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Abstract
The memorization effect of deep neural networks (DNNs) plays a pivotal role in recent 
label noise learning methods. To exploit this effect, the model prediction-based methods 
have been widely adopted, which aim to exploit the outputs of DNNs in the early stage of 
learning to correct noisy labels. However, we observe that the model will make mistakes 
during label prediction, resulting in unsatisfactory performance. By contrast, the produced 
features in the early stage of learning show better robustness. Inspired by this observation, 
in this paper, we propose a novel feature embedding-based method for deep learning with 
label noise, termed Lab El Noise Dilution (LEND). To be specific, we first compute a 
similarity matrix based on current embedded features to capture the local structure of train-
ing data. Then, the noisy supervision signals carried by mislabeled data are overwhelmed 
by nearby correctly labeled ones (i.e., label noise dilution), of which the effectiveness is 
guaranteed by the inherent robustness of feature embedding. Finally, the training data with 
diluted labels are further used to train a robust classifier. Empirically, we conduct extensive 
experiments on both synthetic and real-world noisy datasets by comparing our LEND with 
several representative robust learning approaches. The results verify the effectiveness of 
our LEND.
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1 Introduction

The philosophy of recent success in deep learning mainly stems from massive high-quality 
labeled data, leading to impressive performance in countless areas, including computer 
vision (Krizhevsky et  al., 2012; He et  al., 2016), natural language processing (Vaswani 
et  al., 2017; Devlin et  al., 2019), speech recognition (Hinton et  al., 2012; Sainath et  al., 
2013), etc. However, the data in real-world applications are often associated with label 
noise, due to human fatigue (Han et al., 2020b), knowledge limitation (Gong et al., 2017), 
or measurement error  (Song et  al., 2020). These noisy labels might degrade the perfor-
mance of deep neural networks (DNNs) (Arpit et  al., 2017; Zhang & Sabuncu, 2018), 
which raises a great demand for label noise-robust learning algorithms. Therefore, deep 
learning with label noise has been intensively studied due to its wide applications (Li et al., 
2017; Mahajan et al., 2018; Kuznetsova et al., 2018).

Previous results (Arpit et al., 2017) suggest that DNNs first learn from examples with 
correct labels, and the noisy data will be fitted later. It is well-known as the memoriza-
tion effect of deep learning. Inspired by this remarkable finding, a large group of previous 
works propose to employ the model predictions in the early stage of training to boost the 
robust learning. For model prediction-based robust methods, existing works can be gen-
erally attributed into two categories, namely label correction-based methods and sample 
selection-based methods. Label correction-based methods (Li et  al., 2020; Xiao et  al., 
2015; Yi & Wu, 2019; Tanaka et al., 2018; Nguyen et al., 2019) take the model predictions 
of training data as additional supervision signals to correct the potential noisy labels for 
guiding DNNs’ training. Sample selection-based methods  (Jiang et  al., 2018; Han et  al., 
2018; Jiang et al., 2020; Han et al., 2020a; Yao et al., 2020) select trustworthy examples 
with the loss value smaller than predefined thresholds during training to mitigate the nega-
tive effect of noisy labels.

However, in practice, we observe that the model will make mistakes during label pre-
diction and may be unstable in the output (Huang et  al., 2020), resulting in unsatisfac-
tory performance. Figure 1 provides us a piece of evidence, from which we can see that 
the model still makes error-prone predictions even if the memorization effect exists, while 
the embedded features remain robust. To be specific, we have the following three obser-
vations: (1) The model-predicted labels in Fig. 1b are much more reliable than the noisy 
ones in Fig. 1c; (2) Under 30 epochs of training, the model still makes error-prone predic-
tions for some training examples, especially for the cyan, red, and lime points in Fig. 1b; 
(3) The embedded features in the early stage of learning contain strong semantic informa-
tion, as the data points with the same ground-truth labels are clustered together in Fig. 1a. 
It also indicates that the embedded features induced by the memorization effect are more 
robust than model predictions. The reason is that the classifier output following a neural 
network tends to fit the noise, while the embedded features are less negatively affected by 
the noise (Bai et  al., 2021). Figure  4 further provides us an empirical validation, where 
the accuracy of model-predicted labels measures the robustness of model predictions and 
the accuracy of diluted labels reveals the robustness of the feature embedding. While lots 
of previous works focus on developing robust models based on model predictions, scarce 
attention has been paid to the feature embedding. The above observations may provide us a 
new research insight for deep robust learning with noisy labels by leveraging the intrinsic 
feature embedding.

In this paper, we claim that the embedded features induced by the memorization effect 
are more robust than the model-predicted labels. To instantiate such insight, we further 
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propose a simple yet effective feature embedding-based label noise method, termed LabEl 
Noise Dilution (LEND). Therein, we first compute a similarity matrix based on current 
embedded features to capture the local structure of training data. Then, with the help of the 
trustworthy feature embedding, the noisy supervision signals carried by mislabeled data 
are overwhelmed by nearby correctly labeled ones, Finally, the corrected labels are further 
employed to train a robust classifier. To be specific, for each example, its nearby exam-
ples first make voting in deciding whether its label is trustworthy, and then this message is 
propagated among its neighborhoods for further noise dilution. This process is conducted 
on the embedding space, of which the robustness has been validated before. Finally, the 
diluted labels are further employed to perform sample selection to train a robust classi-
fier. Empirically, we conduct extensive experiments on both synthetic and real-world noisy 
datasets by comparing our method with several representative robust learning approaches, 
and the results verify the superiority of our LEND.

