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Abstract—Recently, nuclear norm-based low rank
representation (LRR) methods have been popular in sev-
eral applications, such as subspace segmentation. However,
there exist two limitations: one is that nuclear norm as
the relaxation of rank function will lead to the suboptimal
solution since nuclear norm-based minimization subproblem
tends to the over-relaxations of singular value elements and
treats each of them equally; the other is that solving LRR
problems may cause more time consumption due to involving
singular value decomposition of the large scale matrix at each
iteration. To overcome both disadvantages, this paper mainly
considers two tractable variants of LRR: one is Schatten-p
norm minimization-based LRR (i.e., SpNM_LRR) and the other
is Schatten-p norm factorization-based LRR (i.e., SpNF_LRR)
for p = 1, 2/3 and 1/2. By introducing two or more auxiliary
variables in the constraints, the alternating direction method
of multiplier (ADMM) with multiple updating variables can
be devised to solve these variants of LRR. Furthermore, both
computational complexity and convergence property are given
to evaluate nonconvex multiblocks ADMM algorithms. Several
experiments finally validate the efficacy and efficiency of our
methods on both synthetic data and real world data.

Index Terms—Alternating direction method of multiplier
(ADMM) algorithm, low rank representation (LRR), Schatten-p
norm, singular value decomposition, subspace segmentation.
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I. INTRODUCTION

IT IS well known that the problem of subspace segmentation
aims to segment the observed data into multiple subspaces

and find a low-dimensional subspace fitting each same subject.
This basic strategy has widespread applications in computer
vision and machine learning [1]–[4]. Generally speaking, the
existing subspace segmentation methods are mainly divided
into four classes, including iterative methods [5], [6], algebraic
methods [7], [8], statistical methods [9], [10], and spectral
clustering methods [11], [12]. Among them, spectral cluster-
ing methods are insensitive to the noises and outliers, thus
they perform well over other clustering methods as veri-
fied in [11]–[13]. The most representative works [e.g., sparse
subspace segmentation (SSC) and low rank representation
(LRR)] conduct the clustering task to achieve a sparse or
low-rank coefficients matrix and then construct a similar-
ity graph. Given a set of sufficiently sampled data vectors
X = [X1, . . . ,Xk] = [x1, . . . , xn] ∈ R

d×n generated by a union
of k subspaces {Si}, then the problem of subspace segmentation
can be defined as below.

Definition 1: Let Xi be a collection of ni data vectors from
the subspace Si with n = ∑k

i=1 ni. The goal of subspace
segmentation is to cluster the given data as different groups
according to the underlying subspaces they are drawn from.

It should be noted that the main difference between SSC
and LRR methods is the constraints on the representation
matrix. Moreover, they usually consider to optimize convex
l1-norm and nuclear norm-based minimization (NNM) prob-
lems, respectively. The main reason is due to that l0-norm
and rank function-based optimizations are general NP-hard
and difficult to solve directly. Specially, LRR aims to take
the correlation relationship of coefficient matrix into consid-
eration, and it ends to find a low rank solution instead of a
sparse solution like SSC. To achieve robust subspace recov-
ery like [12], we mainly consider to solve the original LRR
problem reformulated by

min{Z,E}rank(Z)+ λ‖E‖�, s.t. AZ + E = X (1)

where λ > 0 is a balanced parameter, and rank(Z) counts
the number of nonzero singular values of matrix Z, and
‖E‖� represents a certain error measurement, such as the
L2,1-norm ‖·‖2,1 used for characterizing the sample specific
corruptions and outliers [12], the squared Frobenius norm
‖·‖2F employed in handling with the Gaussian noise [14],
and the L1-norm ‖·‖1 adopted for modeling the random or
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sparse corruptions [15]. Moreover, LRR can not only reduce
to robust principle components analysis (RPCA) [16], [17]
when A is the identity matrix with ‖E‖� = ‖E‖1 but also
reveal the true data structure [18] through learning a proper
dictionary A. Theoretical studies [19], [20] have shown that
nuclear norm is the tightest convex relaxation of a matrix
rank function, which is similar to the relationship between
l1-norm and l0-norm of a vector. This naturally motivates us
to apply nuclear norm to relax the rank function. Fortunately,
NNM problems can be solved by numerous of first-order algo-
rithms, such as semi-definite programming [21], accelerated
proximal gradient [22]–[24], and alternating direction method
of multiplier (ADMM) [25]–[27]. Note that these algorithms
usually achieve a globally convergence guarantees.

However, there exist two drawbacks which may limit
the applications of nuclear norm-based methods in efficacy
and efficiency: 1) nuclear norm as the convex relaxation
of rank function can lead to the biased solution owing
to its over-shrinks of rank components of a low rank
matrix [14], [28]–[30] and 2) involving the singular value
decomposition (SVD) of large scale matrix can lead to the high
computational cost, thus not handle large scale problems. To
better relax the rank function and mitigate the time consump-
tion, the subsequent Section II states two popular strategies,
including matrix rank minimization methods and matrix fac-
torization methods. The first strategy can motivate us to use
nonconvex rank relaxations instead of nuclear norm to obtain
a better solution like [28] and [31]. By decomposing a large
scale matrix into two much smaller factor matrices, the second
strategy can result in lower computational complexity. Since
Schatten-p norm is the popular rank relaxed function and has
the decomposable formulations, and it also has a more accu-
rate recovery ability for low rank matrix while requiring only
a weaker restricted isometry property [32]. Besides, the rig-
orous theoretical results have verified that Schatten-p norm
minimization with small p-values require significantly fewer
measurements [33]. Unfortunately, there exists similar limita-
tions with NNM methods for nonconvex Schatten-p norm ones
since involving SVD of large scale matrix at each iteration.
To improve the efficacy and efficiency, this paper focuses on
presenting tractable Schatten-p norm minimization and factor-
ization approaches for the rank relaxations in (1). The main
contributions are summarized as follows.

First, different from convex nuclear norm-based LRR
model, we use nonconvex Schatten-p norm and its bounding
functions (see Table II) as the rank relaxations. By choos-
ing p = 1, 2/3 and 1/2, we give two tractable LRR models:
one is SpNM_LRR for increasing efficacy, while the other is
SpNF_LRR for enhancing efficiency though a fast and accurate
algorithm should be the interest of researches.

Second, we propose nonconvex multiblocks ADMMs with
at least two dual variables to solve our LRR variants via
Schatten-p norm. Although such models are both nonconvex
and nonsmooth, we establish the convergence guarantees and
show their computational complexities (see Table III).

