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Abstract— Recently, there is a rapidly increasing attraction
for the efficient recovery of low-rank matrix in computer vision
and machine learning. The popular convex solution of rank
minimization is nuclear norm-based minimization (NNM), which
usually leads to a biased solution since NNM tends to overshrink
the rank components and treats each rank component equally.
To address this issue, some nonconvex nonsmooth rank (NNR)
relaxations have been exploited widely. Different from these
convex and nonconvex rank substitutes, this paper first introduces
a general and flexible rank relaxation function named weighted
NNR relaxation function, which is actually derived from the
initial double NNR (DNNR) relaxations, i.e., DNNR relaxation
function acts on the nonconvex singular values function (SVF).
An iteratively reweighted SVF optimization algorithm with
continuation technology through computing the supergradient
values to define the weighting vector is devised to solve the
DNNR minimization problem, and the closed-form solution of
the subproblem can be efficiently obtained by a general proximal
operator, in which each element of the desired weighting vector
usually satisfies the nondecreasing order. We next prove that
the objective function values decrease monotonically, and any
limit point of the generated subsequence is a critical point.
Combining the Kurdyka–Łojasiewicz property with some milder
assumptions, we further give its global convergence guarantee.
As an application in the matrix completion problem, experimen-
tal results on both synthetic data and real-world data can show
that our methods are competitive with several state-of-the-art
convex and nonconvex matrix completion methods.

Index Terms— Double nonconvex nonsmooth rank (NNR) min-
imization, iteratively reweighted singular values function (SVF)
algorithm, low-rank matrix recovery, nuclear norm-based
minimization (NNM).
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I. INTRODUCTION

LOW-RANK matrix recovery problem can be viewed
as one of the most visible and challengeable tasks in

computer vision and machine learning. Furthermore, low-rank
matrix can be efficiently recovered by matrix factorization-
based methods (see [1]–[8]) and matrix rank minimization-
based methods (see [9]–[18]), respectively. Specifically, this
paper only focuses on the latter category. It is well known
that one of the most representative low-rank matrix relaxation
functions is the tightest convex nuclear norm, which is the sum
of all singular values. Under certain incoherence conditions,
the low-rank matrix can be successfully recovered in a higher
probability [19], [20] than some general conditions. By virtue
of the guarantee in theoretical convergence, NNM problem
has been solved by several first-order algorithms such as
accelerated proximal gradient method [21]–[25], augmented
Lagrangian multiplier method [26], and alternating direction
method of multiplier [27]. However, NNM methods usually
lead to the relatively lower performance (see [12], [17], [18],
[28], [29]) than the nonconvex ones due that their relaxations
seriously deviate from the true solution of the original low-
rank matrix. In other words, the nuclear norm can lead to a
biased estimator of rank function as the l0-norm overly relaxed
by the l1-norm [30], [31].

To overcome this limitation, many nonconvex nonsmooth
rank (NNR) relaxation functions have been proposed
in recent years. Examples of them include Schatten
p-norm (0 < p < 1) [12], [13], [32], truncated nuclear
norm [15], [29], weighted nuclear norm [14], and so on.
Moreover, some nonconvex counterparts of the l0-norm such
as l p-norm [33], [34], minimax concave plus (MCP) [35],
smoothly clipped absolute deviation (SCAD) [30], and
log-sum penalty (LSP) [31], listed in [16], [36], and [37],
have been extended to relax the rank function. These
derivations mainly rely on the intimate relationship between
them as l1-norm and nuclear norm. The empirically numerous
results have verified that these nonconvex surrogates obtain
better performance than the convex nuclear norm in general.
The reason is that these nonconvex relaxations can overcome
the imbalanced penalization of different singular values by
keeping larger singular values larger and shrinking smaller
ones, which are benefit to preserve the major information
since the larger singular values are dominant, especially for a
low-rank matrix. Solving these NNR problems usually need to
devise the iterative optimization algorithms such as efficient
Schatten p-norm minimization (SPNM) [12], weighted
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nuclear norm-based minimization (WNNM) [14], truncated
nuclear norm regularizer (TNNR)-based methods [15],
iteratively reweighted nuclear norm (IRNN) algorithm [36],
and generalized proximal gradient (GPG) algorithm [16].
The aforementioned functions and algorithms have been
successfully applied to solve the low-rank matrix recovery
problems. However, due to the absence of convexity,
developing effective solutions with the convergence guarantees
becomes very challenging. In addition, the values of objective
function can be proved to decrease monotonically over
the increasing of iterations, and the generated subsequence
converges to a critical point.

