface plot of the coefficient matrix for COIL10.

TABLE VI
COMPARISON OF CLUSTERING EFFICACY AND EFFICIENCY AMONG VARIOUS METHODS FOR THE USPS, MNIST, AND FLAVIA DATABASES

and our proposed JSpNFOM methods. Their perfor-
mance was compared across the selected three p-values.

All experiments were conducted to compare our proposed
method with 11 clustering methods. The experiments were
performed on a personal computer equipped with an Intel1

Core2 i7-7700 CPU at 3.6 GHz and 8.0 GB RAM, using the
MATLAB R2021b environment. For the comparison methods,
we either tuned the model and algorithmic parameters based
on λ, µ, ρ, and p, or used the default values of the released
codes for relevant optimization solutions. The factorization
methods required an estimate of the upper bound of the rank
number, denoted as d, which was set to be larger than the
number of classes. Moreover, most of the involved methods
applied different post-processing techniques on the learned
affinity matrices when using the spectral clustering technique
on the affinity matrix Z∗ to achieve the final segmentation
of the data points. The normalized cut strategy was used to
segment the affinity matrix, and as verified in the previous
studies [7], [29], [61], different clustering methods could lead
to different clustering results. Subsequently, we present both
qualitative and quantitative observations and analyses for two
tasks: image clustering and motion segmentation. The best

1Registered trademark.
2Trademarked.

results are reported in bold, and the second-best results are
underlined in all subsequent tables. We highlight their superior
clustering performance and computational efficiency compared
to existing approaches. Additionally, we have included detailed
validations of the theoretical properties, including convergence
analysis, the property of the coefficient matrix, and the
impact of each modulus of the objective term, among other
relevant viewpoints. These improvements aim to provide a
more thorough evaluation of our proposed methods.

A. Image Clustering

In this section, we present the results of numerical
experiments conducted on six image databases and then
report the quantitative and qualitative outcomes obtained
from various settings, including clustering accuracy (ACC)
and normalized mutual information (NMI) for performance
evaluation, as well as timing costs (TIME) and iteration
numbers (ITER) for efficiency comparison. We here stress that
higher values of ACC (%) and NMI (%), along with lower
values of TIME and ITER, indicate superior computational
efficacy and efficiency for the clustering methods.

Table V compares the clustering performance and com-
putational efficiency of various methods on three different
image databases: AR, ExtYaleB, and COIL10, which have
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Fig. 4. Visual comparisons of our methods on the databases, including the influences of (a) initial parameter µ0 and (b) step-size ρ for USPS. (c) Randomly
initialized variables on the values of ACC for MNIST. (d) Parameter pairs (λ, d) on the timing costs for FLAVIA.

TABLE VII
COMPARISON OF SEGMENTATION ERROR AND COMPUTATIONAL TIMING FOR THE INVOLVED METHODS ON THE HOPKINS155 DATABASE

larger sample dimensions than sample numbers. It can be
observed that the LatLRR method achieved the higher NMI
values across three databases, with the proposed JS1/2NFOM
and JS2/3NFOM methods following closely behind. In terms
of computational efficiency, the SSC, LRRSC, and ARM
methods exhibited lower timing costs and fewer iterations
in comparison to other techniques. Conversely, the NSC,
LogLRR, and FULRR methods required a greater number
of iterations. In general, factorization approaches such as
SpNFLRR and JSpNFOM exhibit efficient performance. The
integration of prior information can further enhance clustering
accuracy, ultimately leading to better results.

To provide some visual comparisons, Fig. 3 presents the
plotted curves of the stopping criteria for our proposed
methods with p ∈ {1, 1/2, 2/3} in Fig. 3(a) for the AR
database, the block-diagonal structures of the coefficient
matrix related to the number of subjects in Fig. 3(b) for
the ExtYaleB database, and the statistical distribution of
representation coefficients related to the index of all clustering
samples in Fig. 3(c) for the ExtYaleB database. Besides this,
we display the coefficient matrix as a 3-D surface plot with
color in Fig. 3(d) to visualize the differences among the
coefficient values. These visual results offer valuable insights
for our proposed methods.

Table VI compares the clustering performance and compu-
tational efficiency of various methods on three different image
databases: USPS, MNIST, and FLAVIA, which have smaller
sample dimensions than sample numbers. The JS1/2NFOM
method achieves the best performance in terms of ACC
and NMI on the USPS and FLAVIA databases, while
the JS2/3NFOM method achieves the best performance in
terms of NMI on the MNIST database. Additionally, the
JS2/3NFOM method achieves the best performance in terms of
computational efficiency, with the nearly lowest computational
time and number of iterations. Among the compared
methods, NSC, SGL, and ARM exhibit superior clustering
accuracy compared to other methods, while FULRR, LogLRR,
LatLRR, and SpNFLRR have higher computational efficiency
compared to other methods. This finding suggests that
incorporating additional information and utilizing factorization
techniques can make the experiments more effective and
efficient. Thus, it is reasonable to combine the Schatten
p-norm and optimal mean to achieve superior quantitative
results.