Third, several experiments on both synthesized data and
real world data can verify the superiority of the proposed
algorithms (see Algorithms 1 and 2) from both clustering

TABLE I
SCHATTEN-p FUNCTIONS WITH p = 0, 1/2, 2/3, 1 IN (2) AND THEIR

CORRESPONDING THRESHOLDING OPERATORS IN (3)

TABLE II
USED CONVEX AND NONCONVEX SCHATTEN-p NORM AND THEIR

BOUNDING FUNCTIONS ψp(U,V) WITH DIFFERENT p-VALUES CHOICE

accuracy and time consumption (see Tables IV–VII),
respectively.

Outline: Section II presents the most related works.
Borrowing from Tables I and II, Section III proposes two
tractable LRR variants. Two efficient nonconvex multiblocks
ADMMs are further provided by introducing multiple aux-
iliary variables in Section IV. Subsequently, we give the
detailed analysis including computational complexity and con-
vergence behavior in Section V. Extensive experiments can
show the superiority of our proposed algorithms in Section VI.
Finally, we state the conclusions and future works in
Section VII.

II. RELATED WORKS

This section first presents two popular strategies for rank
relaxations and then introduces Schatten-p norm and its
decomposable formulations and thresholding operators.

A. Matrix Rank Minimization Methods

Besides nuclear norm, several nonconvex rank relaxations
(e.g., Schatten-p (0 < p < 1) norm [34], [38]–[42], weighted
nuclear norm [43], and truncated nuclear norm [44]) have been
widely applied to substitute the rank function. Additionally,
some nonconvex surrogates of l0-norm (e.g., SCAD [28],
MCP [31], and logarithm [45]) listed in [46]–[48] have been
successfully extended to the rank relaxations. These noncon-
vex functions usually perform better than convex nuclear norm
since they overcome the imbalanced penalization of different
singular values.
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B. Matrix Factorization Methods

Matrix factorization is the other popular method for rank
relaxations through two ways: one is factorizing the nuclear
norm of large scale matrix into the product of two or three
small scale matrices [49]–[51], the other is minimizing the
sum of squared Frobenius norm of two smaller matrices [36].
In doing so, the computational complexity can be reduced by
computing small scale matrices. Note that the aforementioned
are mainly based on the approximations of nuclear norm.
Especially, nonconvex Schatten-p norm (e.g., p = 2/3 and
1/2) based matrix factorization methods [37], [52]–[54] have
been recently proposed to solve matrix completion and RPCA
problems, respectively.

Consider that the unbiased property and the decomposable
formulation of nonconvex Schatten-p norm, this paper focuses
on employing them for rank relaxations of (1). Now, let us
define the Schatten-p norm of a matrix Z ∈ R

m×n by using
the lp-norm of its singular values as follows:

‖Z‖Sp �

⎛

⎝
min(m,n)∑

i=1

σ
p
i (Z)

⎞

⎠

1/p

, 0 ≤ p < +∞ (2)

where Z = UDiag(σ (Z))VT is the economical SVD with
two orthogonal matrices U ∈ R

m×n and V ∈ R
n×n when

n = min(m, n), σi(Z) is the ith entry of singular values vec-
tor denoted by σ(Z) = (σ1(Z), σ2(Z), . . . , σmin(m,n)(Z))T . It
follows from (2) that the gap between rank function (i.e.,
p = 0) and nuclear norm (i.e., p = 1) can be bridged by
setting 0 < p < 1 [34], [39], [55]. Most especially, when
the rank number is relatively larger, nonconvex Schatten-p
norm can show its superiority over nuclear norm for relaxing
a matrix rank function. Otherwise, the superiority of noncon-
vex Schatten-p norm over the convex one will become slight or
not. To solve SpNM_LRR problem [34], [42], we do introduce
the generalized thresholding operator [47], denoted by

Proxβ,p(Y) = argminZβ‖Z‖pSp
+ 1

2
‖Z − Y‖2F (3)

where β > 0, Proxβ,p(Y) = UYDiag(Sβ,p(σ (Y)))VT
Y with

Y = UYDiag(σ (Y))VT
Y . It follows from [34], [35], and [55]

that we can obtain the closed-form solutions of (3) for p = 1,
2/3 and 1/2, respectively. Note that Table I lists Schatten-
p norm and its corresponding thresholding operators, and
Table II gives the bounding functions of Schatten-p norm,
and Fig. 1 indicates the superiority of nonconvex Schatten-
p norm with p = 2/3, 1/2 in shrinking singular values
over nuclear norm. Different from [56]–[58], which consider
convex L2-Graph, F-norm, and nuclear norm-based methods
for subspace clustering, we know that nonconvex Schatten-p
norm-based methods usually show their superiority for the
rank minimization problems. To our best knowledge, all the
solutions of (3) for 0 < p < 1 can be achieved by gen-
eralized iterated shrinkage algorithm [42], [59], iteratively
reweighted nuclear norm algorithm [46], fixed-point iteration
algorithm [47], and generalized iterated matrix/vector soft
thresholding algorithms [39], [41], respectively.

(a) (b)

Fig. 1. Plots of the (a) function lp for various values of p = 0, 1/2, 2/3, 1
and (b) their corresponding thresholding operators of (3). Here, β = 1 and
singular values σ(Y) = [0, 3] for the Schatten-p norm.

III. PROBLEM FORMULATIONS

To better capture the global structure of coefficients matrix,
nonconvex Schatten-p norm instead of nuclear norm is used to
substitute the rank function of (1) for showing the superiority
of representation ability [34], [39], [41], [42]. This can moti-
vate us to keep each subproblem having closed-form solution,
and then establish more general SpNM_LRR model with two
constraints as follows:

min{J,Z,E}‖J‖pSp
+ λ‖E‖�, s.t. AZ + E = X, J = Z (4)

where ‖E‖� can measure different styles of noise, and
LRR [12] can be regarded as the special case of model (4)
when p = 1. We here emphasize on two nonconvex cases
of model (4) with p = 2/3, 1/2 (i.e., Schatten-2/3 and 1/2
norm) since they can obtain competitive performance against
the convex case for p = 1 as verified in [42]. However, differ-
ent from the formulation of model (4), the most related SpNM
clustering method [42] aims to solve the problem with one
constraint

min{Z,E}‖Z‖pSp
+ λ‖E‖�, s.t. AZ + E = X (5)

where we stress out that solving both (4) and (5) usually
involves the SVD of large scale matrix at each iteration.
Naturally, it will suffer from higher time consumption
in order to limit their applicability for large scale opti-
mizations. Inspired by the matrix factorization-based strate-
gies for nuclear norm [36], Schatten-1/2 norm and 2/3
norm [37], [52]–[54] (i.e., bounding them by the Bi-Forbenius
norm, Bi-nuclear norm ‖·‖BiN, and Forbenius/Nuclear hybrid
norm ‖·‖F/N , respectively), we can give the corresponding
alterative formulations listed in Table II. For any coefficients
matrix Z ∈ R

m×n with rank(Z) = r ≤ d [i.e., the upper bound-
ing of the rank(Z)], we can factorize Z into two small scale
matrices U ∈ R

m×d and V ∈ R
n×d such that Z = UVT .