The contributions of this paper can be summarized as three-fold: 

(1) We reveal a new finding that the embedded features induced by the memorization effect 
are more robust than the labels predicted by model, which provides us a new perspec-
tive for deep robust learning.

(2) We propose a novel feature embedding-based robust learning method, named LEND, 
which can make full use of the robust feature embedding in the early stage of learning.

(3) We evaluate our LEND on both synthetic and real-world noisy datasets, and the experi-
ments well demonstrate its effectiveness.

The remaining of this paper is organized as follows: we first review the related works of 
two different categories of label noise learning methods in Sect. 2. In Sect. 3, we provide 
some preliminaries of deep label noise learning and detail the memorization effect of deep 
learning from the perspective of feature embedding. Further, we propose a simple yet 
effective label noise learning method in Sect. 4 and conduct extensive experiments on both 
synthetic and real-world noisy datasets to verify its effectiveness in Sect.  5. Finally, we 
conclude our paper in Sect. 6.

(a) Colored with ground-truth labels (b) Colored with model-predicted labels (c) Colored with original noisy labels

Fig. 1  The t-SNE visualization of training data under 30 epochs when training under asymmetric label 
noise (noise rate: 0.45) on CIFAR-10 dataset. ResNet-18 is directly used to fit training data and the embed-
ded features of the last hidden layer of the neural network are visualized by the t-SNE method. Subfigure a 
is colored with ground truth labels, b is colored with model-predicted labels, and c is colored with original 
noisy training labels
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2  Related work

In this section, we provide a comprehensive review of the existing label noise learning 
studies, which can be roughly divided into two types, namely statistical learning-based 
methods and model prediction-based methods.

2.1  Statistical learning‑based methods

This type of methods deal with the label noise learning problem by designing label noise-
robust loss functions. For example, Natarajan et al. (2013) build an unbiased risk estimator 
to resist the adverse effect of the noisy labels. Patrini et al. (2016) split the loss function 
into two parts in which only one of them is influenced by the corrupted labels. Ghosh et al. 
(2017) provide some sufficient conditions on the loss function so that the risk minimization 
via using these loss functions would be inherently tolerant to label noise, such as Mean 
Absolute Error (MAE). Generalized Cross-Entropy (GCE) (Zhang & Sabuncu, 2018) can 
be interpreted as a generalization of MAE, as it integrates the advantages of both MAE and 
cross-entropy losses. Besides, DMI (Xu et al., 2019) proposes an information-theoretic loss 
function, which utilizes Shannon’s mutual information and is robust to different kinds of 
label noise.

Another branch of works focus on modeling the label noise generating process by esti-
mating the noise transition matrix and then designing a robust paradigm to correct the loss. 
For example, Goldberger and Ben-Reuven (2017) explicitly model the label noise distribu-
tion by an additional softmax layer that connects the correct labels with the noisy ones. 
Patrini et  al. (2017) correct the loss function by multiplying the noise transition matrix 
with the outputs of the softmax layer during forward propagation. However, the estimation 
of noise distribution often requires the existence of “anchor points”, which is an unprac-
tical assumption in real-world applications. To address this drawback, T-revision (Xia 
et  al., 2019) estimates the noise transition matrix without anchor points by adding fine-
tuned slack variables. Li et al. (2021) simultaneously optimize two objectives, namely the 
cross-entropy loss between noisy labels and the model-predicted ones, and the transition 
matrix, which lead to an end-to-end framework for robust learning under label noise with-
out anchor points. Besides, Class2simi (Wu et al., 2021) transforms data points with noisy 
class labels into data pairs with noisy similarity labels, so that the reduction of noise can 
be theoretically guaranteed. Moreover, Yao et al. (2021) propose to model and make use of 
the causal process to correct noisy labels.

2.2  Model prediction‑based methods

This type of methods mainly combat noisy labels by exploiting the memorization effect. 
They aim to exploit the outputs of DNNs in the early learning stage and can be further 
divided into two categories, namely label correction-based methods and sample selection-
based methods.

Label correction-based methods In the early learning stage, the model predictions are 
accurate on a subset of the mislabeled examples. This suggests that label correction-based 
methods are potential for correcting the corrupted labels during the robust training process. 
For example, Tanaka et al. (2018) propose to adaptively correct noisy labels with new labels 
that are consistent with the probabilities estimated by the model. Yi and Wu (2019) learn 
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a set of extra hyperparameters to correct noisy examples. Usually, label correction is asso-
ciated with some iterative sample selection procedure or is with additional regularization 
terms. SELFIE (Song et al., 2019) focuses on examples that have consistent model predic-
tions, so as to minimize the falseness of label correction. Reed et al. (2015) fits a two-com-
ponent mixture model to perform sample selection, and then corrects labels via a convex 
combination. DivideMix (Li et al., 2020) uses two peer networks to perform sample selec-
tion via a two-component mixture model, and applies the semi-supervised learning tech-
nique MixMatch (Berthelot et al., 2019) to further correct the soft labels of the training data.