To provide the visual comparisons, Fig. 4 first presents the
non-increasing property of the plotted curves for the stopping
criteria of our proposed methods under p ∈ {1, 1/2, 2/3},
focusing on Fig. 4(a) with initial values of µ0, and Fig. 4(b)
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Fig. 5. Visual comparison results of the proposed methods on the Hopkins 155 database include (a) block-diagonal coefficient matrix, (b) objective function
over the number of iterations, (c) stopping criteria over timing costs, and (d) histogram of segmentation error values.

TABLE VIII
COMPARISON OF RESULTS FOR ABLATION EXPERIMENTS ON CLUSTERING ACCURACY (%) OVER SIX IMAGE DATASETS AND SEGMENTATION

ERROR (%) OVER HOPKINS 155 DATASET. NOTE THAT HIGHER ACCURACY AND LOWER ERROR IMPLY BETTER PERFORMANCE

with various values of ρ on the USPS database based on
the acceleration continuity strategy. In addition, we illustrate
the influences of the randomly initial variables by running
1000 times in Fig. 4(c) for the MNIST database. Moreover,
we showcase the influences of parameters (λ, d) on the timing
costs for the FLAVIA database in Fig. 4(d). These results
validate the convergence property and the effects of clustering
accuracy and computation time derived from initial variables
and parameter pairs, respectively.

B. Motion Segmentation

In this section, we will evaluate the performance of the
JSpNFOM methods in motion segmentation by analyzing
the clustering error values (%) measured by mean (MEAN),
standard deviation (STD), and median (MED), as well as the
average timing costs (TIME) measured in seconds, following
the approach used in [29] and [61]. Motion segmentation refers
to the unsupervised analysis of video sequences, where points
in multiple image frames of a dynamic scene are clustered
into different motions of moving objects. The observations
from the evaluation are presented below.

Table VII presents a comprehensive comparison of our
proposed JSpNFOM methods with several subspace clustering
methods. Our methods demonstrate effective and robust
performance, achieving the best segmentation accuracy with
the lowest mean error and execution time in most cases.
Additionally, the IRLS method also performs well, exhibiting
low execution time and competitive segmentation accuracy.
However, the LatLRR and LogLRR methods display good

segmentation accuracy but are relatively slower compared
to other methods. On the other hand, the NSC and SGL
methods exhibit the lowest execution time but with slightly
lower segmentation accuracy than some other comparison
methods. Further analysis reveals that incorporating additional
information effectively reduces segmentation errors in the
LRRSC method, while utilizing factorization techniques
significantly improves the computational efficiency of the
FULRR and SpNFLRR methods. These findings provide
explanations for the superior performance of our proposed
methods.

In addition to the quantitative comparison results, Fig. 5
presents the visual results of the proposed methods. Fig. 5(a)
shows the block-diagonal coefficient matrix for two motions,
while Fig. 5(b) and 5(c) provide plotted comparisons
of the three proposed methods, demonstrating their non-
increasing property. Fig. 5(d) illustrates that the largest ratios
of segmentation error values are smaller than 10. These
qualitative comparisons provide additional evidence for the
interpretability and rationality of the proposed methods and
offer valuable insights into this experimental task.

C. Further Analysis and Discussion

In this section, we thoroughly assess our proposed methods
from several viewpoints. First, we perform ablation validations
for each component, as listed in Table VIII. Moreover,
we demonstrate the reconstruction ability of our proposed
methods on the ExtYaleB database, presented in Fig. 6.
Additionally, we validate our methods on synthetic data based
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Fig. 6. Visual comparisons of the reconstruction and residual images for
three p-values of proposed methods in (a)–(c) on the ExtYaleB database.
(a) Achieved by JS1NFOM. (b) Achieved by JS1/2NFOM. (c) Achieved by
JS2/3NFOM.

Fig. 7. Visual comparison results for a generated two-moon dataset are
presented in (a) original state and (b)–(d) applying three proposed methods
by selecting a parameter p ∈ {1, 1/2, 2/3} in sequence.

on the two-moons dataset, as depicted in Fig. 7. Furthermore,
we explore the effect of selecting p ∈ {1, 1/2, 2/3} and
conduct a sensitivity analysis on all databases, as shown in
Fig. 8. Then, we make the following observations.

1) Ablation Validations: We performed experiments to
assess the effectiveness of each component in our
proposed method, using JS1NFOM as the baseline.
To illustrate it, we further evaluated the contribution of
our method through three different cases as follows.

a) Case 1: The proposed methods without the use of
optimal mean b under p = 1, 1/2, and 2/3.