Equation (5) can be transformed into the following SpNF_LRR
model:

min{U,V,E}ψp(U,V)+ λ‖E‖�, s.t. AUVT + E = X (6)

where ψp(U,V) may be represented for more different
p-values according to [53]. However, we here only consider
the cases of p = 1, 2/3 and 1/2, respectively.

Compared with (4) and (5), (6) aims to reduce the compu-
tational complexity by computing the operators for the small
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scale matrices. Furthermore, we can devise the algorithm to
show the efficiency of SpNF_LRR model for subspace segmen-
tation. To solve (6) with different ψp(U,V) and guarantee that
each subproblem has the analytic solution, we need to employ
the judicious variable partition technique, which has been used
in [12], [54], and [60] due that multiple variables are involved
in the objective function. These can motivate us to obtain the
special formulations with at least two constraints, denoted by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1NF_LRR : min{U,V,Z,E}
1

2

(‖U‖2F + ‖V‖2F
)+ λ‖E‖�

s.t. AZ + E = X, UVT = Z

S 2
3

NF_LRR : min{U,V,M,Z,E}
1

3

(
2‖M‖∗ + ‖V‖2F

)+ λ‖E‖�
s.t. AZ + E = X, UVT = Z, M = U

S 1
2

NF_LRR : min{U,V,M,N,Z,E}
1

2
(‖M‖∗ + ‖N‖∗)+ λ‖E‖�

s.t. AZ + E = X, UVT = Z, M = U, N = V.

This paper will evaluates the subspace segmentation abil-
ity of both SpNM_LRR and SpNF_LRR models, which are
solved by nonconvex ADMM algorithms with multiblock vari-
ables. Using the minimization and factorization strategies, the
final clustering accuracy can show their efficacy and efficiency,
respectively. Note that no additional constraints are restricted
on the representation matrix and the noise structure like [12]
and [42], thus the results may not be state-of-the-art. Besides,
one usually choose the original data (i.e., A = X) instead of
using XP∗, where P∗ can be obtained by orthogonalizing the
columns of XT as the dictionary although the latter can save
time consumption, which has been validated in [12]. If we
choose A = X, low rank matrix Z∗ obtained by Algorithms 1
and 2 can be used to construct an affinity matrix W,1 i.e.,
(|Z∗|+ |ZT∗ |)/2, which is both symmetric and entry-wise non-
negative. The spectral clustering method in [64] can be used
to obtain the clustering accuracy for showing the efficacy.
Meanwhile, the total time computations are also obtained for
showing the efficiency.

IV. OPTIMIZATION ALGORITHMS

To solve SpNM_LRR (4) and SpNF_LRR (6), respectively,
this section will devises the solutions according to the popular
ADMM algorithm [25], [26]. Note that the used optimization
algorithms are nonconvex and multiblocks. The basic iterations
of ADMM are first to give the augmented Lagrangian function,
and then focus on updating primal variables, dual variables,
and penalty parameter at each iteration in an alternating way.

A. SpNM_LRR via ADMM Algorithm

By introducing two dual variables Y1 and Y2, we give the
augmented Lagrangian function of (4) as follows:

Lμ(J,Z,E,Y1,Y2)

= ‖J‖pSp
+ λ‖E‖� + 〈Y1, J − Z〉 + 〈Y2,AZ + E − X〉

+ μ

2

(
‖J − Z‖2F + ‖AZ + E − X‖2F

)
(7)

1Note that different constructions of affinity matrix have various effects on
the clustering accuracy, which have been verified in [11], [12], and [61]–[63].

Algorithm 1 SpNM_LRR Optimized by ADMM

Input: X,A, p = 1, 2/3 and 1/2, λ > 0, InT = (I + ATA)−1.
Initialization: k = 0, ρ > 1, μ0 = 10−6, Z0 = 0, E0 = 0,
Y1,0 = 0, Y2,0 = 0.

1. while not converged do
2. Update Jk+1 by solving

Jk+1 = argminJ‖J‖pSp
+ μk

2

∥
∥
∥
∥J −

(

Zk −
Y1,k

μk

)∥
∥
∥
∥

2

F
;

3. Update Zk+1 by solving

Zk+1 = InT×
(

Jk+1 +
Y1,k

μk
− AT

(

Ek − X + Y2,k

μk

))

;

4. Update Ek+1 by computing

Ek+1 = argminEλ‖E‖� +
μk

2

∥
∥
∥
∥E −

(

X − AZk+1 −
Y2,k

μk

)∥
∥
∥
∥

2

F
;

5. Update the multipliers Y1,k+1 and Y2,k+1 by
{

Y1,k+1 = Y1,k + μk(Jk+1 − Zk+1);
Y2,k+1 = Y2,k + μk(AZk+1 + Ek+1 − X);

6. Update μk+1 by μk+1 = ρμk;
7. end while

Output: Optimal Representation Matrix Z∗ ← Zk+1.

where the penalty parameter μ > 0, the iteration steps for solv-
ing (7) are performed by updating one of the primal variables
{J,Z,E} in sequence while fixed others, and then updating one
of the dual and penalty variables {Y1,Y2, μ} in sequence while
fixed others. Actually, the dual variable is obtained by gradi-
ent ascent on the resulting dual problem. The optimization
scheme is outlined in Algorithm 1. Note that the symbol
“×” represents the multiplier of two variables in the whole
paper, updating Jk+1, Zk+1, and Ek+1 are very key steps,
and they all have closed-form solutions especially for vari-
ous choices of ‖J‖pSp

with p = 1, 2/3 and 1/2 [34], [35] and
‖E‖� with � = l2, l1 and l2,1. Actually, there exist several
Schatten-p norm-based minimization problems and optimiza-
tions [39], [42], [46], [63]. However, some of them may not
have the closed-form solutions [42] and several relaxed strate-
gies can be used to avoid the nonsmooth property [63]. We
will give several differences between SpNM_LRR model (4)
and (5) of [42], which are listed as follows.

