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Low-Rank Matrix Recovery via Modified
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Abstract— In recent years, low-rank matrix recovery problems
have attracted much attention in computer vision and machine
learning. The corresponding rank minimization problems are
both combinational and NP-hard in general, which are mainly
solved by both nuclear norm and Schatten-p (0 < p < 1) norm
based optimization algorithms. However, inspired by weighted
nuclear norm and Schatten-p norm as the relaxations of rank
function, the main merits of this work firstly provide a mod-
ified Schatten-p norm in the affine matrix rank minimization
problem, denoted as the modified Schatten-p norm minimiza-
tion (MSpNM). Secondly, its surrogate function is constructed
and the equivalence relationship with the MSpNM is further
achieved. Thirdly, the iterative singular value thresholding algo-
rithm (ISVTA) is devised to optimize it, and its accelerated
version, i.e., AISVTA, is also obtained to reduce the number
of iterations through the well-known Nesterov’s acceleration
strategy. Most importantly, the convergence guarantees and their
relationship with objective function, stationary point and variable
sequence generated by the proposed algorithms are established
under some specific assumptions, e.g., Kurdyka-Łojasiewicz (KŁ)
property. Finally, numerical experiments demonstrate the effec-
tiveness of the proposed algorithms in the matrix comple-
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tion problem for image inpainting and recommender systems.
It should be noted that the accelerated algorithm has a much
faster convergence speed and a very close recovery precision
when comparing with the proposed non-accelerated one.

Index Terms— Low-rank matrix recovery, modified Schatten- p
norm, iterative singular value thresholding algorithm, Kurdyka-
Łojasiewicz property, convergence guarantees.

I. INTRODUCTION

THIS paper mainly considers to solve a class of nonconvex
low-rank matrix recovery problem, which can be viewed

as the following regularization problem

minX
1

2
�A(X) − b�2

F + λrank(X), (1)

where X and b are both matrices, λ > 0 is the regularized
parameter and rank(X) counts the number of nonzero singular
values of the desired low-rank matrix X, A(·) is the linear
mapping and A∗(·) stands for its adjoint. Unfortunately, Prob-
lem (1) is a challenging nonconvex optimization problem, and
is known as combinational and NP-hard so that it is not easy to
solve directly in general, but it has attracted much attention in
numerous applications such as image inpainting [1]–[3], col-
laborative filtering [4], [5], recommender and minimum order
systems [6]–[8], subspace clustering [9]–[11], hyperspectral
imaging [12] and turbulence removal [13].

To address this issue, one can usually consider the pop-
ular nuclear norm [14]–[17] as convex relaxation of rank
function in Problem (1), named as nuclear norm regularized
affine matrix minimization problem. As we know, several
first-order optimization algorithms (e.g., alternating direction
multiplier methods (ADMMs) [18]–[20], proximal gradient
algorithm and its accelerated variants [15], [21], singular
values thresholding algorithm [16], [22], fixed point and
bregman iteration algorithm [23], [24]) have been adopted
to achieve the optimal solution, and the global convergence
guarantees are also established in theory due to the existence
of convexity. However, this convex substitute may produce a
biased solver for recovering a real low-rank matrix due to
its loose relaxation, and shrinking all of the singular values
toward zero simultaneously [25]–[27] when computing the
singular values thresholding operator.

To overcome this disadvantage, most nonconvex rank sur-
rogates are proposed such as nonconvex Schatten- p norm
for 0 < p < 1 [28], [29] and truncated/weighted nuclear
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norm [30]–[32]. It should be stressed that Schatten-p norm
is the commonly used nonconvex rank relaxed function.
Additionally, other nonconvex relaxations of l0-norm (e.g.,
l p-norm [28], [33]–[35], log-sum penalty (LSP) [25], Capped-
l1 norm [36], minimax concave penalty (MCP) [37] and
smoothly clipped absolute deviation (SCAD) [26]) can also be
used to replace the rank function listed in [2], [3], [5], [38].
Solving these nonconvex rank relaxation problems, some
first-order optimization algorithms have successfully been con-
sidered such as ADMM variants [4], [27], [30]–[32], [39], iter-
atively reweighted nuclear norm algorithm [2], fast low-rank
matrix learning algorithms [38], [40], [41] and singular values
thresholding algorithm [5], [42]. These algorithms can help
to achieve a lower low-rank solver for a better recovery
precision, and also guarantee that the objective function has the
monotonically decreasing property and the generated variable
sequence converges to a limiting point satisfying the Karush-
Kuhn-Tucker (KKT) condition. However, there exist two main
limitations as follows:

• The algorithms may be computationally expensive due to
too much number of iterations. Involving singular values
decomposition (SVD) is necessary per iteration as updat-
ing the low-rank matrix without using the decomposable
matrix strategy in [7], [8], [40], [43]. Thus, this enforces
us to devise faster algorithms to reduce the number of
iterations for improving the computational efficiency.

• The algorithms usually do not have the global conver-
gence guarantees, i.e., the whole sequence is a Cauchy
one, and thus converges to a critical point. It plays a key
role for deciding the property of the solver, so achieving
this objective is of great significance in general, not
only for theoretical importance, but also for practical
computation as many intermediate results are usually
useless without global convergence guarantees.