To the best of our knowledge, none of these methodolo-
gies can establish the global convergence property, i.e., the
generated sequence is a Cauchy sequence, which converges
to a critical point. The great importance of global con-
vergence property is not only for the theoretical analysis
but also for the practical application since the interme-
diate results are useless in general. Fortunately, inspired
by [16], [36], and [38] and the Kurdyka–Łojasiewicz (KŁ)
property1 [39]–[41] for real analytic functions (e.g., l2-norm of
the vector and Frobenius-norm of the matrix), semialgebraic
functions (e.g., l p-norm, MCP, and SCAD), and subanalytic
functions (e.g., LSP), we can develop an iteratively reweighted
algorithm scheme with both local and global convergence
guarantees (see supplementary materials). Note that the
derived algorithms aim to solve the double NNR (DNNR) min-
imization problem, which can further deduce to the weighted
NNR (WNNR) minimization problem for obtaining nearly
unbiased solution. This induced function is actually a general
and flexible function by the proper choices of the weight-
ing values and the nonconvex relaxation functions in prob-
lem (3). The aforementioned NNR relaxation functions can
be regarded as its special examples as stated in Section II-A.
The main contributions of this paper include the following two
aspects.

1) We present a general and flexible WNNR relaxation
function as the rank substitute and induce the WNNR
minimization problem, which is actually originated from
the DNNR minimization problem. By adaptively assign-
ing the weighting values on the NNR relaxation func-
tion like [14], [18], and [36], the DNNR minimization
problem can be optimized by the general iteratively
reweighted singular values function (IRSVF) algorithm
procedure with a newly proximal operator for the
involved weighted SVF (WSVF) problem.

2) We obtain the local convergence guarantee under some
milder assumptions and further give the global conver-
gence guarantee with the help of KŁ property. As an
application in the matrix completion problem, exper-
imental results on both synthetic data and real-world
data will demonstrate the superior performance of our
proposed methods.

1The derived KŁ inequality is a very common tool for the convergence
theory of nonconvex optimization though it is not novel.

A. Outlines

Section II first points out the research preliminaries and
presents the DNNR minimization problem through the prede-
fined WNNR relaxation function. Then, we also give some
milder assumptions, remarks, and definitions. Section III
mainly concentrates on devising the optimization scheme and
its analysis for the convergence property and the involved
parameters. In addition, the general WSVF thresholding oper-
ator is introduced and then two closed-form solutions of the
l p-norm with p = 1/2 and 2/3 are given through [32]
and [42]. Section IV conducts several experimental compar-
isons with some popular methods on the matrix completion
problem. Finally, we conclude this paper in Section V.

B. Notations

The set R
n denotes the space of n-dimensional real column

vector and the set R
p×q denotes the space of p×q dimensional

real matrix. For a matrix X ∈ R
p×q with p ≥ q , its singular

values decomposition (SVD) is denoted by X = U�V T with
U ∈ R

p×q , V ∈ R
q×q , and � = Diag{σi,i=1,2,...,q}, where �

is the diagonal matrix and σi is the i th largest singular value
of X . σ(X) = (σ1, σ2, . . . , σq ) denotes the singular values
vector. The distance from any point x ∈ R

n to the any subset
S ∈ R

n is defined as d(x, S) = inf y∈S �x − y�, and we set
d(x, S) = +∞ if S = ∅. In addition, the bold 0 represents
the null matrix.

II. PROBLEM FORMULATION

This section first points out the research preliminaries to
propose the WNNR minimization problem and its original
version, which can be regarded as the general extension of
several rank relaxation minimization problems. Subsequently,
several assumptions, remarks, and definitions are introduced
for further analysis of the proposed methodology.

A. Research Preliminaries

There are some commonly used convex and NNR relax-
ation functions and solutions, which are used to consider the
following rank regularized optimization problem:

minX {F(X) = λrank(X)+ g(X)} (1)

where λ > 0 is a regularization parameter, rank(·) is the l0-
norm of the singular value vector, and g(·) : R

p×q → R
+

is a differential loss function, which may be nonconvex.
Problem (1) can cover several applications such as matrix
completion [20], [43] with g(X) = �P�(X)−P�(M)�2F and
multivariate regression [44]–[46] with g(X) = �P X − M�2F ,
where P�(·) and P are the sampling operator and the given
matrix, respectively. Specifically, solving problem (1) gener-
ally involves the following rank minimization problem:

minX λrank(X)+ 1

2
�X − Y�2F . (2)