1) Comparison of Models and Algorithms: To obtain low
rank solutions [42, eq. (5)], the additional auxiliary variable
(i.e., J) is introduced. Specifically, two dual variables ADMM
algorithm is used for model (4), while the linearized ADMM
with adaptive penalty (LADMMAP) is used in [42]. Note
that it is easy to guarantee that each subproblem has the
closed-form solution, while [42] cannot do since the involved
subproblem of Schatten-p norm optimization cannot be easily
solvable when the data matrix A is not the identity matrix.

2) Comparison of Subproblems: To solve the subproblem
of Schatten-p norm efficiently, we know that [42] needs to
linearize the quadratic penalty term and add a proximal term,
while Algorithm 1 does not. Moreover, both solutions are
not the same for computing Schatten-p norm minimization
due that [42] mainly considers to use the generalized iterated
matrix soft thresholding algorithm for any 0 < p < 1
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through [59], while this paper gives the closed-form solutions
only when p = 1, 2/3 and 1/2 according to [34] and [55].

3) Comparison of Convergence Analysis: To our best
knowledge, [42] first states that the nonconvex iteration thresh-
olding step can converge to a stationary point for any thresh-
olding function when it satisfies three specific properties. Then
together with the updating rules for the convex step and the
other variables steps, it can conclude the convergence prop-
erty of the LADMMAP algorithm. However, the limit point
of the variable sequence generated by our algorithm can be
proved to satisfy the first-order Karush–Kuhn–Tucker (KKT)
condition using several basic assumptions and key lemmas.

B. SpNF_LRR via ADMM Algorithm

Similar to Algorithm 1 for solving the SpNM_LRR model
and guaranteeing that each subproblem can be easily solv-
able, one needs the augmented Lagrangian functions of (6)
via different ψp(U,V) [53] as follows:

Lμ(U,V,Z,E,Y1,Y2)

= 1

2

(
‖U‖2F + ‖V‖2F

)
+ λ‖E‖� + 〈Y1,AZ + E − X〉

+ 〈
Y2,UVT − Z

〉+ μ
2

(∥
∥UVT − Z

∥
∥2

F + ‖AZ + E − X‖2F
)

(8)

Lμ(U,V,M,Z,E,Y1,Y2,Y3)

= 1

3

(
2‖M‖∗ + ‖V‖2F

)
+ λ‖E‖� + 〈Y1,AZ + E − X〉

+ 〈
Y2,UVT − Z

〉+ 〈Y3,M − U〉
+ μ

2

(
‖M − U‖2F +

∥
∥UVT − Z

∥
∥2

F + ‖AZ + E − X‖2F
)

(9)

Lμ(U,V,M,N,Z,E,Y1,Y2,Y3)

= 1

2
(‖M‖∗ + ‖N‖∗)+ λ‖E‖� + 〈Y1,AZ + E − X〉
+ 〈

Y2,UVT − Z
〉+ 〈Y3,M − U〉 + 〈Y4,N − V〉

+ μ

2

(
‖M − U‖2F + ‖N − V‖2F +

∥
∥UVT − Z

∥
∥2

F

+ ‖AZ + E − X‖2F
)
. (10)

Note that (8)–(10) are the corresponding augmented
Lagrangian functions of SpNF_LRR (6) with p = 1, 2/3
and 1/2, which are much more complicated than the func-
tion (7) by respectively replacing Z with UVT and ‖Z‖pSp

with
different substitutes of ψp(U,V) and introducing more con-
straints. Moreover, two factor matrices can be extended to
three and more factor matrices for any 0 < p < 1 accord-
ing to [53]. The detailed optimization schemes are outlined
in Algorithm 2, and the multiplier variables are updated for
{Y1,k+1,Y2,k+1} with p = 1, {Y1,k+1,Y2,k+1,Y3,k+1} with
p = 2/3 and {Y1,k+1,Y2,k+1,Y3,k+1,Y4,k+1} with p = 1/2.
Each involved variables will be updated in sequence by fix-
ing others. Obviously, to solve (8)–(10) efficiently, we need
to iteratively update more variables than (7) at each iteration
until deducing the whole iterative scheme.

Although Schatten-p norm has been used to substitute the
rank function in our models, other nonconvex rank relaxations

can also be utilized here. These nonconvex rank relaxations
usually perform better than convex nuclear norm, but it is still
not clear to claim that which one is the best surrogate choice
without additional requirements due that the solutions are the
local optimal instead of the global optimal. Specially, fast solu-
tion via factorization for LRR is the first work for Schatten-p
norm, but they also have other applications in image classifica-
tion, matrix completion, RPCA, and LRR. Detailed statements
can be found in these related references. Apply our methods
to the clustering task, the following experiments can demon-
strate two conclusions: one is that the proposed Algorithm 1 is
effective but slow, while the proposed Algorithm 2 is efficient
but of lower performance.

It follows from Algorithms 1 and 2 that both SpNM_LRR
and SpNF_LRR can be optimized by the variants of ADMM
algorithm, which have been used to solve nonconvex and
multiblocks problems in [39] and [65]–[67]. However, they
may slow down the convergence speed or even lead to
the divergence when there are too many variables. Due
to the lack of a convergence guarantee, it is necessary
for us to propose a reliable algorithm with a conver-
gence guarantee. Different from several existing LADMM,
LADMMAP, and LADMMAP(A) optimization algorithms
in [27], [42], and [68], they need more iterations to con-
verge so that their convergence rates are sublinear [63]. The
reason may be that they do not introduce other additional
variables while using the linearized strategy to approximate
the quadratic term, which will lead to an inexact solu-
tion. However, this paper focuses on nonconvex multiblocks
ADMM algorithms by introducing two or more auxiliary
variables in the constraints so that each subproblem of
Algorithms 1 and 2 can obtain the closed-form solution.

V. ANALYSIS OF PROPOSED ALGORITHMS

Both the computational complexity and convergence prop-
erty are two basic evaluation criteria to review an optimization
algorithm. Next, we will give the detailed analysis of our
ADMM algorithms, respectively. Note that the total com-
putational complexity for these iterative algorithms mainly
depends on the total number of iterations and the compu-
tational cost at each iteration. Moreover, the convergence
guarantees of ADMM algorithms for solving nonconvex multi-
blocks problems are very challenging as stated in [66], [67],
and [69].