Sample selection-based methods Sample selection-based methods try to pick up a 
relatively clean subset from the training set for model training. For instance, MentorNet 
(Jiang et  al., 2018) selects clean examples with the help of a pre-trained extra network, 
and then these selected examples are utilized to aid the training of the main network. Co-
teaching (Han et al., 2018) and Co-teaching+ (Yu et al., 2019) adopt peer networks and use 
the “small-loss” and disagreement behaviors of the network to choose the possibly reliable 
examples to boost the robust learning of the network. Similarly, JoCoR (Wei et al., 2020) 
improves Co-teaching by utilizing co-regularization to reduce the diversity of the two net-
works. INCV (Chen et  al., 2019) utilizes cross-validation to filter out noisy examples at 
each training iteration. Besides, Wang et al. (2018) exploit the local outlier factor to select 
probable clean examples for training. Nguyen et al. (2019) introduce an extra mean teacher 
model to help the neural network to remove wrongly labeled data. S2E (Yao et al., 2020) 
proposes to employ an AutoML technique to dynamically decide the clean examples. Zhu 
et al. (2021) propose to progressively sieve out corrupted examples with a robust peer loss, 
so that clean examples and the corrupted ones can be separately treated during training. 
Me-Momentum (Bai & Liu, 2021) proposes to extract hard confident examples based on 
the memorization effect to obtain an accurate and stable decision boundary.

3  Basic knowledge in label noise learning

In this section, we first provide some preliminaries of deep label noise learning and then 
discuss the memorization effect from the perspective of feature embedding.

3.1  Preliminaries

In a traditional supervised C-class classification problem, the training data D = {(xi, yi)}
n
i=1

 
of size n are randomly sampled from the joint distribution p(X, Y), where x refers to the 
feature of example, y denotes the corresponding true label, and X and Y denote the cor-
responding random variables. The training data are used to fit a DNN f (x;�) ∶ X → ℝ

C 
parameterized with � that conceptually consists of two parts. The first part is a representa-
tion function �(x) ∶ X → ℝ

d that maps the input x to a d dimensional embedding space, 
and the second one is a classifier following �(x) with a soft-max link function, generating 
the confidence scores of x regarding every category.

When the labels are corrupted with external noise, the observed noisy labels 
Ỹ = {ỹi}

n
i=1

 are used during training. It means that the training data are drawn from 
p(X, Ỹ) =

∑
Y p(Ỹ ∣ Y ,X)p(Y ∣ X)p(X) , where p(Ỹ ∣ Y ,X) , termed as the label transi-

tion probability, characterizes label corruption. Here are three common specifications of 
p(Ỹ ∣ Y ,X) : 
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(1) Symmetric label noise with the uniform distribution of noisy labels, i.e., 
p(Ỹ = ỹ ∣ Y = y,X) = 𝜌∕(C − 1),∀ ỹ ≠ y and � is the noise rate, noisy labels are pro-
duced at random;

(2) Asymmetric label noise with the label-dependent probability p(Ỹ ∣ Y ,X) = p(Ỹ ∣ Y) , 
some pairs of classes are more prone to be mislabeled (Patrini et al., 2017);

(3) Feature-dependent label noise with the full feature-dependent probability p(Ỹ ∣ Y ,X) , 
the label noise follows a more realistic label noise distribution (Xiao et al., 2015; Jiang 
et al., 2020).

Given the noisily labeled training data, robust learning methods are required, such that the 
resulting DNNs can predict true labels. In the literature, existing works can generally be 
attributed to two categories: (1) statistical learning-based methods and (2) model predic-
tion-based methods. Even with rigorous theoretical guarantees, the former may not work 
well for DNNs (Han et al., 2020b). In contrast, the latter is designed specifically for deep 
learning with label noise (Jiang et al., 2018). Our work is different from any of the above 
two kinds of methods. Inspired by the robustness of the feature embedding in the early 
stage of learning, we focus on designing a new robust learning method under label noise, 
termed feature embedding-based method.

3.2  Rethinking the memorization effect

The memorization effect in deep learning with noisy labels suggests that DNNs will first 
fit correctly labeled examples and learn from the noisy ones later. In view of optimization, 
it means that the correctly labeled examples dominate the updating directions of stochastic 
gradient descent early in DNNs’ training. In previous works, the memorization effect of 
DNNs is mainly studied with respect to class predictions by model. Here, the memori-
zation effect is further explored from the perspective of representation learning, i.e., fea-
ture embedding. We claim that the memorization effect induces a good feature embedding, 
and the induced embedded features are more robust to label noise than the corresponding 
model predictions. In the following, we provide a piece of empirical evidence and a more 
detailed discussion.