Fig. 8. Analysis of parameter pairs (λ, d) performed for the proposed
methods with three p-values on all experimental databases. (a) AR.
(b) ExtYaleB. (c) COIL10. (d) USPS. (e) MNIST. (f) FLAVIA. (g) Two
motions. (h) Three motions. (i) All motions.

b) Case 2: Fixing the ℓ2,1 norm and changing the
Schatten p-norm factorization for p = 1/2
and 2/3.

c) Case 3: Fixing the nuclear norm factorization and
changing the ℓ2,p norm for p = 1/2 and 2/3.

The results presented in Table VIII validate that the
incorporation of the optimal mean, ℓ2,p-norm, and
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Schatten p-norm has a positive impact on clustering per-
formance compared to our proposed method. Notably,
removing the optimal mean in Case 1 resulted in a
reduction in performance. Moreover, using p = 1/2 and
p = 2/3 in Cases 2 and 3, respectively, led to a
significant increase in clustering accuracy for both image
clustering and motion segmentation, when compared to
using p = 1.

2) Validation of Reconstruction Ability: To illustrate the
effectiveness of our JSpNFOM methods in image
reconstruction for three p-values, we present visual
examples in Fig. 6(a)–(c). These examples demonstrate
a series of reconstructed images and their corresponding
residual images from the ExtYaleB database with
illumination corruptions. Upon visual inspection of these
samples, it is evident that our methods successfully
eliminate illuminations from the selected clustering
images compared to the raw data shown in Fig. 2 (the
second row), showcasing their ability to preserve image
fidelity. This is due to the fact that the weakness of
illuminations is captured by the residual images, which
are subtracted from the raw face images during the
reconstruction process.

3) Validation of Two Moons: The visualization of the
Ncut data clustering results is presented in Fig. 7,
where two original clusters of data are distributed in a
two-moons shape, as seen in Fig. 7(a). This synthetic
dataset is used to evaluate our algorithms with three
different p-values. The data was randomly generated
from two sine-shaped curves, with the noise percentage
set to 0.10, and each cluster containing 300 samples.
Visual differences between the results are apparent, with
clustering accuracies of 69.67%, 72.33%, and 79.67%
corresponding to Fig. 7(b)–(d). These results confirm
the influence of the p-value choice on the clustering
performance.

4) Sensitivity of Parameters: The minimization problem (4)
involves the parameter pairs (p, d,λ), which we
analyze under three selected p-values shown in Fig. 8.
Among these parameters, we recognize that d plays
a crucial role as it represents an upper bound on
the true rank r of the coefficient matrix, where r
is typically associated with the number of subjects
in each clustering database. The specific value of d
varies depending on the number of subjects in different
databases, necessitating different choices for d. As for
the selection of the parameter λ, we determine its value
through empirical analysis. Specifically, we selected
values from {1e−4, 1e−3, 1e−2, 1e−1, 1.0} for the six
image datasets. Additionally, for the AR dataset,
we chose d from the set {100, 120, 140, 160, 180}, for
the FLAVIA dataset, from {40, 50, 60, 70, 80}, and for
the remaining image datasets, from {20, 30, 40, 50, 60}.
As for the Hopkins 155 dataset, we set λ ∈

{1e−2, 1e−1, 1.0, 5.0, 10.0} and d ∈ {5, 10, 15, 20, 30}.
Notably, the proper choices of λ and d play a critical
role in ensuring the robust performance of our proposed
methods.

VI. CONCLUSION AND FUTURE WORK

This work introduces a novel and efficient itera-
tively reweighted optimization algorithm for addressing
unconstrained nonconvex problems. The proposed approach,
JSpNFOM, leverages Schatten p-norm factorization and
ℓ2,p-norm to enhance the robustness of clustering performance.
We also integrate the optimal mean function into the residual
measurements, further improving the clustering accuracy in the
multivariate nonconvex LRR model. To reduce computational
complexity, we factorize the large-scale coefficient matrix into
two smaller matrices. In addition to presenting theoretical
analyses for computational complexity and convergence
properties, we conducted experiments on real-world databases.
The results demonstrate the consistency of our proposed
method’s quantitative and qualitative performance for subspace
clustering, validating the theoretical properties. Moreover,
our method outperforms most related spectral clustering
approaches in terms of both computational efficacy and
efficiency.

As part of our future work, we acknowledge the challenges
posed by the nonconvexity and multivariate nature of our
proposed methods, making it difficult to provide provable con-
vergence guarantees. Therefore, we find it highly meaningful
and valuable to focus on developing efficient optimization
algorithms with both local and global theoretical analyses,
as demonstrated in previous works [50], [62]. Additionally,
we have observed that our proposed methods involve multiple
parameters, and tuning them to select optimal values can be
a slightly complex process. To address this issue, we suggest
leveraging neural network technologies, as showcased in [63]
and [64], to learn the optimal parameters corresponding to
each iteration. By adopting these improvements, we aim to
significantly enhance the optimization process, making our
methods more versatile and applicable beyond the research
domain of unsupervised learning.
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