A. Complexity Analysis

Given a p × q matrix, the computational complexity of its
SVD is O(min(pq2, p2q)) at a time, the multiplication for
p × q matrix and q × c matrix is O(pqc), and the inverse
for r× r matrix is O(r3). The computations of our algorithms
mainly depend on the aforementioned three cases. We here
suppose that A = X and set X,E ∈ R

m×n and Z ∈ R
n×n

in Algorithm 1, and U,V ∈ R
n×d with compatible variables

in Algorithm 2. These can help us obtain the detailed com-
putational complexity of each step in Algorithms 1 and 2,
which are listed in Table III, so it is easy to obtain the total
complexity of both proposed algorithms at each iteration by
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TABLE III
COMPUTATIONAL COMPLEXITY OF SEVERAL UPDATING STEPS IN ALGORITHMS 1 AND 2

Algorithm 2 SpNF_LRR Optimized by ADMM

Input: X,A, p, λ > 0, d and InT = (I + ATA)−1.

Initialization: k = 0, ρ > 1, μ0 = 10−6, V0 = 0, Z0 = 0,
M0 = 0, N0 = 0, E0 = 0, Y1,0 = 0, Y2,0 = 0, Y3,0 = 0,
Y4,0 = 0.

1. while not converged do
2. if p = 1, update {Uk+1, Vk+1} by solving

{
Uk+1 = argminU

1
2 ‖U‖2F + μk

2

∥
∥UVT

k − Qk
∥
∥2

F;
Vk+1 = argminV

1
2 ‖V‖2F + μk

2

∥
∥Uk+1VT − Qk

∥
∥2

F;
if p = 2/3, update {Uk+1, Vk+1, Mk+1} by solving
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Uk+1 = argminU

∥
∥
∥Mk − U + Y3,k

μk

∥
∥
∥

2

F
+ ∥

∥UVT
k − Qk

∥
∥2

F;
Vk+1 = argminV

1
3 ‖V‖2F + μk

2

∥
∥Uk+1VT − Qk

∥
∥2

F;
Mk+1 = argminM

2
3 ‖M‖∗ + μk

2

∥
∥
∥M − Uk+1 + Y3,k

μk

∥
∥
∥

2

F
;

if p = 1/2, update {Uk+1, Vk+1, Mk+1, Nk+1} by solving
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uk+1 = argminU

∥
∥
∥Mk − U + Y3,k

μk

∥
∥
∥

2

F
+ ∥

∥UVT
k − Qk

∥
∥2

F;

Vk+1 = argminV

∥
∥
∥Nk − V + Y4,k

μk

∥
∥
∥

2

F
+ ∥

∥Uk+1VT − Qk
∥
∥2

F;
Mk+1 = argminM

1
2 ‖M‖∗ + μk

2

∥
∥
∥M − Uk+1 + Y3,k

μk

∥
∥
∥

2

F
;

Nk+1 = argminN
1
2 ‖N‖∗ + μk

2

∥
∥
∥N − Vk+1 + Y4,k

μk

∥
∥
∥

2

F
;

where Qk = Zk − Y2,k
μk

for p = 1, 2/3 and 1/2, respectively.

3. Update {Zk+1, Ek+1} by solving
⎧
⎨

⎩

Zk+1 = InT×
(

Uk+1VT
k+1 +

Y2,k
μk
− AT

(
Ek − X + Y1,k

μk

))
;

Ek+1 = argminEλ‖E‖� + μk
2

∥
∥
∥E −

(
X − AZk+1 − Y1,k

μk

)∥
∥
∥

2

F
;

4. Update the multipliers by
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Y1,k+1 = Y1,k + μk(AZk+1 + Ek+1 − X);
Y2,k+1 = Y2,k + μk(Uk+1VT

k+1 − Zk+1);
Y3,k+1 = Y3,k + μk(Mk+1 − Uk+1);
Y4,k+1 = Y4,k + μk(Nk+1 − Vk+1);

5. Update μk+1 by μk+1 = ρμk;
6. end while

Output: Optimal Representation Matrix Z∗ ← Zk+1.

summing all the steps, respectively. If each algorithm needs k
iterations to converge, the entire complexity of the proposed
algorithms are calculated by k × �, where � represents the
sum of complexity from all the updating steps. Note that
when d � min{m, n}, we conclude that Algorithm 2 can effi-
ciently deal with the large scale problems compared with both
Algorithm 1 and LADMMAP algorithm [42] since the decom-
posable strategy can largely reduce the computational com-
plexity through operating small scale matrices. Thus, the total
computational complexities of both proposed algorithms at
each iteration are ranked by Algorithm 1�Algorithm 2(1/2)>

Algorithm 2(2/3)>Algorithm 2(1) in a decreasing order
according to the computations in Table III.

B. Convergence Analysis

It is well known that ADMM algorithms are usually adapted
to solve the problems with a convex and nonsmooth objective
function with two variables and structured linear constraints.
However, it is not easy to guarantee the convergence of
ADMM algorithm for solving nonconvex multiblock prob-
lems in general. The following will show that the sequence
generated by Algorithm 1 converges to a KKT point under
some milder conditions. Since variables are nonseparable and
multiblocks in the constraints of SpNF_LRR model, there is
no yet established convergence proof of Algorithm 2 for solv-
ing (8)–(10) as discussed in [70]. Compared to Algorithm 1,
the theoretical convergence analysis of Algorithm 2 becomes
more challenging. Moreover, there has no theoretical evidence
for the convergence of ADMM algorithm for the SpNF_LRR.
Nevertheless, nonconvex ADMM variants have been verified
to achieve good numerical performance in subspace clustering
with a similar matrix factorization strategy. We leave the con-
vergence analysis of Algorithm 2 to be a future research. Note
that the converged solutions of nonconvex problems may be
different due to the sensitivity of the initialization. However,
we empirically give the initial variables through [12] and [42],
and then present some basic preliminaries.

Lemma 1 [26]: Let X be a real Hilbert space endowed with
an inner product 〈·, ·〉, a norm ‖ · ‖ with its the dual norm
‖ · ‖dual, and y ∈ ∂‖x‖, where ∂f (·) is the subgradient of f (·).
Then, we have ‖y‖dual = 1 if x = 0, and ‖y‖dual ≤ 1 if x = 0.