Figure  1 provides the t-SNE visualization of the features of training data under 30 
epochs when training under asymmetric label noise on CIFAR-10 dataset. We can see that 
(1) model-predicted labels are much more reliable than the original noisy ones; (2) In the 
early stage of learning, the model still makes mistakes during prediction; (3) The data 
points with the same ground-truth labels tend to fall into the same cluster. The first obser-
vation reflects that the DNNs tend to fit the examples with correct labels in the early learn-
ing stage, and the model predictions are able to recover the distribution of the ground-truth 
labels to some extent. This observation confirms the conclusion about the memorization 
effect in Arpit et al. (2017). The second observation reveals the deficiency of model-pre-
dicted labels, i.e., the classifier still fits some noise even if the memorization effect exists. 
As for the third observation, it indicates that the noisy labels have relatively little effect on 
the embedded features compared with the model-predicted labels. These observations pro-
vide us a new thinking to memorization effect, i.e., the embedded features in the early stage 
of learning are more robust than model predictions.

To further validate the observations aforementioned, we provide an empirical valida-
tion in Fig. 4. The accuracy of model-predicted labels measures the robustness of model 
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predictions and the accuracy of diluted labels reveals the robustness of feature embed-
ding. Besides, more visualizations of the training process with noisy labels are provided 
in Appendix A. Concretely, we provide the t-SNE visualizations on CIFAR-10 dataset with 
asymmetric label noise (noise rate: 0.45) when the model is trained under 50, 100, 150, 
and 200 epochs. We can see that in the early stage of learning, both feature embedding 
and model predictions inherit useful information from the memorization effect, and feature 
embedding shows better robustness than model-predicted labels (see Figs. 9 and 10). When 
trained to converge (see Fig. 12), DNNs will often fit and memorize noisy labels (Arpit 
et  al., 2017), and thus the data points belonging to the same cluster (i.e., have the same 
ground-truth label) will often be assigned with different labels.

4  Our method

In this section, we present our simple yet effective feature embedding-based label noise-
robust method termed “LEND”. We first discuss how to employ the robustness of feature 
embedding and then detail the proposed LEND.

4.1  Feature embedding‑based label noise learning

First, we conduct an analysis on feature embedding for the further employment. To this 
end, the definition of dominant label is provided, which is based on the feature embedding 
�(x) , namely:

Definition 1 (Dominant Label) The dominant label mi of an example xi is defined as:

where 1(⋅) is an indicator function which equals to one if its argument is true, and zero oth-
erwise, NNk(xi;�) includes the indices of examples which are the k nearest neighbors of xi 
in the training set in terms of the feature embedding �(x).

The dominant label of an example xi is the label that occurs most frequently in xi ’s k 
nearest neighbors, which can be viewed as a notion of agreement on the local data infor-
mation regarding the feature embedding �(x) . Intuitively, if the embedded features retain 
strong semantic information regarding ground-truth labels, the neighborhoods of each 
example xi are very likely to share the same ground-truth label.

Therefore, in this section, we aim at devising a label noise learning method based on the 
previous finding. One naïve solution is to directly use the dominant labels after every itera-
tion as strong supervision signals. Unfortunately, although the ability of kNN-based meth-
ods in filtering label noise has been verified (Bahri et al., 2020), it implicitly assumes that, 
for most training examples, the majority of their neighborhoods are correctly labeled. In 
practice, this assumption may fail for the examples that are close to the potential decision 
boundary. These examples are located in a region with complex semantic context, where 
the employment of dominant labels may fail. For example, when an example is close to the 
decision boundary (see Fig. 2), its k ( k = 5 ) nearest neighbors may include examples that 
cross over the decision boundary, and the dominant label-based method will not work. In 

mi ← argmax
c

{∑
1(yj = c) ∣ j ∈ NNk(xi;�) ∧ c ∈ {1,⋯ ,C}

}
,
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the following parts, we devise a simple yet effective label noise-robust method to overcome 
such difficulty.

4.2  Label noise dilution

To overcome the dilemma that some examples may fall into the region with complex 
semantic context, in this section, we devise a robust label noise dilution paradigm. Therein, 
definite class information can be diffused to the region with ambiguous class information. 
As a result, the corrupted labels of training data are “diluted” by strong semantic infor-
mation from correctly labeled ones. Its high-level idea is that the propagated information 
from correctly labeled examples will gradually cleanse the inaccurate labels. This attempt 
is mainly inspired by label propagation in semi-supervised learning  (Iscen et  al., 2019). 
Figure 3 presents our main motivation.

As analyzed before, the feature embedding conveys strong semantic information regard-
ing ground-truth labels. Given training data B = {(xi, ỹi)}

|B|
i=1

 with |B| being the amount of 
input examples in the current mini-batch, we aim to dilute the label noise by using the 
embedded features {�(xi)}

|B|
i=1

.
First, we specify a similarity matrix W ∈ ℝ

|B|×|B| which captures the local information 
of each data point of training data. Following (Iscen et al., 2019), given the embedded fea-
tures V ∈ ℝ

|B|×d

with vi = �(xi) , we first construct the sparse similarity matrix A ∈ ℝ
|B|×|B| with 

elements:

where � is a scaling parameter by following (Iscen et al., 2017) and [viv⊤j ]+ = max(0, viv
⊤
j
) . 

Following that, we have the final similarity matrix W = D−1∕2W �D−1∕2 with W � = A⊤A and 
D = diag(W �

1) being the degree matrix, where 1 is an all-one column vector.
Then, we detail the label noise dilution process by using the similarity matrix W. 

