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Abstract This study introduces a unified approach to

tackle challenges in both low-level and high-level vi-

sion tasks for image processing. The framework inte-

grates faster nonconvex low-rank matrix computations

and continuity techniques to yield efficient and high-

quality results. In addressing real-world image complex-

ities like noise, variations, and missing data, the frame-

work exploits the intrinsic low-rank structure of the

data and incorporates specific residual measurements.

The optimization problem for low-rank matrix learn-

ing is effectively solved using the nonconvex Proximal

Block Coordinate Descent (PBCD) algorithm, result-

ing in nearly unbiased estimators. Rigorous theoreti-

cal analysis ensures both local and global convergence.

The PBCD algorithm updates blocks of variables itera-

tively with closed-form solutions, adeptly handling non-
convexity and promoting faster convergence. Notably,

the framework incorporates the randomized singular

value decomposition (RSVD) technique and introduces

a continuous strategy for adaptive model parameter

updates. These strategic choices reduce computational

complexity while maintaining result quality. They offer

fine-tuned control over the desired rank of the learned
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matrix and enhance robustness in a straightforward

manner. Furthermore, the versatility of the proposed

nonconvex PBCD algorithm extends to handling prob-

lems with multiple variables, as supported by theoret-

ical analysis. Experimental evaluations, spanning vari-

ous image low-level and high-level vision tasks such as

inpainting, classification, and clustering, validate the

effectiveness and efficiency of our framework across di-

verse databases. The source code is available at https:

//github.com/ZhangHengMin/FNPBCD_LR.

In a nutshell, our framework provides a unified solu-

tion to tackle both low-level and high-level vision tasks

in images. By combining fast nonconvex low-rank ma-

trix learning with adaptive parameter updates, we achieve

efficient computation, yielding high-quality results that

demonstrate robustness against various types of noise.

The evaluations further endorse the reliability and ap-

plicability of our proposed framework.

Keywords Faster low-rank matrix learning · Non-

convex PBCD algorithm · Nonconvex relaxation

functions · Randomized SVD · Image low-level and

high-level vision

1 Introduction

In recent years, there has been a significant surge of in-

terest in the realms of low-rank matrix learning, sparse

coding, and group sparsity techniques. These methods

have proven to be powerful tools for addressing a wide

array of low-level and high-level vision tasks within the

realm of image processing and analysis. These tasks in-

clude but are not limited to image inpainting, classi-

fication, clustering, and more, as highlighted in vari-

ous studies [1–10]. These approaches leverage the in-

herent low-rank structure present in data matrices, al-

https://github.com/ZhangHengMin/FNPBCD_LR
https://github.com/ZhangHengMin/FNPBCD_LR
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lowing for the capture of underlying patterns and ex-

traction of informative representations. The combina-

tion of low-rank matrix learning with (group) sparse

coding [11–15] results in the desired low-rank matrix.

This effectively models residuals, capturing crucial in-

formation for tasks. Moreover, the integration of group

sparsity enhances the discriminative power and robust-

ness of the acquired representations. The joint opti-

mization of low-rank matrix learning, sparse coding,

and group sparsity provides accurate and efficient so-

lutions for various low-level and high-level vision tasks.

These tasks include inpainting of missing image regions

[16–18], image classification [19–23], and grouping and

clustering of similar images [24–27]. Naturally, the ap-

plication of these techniques tends to yield improved

performance, enhanced visual outcomes, and greater

overall reliability, making them valuable tools in the

areas of image processing and analysis.

1.1 Related Works

Building on recent advancements, this study delves into

the investigation of generalized and unconstrained min-

imization concerning learnable low-rank matrices. The

problem is formulated as follows:

minX,E Φλ,µ(X,E) = hλ(X) + f(E) + gµ(D; X,E), (1)

in which, λ > 0 and µ > 0 represent the regulariza-

tion and penalty parameters, respectively. The data

matrix is denoted as D, and the loss function f(E)

evaluates the model’s fitting to the data, considering

various types of noise [10, 11, 19, 28–32]. Simultane-

ously, the regularization term hλ(X) replaces the rank

function, rank(X), which equals the number of non-zero

singular values of matrix X, with convex or nonconvex

functions. The nonconvex nature of the rank function

presents a common challenge in finding a global mini-

mizer for solving Problem (1). To address this, a variety

of measurements can be employed for both hλ(X) and

f(E), enabling the consideration of different low-rank

structures and noise types. This versatility is illustrated

in Fig. 1, where the X-axis and Y-axis represent row

and column labels, leading to concrete problem formu-

lations related to the rank function. More specifically,

our focus centers on recent research addressing Prob-

lem (1), which revolves around the decomposition of

matrices into low-rank components along with additive

matrices or their linear combinations, as discussed in

[9]. This method provides a well-suited framework for

the assessment and ranking of diverse algorithms, each

characterized by its unique decomposition strategies,

loss functions, optimization problems, and solutions.
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Fig. 1 Visual comparisons of two common types of noise
and two common types of low-rank representation structures
using objective metrics.