Definition 2 [71]: For any permutation π for {1, 2, . . . , r},
if f (x1, x2, . . . , xr) = f (|xπ(1)|, |xπ(2)|, . . . , |xπ(r)|) holds, we
will call f (·) : R

r → R an absolutely symmetric function.
And the matrix function f ◦ σ is defined by

[f ◦ σ ](X) := f (σ1(X), σ1(X), . . . , σr(X)). (11)

Lemma 2 [71]: Let F(·) : R
m×n → R be denoted by

F(X) = f ◦σ(X) and the function f (·) : R
n → R be absolutely

symmetric and differentiable at σ(X). And the SVD of matrix
X is X = Udiag(σ (X))VT , then the subdifferential of F(X)
(i.e., f ◦ σ ) at a matrix X is given by

∂F(X)

∂X
= ∂(f ◦ σ)(X) = Udiag(∂f [σ(X)])VT (12)

where (∂f (σi(X))/∂X) = cif ′[σi(X)] with ci ∈ ∂|σi(X)|.
Next, we prove the boundedness of variable sequences and

then obtain the convergence guarantee of Algorithm 1. The
detailed proof can be found in the supplementary material.

Theorem 1: Assume that the dictionary A is normalized, let
{Tk = (Jk,Zk,Ek;Y1,k,Y2,k)}∞k=1 be the sequence generated

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on July 21,2020 at 08:49:55 UTC from IEEE Xplore.  Restrictions apply. 



1728 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 49, NO. 5, MAY 2019

(a) (b)

(c) (d)

Fig. 2. Some sample images from the real-world databases. (a) Hopkins 155. (b) Extended YaleB. (c) COIL20. (d) MNIST (left) and USPS (right).

Fig. 3. Comparison of clustering accuracy on the synthetic data with the
increasing percentage of corruptions from 0% to 100% for both SpNM_LRR
(green) and SpNF_LRR (red) with d = 20. Note that the parameter λ is tuned
to be the best at 50% percentage of corruptions.

by Algorithm 1. If ATA is invertible and limk→∞ μk{Nk+1 −
Nk} = (0, 0) with Nk = (Zk,Ek) hold, we have the following.

1) The sequence {Tk}∞k=1 is bounded.
2) Any accumulation point T∗ = (J∗,Z∗,E∗;Y1,∗,Y2,∗)

of sequence {Tk}∞k=1 satisfies the first-order KKT conditions.
Specially, {Tk}∞k=1 converges to a KKT point, i.e.,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 = J∗ − Z∗ (13)

0 = AZ∗ + E∗ − X (14)

0 ∈ ∂‖J∗‖pSp
+ Y1,∗ (15)

0 = ATY2,∗ − Y1,∗ (16)

0 ∈ λ∂‖E∗‖� + Y2,∗. (17)

VI. EXPERIMENTS

This section will conduct several experiments on vari-
ous subspace segmentation tasks to verify the efficacy and
efficiency of Algorithms 1 and 2 for solving the problem

min{Z,E}rank(Z)+ λ‖E‖2,1, s.t. X = XZ + E. (18)

(a) (b)

Fig. 4. For the clean data added by the 0%, 30%, and 60% percentage of
corruptions from top to bottom, respectively. The comparison of the (c) true
representation matrix; both the (a) ones obtained by SpNM_LRR and (b) ones
obtained by SpNF_LRR with d = 20. Note that (a) and (b) are obtained by
setting p = 1, 2/3, 1/2 from left to right, respectively.

Note that (18) is the special example of (1) by setting
‖E‖� = ‖E‖2,1 and A = X, we mainly consider to use
the Schatten-p norm with various p-values (e.g., p = 1,
2/3 and 1/2) and their upper bounding functions shown in
Table II to replace the rank function in (18), respectively.
Each algorithm converges until reaching the same stop con-
dition, i.e., ‖XZk+1 + Ek+1 − X‖∞ < 10−8. The obtained
clustering accuracy and execution time will show the effi-
cacy and efficiency on both synthetic data and five real-world
databases (see Fig. 2). We here choose S1NM_LRR2 (i.e.,
LRR [12]) as the baseline. Honestly speaking, our methods
cannot obtain state-of-the-art performance in clustering tasks
since no additional constraints are considered in our mod-
els unlike [72] and [73]. The involved parameter(s) of each
method are manually and carefully adjusted to achieve the
best clustering performance, and we choose the best one in
two sets: d ∈ {2, 10, 20, 40, 60, 80, 100, 120, 140, 160} and
λ ∈ [0.01, 10]. Additionally, besides comparing with both SSC
method [11] and graph-based clustering methods3 [74], [75]
we also compare our methodologies with [42] though there is

2http://www.cis.pku.edu.cn/faculty/vision/zlin/lrr
3http://www.escience.cn/people/fpnie/papers.html
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TABLE IV
CLUSTERING RESULTS (%) AND TIME CONSUMPTION (S) OF THE USED

CLUSTERING METHODS ON THE HOPKINS 155 DATA

no doubt that nonconvex Schatten-p norm can be used to mea-
sure the coefficients matrix, and then applied to the subspace
segmentation tasks. However, both (4) and (5) are, respec-
tively, solved by Algorithm 1 and LADMMAP [42], which
can lead to higher computational complexity since involving
the SVD of large scale matrix. Note that [42] needs less timing
consumption compared with Algorithm 1. This is because that
the former involves less variables but more timing costs than
Algorithm 2, which uses the decomposable strategies, while
both [42] and Algorithm 1 do not. Both [74] and [75] are rel-
atively faster clustering methods since no SVD computations.
All the experiments were implemented by MATLAB2014a
onto a PC with 4.0 GB of RAM and Intel Core i3-4158
CPU@3.50 GHZ.

A. Synthetic Data

Similar to the settings in [12], [50], and [51], we first
construct five independent subspaces {Si}5i=1, whose bases
{Ui}5i=1 are generated by updating sequences Ui+1 = TUi for
i = 1, 2, 3, 4. Here, T is a random rotation matrix and U1 is a
random column orthogonal matrix of dimension 100× 4, and
each subspace has a rank of 4 and an ambient dimension of
100. We construct a 100× 200 data matrix X = [X1, . . . ,X5]
by sampling 40 data vectors from each subspace by Xi = UiCi

with Ci being a 4 × 40 independent identically distributed
standard Gaussian matrix. Then we can achieve the low-rank
representation matrix with the size of 200×200. To further test
the performance, we add dense Gaussian noise distributed to
zero mean and 0.052 deviation on the clean data, and corrupt
the data by randomly choosing different percentages of the
entries in X and adding them with noises uniformly distributed
on 1.21× [−0.5, 0.5].