It follows from [9], [20], and [47] that solving both prob-
lems (1) and (2) directly becomes very difficult due to the
discontinuous and nonconvex property of rank(X), which
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leads to the fact that they are challenging optimization prob-
lems. To solve this issue, several representative relaxation
functions including convex nuclear norm [48] and nonconvex
relaxations [12], [15]–[17], [36], [43] have been widely used.
As we know, the NNR functions usually outperform the
convex nuclear norm, especially when the desired matrix has a
large rank. However, the convergence property (e.g., the global
convergence) of these NNR relaxation problems is not easy to
guarantee, in general, though these nonconvex functions can
lead to a nearly unbiased solution. Inspired by the weighted
strategy on singular values (function) [14], [18], the rank
function of both problems (1) and (2) can be substituted by
the WSVF of matrix X ∈ R

p×q denoted by

ρw(σ (X)) =
r∑

i=1

wiρ(σi ), r = min(p, q) (3)

where ρ(·) : R+ → R
+ is the proper and lower semicontinu-

ous2 on [0,+∞], the weighting vector w = (w1, w2, . . . , wr )
with 0 ≤ w1 ≤ w2 ≤ · · · ≤ wr , and the singular values vector
σ(X) = (σ1, σ2, . . . , σr ) with σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0.
Intuitively, each weight wi is inversely proportional to ρ(σi )
since ρ(σ1) ≥ ρ(σ2) ≥ · · · ≥ ρ(σr ) ≥ 0 holds from [36].
This property can show a different importance of different
singular values to achieve good performance like the weighted
Schatten p-norm (0 < p < 1) in [18]. It should be noted that
ρ(·) is the sparsity function (e.g., l p-norm) when operating on
the elementwise of vector, and ρw(σ (·)) of (3) is a flexible
rank relaxation function with different choices of wi and
ρ(·) when it acts on each singular value of the low-rank
matrix. For example, ρw(σ (·)) becomes nuclear norm [9]
and weighted nuclear norm [14] when ρ(·) is the absolute
function, i.e., l p-norm with p = 1, Schatten p-norm [12], and
weighted Schatten p-norm [18] when ρ(·) is the l p-norm with
0 < p < 1 by setting all wi = 1 and not all wi = 1 with
i = 1, 2, . . . , r , respectively. In addition, ρw(σ (·)) can become
truncated nuclear norm [15], [29] and truncated Schatten p-
norm [49] with partial wi = 0 for i = 1, 2, . . . , r as well as
l p-norm with p = 1 and 0 < p < 1, respectively.

B. DNNR Minimization Problem

It follows from (3) and problem (1) that a general rank
relaxation minimization problem can be achieved by

minX {Fw(X) = λρw(σ (X))+ g(X)} (4)

where ρw(σ (X)) can lead to the nearly unbiased low-rank
solution, especially when each weighting value is inversely
proportional to the involved singular values, such similar
conclusions can be found in [14], [18], and [31]. Moreover,
problem (4) can degrade into the NNR minimization problem
(see [16], [36]) for different choices of w and ρ(·) defined
in (3). Motivated by the reweighted strategies [18], [36] and
the supergradient concepts [50], problem (4) can be derived

2It is a relatively weaker property than the nonconvexity for most NNR
relaxation functions, e.g., lp -norm, MCP, SCAD, and LSP.

from the following DNNR minimization problem:

minX

{
F(X) = λ

r∑
i=1

ρ1(ρ(σi ))+ g(X)

}
(5)

where ρ1(ρ(·)) is the DNNR relaxation function. Without loss
of generality, we choose ρ1(·) = ρ(·). Throughout this paper,
both ρ(·) and g(·) satisfy the following assumptions.

A1: The penalty function ρ(·): R
+ → R

+ is a proper and
lower semicontinuous function on [0,+∞).

A2: The loss function g(·) is continuously differentiable
with the Lipschitz continuous gradient ∇g(·), i.e., there exists
a Lipschitz constant Lg > 0 for any X1, X2 ∈ R

p×q , such as

�∇g(X1)−∇g(X2)�F ≤ Lg�X1 − X2�F . (6)

A3: F(·) is coercive and bounded from below, that is,

lim�X�→+∞ F(X) = +∞ and lim inf�X�→+∞ F(X) > −∞. (7)

It should be mentioned that these assumptions are usually
considered for the convergence analysis of nonconvex opti-
mization algorithms. Subsequently, we recall several remarks
for some illustrations of these assumptions, definitions of
subdifferential for the NNR relaxation functions, and the KŁ
property for further analysis of the convergence theory.

Remark 1: It follows from A1 that the “proper” property
can be guaranteed if ∅ 
= domρ(·) = {x ∈ R : g(x) < +∞},
and the “lower semicontinuous” property holds at point t0 if

lim inf
x→t0

g(x) = g(t0). (8)

It follows from [16] and [36] that both gradient and subgra-
dient are not applied to the general NNR relaxation functions.
To overcome this disadvantage, the following supplemen-
tary materials will provide the definition of subdifferential
from [51] and introduce the KŁ inequality by [39]–[41]. Espe-
cially for a proper lower semicontinuous function, we call it
KŁ function if it satisfies the KŁ inequality at each point of
dom∂ρ(·). They will play a critical role in the convergence
theory of the nonconvex optimization algorithms.