The main merits of this paper focus on solving the afore-
mentioned both disadvantages to devise faster optimization
algorithms and then provide the global convergence analy-
sis. Inspired by the great success of nonconvex relaxation
approaches in sparse signal and low-rank matrix recovery
problems, many researchers have shown that using the l p-norm
to approximate the l0-norm [33], [34] and the Schatten-p norm
to relax the rank function [4], [28] for 0 < p < 1 is a better
choice than using l1-norm and nuclear norm as the substitutes
in most cases. It is well known that both l p-norm and Schatten-
p norm have some good advantages for relaxing l0-norm and
rank function accordingly. Hence, as one of the substitutes
for rank function in Problem (1), this work concentrates on
devising a modified Schatten-p norm induced by weighted
l1-norm and nuclear norm [2], [25], [32]. Several relaxations
of rank function are listed in TABLE I, such as (a) Nuclear
Norm, (b) Schatten-p Norm, (c) Truncated Nuclear Norm,
(d) Weighted Nuclear Norm and (e) Modified Schatten-p
Norm. Note that (d) is very different from both (a) and (b),
and has a slight difference with (c) due to different choice
of weights according to [2], [32]. Specifically, for (e), that
is, the modified Schatten-p norm with 0 < p < 1 and
� = (�1, �2, . . . , �r ) � 0, it can be regarded as one of the

TABLE I

SEVERAL CONVEX AND NONCONVEX RANK RELAXATIONS

concrete examples of (d) as explained later. For these con-
vex and nonconvex minimization problems, some first-order
algorithms are developed but they usually suffer from lower
computational efficiency since too much iterations may be
needed to make them converge. We would like to emphasize
that, the modified Schatten-p norm does not have matrix
decomposable formulations like nuclear norm [7], [43], [44]
and Schatten-p norm for p = 2/3, 1/2 and 1/3 [8], [45],
which can decrease the computational complexity at each
iteration. Different from these operations, we consider the
popular Nesterov’s acceleration strategy [46] to reduce the
total number of iterations. Due that the involved minimization
problem is nonconvex and can not be optimized directly,
we present the maximization of the objective function in Prob-
lem (1) by virtue of the idea in [47], where the rank function
is substituted by the modified Schatten- p norm as shown in
TABLE I. The desired optimization algorithms are given to
solve this problem by series of equivalence transforms, and we
further analyze both local and global convergence guarantees
under some milder assumptions. The main contributions of
this work are listed as follows:

• We devise the modified Schatten-p norm as the rank
substitute in Problem (1). By maximizing its objective
function, a novel MSpNM problem is obtained. Mean-
while, a series of equivalent relationships are further
established through the optimal solution, and the desired
optimization problem can be guaranteed to achieve the
closed-form solution via the weighted singular values
thresholding (WSVT) operator.

• Both ISVTA and its accelerated version, i.e., AISVTA,
with the Nesterov’s acceleration strategy are devised to
optimize Problem (1). Moreover, we prove that the objec-
tive function decreases monotonically over the iterations
and any cluster point of the generated variable sequence
is a stationary point. With the help of the Kurdyka-
Łojasiewicz (KŁ) property1 and some milder conditions,
we further give a global convergence guarantee of the pro-
posed algorithms by proving that the variable sequence
is a Cauchy sequence.

1The KŁ property was first introduced by Łojasiewicz for real analytic
functions [48], and then extended by Kurdyka to smooth functions [49],
and recently further extended to nonsmooth subanalytic functions [50], [51].
Furthermore, the KŁ inequality holds for many convex and nonconvex
functions [3], [52] like real analytic functions, semialgebraic functions and
subanalytic functions (e.g., real polynomial functions, logistic loss function,
lp (p ≥ 0) and Schatten-p norm). Note that the KŁ property is a powerful
tool for the convergence analysis of nonconvex optimizations.
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• As the specific example of Problem (1), matrix com-
pletion, several numerical experiments are conducted on
synthesized data, image inpainting and recommender sys-
tem. The results can show the superiority of our methods
over some mostly related state-of-the-art low-rank matrix
recovery problems. Besides, some prospective conver-
gence properties and other theoretical analysis are further
verified, and AISVTA does indeed reduce the number of
iterations over ISVTA in the experimental settings.

The remainder of this paper is organized as follows:
Section II presents the modified Schatten-p norm and for-
mulates the MSpNM problem accordingly. The equivalence
relations are achieved via the optimal solution. Section III
first provides the ISVTA procedure and then gives its acceler-
ated version through the Nesterov’s acceleration strategy. The
choice of involved parameters are further analyzed. Section IV
first introduces the basic preliminaries and then gives the main
convergence results for both ISVTA and AISVTA step by step.
Section V conducts several numerical experiments on both
synthesized and real-world data to verify the superiority of
our approaches in the matrix completion problem. We finally
conclude this paper in Section VI.

II. PROBLEM FORMULATION

In this section, we mainly present the definition of modified
Schatten-p norm and then establish the MSpNM problem.
By constructing its equivalent transformation step in step,
we can further achieve the desired equivalence relations
according to the optimal solutions for both minimization
problems.