In each iteration of label noise dilution, for every example xi , we first get its k nearest 
neighbors according to the representation �(x) , and then we integrate the label infor-
mation from the k nearest neighbors with its own label in the previous iteration. For-
mally speaking, let Z ∈ ℝ

|B|×C denote the one-hot encoded diluted labels, we update the 
diluted label Zi (the i-th row of Z) of example xi in the t-th iteration as:

(1)Aij =

{
[viv

⊤

j
]
𝛾

+, if i ≠ j and j ∈ NNk(xi;𝜙),

0, otherwise,

Fig. 2  Examples that are close to 
the potential decision bound-
ary, where the examples with 
different labels are represented 
by different colors, and the shape 
denotes whether the example is 
correctly labeled (“× ” for cor-
rupted and “ ∙”for clean)
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where Z(t)

i
 denotes the diluted label of example xi in the t-th iteration, the first term of the 

right-hand side of Eq.  (2) represents the label information from xi ’s k nearest neighbors, 
and the second term denotes the reserved label information of xi from the (t − 1)-th itera-
tion. Here, Wij characterizes the similarity between xi and its j-th nearest neighbor, and 
0 < 𝛼 < 1 is a trade-off parameter. The diluted labels of the training data can be concisely 
written in matrix form as:

At the beginning, the diluted labels Z(0) of training examples are initialized by one-hot rep-
resentation of the corresponding noisy labels, which are denoted as:

Then, we use Eq. (3) to update the diluted labels of each example until converge.

(2)Z
(t)

i
= �

∑

j∈NNk(xi;�)

WijZ
(t−1)

j
+ (1 − �)Z

(t−1)

i
,

(3)Z(t) = �WZ(t−1) + (1 − �)Z(t−1).

(4)Z
(0)

i
∶= ������(ỹi), i = 1,… , |B|.

Step 1 Step 2 Step 

Fig. 3  Illustration of label noise dilution. The leftmost figure represents the original data with noisy labels. 
Therein, the examples with different labels are represented by different colors, and the shape denotes 
whether the example is correctly labeled (“× ” for corrupted and “ ∙”for clean). We can see that the examples 
with corrupted labels are gradually revised by the nearby correctly labeled ones. After several iterations of 
dilution, the corrupted labels are removed

Fig. 4  Accuracy curves with 
respect to model-predicted labels 
and diluted labels, where CIFAR-
10 dataset under 40% asymmetric 
label noise is considered
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Here, we conduct a quantitative analysis to validate the effectiveness of the label 
noise dilution process. Specifically, we compare the robustness of DNNs with respect 
to model predictions and embedded features. The former is measured via the accuracy 
of model-predicted labels, and the latter is revealed by the accuracy of diluted labels. 
Figure  4 shows the accuracy curves of diluted labels and model-predicted labels dur-
ing training. We can see that the accuracy of diluted labels outperforms that of model-
predicted ones with a large margin, validating the robustness of the feature embedding. 
In the following part, we further provide how to use the diluted labels Z to train label 
noise-robust DNNs.

4.3  Feature embedding‑based sample selection

Algorithm 1 The overall algorithm of LEND.
Input: Training dataset D = {(xi, ỹi)}ni=1, initial parameters θ of DNN, momen-

tum β, number of nearest neighbors k;
1: while τ < MaxEpoch do
2: for iter = 1 to num iters do
3: Get current model f(x; θ) with underlying representation function φ(x);
4: From D draw a mini-batch of data B = {(xi, ỹi)}

|B|
i=1 with batch-size |B|;

5: // Calculate the similarity matrix
6: for j, k = 1, . . . , |B| do
7: Aj,k ← similarity values via Eq. (1);
8: end for
9: W ′ = A�A and D = diag(W ′1);

10: W = D−1/2W ′D−1/2;
11: // Label noise dilution
12: Initialize the diluted labels of current mini-batch Z(0) via Eq. (4);
13: for t ∈ {1, · · · , T} do
14: Compute the diluted labels of current mini-batch Z via Equation (3);
15: end for
16: Update the diluted labels at current epoch Zτ via Eq. (5);
17: // Sample selection with diluted labels
18: Compute the discrete sample weights E via Eq. (6);
19: Update the model parameters θ via Eq. (7);
20: Update τ ← τ + 1;
21: end for
22: end while
Output: The updated parameters θ.

In this part, we present (1) how to utilize the label noise dilution in stochastic gradient-
based optimization; and (2) how to use the diluted labels to train a robust DNN.

For the first problem, at the �-th epoch of training, given a mini-batch of training data 
B = {(xi, ỹi)}

|B|
i=1

 , we first compute a similarity matrix W according to the current represen-
tation �(x) of the examples x within this mini-batch. Then, we can get the corresponding 
diluted labels Z via Eq. (3). To make full use of the memorization effect in the early learn-
ing stage, we further employ a running average for the diluted labels. That is to say, the 
diluted labels of mini-batch B at the �-th epoch of training, i.e., Z� , can be updated as:

(5)Z� = (1 − �)Z + �Z�−1.
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Therein, � is the momentum and Z�−1 is the diluted labels of training data in B from the 
(� − 1)-th epoch of training.