III. PROPOSED ALGORITHM SCHEME

This section first gives the relationship of both problems (4)
and (5) through the properties of supergradients for a class of
NNR relaxation functions listed in [16], [36], and [37], which
satisfy the assumption A1, and second introduces the WSVF
thresholding operator. Subsequently, the general IRSVF algo-
rithm with the continuation technology is proposed according
to the assumption A2. More importantly, we further give
the analysis of the involved parameters. Finally, we present
the convergence analysis theoretically for optimizing the
concave–convex problem (5) by combining the assumptions
A1–A3 with the KŁ inequality. It is especially noted that the
proposed WNNR problem (4) is a more general version than
some existing methods due to the flexible representation of (3),
and the choice of function ρ(·) is not merely limited to the l p-
norm (e.g., p = 1/2 and 2/3) in this paper; many other NNR
relaxation functions (e.g., MCP, SCAD, and LSP) can also be
adopted to substitute the rank function. However, it is not easy
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to claim which one is better for the rank relaxations in general.
The comparisons of several commonly used NNR functions
and methods can be found in [17], [36], [37], and [49].

A. Relationship of Both Problems (4) and (5)

Considering that the superdifferential of nonconvex function
ρ(·) [50] satisfies the antimonotone property, i.e., �u − v,
x − y� ≤ 0, for u ∈ ∂ρ(x) and v ∈ ∂ρ(y), this property
indicates that the supergradient of any given function ρ(·)
satisfying A1 is monotonically nondecreasing on [0,+∞),
that is,

u ≥ v, if and only if 0 ≤ x ≤ y. (9)

Using the definition of supergradient of the function ρ(·)
again and [28, Proposition 1], we have

ρ(t) ≤ ρ(s)+ws(t − s), ∀ ws ∈ ∂ρ(s) (10)

where ρ(·) is the nondecreasing on [0,+∞) and the singular
values satisfy σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0, it is easy to get
ρ(σ1) ≥ ρ(σ2) ≥ · · · ≥ ρ(σr ) ≥ 0 and the nonincreasing
property of the supergradient value of ρ(·). Then, we have

Lemma 1: If σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0, then we have

0 ≤ w1 ≤ w2 ≤ · · · ≤ wr . (11)

Furthermore, by (10) and letting ws ∈ ∂ρ(ρ(σs)), we can get

ρ(ρ(σt )) ≤ ρ(ρ(σs))+ws(ρ(σt )− ρ(σs)). (12)

It follows from Lemma 1 that the insignificant SVF have
larger weights, otherwise inverse. Thus, ρw(σ (X)) can be
induced to relax the rank function in both problems (1) and (2).
In addition, the relationship of problems (4) and (5) can be
established by (12), which further extends the NNR function
to the WNNR function such as from Schatten p-norm to
weighted Schatten p-norm [18]. In addition, the supergradient
may not be unique due that a nonsmooth point x may
exist for the function ρ(·). While it is differentiable at x ,
the supergradient will be unique. These conclusions have been
illustrated in [36, Fig. 2.].

B. WSVF Thresholding Operator

We next give the WSVF thresholding operator for solving
problem (5). At first, two closed-form solutions of the l p-norm
with p = 1/2 and 2/3 are given through [32] and [42].

Proposition 1: Let ρ(·) : R+ → R
+ be a function such that

the proximal operator denoted by Proxρ(·) is monotone. For
any λ > 0, let Y = UDiag(σ (Y ))V T be the SVD of Y ∈ R

p×q

and all weighting values satisfy 0 ≤ w1 ≤ w2 ≤ · · · ≤ wr .
Then, the optimal solution X∗ to the following problem:

minX λρw(σ (X))+ 1

2
�X − Y�2F (13)

can be given by the general WSVF thresholding operator
X∗ = UDiag(δ∗(Y ))V T , where δ∗(Y ) = (δ∗1 , δ∗2 , . . . , δ∗r )
satisfies δ∗i ≥ δ∗j for 1 ≤ i ≤ j ≤ r , and then δ∗i is obtained
by solving the problem as follows:

δ∗i ∈ Proxρ(σi ) = argminδi≥0λwiρ(δi )+ 1

2
(δi − σi )

2. (14)

Fig. 1. Proximal operators for lp -norm with p = 1, 1/2, and 2/3.