A. Modified Schatten-p Norm

It is well known that nuclear norm is a biased approximation
of rank function [26] due that it treats each singular value
equally to pursue the convexity in the regularized minimization
problem. Those nonconvex rank relaxations listed in TABLE I
can address this issue. Based on the commonly used Schatten-
p norm for 0 < p < 1 defined in [4], [28], [29], [35], we can
achieve the following relation of rank relaxations

rank(X) = lim
p→0+

��
i

σ
p

i (X) = Tr
�
(XT X)p/2

��
= lim

p→0+ �X�p
Sp

, (2)

where we set 00 = 0. It follows from (2) that the Schatten
0-norm of a matrix X is exactly its rank, and the Schatten
1-norm is the nuclear norm of X. Different from them, we
next define a modified Schatten p-norm, which generalizes
the minimal l p norm [53] to this case, represented by

�X�p
Sp,�

=
�

i

σi (X)

(σi (X) + �i )1−p
, (3)

where �1 ≥ �2 ≥ . . . ≥ �r > 0, which can make the function
at the zero singular values derivable. It should be noted that
the variable X appeared in (3) are not the same in the process
of iterations as shown later, and �X�p

Sp,� can be regarded as

the derivative of the smoothed function2 1
p

�
i (σi (X) + �i )

p .
With the proper choices of �i > 0 for any i , we have �X�p

Sp
=

lim
�→0+ �X�p

Sp,� induced by (2). In addition, considering that

σ1(X) ≥ σ2(X) ≥ . . . ≥ σr (X) > 0, it is easy to obtain
the following properties

0 < w1 ≤ w2 ≤ . . . ≤ wr with wi = 1

(σi (X) + �i )1−p
, (4)

which will play a key role for computing the WSVT operators
due to the nondecreasing property of the weights sequence
{wi } defined from (4). For the involved variables and parame-
ters, the modified Schatten p-norm (3) is actually a weighted
nuclear norm as previously proposed. However, there exist
several differences with the mostly related rank relaxation
based recovery methods stated as follows:

• [2], [5], [54] adopt
�

i σ
p

i (X) as rank relaxation for the
nonconvex nonsmooth low-rank minimization problem,
the supergradient is pσ

p−1
i (X) if σi (X) > 0, otherwise,

+∞ if σi (X) = 0. To achieve the low-rank solution, [2],
[5] devise the algorithms IRNN and GPG accordingly
whereas [54] gives the majorization minimization algo-
rithm as well as a weaker restricted isometry property.

• [29], [55]–[57] employ the smoothed Schatten-p norm
Tr(XT X + μ2I)p/2 and

�
i (σ

2
i (X) + μ2)p/2 as rank

relaxations in low-rank matrix recovery problems, their
derivative are pX(XT X + μ2I)p/2−1 and p

�
i (σ

2
i (X) +

μ2)p/2−1, respectively. A family of Iterative Reweighted
Least Squares (IRLS) algorithms [56], [57] are provided
to optimize these Schatten- p (0 < p < 1) norm based
nonconvex recovery problems to promote low-rankness.

• [30], [31] present the truncated nuclear norm as rank
substitute and apply it to the rank minimization problem.
When r is the rank number of X, the elements of weight-
ing vector are assigned wi = 0 for i ≥ r + 1, and wi = 1
otherwise. Additionally, [42] studies

�
i (σi (X) + �i )

p in
the iterative reweighted singular value minimization for
image inpainting problem, and computes the weighting
values by wi = p

(σi (X)+�i )1−p for any i .

• [58] proposes
�

i wiσ
p

i (X) as rank substitute and
generalizes the weighted nuclear norm [32] by setting
p = 1 for image denoising. Here, σi (X) is assigned
to a nonnegative weighting value wi = c(>0)

σi (X)+� , which
may be nonascending, nondecreasing or arbitrary order
like [32]. Specifically, when wi = 1 holds for any i
in

�
i wiσ

p
i (X) [58], it will degenerate to the Schatten-

p norm [59], which can be optimized by the projected
gradient descent algorithm with the convergence analysis.

In addition, to better surrogate l0-norm and rank function
for characterizing the sparsity and the low-rankness, respec-
tively, [60] studies a novel optimization algorithm, which is
formulated in the latent space for recovering a simultaneously
sparse and low-rank matrix with a sufficient number of noise-
less linear measurements, and [61] proposes an alternating

2It implies that the weights achieved in [42] is much more general since (4)
is actually its special case by setting p = 1, and linearizing the quadratic
term is used while the proposed algorithms do not.
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minimization algorithm called sparse power factorization for
compressed sensing of sparse rank-one matrices.

B. Modified Schatten-p Norm Minimization (MSpNM)

Different from some convex and nonconvex rank relax-
ations, we adopt the modified Schatten-p norm as rank sub-
stitute in Problem (1) to obtain the MSpNM model, denoted
as

minX

�
Hλ(X) = 1

2
�A(X) − b�2

F + λ�X�p
Sp,�

	
, (5)

where the objective function Hλ(X) is nonconvex and does
not optimize directly. Most existing first-order algorithms
(e.g., IRNN [2] and ADMMs [27], [30]) can be considered to
solve Problem (5) through the linearized strategy or introduc-
ing more variables. These may guarantee that each subprob-
lem has the closed-form solution, no matter when the rank
substitutes are convex or nonconvex functions (e.g., nuclear
norm [14], Schatten-p norm [29], weighted/truncated nuclear
norm [30]–[32] and weighted Schatten- p norm [58]). Simi-
larly, to obtain the closed-form solution directly, this work
tries to minimize the surrogate function of Hλ(X) by adding
the quadratic terms with auxiliary variable and parameter,
represented by

minX,Y

�
Hλ,μ(X, Y)