The average clustering accuracies are reported in Fig. 3
after ten randomly generated realizations. As we can see, the
clustering accuracy gradually decreases as the percentage of
corruptions increase from 0% to 100% with the interval 10%.
Moreover, both SpNM_LRR and SpNF_LRR with p = 2/3,
1/2 obtain superior performance over p = 1. The visual
comparisons of both the true representation matrix and the
obtained ones by SpNM_LRR and SpNF_LRR are reported,
respectively, in Fig. 4. Moreover, the representation matrices
obtained by our methods can better approximate the true one
especially for some slight corruptions in the clean data.

Fig. 5. Mean errors influenced by various choices of parameter λ in both
methods for p =1, 2/3, 1/2 (top to bottom) on Hopkins 155, respectively.

B. Motion Segmentation

We here will evaluate the performance of both SpNM_LRR
and SpNF_LRR on the Hopkins 1554 database, which consists
of 155 video sequences, 120 of which contain two moving
objects and 35 of which contain three moving objects with the
extracted feature points and their tracks across frames. Each
of motion sequence corresponds to a single subspace. Inspired
by [76], we use PCA to project the data into a 12-D subspace,
and choose the same parameters for all the sequences and algo-
rithms. The graph-based clustering methods are not compared
due to their specific spectral embedding formulations in [74]
and [75].

The maximum, mean, and standard deviation (StD) of the
clustering errors are reported in Table IV, as well as the time
consumptions. We observe that SpNM_LRR can obtain lower
mean errors than SpNF_LRR, which can verify the efficacy
of SpNM_LRR. But SpNF_LRR needs less time consumption
than both SpNM_LRR and [11], [42], which can verify the
efficiency of SpNF_LRR. And the cases of both SpNM_LRR
and SpNF_LRR for p = 2/3, 1/2 have bigger mean errors than
p = 1. The reason is that the true representation matrix has
very lower rank, it can restrain the superiority of nonconvex
Schatten-p norm as verified in [34]. Note that most sequences
are easy to be segmented and hence all algorithms can obtain
zero errors and medians in the experiments. Additionally, the
clustering performance of both methods for all 155 motion
sequences will largely depend on the choice of λ when the
data are grossly corrupted. Fig. 5 shows the clustering errors
for various values of λ ∈ [0.5:0.5:15] in the abscissa when the
rank parameter of SpNF_LRR is fixed to 10, i.e., d = 10. It
follows from the numerical results that the mean errors varies
[3.39, 5.55], [3.84, 6.04], and [4.04, 6.26] for SpNM_LRR and
[3.24, 16.91], [5.20, 7.29], and [5.84, 6.60] for SpNF_LRR
with p = 1, 2/3 and 1/2 in sequence, respectively.

C. Face Images Clustering

This section will perform two experiments on the Extended
Yale B5 database, which contains face images of 38 subjects

4http://www.vision.jhu.edu/data
5http://vision.ucsd.edu/leekc/ExtYaleDatabase/ExtYale
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TABLE V
CLUSTERING ACCURACY (ACC, %) AND TIME CONSUMPTION (S) OF

ALL USED METHODS ON THE EXTENDED YALE B DATABASE

(a)

(b)

Fig. 6. Partial shadows of the original images are removed to obtain the
clean images in both (a) and (b). Each part (left to right) of them include the
original\reconstructed\residual images for p = 1, 2/3 and 1/2 from top row
to bottom row, respectively.

with various illumination conditions. We here resize each orig-
inal image into 48× 42 to conduct two experiments, in which
one uses the first ten subjects to form the 2016 × 640 raw
matrix X, the other projects it onto a 200-D subspace by
applying PCA for removing partial noises.

The results are shown in both Fig. 6 and Table V,
we observe that the face images reconstructed by both
SpNM_LRR and SpNF_LRR are slightly brightness compared
with the original ones. The reason is since our methods are
able to remove the shadows of the corrupted face images. In
addition, it follows from Table V that SpNF_LRR requires
less time consumption than SpNM_LRR by using the factor
strategies. Both Lp_un [74] and CLR_Lp [75] as the compared

graph-based clustering methods can obtain lower performance
in efficacy though they consumes less timing in efficiency.
Compared with the raw data, the time consumptions also
become less and the clustering results are improved after the
projecting procedure. This confirms that using PCA can not
only reduce the dimension to save time consumption but also
weaken the influence of noises to improve clustering accu-
racy. Meanwhile, we can see that nonconvex cases can obtain
higher clustering results than convex case as listed in Table V.
Especially, we choose λ ∈ {1.5, 2} for SpNM_LRR and
λ ∈ {2, 3, 6, 8} with d = 100 for SpNF_LRR to obtain the best
performance.

D. COIL20 Images Clustering

This section will experiments on the COIL206 database
which has 32 × 32 gray scale images of 20 objects viewed
from different angles. The experiments are carried out for
the original images without any processing. We choose the
number of subjects K = 15 and 20, and select the best param-
eters of all methods to achieve the best clustering results.
Moreover, the convergence behaviors of both SpNM_LRR
and SpNF_LRR methods are shown in Fig. 7, in which
the ordinate denotes the stopping criteria by ‖XZk+1 +
Ek+1 − X‖∞, and the abscissa is the number of itera-
tions. The stoping error values of our approaches all drop
with the increasing iterations number as demonstrated in
Fig. 7. Especially for both SpNF_LRR and SpNM_LRR with
p = 1, they drop very quickly and converge much fast.
Since Algorithm 1�Algorithm 2(1/2)>Algorithm 2(2/3)>
Algorithm 2(1) at each iteration, and both methods can run
about 200 iterations to stop. Thus, it is easy to explain that
SpNF_LRR need less timing consumption than SpNM_LRR.
For K = 15 and 20 subjects, the clustering accuracy
and the timing consumption obtained by both SpNM_LRR
and SpNF_LRR methods together with the compared meth-
ods [11], [42], [74], [75] are shown in Table VI. Obviously,
our methods can show their superiority in both efficacy and
efficiency compared with other methods in general. Moreover,
we also have a similar observation with the face images clus-
tering, the computational efficiency for solving SpNF_LRR
are significantly improved over SpNM_LRR. When the num-
ber of subjects are ranged from 15 to 20, the clustering
results become lower and the time consumption becomes
higher. Especially, the clustering accuracy of SpNM_LRR can
be achieved by setting λ ∈ {0.2, 0.5, 0.7, 0.8}, while the
ones of SpNF_LRR are obtained by letting d = 140 and
λ ∈ {0.3, 1.5, 3.0}.

E. Digital Images Clustering

MNIST7 is a handwritten digit database with ten subjects.
We select a subset (i.e., the first 100 images of each digit)
with each image having 28×28 pixels. USPS8 is also a hand-
written digit database of 9298 images with each image having
16×16 pixels. We also select the first 100 images of each digit.