Note that Proposition 1 can be achieved by the proof
procedure of Theorem 1 [16]. Thus, it is not repeated here.
However, there exist some differences to the rank relaxations
that problem (13) is more general and extends the nonconvex
relaxations to its weighted version. Moreover, using the von
Neumann’s trace inequality [52] and the separable property,
problem (13) can be reformulated into an equivalent formu-
lation with singular values (14), which can be solved by
the fixed-point iteration algorithm [16]. Different from the
iteratively thresholding solution [53], we consider to get the
closed-form solution of (14) for the special choices of ρ(·)
such as l p-norm with p = 1, 2/3, and 1/2, respectively. It can
be shown in Fig. 1. The reason for choosing the popular l p-
norm is due that it can be extended to the Schatten p-norm,
which has some inspiring properties [54], [55]. Other noncon-
vex functions listed in [36], [37], and [49] satisfying A1 can
also be used here, especially when they have the closed-form
solutions. For notational simplicity, we write λwi as ξ , σi as σ ,
and δi as δ, respectively. To achieve the optimal solutions of
problem (13), we compute the closed-form solutions of (14)
as follows.

1) l p-norm with p = 1/2, then (14) becomes

δ∗ ∈ argminδ≥0 ξδ
1
2 + 1

2
(δ − σ)2. (15)

It follows from [32], [42], and [56] that (15) has the following
closed-form solution denoted by:

δ∗ =
{

2
3σ(1+ cos( 2π

3 − 2φ(σ)
3 )), σ > ϕ(ξ)

0, otherwise
(16)

where φ(σ) = arccos(ξ/4(σ/3)−3/2) and ϕ(ξ) =
3 3
√

2/4(2ξ)2/3.
2) l p-norm with p = 2/3, then (14) becomes

δ∗ ∈ argminδ≥0 ξδ
2
3 + 1

2
(δ − σ)2. (17)

It follows from [32], [42], and [56] that (17) has the following
closed-form solution denoted by:

δ∗ =
{

((
 +√
2σ/
 −
 2)/2)3 σ > ϕ(ξ),

0, otherwise
(18)

where 
 = 2/31/2(2ξ)1/4cosh(arccosh(27σ 2/16(2ξ)−1.5)
/3)1/2 and ϕ(ξ) = 2/3(3(2ξ)3)1/4.
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By both (16) and (18) and using the relationship
between (13) and (14), it is easy to obtain the closed-form
solution of (13) for the l p-norm with p = 1/2 and 2/3, respec-
tively. The assumption A1 can guarantee that the monotone
property of Proxρ(·) holds for any lower bounded function
ρ(·) with the help of [16], and this property plays a key role
for making (13) separable to reformulate (14). Although we
give the general thresholding operator, the unified formulation
of solutions for (14) cannot be easy to obtain for the general
NNR relaxation functions listed in [36], [37], and [49].

C. IRSVF Algorithm

Using the relationship of problems (4) and (5), this section
will derive a detailed optimization scheme named IRSVF
algorithm to solve problem (4). We first linearize g(X) at
Xk ∈ R

p×q and add a proximal term, then obtain

g(X) ≈ g(Xk)+ �∇g(Xk), X − Xk�+μ

2
�X − Xk�2F (19)

where μ is larger than the Lipschitz constant Lg , i.e., μ > Lg .
Such a proper choice of μ is very important to guarantee the
algorithmic convergence. If Lg is unknown or uncomputable,
the backtracking rule can be used to estimate μ in each
iteration [57]. Inspired by both IRNN [36] and GPG [16],
the right-hand side of (19) can be used to substitute g(X)
in problem (4). Then, Xk+1 can be updated by

Xk+1 = argminX λρwk (σ (X))+ μ

2
�X − Xk�2F

+�∇g(Xk), X − Xk� + g(Xk). (20)

It follows from (3) that (20) can be written as

Xk+1 = argminX λ

r∑
i=1

wk
i ρ(σi (X))+ μ

2
�X − Yk�2F (21)

where Yk = Xk − 1/μ∇g(Xk). It is obvious that (21) can be
solved by the Proposition 1. After updating Xk+1, we need to
compute the weighting vector wk+1 by

wk+1
i ∈ ∂ρ(ρ(σi (Xk+1))), i = 1, 2, . . . , r. (22)

Actually, the above-mentioned optimization process
can fall into the majorization–minimization algorithm
scheme [38], [58], [59]. In detail, it includes iteratively
updating Xk+1 through solving a WSVF thresholding
operator by the gradient step (19) and proximal step (21) and
then updating the weighting vector wk (22) by computing
the supergradients of nonconvex relaxations, which is similar
to both IRNN and GPG. However, there exist two main
differences as follows.