= μ

�
1

2
�A(X) − b�2

F + λ
�

i

σi (X)

(σi (Y) + �i )1−p

�

− μ

2
�A(X) − A(Y)�2

F + 1

2
�X − Y�2

F

	
, (6)

where both X and Y have the same size. It follows from (3),
(5) and (6) that Hλ,μ(X, X) = μHλ(X) holds for all μ > 0
with any fixed parameters λ > 0, � � 0 and 0 < p < 1.
Different from some existing first-order algorithms for solving
Problem (5), one of the main merits of this paper focuses on
optimizing Problem (6) efficiently as an extension of [47].

C. The Equivalence Relation of Optimal Solutions

Instead of solving Problem (5) directly to achieve the
optimal solution, we will convert to compute the optimal
solution of minX,YHλ,μ(X, Y) in Problem (6). As a result,
it is necessary to guarantee that if X∗ is the optimal solu-
tion of minXHλ(X), then X∗ is also the optimal solution
of minXHλ,μ(X, X∗), i.e., Hλ,μ(X∗, X∗) ≤ Hλ,μ(X, X∗)
holds for any X. By the definitions of both minXHλ(X) and
minX,YHλ,μ(X, Y), it is necessary to prove

Hλ,μ(X, X∗)

= μ

�
1

2
�A(X) − b�2

F + λ
�

i

σi (X)

(σi (X∗) + �i )1−p

�

− μ

2
�A(X) − A(X∗)�2

F + 1

2
�X − X∗�2

F

≥ μ

�
1

2
�A(X) − b�2

F + λ
�

i

σi (X)

(σi (X∗) + �i )1−p

�
≥ μHλ(X∗), (7)

which implies that Hλ,μ(X, X∗) ≥ Hλ,μ(X∗, X∗) due to
the fact that μHλ(X∗) = Hλ,μ(X∗, X∗). Moreover, it also
implies that μ∇XHλ(X) = ∇XHλ,μ(X, X∗) holds naturally for
X = X∗. Actually, the first inequality holds for 0 < μ < 1

�A�2
2
,

the second inequality holds due to the fact that X∗ is the
optimal solution of minXHλ(X). Then we further get the
equivalent problem of minXHλ,μ(X, X∗) as below.

Proposition 1: For any λ > 0, 0 < μ < 1
�A�2

2
, Bμ(X∗) =

X∗ − μA∗(A(X∗) − b) and let X∗ be the optimal solution of
minXHλ(X), then minXHλ,μ(X, X∗) is equivalent to

minX



1

2
�X − Bμ(X∗)�2

F + λμ
�

i

σi (X)

(σi (X∗) + �i )1−p

�
(8)

where �1 ≥ �2 ≥ . . . ≥ �r > 0 and 0 < p < 1.
Proof: It follows from the definition of Hλ,μ(X, Y) in

Problem (6) that we can rewrite Hλ,μ(X, X∗) as

Hλ,μ(X, X∗)

= 1

2
�X − X∗ + μA∗ �A(X∗)


 − μA∗(b)�2
F + 1

2
�X∗�2

F

+ λμ
�

i

σi (X)

(σi (X∗) + �i )1−p
+ μ

2

�
�b�2

F − �A(X∗)�2
F

�
− 1

2
�X∗ − μA∗ �A(X∗)


 + μA∗(b)�2
F

�= 1

2
�X − Bμ(X∗)�2

F + λμ
�

i

σi (X)

(σi (X∗) + �i )1−p
, (9)

where �= stands for omitting the terms without X.
Due that X∗ is the optimal solution of minXHλ(X), and

then combining it with (7) we can conclude that X∗ is also the
optimal solution of minXHλ,μ(X, X∗). Thus X∗ is the optimal
solution of Problem (8) according to (9).

It should be specifically mentioned that the equivalence
relation of (5), (6) and (8) can be established for the optimal
solution through (7) and Proposition 1. To further obtain the
closed-form solution of Problem (8), it is actually equivalent
to computing the proximity operator of the modified Schatten-
p norm for any 0 < p < 1 instead of only for the
specific values like p = 1, 2/3 and 1/2 though they can
obtain the closed-form solutions according to [16], [62]. Due
to the nondecreasing property of the weights in (4), it is
easy to obtain the closed-form solution from the following
Proposition 2 in despite of the existence of nonconvexity. This
will play a key role for developing the optimization algorithm
to solve Problem (6) instead of Problem (5) in the following
section.

Proposition 2: [2], [32] For any τ > 0 and the weights
sequence {wi }r

i=1 satisfies (4), let Z = U�VT be the SVD of Y,
both U and V are unitary matrices, then the WSVT operator,
denoted as X∗ = USτw(�)VT , can be regarded as a globally
optimal solution of the following problem

minX



1

2
�X − Z�2

F + τ
�

i

wiσi (X)

�
, (10)

where Sτw(�) = Diag{(�ii − τwi )+} for i = 1, 2, . . . , r , and
�ii is the i -th entry of the singular values vector of Z.

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on July 20,2020 at 14:04:57 UTC from IEEE Xplore.  Restrictions apply. 