Note that the robustness of diluted labels has been verified in Sect.  1. For the sec-
ond problem, we employ the diluted labels Z� to aid sample selection and the resulting 
confident clean examples are used to update the parameters of DNN. To be specific, let 
E = {ei}

|B|
i=1

 be the {0, 1}-binary sample weights, which represent whether the training 
examples are selected, we can get ei via the following equation:

Note that the diluted labels Z� are encoded with one-hot representation, and Z�
i,j

 denotes the 
j-th value of the i-th example of B at the �-th epoch of training. With the sample weights, 
the parameters � of DNN can be updated by stochastic gradient descent as:

where 𝓁(⋅) denotes a specified loss function during DNN’s training and ∇� represents the 
gradient with respect to � . The overall algorithm is summarized in Algorithm 1.

5  Experiments

This section examines the robustness of the proposed LEND by comparing it with several 
existing representative label noise learning methods. Therein, extensive experiments are 
conducted on commonly used image classification datasets, namely, CIFAR-10, CIFAR-
100, and Animal-10N. For CIFAR-10 and CIFAR-100, synthetic label noises with various 
noise types and levels are manually added. Animal-10N is a real-world noisy dataset, which 
is used to testify the effectiveness of our method in dealing with practical label noise.

5.1  Datasets

CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009) are used to verify the efficacy of our 
approach in dealing with symmetric and asymmetric label noise, which are popularly used 
for evaluating the learning methods with noisy labels (Han et al., 2018; Yu et al., 2019; 
Jiang et  al., 2018). Specifically, both datasets consist of 50,000 images for training and 
10,000 images for testing, and the image size is 32×32. The data in CIFAR-10 are classi-
fied into 10 categories, while CIFAR-100 considers a 100-category classification problem. 
Since all original datasets are clean, following the common setting in (Patrini et al., 2017), 
we utilize two representative structures of noise transition matrix to convert the original 
clean labels to noisy ones, which are

• Symmetric flipping (Van Rooyen et al., 2015): the labels are randomly flipped to all 
possible categories with a certain probability.

• Asymmetric flipping (Han et al., 2018): the labels are randomly flipped into similar 
classes (e.g., DEER ↔ HORSE , DOG ↔ CAT).

Animal-10N is a real-world noisy dataset with natural label noise. It is introduced by 
Song et al. (2019) first and is constituted by five pairs of confusing animals. The images are 

(6)ei = 1(ỹi = argmax
j

Z𝜏

i,j
).

(7)𝜃 ← 𝜃 − ∇𝜃

∑

(xi ,ỹi)∈B

ei�(f (xi, 𝜃), ỹi),
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crawled from several online search engines including Bing and Google using the predefined 
labels as the search keywords. All label noise on Animal-10N is introduced by human mis-
takes, and the overall noise rate is around 8% . In total, Animal-10N contains 50, 000 RGB 
images used for training and 5,  000 RGB images for testing, and the resolution of each 
image is 64 × 64.

5.2  Compared baseline methods

We compare the proposed method with the following representative label noise-robust 
learning algorithms:

• Standard, a simple baseline method, where DNNs with cross-entropy loss are directly 
trained on noisy datasets. It can be viewed as a competitor without tackling label noise.

• Co-teaching (Han et al., 2018), a representative sample selection-based method, which 
trains two networks in a collaborative way by back-propagating the peer error.

• GCE (Zhang & Sabuncu, 2018), a loss correction-based method where the generalized 
cross-entropy loss is used for training a robust neural network.

• JoCoR (Wei et al., 2020), a sample selection-based method that trains two networks 
and utilizes co-regularization to reduce the diversity of the two networks.

• SIGUA  (Han et al., 2020a), a gradient correction-based method, which adopts gradient 
descent on clean data while applying a learning-rate-reduced gradient ascent on noisy 
data.

Notably, for a fair comparison, the backbone network architectures are the same for our 
LEND and the compared baseline methods, and all methods are implemented by PyTorch.

5.3  Experiments on synthetic dataset

Implementation details For a fair comparison, all experiments are conducted on one 
Titan-V GPU. We employ ResNet-18 as the backbone network for all competitors. For our 
LEND, the model is trained under 200 epochs, and we adopt SGD with a momentum of 
0.9, a weight decay of 0.0005, and a batch size of 256. The initial learning rate is set to 
0.05, and divided by 10 after 100 epochs. Besides, if not specified, the trade-off parameter 
� in Eq. (2) is set to 0.99 by following (Iscen et al., 2017) and the momentum � in Eq. (5) 
is set to 0.9. We provide a parameter sensitivity analysis regarding � in Sect. 5.5. Figure 5 
provides us the examples of the noise transition matrix for both symmetric and asymmetric 
noise, where a five-class classification problem with the noise rate � = 0.4 is taken as an 
example.

Results on CIFAR-10 For CIFAR-10, we evaluate the proposed method with synthetic 
label noise, where symmetric label noise with the noise rates � ∈ {0.4, 0.5, 0.6} and asym-
metric label noise with the noise rates � ∈ {0.2, 0.3, 0.4} are included. We run five indi-
vidual trials for all compared methods under each noise level. Figures  6 and 7 plot the 
test accuracy versus the number of epochs regarding the symmetric and asymmetric cases, 
respectively. In all plots, we can clearly see the memorization effects of DNNs. For exam-
ple, the test accuracy of “Standard” first reaches a very high level since DNN will first 
fit clean labels. Over the increase of epochs, the deep network will over-fit noisy labels 
gradually, which decreases its test accuracy accordingly. By contrast, our LEND increases 
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steadily, verifying its effectiveness in alleviating the accuracy decreasing caused by the 
memorization effect.