1) Both IRNN and GPG can be regarded as the special
cases of the proposed IRSVF algorithm by the proper choices
of weighting vector and NNR functions. Thus, our proposed
method and algorithm is more general than them.

2) Iteratively updating Xk+1 and weighting vector wk in
IRNN mainly depends on the singular values σi (·)’s, while
our IRSVF algorithm is based on the SVF ρ(σi (·))’s. Thus,
the general thresholding operator to the WNNR minimization
problem (21) can be obtained, which is also different from the
proximal step in both IRNN and GPG. Specifically, it is not

Algorithm 1 IRSVFc for Solving DNNR Problem
Input: λ, λmin > 0, μ > Lg , 0 < τ < 1 and ε > 0.
Initialization: k = 0, Xk ∈ R

p×q and wk ∈ R
r .

A. Outer loop
1. for j = 0, 1, 2... do
2. k = 0
B. Inner loop
3. Compute Yk by Xk − 1

μ∇g(Xk);
4. Update Xk+1 by solving (21);
5. Update wk+1 by computing (22);
6. if

|Fλk (Xk+1)−Fλ(Xk)|
|Fλk (Xk+1)| > τ · λk ,

7. then k = k + 1, Return to 3;
8. else
9. Update λ by λ = τ · λk+1, then j = j + 1;

10. Update X by Xk = Xk+1;
11. until convergence

Output: X∗ ← Xk+1.

easy to give the general representation of solutions for (21)
by (14) in general.

D. Adjustment of the Involved Parameters

Similar to the devised strategy in both algorithms IRNN and
GPG, the continuation technique is used to enhance the quality
of low-rank solution and accelerate the convergence speed
of the proposed IRSVF algorithm. Moreover, we empirically
observe that the obtained solution is very sensitive to the
regularizer parameter λ, and the proper choice of λ plays
a key role in determining the recovery ability of low-rank
matrix. It involves an initial value λ0 and a target parameter
λmin and dynamically decreases it over the increasing iteration
numbers by λ = τ k · λ0 with the reduction factor 0 < τ < 1
until reaching the predefined target value, i.e., λ ≤ λmin,
which determines the stopping tolerance. In addition, the larger
values of τ , the more timing costs and iterations number in
the experiments. This updating formula for λ also follows
the fact that a larger value on λmin in each iteration will
lead to the lower relative error (RE) values, while a smaller
value on λmin will have the opposite effect. Such conclusions
have been verified in the related methods [16], [36]. We
summarize the mainly iterated optimization procedure of the
IRSVF algorithm with the continuation technique (IRSVFc)
in Algorithm 1.

E. Convergence Analysis

As we know, both the convergence theory and the com-
putational complexity are the critical evaluation criteria
for the first-order optimization algorithms. In the derived
Algorithm 1, the computational complexity mainly depends
on the computations of SVD. More importantly, under some
milder assumptions, we focus on establishing the convergence
guarantees from local to global of the devised algorithm. The
main results can be found in the supplementary materials,
and they can provide the theoretical support for the practical
applications in computer vision and machine learning.
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TABLE I

RE VALUES OF DIFFERENT LOW-RANK MATRIX COMPLETION METHODS ON THE SYNTHETIC DATA UNDER THE PARAMETERS CHOICE IN { pr , pm , nl }

IV. EXPERIMENTS

This section will compare the efficacy and effectiveness
of our method with other approaches on both synthetic and
real-world data for the matrix completion problem

minXλrank(X) + 1

2
�P�(X)− P�(M)�2F (23)

where P�(·) represents the linear projection operator,
i.e., P�(M)i j = Mij if (i, j) ∈ � and P�(M)i j = 0 oth-
erwise. All the algorithms and experiments are implemented
by MATLAB code on a PC with 4.00 GB of RAM and Intel
Core i3-4150 CPU @ 3.50 GHz. The parameter choices of
the compared methods rely on the authors’ suggestions of
the published papers or the default parameters of the released
codes to obtain the best performance, respectively.

The involved matrix completion approaches are mainly
based on convex and nonconvex rank relaxations as follows:
1) the convex NNM and 2) the NNR-based minimization
for Schatten p-norm, truncated nuclear norm, and weighted
nuclear norm. In addition, the nonconvex relaxation functions
of l0-norm listed in [16] and [36] have been extended to
approximate the rank function in problems (1), (2), and (23).
Such these convex and nonconvex problems mentioned earlier
have been solved by several state-of-the-art algorithms such as
Accelerated Proximal Gradient Line Search (APGL) 3 [21],
SPNM4 [12], WNNM5 [14], TNNR6 [15], IRNN7 [36], and
GPG [16], which are tested as the compared matrix comple-
tion methods. In addition, in the supplementary materials,
we provide the experimental comparisons with the matrix
factorization-based matrix completion methods, which mainly
decompose the large-scale matrix into two or three small
matrices to reduce the computational complexity. Note that,
for the compared methods such as IRNN, GPG, and DNNR,
the l p-norm with p = 1/2 and 2/3 are extended to relax the
rank function in their respective settings. Moreover, the closed-
form solutions for these cases are essential for IRNN, GPG,
and DNNR algorithms when computing the proximal opera-
tors. The derived solutions mainly depend on (15) and (17).