3136 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

To the best of our knowledge, the minimization Problem (10)
can be regarded as the WSVT operator shown in [2], [32],
which can be used to optimize Problem (8) directly by setting
the corresponding variables and parameters. Using the von
Neumanns trace inequality [63] and the variable separable
property [64], Problems (8) and (10) can be converted to com-
pute a weighted l1-norm thresholding operator [25]. Besides,
all the singular values of Bμ(X∗) have a nonincreasing prop-
erty, i.e., σ1(Bμ(X∗)) ≥ σ2(Bμ(X∗)) ≥ . . . ≥ σr (Bμ(X∗)) >
0, and it can make the singular values of the optimal solution
of Problem (8) acting on the nonnegative part.

III. THE OPTIMIZATION ALGORITHMS

This section will devise both ISVTA and AISVTA
for the optimizations of Problem (6). Actually, the ideas
of both are derived from the majorization-minimization
strategy [64], [65]. Detailed statements and explanations are
provided as below.

In the position, we begin to update the variable X, which
starts with the initial variable X0, then for k = 0, 1, . . .,
it follows from Proposition 2 that

Xk+1 = Gλμ,M Sp N (Bμ(Xk)) = UkSτw(�k
Bμ

)(Vk)T , (11)

where Gλμ,M Sp N (Bμ(Xk)) is denoted as the WSVT of Prob-
lem (8) for the modified Schatten-p norm (3) for 0 < p <
1. Furthermore, by setting τ = λμ, Z = Bμ(X∗) and
wi = 1

(σi (X∗)+�i )1−p with 0 < p < 1, it follows from
Proposition 2 that the optimal solution of Problem (8) can be
easily achieved in this way. Thus the updating rule in (11)
can be achieved by setting Bμ(Xk) = Uk�k

Bμ
(Vk)T and

Sτw(�k
Bμ

) = Diag{(�k
Bμ,ii − τwi )+} for i = 1, 2, . . . , r .

From the empirical analysis, we get the conclusion that
the proper selection of regularization parameter λ will decide
the quality of the desired solution. However, it is not easy
to select the optimal value of λ for the best performance.
The existing iterative thresholding algorithm usually use two
strategies to choose the proper regularization parameter. One
way is the continuous technology [2], [5], which sets a larger
value of initial λ0, and dynamically decreases until reaching
a predefined target value λt , i.e.,

λk+1 = κkλ0 ≤ λt , 0 < κ < 1. (12)

The other is the cross-validation strtegy [47], which chooses
the proper regularization parameter. To make the selection
more adaptive and intelligent, we also assume that the matrix
X∗ of rank r0 is the optimal solution of Problem (5). Then,
by the nonincreasing property of the singular values of matrix
Bμ(X∗), we have the following inequalities:⎧⎪⎪⎨⎪⎪⎩

σi (Bμ(X∗)) >
λμ

(σi (X∗) + �i )1−p
; (13)

σi (Bμ(X∗)) ≤ λμ

(σi (X∗) + �i )1−p , (14)

Algorithm 1 Optimizations of Problem (6)

where (13) holds for i ∈ {1, 2, . . . , r0} and (14) holds for
i ∈ {r0 + 1, r0 + 2, . . . , r}. These further conclude that

λ ∈
�

σr0+1(Bμ(X∗))(σr0+1(X∗) + �r0+1)
1−p

μ
,

σr0(Bμ(X∗))(σr0(X
∗) + �r0)

1−p

μ

�
(15)

satisfies due to the basic assumption that σi (Bμ(X∗))(σi (X∗)+
�i )

1−p ≤ σ j (Bμ(X∗))(σ j (X∗)+ � j )
1−p holds for r ≥ i ≥ j ≥

1 and 0 < p < 1. Thus, we achieve Bμ(X∗) by Bμ(Xk)
and X∗ by Xk accordingly, and then set a proper choice of λ
from (15) in the region as below

λk ∈
�

σr0+1(Bμ(Xk))(σr0+1(Xk) + �r0+1)
1−p

μ
,

σr0(Bμ(Xk))(σr0 (X
k) + �r0)

1−p

μ

�
. (16)

Inspired by this updating rule, in each iteration, the optimal
regularization parameter λ can be tuned by

λk = σr0+1(Bμ(Xk))(σr0+1(Xk) + �r0+1)
1−p

μ
. (17)

Incorporated with different parameter settings and implemen-
tation variable updating rules, we can develop the iteration
procedure for ISVTA to solve Problem (6). Note that (17)
is valid for any 0 < μ < 1

�A�2
2
, where we set μ = μ0 =

1−η

�A�2
2

with any smaller 0 < η < 1. Based on these results,

we summarize ISVTA in Algorithm 1.
Though ISVTA can be used to solve Problem (6), it may suf-

fer from relatively higher computational complexity because
of the SVD computations for large-scale matrix computations
at each iteration and more iteration steps to reach the stopping
criteria. In other words, given a matrix X ∈ R

m×n (m ≥
n), its computational complexity of SVD is o(mn2). The
proposed algorithm is terminated to run until the k-th iteration
step. More specifically, the modified Schatten-p norm (3) has
no decomposable formulations, which is different from the
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mostly related Schatten-p norm [8], [45], [66] due to the
fact that the latter can be decomposed into the operators of
two smaller matrix factors for p = 1, 1/2 and 2/3 derived
by Frobenius norm and/or nuclear norm. Thus reducing the
number of iterations is the only feasible way for improving
the computational efficiency of ISVTA. Fortunately, inspired
by the popular Nesterov’s acceleration strategy, both l1-norm
and nuclear norm regularized problem can be optimized by
accelerated first-order algorithms in [15], [21], [67]–[71], and
then nonconvex programmings can also be successfully solved
by this faster strategy in [52], [69]. Thus, we try to present the
accelerated version of ISVTA, i.e., AISVTA, with Nesterov’s
acceleration strategy for solving Problem (6) efficiently. The
detailed iteration steps of AISVTA are given as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Zk+1 = Gλμ,M Sp N (Bμ(Tk)); (18)