In symmetric cases with low noise rate (e.g., Symmetric-40% and Symmetric-50% ), 
all label noise learning methods work better than“Standard”, which demonstrates their 
robustness. However, when encountering some difficult cases, such as the symmetric 
noise with 60% noise rate (Symmetric-60% ) and asymmetric cases, SIGUA and GCE 
suffer from significant accuracy drop, and GCE even performs worse than “Standard” 

Fig. 5  Examples of noise transi-
tion matrix of a symmetric noise 
and b asymmetric noise, where 
there are five classes in total and 
the noise rate is 0.4
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Fig. 6  The curves of test accuracy on CIFAR-10 dataset under symmetric noise for all compared methods. 
The colored curves show the mean accuracy of five trials, and the shaded bars denote the standard devia-
tions of the accuracies over five trials

Fig. 7  The curves of test accuracy on CIFAR-10 dataset under asymmetric noise for all compared methods. 
The colored curves show the mean accuracy of five trials, and the shaded bars denote the standard devia-
tions of the accuracies over five trials
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in the challenging asymmetric cases. By contrast, our LEND increases steadily over the 
increase of epochs and finally exceeds all compared methods with a large margin for all 
label noise cases, verifying the effectiveness of our method in dealing with both sym-
metric and asymmetric label noise.

Results on CIFAR-100 Similar to the experimental settings on CIFAR-10, symmet-
ric label noise with the noise rates � ∈ {0.4, 0.5, 0.6} and asymmetric label noise with the 
noise rates � ∈ {0.2, 0.3, 0.4} are considered. We run five individual trials for all compared 
methods under each noise level and report the average test accuracies and the correspond-
ing standard deviations of all compared methods. Tables 1 and 2 provide the experimental 
results of the symmetric cases and asymmetric cases, respectively. We observe that our 
proposed LEND is consistently the best method among all compared methods. In particu-
lar, our LEND outperforms “Standard” (a baseline method without tackling label noise) 
with a large margin, which demonstrates the significance of our LEND in handling label 
noise. It is worth noting that Co-teaching and JoCoR are both model prediction-based 

Table 1  Comparison with 
the representative methods 
on CIFAR-100 dataset under 
symmetric label noise. We report 
the best accuracy ( % ) and the 
averaged test accuracy ( % ) over 
the last ten epochs. The highest 
records are marked in bold

Method Symmetric flipping

40% 50% 60%

Standard Best 43.75±0.64 36.92±0.56 25.71±0.63
Last 33.24±0.41 21.80±0.38 15.33±0.32

Co-teaching Best 40.53±0.49 34.98±0.36 28.92±0.25
Last 38.40±0.45 30.45±0.21 24.79±0.11

GCE Best 43.68±0.04 40.17±0.26 40.34±0.37
Last 43.48±0.05 36.12±0.12 33.39±0.22

JoCor Best 45.89±0.80 40.86±0.62 38.25±0.52
Last 40.46±0.69 34.52±0.54 31.73±0.43

SIGUA Best 37.12±0.35 32.78±0.33 30.13±0.25
Last 36.20±0.25 32.46±0.14 29.66±0.12

LEND Best 52.71±0.21 44.37±0.26 42.63±0.18
Last 48.73±0.17 40.37±0.14 38.72±0.12

Table 2  Comparison with 
the representative methods 
on CIFAR-100 dataset under 
asymmetric label noise. We 
report the best accuracy ( % ) and 
the averaged test accuracy ( % ) 
over the last ten epochs. The 
highest records are marked in 
bold

Method Asymmetric flipping

20% 30% 40%

Standard Best 42.97±0.26 35.53±0.07 30.89±0.21
Last 41.52±0.17 34.29±0.17 29.43±0.12

Co-teaching Best 46.22±0.51 40.08±0.29 32.64±0.21
Last 46.22±0.25 39.59±0.61 31.49±0.19

GCE Best 50.71±0.57 48.22±0.67 45.36±0.55
Last 50.65±0.54 42.31±0.15 36.53±0.15

JoCor Best 46.40±0.42 40.34±0.47 34.07±0.15
Last 43.60±0.14 38.01±0.22 31.57±0.08

SIGUA Best 35.73±0.30 32.34±0.17 28.06±0.24
Last 34.82±0.18 31.13±0.10 27.97±0.15

LEND Best 61.95±0.07 54.32±0.17 49.62±0.21
Last 54.32±0.18 45.42±0.18 39.61±0.17
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methods, and the results also demonstrate the stronger robustness of the feature embedding 
over model prediction.

5.4  Experiments on real‑world dataset

Similar to the experimental settings on CIFAR-10, we run five individual trials for all com-
pared methods on Animal-10N. Note that we do not apply any data augmentation or pre-
processing procedures. Table 3 shows the average test accuracies and the corresponding 
standard deviations of all compared methods on Animal-10N. We can clearly see that our 
LEND achieves the highest classification accuracy among all comparators. Therefore, the 
proposed LEND is effective in handling real-world label noise.