6http://www.cs.columbia.edu/CAVE/software/softlib/coil-20
7http://yann.lecun.com/exdb/mnist
8http://www.gaussianprocess.org/gpml/data
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TABLE VI
CLUSTERING ACCURACY (%) AND TIME CONSUMPTION (S)

OF ALL USED METHODS ON THE COIL20 DATABASE

WITH 15 AND 20 SUBJECTS

(a) (b)

Fig. 7. Convergence of the stopping criteria (log) versus number of iterations
obtained by both methods on 15 subjects of COIL20 database, respectively.
(a) SpNM_LRR. (b) SpNF_LRR.

TABLE VII
CLUSTERING ACCURACY (%) AND TIME CONSUMPTION (S) OF ALL

USED METHODS ON THE TWO HANDWRITTEN DIGITS DATABASES

Here, each related digit coming from both MNIST and USPS
will be represented by 784- and 256-D vector, respectively.
Fig. 8 and Table VII show the constructed affinity matrices
and the best clustering accuracies of all involved methods on
both MNIST and USPS, respectively. Besides, our Schatten-p
norm with p = 1, 2/3 and 1/2 can produce the block-diagonal
coefficient matrix. Except the compared graph-based cluster-
ing methods [74], [75], SpNF_LRR method is still the faster
method among these methods, which can further show its
superiority in efficiency. It follows from Fig. 8 that the affinity
matrices of Fig. 8(b) reveal clear block-diagonal and blurred
non block-diagonal structures, which can further explain that

(a)

(b)

Fig. 8. Comparison of the affinity matrices produced by SpNM_LRR with
p = 1, 2/3 and 1/2 (left to right) on both (a) MNIST and (b) USPS.

Fig. 9. Clustering accuracies obtained by SpNM_LRR with p = 1, 2/3 and
1/2 (top to bottom) on four databases under various parameter choices.

each subject becomes highly compact and different subjects
become far apart. We observe that Fig. 8(a) do not show these
obvious differences of the block structures no matter how the
involved subjects are same or not. As a whole, Fig. 8(b) can
better capture the block-diagonal structure than Fig. 8(a). This
visual results can reflect the fact that the clustering results
obtained by SpNM_LRR on USPS are higher than MNIST in
Table VII. Similar trends have been verified in [72]. We choose
λ ∈ {0.05, 0.06, 0.08} for SpNM_LRR and SpNF_LRR with
λ ∈ {0.5, 2} and d = 120.

F. Parameters Discussion

This section will give the optimal choice of parameters.
Besides different p-values (e.g., p = 1, 2/3 and 1/2) for the
Schatten-p norm in both SpNM_LRR and SpNF_LRR, there
exist the common parameter λ, and an additional ingredient
for the expected rank number d of the coefficient matrix in
SpNF_LRR. Thus, the discussions of λ for SpNM_LRR and
(λ, d) for SpNF_LRR are given independently as follows.

For SpNM_LRR, the choice of the parameter λ is not
unique on the above each of experiments. There exists a
recent study in [77], which states that estimating λ needs to
normalize the column vectors of the data matrix X and man-
ually tune it around 1/

√
log(n), i.e., there exists a range for

λ ∈ [λmin, λmax], where both λmin and λmax will decrease as
the total number of the samples, i.e., n. However, the suggested
parameter 1/

√
log(n) is purely a moderately “good” choice,

but not the best parameter configuration for SpNM_LRR with
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(a)

(b)

(c)

Fig. 10. Clustering accuracies are obtained by the SpNF_LRR on three
databases under various choices of parameters. Note that X-label represents
the values of given d, and Y-label represents the parameter λ values, in which
λ ∈ {0.1, 0.5, 1, 2, 4, 6, 8, 10} for (a), λ ∈ {0.05, 0.1, 0.3, 0.5, 0.8, 1, 2, 3} for
(b), and λ ∈ {0.01, 0.1, 0.5, 1, 2, 4, 6, 8} for (c), respectively. (a) Extended
Yale B Database. (b) COIL20 Database. (c) Digital Database.

p = 1. The clustering accuracy obtained in our experimen-
tal settings are shown in Fig. 9 under different values of
λ. The results are insensitive to λ in a small range such as
[1.0, 3.0] for the Extended Yale B, [0.1, 0.8] for the COIL20
and [0.03, 0.1] for both USPS and MNIST digital databases.

For SpNF_LRR, we analyze the affects of the parameter
pairs (λ, d) for the clustering accuracy. The results are reported
in Fig. 10(a)–(c) for various (λ, d). Since different clustering
data accords to different rank number of representation matrix,
which has various effect on the clustering accuracy even for
the same λ. Specially, SpNF_LRR can obtain lower cluster-
ing results when d is smaller than the true rank. We know
that the determination of reducing rank is an open problem,
several works [36], [54], [78] have provided some rank esti-
mation strategies to achieve a good d. Inspired by them, we

set d sufficiently large (e.g., at least larger than the true rank)
to obtain a higher clustering accuracy. This agrees with [79]
which says as long as d is large enough, any local minima can
be a global optima. Thus, we pick a relatively larger d (≥80),
SpNF_LRR can achieve higher performance.

VII. CONCLUSION

In this paper, we present Schatten-p norm with differen
p-values for measuring low rank coefficients matrix and pro-
pose two nonconvex LRR models including SpNM_LRR and
SpNF_LRR. The main merits of both models are their accu-
rate approximation and decomposition strategy for their nearly
unbiased relaxations of the rank function. They can help us
to achieve the higher clustering accuracy and save the time
consumption in order to have a wide range of applications.
Meanwhile, nonconvex multiblock ADMM algorithms have
been devised to solve the proposed Schatten-p norm-based
methods, and then we give the algorithmic analysis from
both computational complexity and convergence guarantees
under some mild assumptions. Experiments on both synthe-
sized and real world data can demonstrate the superiority of
our proposed methods for the subspace clustering tasks.

Consider that both SpNM_LRR and SpNF_LRR are opti-
mized by the nonconvex ADMMs with multiblocks, one can
prove their convergence properties under relatively weaker
conditions, e.g., [34], [49], [66], and [69]. Furthermore, the
Schatten-p norm factorization strategy can also be used to
solve more complicated LRR variants and other low rank
matrix recovery models, e.g., [70], [75], [80], and [81].
Besides, we can extend the proposed both methods for dealing
with the large scale and deep subspace clustering problems,
e.g., [82] and [83].
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