Xk+1 = argminX∈{Zk+1, Xk }Hλ,μ(X, Xk); (19)

tk+1 =
1 +

�
1 + 4t2

k

2
; (20)

Tk+1 = Xk+1 + t1,k(Zk+1 − Xk+1) + t2,k(Xk+1 − Xk)

with t1,k = tk
tk+1

and t2,k = tk − 1

tk+1
, (21)

where the Nesterov’s acceleration technique has been success-
fully applied to AISVTA by the updating rules in (18)-(21) as
summarized in Algorithm 1. Most importantly, we stress out
that (19) can guarantee the following inequality

Hλ,μ(Xk+1, Xk)≤ min{Hλ,μ(Zk+1, Xk),Hλ,μ(Xk, Xk)} (22)

holds for k = 0, 1, . . . in the whole iteration scheme. To better
use the Nesterov’s acceleration strategy, we need to monitor
and correct Tk+1 when it has the potential to fail, and the
monitor Zk+1 should enjoy the property of sufficient descent
which is critical to ensure the objective function has the
nonincreasing property. Such similar strategy can be found in
the accelerated proximal gradient algorithms [52], [68]–[71].
The main reason is due to the comparisons of Hλ,μ(Zk+1, Xk)
and Hλ,μ(Xk, Xk), which can make sure sufficient descent for
converging to a critical point. This can motivate us to use a
WSVT step as a monitor and then guarantee that the sequence
{Hλ,μ(Xk, Xk−1)} is monotonically nonincreasing and {Xk} is
a desired variable sequence of the original objective function
Hλ(Xk) in Problem (5). These properties will play a key role
in the following convergence analysis.

IV. CONVERGENCE ANALYSIS

In this section, we first introduce the basic preliminaries in
the supplementary materials through [50], [51], [72], [73]
including the subdifferential, the critical point, the distance and
the uniformized KŁ property. The detailed descriptions are
given in Definitions 1–3 and Propositions 3–4, respectively.
Combining them with the iteration rules of Algorithm 1,
we further establish both local and global convergence guar-
antees of ISVTA and AISVTA in Theorems 1 and 2.

It should be specially noted that the KŁ inequality appearing
in Definition 3 is a popular tool and is studied in the existing
works [50], [51], [72] for solving a class of nonsmooth

nonconvex minimization problems. Moreover, the Proposi-
tion 4 can be regarded as the uniformized KŁ property in
general. The detailed proof procedures of Theorem 1 and 2
for establishing the convergence guarantees of Algorithm 1
also relies on this routine with the help of some milder
conditions. This can be regarded as the main merits of this
work though using the popular KŁ property, the Bolzano-
Weierstrass theorem [74] and the well-known Nesterov’s
acceleration strategy is not novel for analysing and solv-
ing the nonconvex nonsmooth optimization problems. To the
best of our knowledge, some similar results for convergence
analysis in [3], [33], [52], [75] have also been verified in the
generalized cases.

V. NUMERICAL EXPERIMENTS

In this section, we will conduct the numerical experiments
on both synthesized and real-world data, not only to analyze
the convergence property of Algorithm 1 (i.e., ISVTA and
AISVTA), but also to show their efficiency and efficacy over
several state-of-the-art rank relaxed matrix completion meth-
ods3 (e.g., APGL [15], SPNM [35], TNNR [30], PSVT [31],
WNNM [32], IRucLq [56], IRNN [2] and (S+L)1/2 [45]) for
solving the matrix completion problem, i.e.,

minX
1

2
�P	(X − M)�2

F + λrank(X), (23)

where 	 is a subset of indexes of all pairs (i, j), defined
as [P	(X)]i j = Xi j when (i, j) ∈ 	, and [P	(X)]i j = 0
when (i, j) /∈ 	. As the convex and nonxonvex relaxation
of NP-hard Problem (23), several rank substitutes listed in
TABLE I will be considered here though other rank relaxations
listed in [2], [3], [5], [38] can also be used here by the further
extension. The main contents of experiments are given as
follows:

• The first experiment on the synthesized data will verify
the convergence property of both ISVTA and AISVTA
summarized in Algorithm 1 under some different settings.
The main goal is to verify the fact that AISVTA can
reduce the number of iterations over ISVTA for any val-
ues of 0 < p < 1. Due to the existence of nonconvexity,
the sensitivity of Algorithm 1 for the random initialization
need to be analyzed, and the effects of different settings
for the values of relative error are also discussed.