5.5  Model behavior analysis

In this section, we investigate (1) the accuracy variation of our method with related to the 
increase of the batch size, (2) the parametric sensitivity of our approach to k, i.e., the num-
ber of nearest neighbors chosen during label noise dilution, and (3) the sensitivity of our 
method to the trade-off parameter �.

Sensitivity to the batch size As mentioned before, we compute a similarity matrix 
within each mini-batch, which is crucial to the label noise diffusion process. Therefore, it is 
worth validating the influence of the batch size on the performance of our LEND.

Figure 8a shows the experimental results of our LEND on CIFAR-10 dataset under 40% 
asymmetric label noise, with the batch size changing within {32, 64, 128, 256, 512} . We 
can see that, with the increase of the batch size, the accuracy of our LEND keeps rising 
and reaches stable gradually. The reason is that a large batch size can provide more reliable 
distribution information and benefits the model performance accordingly. Here, we observe 
that a batch size of 256 is sufficient to get a satisfactory performance.

Sensitivity to k. Similar to batch size, the number of nearest neighbors, i.e., k, is also a 
crucial factor to label noise dilution. Intuitively, a larger k is preferred, since more nearest 
neighbors carry more local information. Figure 8b shows the experimental results of the 
proposed method on CIFAR-10 dataset under 40% asymmetric label noise, with k changing 
within {2, 4, 6, 8, 10} . We can see that with the increase of k, the accuracy of our LEND 
keeps rising and reaches the highest record when k = 8 . However, our LEND shows a 
slight drop and significant oscillations when k keeps increasing. The reason is that more 
nearest neighbors will inevitably introduce more noisy examples that do not belong to the 
class of the examples in this local region. Therefore, we suggest k = 8 in our experiments.

Table 3  Comparison with the 
representative methods on 
Animal-10N. We report the 
averaged test accuracy ( % ) over 
the last ten epochs. The best 
record is marked in bold

Method Accuracy

Standard 66.8 ± 0.03

Co-teaching 69.7 ± 0.11

GCE 68.7 ± 0.04

JoCor 75.7 ± 0.12

SIGUA 74.0 ± 0.21

LEND 76.4±0.18
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Sensitivity to � . In our method, the trade-off parameter � plays a key role in tackling the 
label noise. To provide some guidelines for hyperparameter tuning, we show the curves of 
validation accuracy during training in Fig. 8c, given � within {0.5, 0.6, 0.7, 0.8, 0.9, 1.0} . We 
can observe that � = 0.9 leads to satisfactory performance.

6  Conclusion

In this paper, we reveal that the memorization effect induces a good feature embedding in the 
early stage of learning, and the embedded features show more robustness than the model pre-
dictions. Based on this observation, we further propose a simple yet effective feature embed-
ding-based label noise learning method, which can make full use of the memorization effect. 
To be specific, we propose to dilute the label noise with the help of the strong semantic infor-
mation retained in the embedded features. As a result, weak semantic information from misla-
beled data is overwhelmed by nearby correctly labeled ones, and then the corrected labels are 
further employed to train a robust classifier. Empirical results on both symmetric and asym-
metric label noise cases have demonstrated the effectiveness of the proposed LEND. In the 
future, it is worthwhile to explore more effective techniques to make full use of the robustness 
of feature embedding in the early learning stage.

Appendix: Detailed t‑SNE visualizations of training with noisy labels

Here, we provide more detailed visualizations of the features of training data on CIFAR-
10 under 45% asymmetric label noise. To be specific, we plot the t-SNE visualizations 
under {50, 100, 150, 200} epochs of training on Figs. {9,10,11,12}, respectively. ResNet-18 
is directly used to fit the noisy data, and the embedded features of the last hidden layer 
of the neural network are visualized by the t-SNE method. The ground-truth labels, 

Fig. 8  Model analysis on CIFAR-10 dataset under 40% asymmetric noise. a presents the analysis of the 
batch size. b shows the model performance when different k is selected. c provides the parameter sensitivity 
of �
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model-predicted labels, and original noisy labels are colored on subfigures (a), (b), and (c), 
respectively.

We have the following observations: 

Fig. 9  The t-SNE visualization of the training data under 50 epochs when training under 45% asymmetric 
label noise on CIFAR-10 dataset

(a) (b) (c)

Fig. 10  The t-SNE visualization of the training data under 100 epochs when training under 45% asymmetric 
label noise on CIFAR-10 dataset

(a) (b) (c)

Fig. 11  The t-SNE visualization of the training data under 150 epochs when training under 45% asymmetric 
label noise on CIFAR-10 dataset
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(1) When trained with noisy data, DNNs will gradually fit the noisy labels and lead to a 
good embedding1 with respect to noisy labels at last (see Fig. 12).

(2) In the early learning stage, the model predictions are able to recover the distribution 
of the ground-truth labels to some extent, but still make error-prone predictions (see 
Figs. 1 and  9).

(3) In the early learning stage, the embedded features induce a good embedding with 
respect to the ground-truth labels (see Figs. 1,  9, and 10).
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