3http://www.math.nus.edu.sg/mattohkc/NNLS.html
4http://www.escience.cn/people/fpnie/papers.html
5http://www.comp.polyu.edu.hk/cslzhang/
6http://sites.google.com/site/zjuyaohu/
7http://www.escience.cn/people/CanyiLu/index.html

This is not different from the fixed-point iteration thresholding
solver for the GPG algorithm [16].

A. Synthetic Data

This section will quantitatively evaluate the performance on
the synthetic data, especially for the DNNR method, which can
be solved by the IRSVFc algorithm for the Schatten p-norm
with p = 1/2 and 2/3, respectively. We first generate the
ground truth by the low-rank matrix Mg = ML MT

R ∈ R
p×q ,

where both ML ∈ R p×r and MR ∈ Rq×r are obtained by
randn, and the upper bound of the rank(Mg) is constrained
by r = pr × p and the number of missing entries in the
corrupted matrix M = Mg + nl E ∈ R

p×q is computed by
pm × p2, where E is obtained by randn and nl represents
the noise level in this task.

We fix p = q = 300, and set pm, nl ∈ [0.1 : 0.1 : 0.4] and
pr ∈ [0.10 : 0.05 : 0.25]. For {pr , pm, nl }, we generate the
synthetic data 20 times and report their averaging values as the
final results. The matrix recovery performance is measured by
computing RE = �X̂ − Mg�F/�Mg�F , where X̂ is the recov-
ered data matrix by different matrix completion algorithms.
In particular, using the l p-norm with p = 1/2 and 2/3 on
the singular values vector as the rank relaxations in IRNN,
GPG, and DNNR methods. Here, Table I lists the RE values
of all the methods, and Fig. 2 gives the demonstration for the
parameter τ , running times, and initial value of our algorithm.
Among them, we have the following observations.

1) These nonconvex methods can obtain lower RE values
than the convex case. Using the Schatten p-norm with p =
1/2 and 2/3 to the rank relaxations, we can achieve a better
competitive performance than both IRNN and GPG though
the improvements are slight. However, our methods can obtain
relatively lower RE values than the compared methods.

2) The values of RE achieved by all of the methods
become slightly worse with the increasing of pr , pm , and nl ,
respectively. Specifically, when these values are small, the REs
become relatively low. This phenomenon also reflects the fact
that when the rank number becomes very large, the possibility
of recovery becomes very difficult. Such similar conclusions
have been verified in [14], [18], and [36].

3) It follows from the statements of Section III-D that τ
influences both the efficacy and the efficiency for the proposed
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Fig. 2. Various choices of τ for (a) RE values and (b) running times (seconds); the distribution of RE values with 1000 different random initializations for
(c) p = 1/2 and (d) p = 2/3 under the special case (pr = 0.2, 0.5, 0.5, 300).

Fig. 3. Original and incomplete images (first column) are used for the recovered images (second to fifth column) generated by APGL, TNNR, SPNM, and
WNNM, with other images by IRNN, GPG, and DNNR for lp -norm with p = 1/2 (sixth to eighth column) and p = 2/3 (ninth to eleventh column) in
sequence.

methods. Based on Fig. 2(a) and (b), we can conclude that the
larger of the value of τ , the lower of the RE value, and the
greater of the timing costs. Since the involved Schatten p-norm
with p = 1/2 and 2/3 is nonconvex, the converged solution
may be different due to various choices of initializations.
We conduct 1000 runs with random initialization for these
cases, Fig. 2(c) and (d) shows that most of the solutions are
concentrically distributed in the median regions.