• The second experiment on the natural images will show
that both ISVTA and AISVTA can obtain the relatively
good performance compared with other solutions for
recovering the low-rank solution in image inpainting
with random and text missing. Meanwhile, the evalua-
tion criteria, e.g., Peak Signal-to-Noise Ration (PSNR)
and Relative Error, are both given over the number of
iterations, and the values of PSNR over different choices
of 0 < p < 1 in Problem (5).

• The third experiment on the MovieLens100K dataset
will investigate the effects of the devised Algorithm 1.

3The optimizations almost involve SVD per iteration except SPNM, which
needs the matrix inverse computations. Besides, other matrix decomposition
based algorithms can also be used to solve Problem (23). However, they
usually involve more variables and an estimator of rank number.
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Fig. 1. Several numerical results on the synthesized data for the values of relative error vs different values for (a) l, (b) r , (c) m = n and (d) p, the changes
of (e) Hλ(Xk ) and (f) λk vs the number of iterations, the sensitivity to the randomly initialized values of (g) ISVTA and (h) AISVTA, respectively.

The further comparisons of time consumptions, root-
mean-squared error (RMSE) [8] and normalized mean
absolute error (NMAE) [15] are obtained to evaluate the
testing performance in the recommender system.

All of the above-mentioned experiments are conducted by
the Matlab2014a on a personal computer (PC) with 4.0GB of
RAM and Intel(R) Core(TM) i3-4158 CPU@3.50GHZ. The
experimental results can be achieved by tuning the involved
parameters carefully of the proposed methods as well as the
compared ones according to the default values of the released
codes or the suggestions of the published papers.

A. Synthesized Data

Similar to the experimental settings in [32], we here verify
some desired properties using the synthetic low-rank matrices.
The ground truth matrix X is generated by ABT with A ∈
R

m×r and B ∈ R
n×r , respectively. All of their entries are

independently sampled from the Gaussian distribution N (0, 1)
by the Matlab command randn. The observed matrix M is
assumed noisy, generated by P	(M) = P	(X) + 0.15 × E,
where E is also independently sampled from a Gaussian
distribution. To further evaluate both ISVTA and AISVTA in
this task, we next show how the performance varies when
changing one of the parametric choices for (m, n, r, l). Note
that we assume that (m, n) is the size of data matrix, r is the
rank number and l the ratio of missing elements.

• We fix m = n = 500, r = 125, and vary l in the set
{25%, 35%, 45%, 55%, 65%};

• We fix m = n = 500, l = 25%, and vary r in the set
{100, 125, 150, 175, 200};

• We fix r = 125, l = 25%, and vary m = n in the set
{200, 300, 400, 500, 600}.

Based on the aforementioned choice of several parameters,
some typical experimental results are shown in Fig. 1, then
we have the observations as follows:

• It follows from Fig. 1 (a) the smaller l-values, (b) the
smaller r -values, (c) the larger of matrix size m = n and
(d) the smaller p-values for p ∈ {0.1, 0.2, . . . , 0.9} that
we can achieve the lower of relative error values, which
accord to the conclusions in [4], [35].

• The nonincreasing property of the objective function
Hλ(Xk) in Problem (5) and regularized parameter λk

in (17) can not only be proved in theory (see (30) of
Theorem 1), but also be verified with in both (e) and (f)
of Fig. 1. Such similar properties can be found in the
recent works [2], [5]. Moreover, the AISVTA does indeed
reduce the number of iterations over ISVTA, which shows
the efficiency of the Nesterov’s acceleration strategy.

• Due to the absence of convexity in the objective func-
tion of the modified Schatten-p norm, the convergence
solvers, obtained by both ISVTA and AISVTA, may
be different according to the initialization. Thus both
(g) and (h) in Fig. 1 further study the sensitivity of the
optimization against the random initialization variables.
Most of solutions can be concentrically distributed in
some a region near the ground-truth solution with smaller
relative errors, measured by �X∗−X�F/�X�F , where X∗
is the desired low-rank solution. Note that this distribution
with 500 different random initializations are considered
for the proposed model and optimization algorithms.

B. Image Inpainting

Similar to the similar settings in [30], this subsection mainly
tests two incomplete types (i.e., random and text mask) on the
natural images as shown in Fig. 2. All of the involved methods,
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TABLE II

THE PSNR (DB) VALUES AND (ERROR VALUES, TIME CONSUMPTIONS (SECONDS)) OBTAINED BY ALL INVOLVED METHODS
ON TWO NATURAL IMAGES WITH MISSING ENTRIES GENERATED BY RANDOM AND TEXT MASKS, RESPECTIVELY

Fig. 2. The original natural images with/without random and text masks.

induced by the convex and nonconvex rank substitutes listed
in TABLE I, aim to to recover the missing entries of those
partially damaged images. It should be noted that each of color
images has three channels (i.e., red, green and blue), thus we
need to recover the missing pixels by exploiting the low-rank
matrix completion on each channel independently, and then
combine them to get the final recovery results. The relative
error values, PSNR values and time consumptions are used to
evaluate the efficacy and efficiency of all the involved methods.
Note that a higher value of PSNR corresponds to a lower value
of error, these will indicate better recovery performance.

It follows from TABLE II that the proposed methods can
obtain relatively higher or slightly same PSNR values and rel-
ative error values compared with several mostly related works.
In addition, we observe that SPNM, IRucLq and ISVTA have
more timing costs, while APGL, TNNR, PSVT and (S+L)1/2
need less timing costs. Moreover, the nonconvex methods can
outperform the convex method, i.e., APGL. As verified in
theory, AISVTA can reduce the number of iterations over
ISVTA about 3 ∼ 5 times in Fig. 3 (a) and (b), which can lead
to less consumption costs. As an example, for the image with
random mask, it should be noted that Fig. 3 (a) and (b) show
the changes of values for both PSNR and relative error over
the number of iterations for each involved algorithms except
TNNR due to its external iterations. These results can verify
the fact that the Nesterov’s accelerated strategy is indeed
effective for improving the computational efficiency. We here
notice that AISVTA does not need to compute more SVDs
than ISVTA. Further, we compare the changes of PSNR with
different p-values, i.e., p ∈ {0.1, 0.2, . . . , 0.9}, for two masks
as shown in Fig. 3 (c) and (d), respectively.

C. Recommender System

In this subsection, we will conduct the experiments on the
real world recommendation system data sets,4 i.e., Movie-
Lens100K with the size of (943, 1682), which contains ratings
of different users on movies or music. It appears run out
of memory when we trying the experiments on both Movie-
Lens1M and MovieLens10M data sets, the reason is due to the

4http://www.grouplens.org/node/73

Fig. 3. The changes of values in (a) PSNR and (b) Relative Error vs the
number of iterations over several related methods, and the changes of PSNR
vs different p-values over random (c) and text (d) masks, respectively.

Fig. 4. The values of NMAE (a) and timing consumptions (b) for all the
involved methods except SPNM and IRucLq on the MovieLens100K data set.

existence of SVD computations for large-scale matrix and the
memory limitation of the personal computer (PC). Thus we
here neglect them. To further compare our algorithms with
other aforementioned methods, we randomly sample 20%,
40%, 60% and 80% as the training set and the remaining as
the testing set for the MovieLens100K data set. To avoid the
influence of random initializations, the numerical results are
reported over 10 independent runs in TABLE III as well as
Fig. 4. Thus, the conclusions can be made as follows:

All involved methods with nonconvex cases can perform
better than convex APGL. In addition, our algorithms con-
sistently outperform the other matrix completion methods
in terms of prediction accuracy evaluated by both RMSE
and NMAE. This further confirms that our MSpNM model
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TABLE III

THE TESTING RMSE OF ALL INVOLVED METHODS ON THE
MOVIELENS100K DATA SET WITH DIFFERENT

SAMPLING RATIOS

can provide a good estimation of a low-rank matrix. More-
over, the larger of the sampling ratio, the smaller the
values of both RMSE and NMAE as can be seen for
the AISVTA. This phenomenon actually has been verified
in (a) and (b) of Fig. 1 and 3. The reason is due to the solver
obtained by AISVTA is more close to the optimal one than
ISVTA. These can imply that AISVTA slightly outperform
its non-accelerated version, i.e., ISVTA. However, the con-
sumption time of AISVTA is relatively higher than ISVTA
since the former involves SVD many times. Most importantly,
they can obtain the achievable performance compared with
other involved methods. These are not conflicting the desired
expectations. Hence, we can achieve the phenomenon for
the timing consumptions and the values of NMAE for both
the proposed methods and the related methods as shown
in Fig. 4 (a) and (b). Also we conclude that APGL, TNNR,
PSVT, WNNM and (S+L)1/2 are the relatively faster solvers in
updating the low-rank matrix through the Nesterov’s technique
and the decomposable strategy, while this work can achieve
the closed-form solution of proximal operator according to the
Proposition 2 in Section II-C.

In the testing process, it follows from TABLE III that both
SPNM and IRucLq are the slowest methods in this task due
to the inverse computations of matrix. Thus it is very difficult
to report the experimental results of SPNM and IRucLq on
more larger datasets (e.g., MovieLens1M and MovieLens10M)
due to the runtime exceptions. However, (S+L)1/2 has very
good scalability and are suitable for real-world applications
as verified in [8], [76]. However, the proposed methods can
not obtain the final results in the task. The main reason is
that iteratively solving the modified Schatten- p norm based
methods for a large-scale dataset can fail to work well on
the PC with limited resource due to the higher computational
complexity. As a result, the proposed algorithms are not
adopted to address some large-scale dataset efficiently.

VI. CONCLUSION

In this paper, we mainly studied the modified Schatten-p
norm minimization based low-rank matrix recovery problem
and devised the optimization algorithms entitled ISVTA and
its accelerated version (i.e., AISVTA) to solve it. Meanwhile,
the involved equivalence relations are established to obtain the
closed-form solution using the WSVT operator instead of the

commonly used linearized technique. We further prove step
by step that any cluster point of the generated sequence are a
stationary point. With the help of some additional constraints
and the KŁ property, we can achieve the global conver-
gence guarantees of the whole sequence generated by ISVTA
and AISVTA, respectively. Finally, experimental results are
performed to show the effectiveness of our algorithms in
the matrix completion problem for synthesized data, image
inpainting and recommender system, respectively.

In the future works, one may try the further studies,
e.g., the linear mapping A(·) of Problem (1) can be studied
from linear projection [14] to random sampling [77], and
some nonconvex low-rank matrix recovery problems can also
be extended to the tensor case for handling 3-way color
images [78].
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