B. Real Images Data

This section mainly applies several convex and nonconvex
low-rank matrix completion methods for the recovery of real
images. Similar to the experimental settings in [15], we test
four incomplete types (i.e., random, text, curve, and block) on
four natural images accordingly as shown in the first column
of Fig. 3. All of the methods and algorithms are used to
recover the missing entries of those partially damaged images.
Consider that each of the color images has three channels (i.e.,
red, green, and blue), we need to recover the missing pixels by
exploiting those matrix completion methods on each channel
of the image independently and then combine them to get the
final recovery results. Besides the RE values defined earlier,
the recovered images are evaluated by the peak signal-to-noise
ratio (PSNR) [15], [36] defined by

PSNR = 10log10

(
2552

1
3pq

∑3
i=1 �X̂i − Mi�2F

)
(24)

where both X̂i and Mi are the original image matrix and
the recovered image matrix of the i th channel, and its size
is p × q . Higher PSNR values and lower RE values can
indicate a better recovery performance of the involved methods
than the compared methods. It follows from Table II that
our methods can obtain both higher PSNR values and lower
RE values than other methods. In addition, these noncon-
vex methods still outperform the convex nuclear norm-based
methods (e.g., APGL), and DNNR outperforms GPG, which
outperforms IRNN. This phenomenon is consistent with the
conclusion [16], [18], [36] due to the tight relaxation. The
recovered images are shown in Fig. 3 though the visual
differences seem to be minor. In accordance with the derived
sufficient decrease condition, the objective function values
plotted in Fig. 4 are monotonically decreasing for IRNN, GPG,
and DNNR when p = 2/3 and 1/2, respectively. We observe
that our methods decrease the objective function much faster
since they need less iteration numbers, especially for p = 2/3.

C. Jester Joke Data

To further compare with these rank relaxation matrix
completion methods, we perform the experiments on the
Jester joke data set,8 which contains 4.1 million ratings
for 100 jokes from 73 421 users. The experimental data set
includes four files: Jester-1, Jester-2, Jester-3, and Jester-all

8http://www.ieor.berkeley.edu/ goldberg/jester-data/
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TABLE II

PSNR (DECIBEL) VALUES AND RE VALUES OF THE LOW-RANK MATRIX RECOVERY RESULTS BY COMPARING OUR METHODS WITH SEVERAL

OTHER METHODS ON THE ABOVE IMAGES WITH MISSING ELEMENTS GENERATED BY RANDOM/TEXT/BLOCK/CURVE MASK

TABLE III

NMAE VALUES AND RUNNING TIMES (SECONDS) OF ALL THE MATRIX RECOVERY METHODS ON THE JESTER JOKE DATA

Fig. 4. Convergence curves of the objective functions for three related
algorithms to recover the natural image with number of (1). (a) p = 1/2.
(b) p = 2/3.

(combining Jester-1,2,3 together). For each data set, we have
an incomplete data matrix, and randomly choose half of
entries in � to construct the entries set �, where � is the
known ratings set of the entries by users. Different from
the above measured criteria, the recovery performance of
these methods are evaluated by the normalized mean absolute
error (NMAE) [21]. More generally, a small value of NMAE
usually indicates a good recovery performance. We compute
the value of NMAE by

NMAE = �(i, j )∈�\�|Xij − Mij |
(Mmax − Mmin)|� \�| (25)

where Mmax = maxi j Mi j and Mmin = mini j Mi j , respectively.
The values of NMAE are demonstrated in Table III, which
can verify the achievable superiority of the proposed methods.
We observe that the values of NMAE on the Jester-3 data set
are slightly higher than other Jester data sets for all the used
methods. Since Jester-all is the combination of Jester-1,2,3,

the NMAE values will fall into the median values. Due
to the relatively tighter approximation of the rank function
than the convex relaxations, the proposed DNNR methods
can achieve the lower NMAE values than other compared
methods. The timing costs are listed in Table III. It is easy
to observe that the IRNN, GPG, and DNNR methods share
a much higher timing cost than both APGL and WNNM.
In addition, both SPNM and TNNR methods consume much
timing costs due to the computations of the inverse matrix
and the two-stages of optimization, respectively. Although
our methods can achieve better recovery efficacy than the
compared methods, they also suffer from higher computational
loads than the matrix factorization methods. This motivates
us to develop faster and accelerated proximal operators based
on optimization algorithms like [21]–[25], which can improve
the computational efficiency by reducing the total number of
iterations.

V. CONCLUSION

This paper presents a general WNNR relaxation function
to substitute the rank function. The involved strategy actually
derives from the DNNR relaxation function by computing the
supergradient of the nonconvex function. The main merits
of WNNR relaxation function are its relatively flexible and
nearly exact relaxation over some convex and nonconvex
relaxations of rank function. The IRSVFc algorithm is further
devised to solve our nonconvex optimization problem effi-
ciently. Most importantly, we further give its local and global
convergence analysis by combining the milder assumptions
and the KŁ inequality. Experimental results on both synthetic
and real-world data can show their superior performance
over several existing matrix completion methods. Furthermore,
developing faster and accelerated optimization algorithms of
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the proposed DNNR methods will be one of the future research
studies for solving large-scale matrix completion problems.
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