As a result, this adaptability empowers the creation of

learnable models that can be customized to suit specific

application tasks.

To circumvent the complexities associated with han-

dling constraints, the penalty function gµ(D; X,E) com-

monly employs the squared Frobenius norm. This trans-

formation allows the problem to be recast into an un-

constrained form, diverging from the typical constrained

setup optimized using the alternating direction method

of multipliers (ADMM) with Lagrange multipliers, as

explored in [33–36]. Addressing the nonconvex nature

and its associated challenges in Problem (1), partic-

ularly related to the rank function, various existing

methods have been developed. These methods can be

categorized based on different perspectives, each offer-

ing unique advantages. In the following, we introduce

three widely adopted low-rank matrix learning meth-

ods, highlighting their distinctive viewpoints.

– Robust matrix completion (RMC) [39–41] is a tech-

nique devised to retrieve missing or corrupted en-

tries within a matrix, capitalizing on its low-rank

structure. The primary goal of this approach is to

identify a low-rank matrix X that minimizes the fol-

lowing constrained optimization problem:

minX,E λ‖X‖pSp + ‖PΩ(E)‖p`p s.t. D = X + E, (2)



Faster Nonconvex Low-rank Matrix Learning for Image Low-level and High-level Vision: A Unified Framework 3

Table 1 Several nonconvex relaxation function formulas of the `0-norm and their proximal operators used for Problem (1).

// `p-norm [20] MCP [37] SCAD [38]

hλ(·) λ|t|p.


λ|t| −

t2

2p
, |t| ≤ pλ,

1

2
pλ2, otherwise.


sign(t)max(|t| − λ, 0), |t| ≤ 2λ,

(p− 1)t− sign(t)λp

p− 2
, 2λ < |t| ≤ pλ,

t, otherwise.

Proxhλ(·)


0, |t| ≤ ν1,
argmint∈{0,t1}h(t), t > ν1,

argmint∈{0,t2}h(t), otherwise.


0, |t| ≤ λ,
t, |t| > pλ,

sign(t)
p(|t| − λ)

p− 1
, otherwise.



λ|t|, |t| ≤ λ,
1

2
λ2(p+ 1), |t| > pλ,

λp|t| − 1
2

(t2 + λ2)

p− 1
, otherwise.

where Ω represents the set of indices corresponding

to the observed entries in the data matrix. The pro-

jected operator PΩ(D) is defined as follows: PΩ(Dij) =

Dij if (i, j) ∈ Ω, and 0 otherwise. The formulation

usually incorporates the Schatten p-norm and `p-

norm with p > 0 to gauge the low-rankness of the

matrix X and the residuals in E, respectively. As

indicated in (2), the primary objective of RMC and

its various extensions is to leverage the assumption

of low-rankness for recovering missing entries while

mitigating the impact of outliers or corrupted data.

– Robust matrix regression (RMR) [22, 42–44] stands

out as a powerful methodology that blends the iden-

tification of structural noises using low-rank ma-

trices with the assessment of representation coeffi-

cients through sparsity and collaboration. However,

a notable drawback of RMR is its oversight of the

relationship between testing and training samples,
denoted as D and A, respectively. To overcome this

limitation, we here introduce a modified matrix re-

gression formulation:

minX,E λ‖X‖pSp +

n∑
i=1

‖M(Ei)‖pSp

s.t. D = AX + E, (3)

where Ei represents the column vector of the resid-

ual matrix E, andM(·) serves to transform a vector

into a matrix representation. This transformation

enables the incorporation of low-rank structures in

both the error measurements and representation co-

efficients, eliminating the need for relying on the in-

dependent and identically distributed assumption.

The utilization of the Schatten-p norm enhances the

classification framework’s flexibility and robustness,

offering various p-values that effectively handle and

capture underlying low-rank properties.

– Low-rank representation (LRR) [11, 25, 45] is an un-

supervised method employed to model high-dimensional

data by assuming its underlying low-rank structure,

accounting for column noise and variations. Given a

collection of data points {D1, . . . ,Dn}, where each

Di signifies a high-dimensional vector, the primary

goal is to identify a low-rank matrix X through the

following problem:

minX,E λ‖X‖pSp + ‖E‖p`2,p s.t. D = AX + E. (4)

In this formulation, ‖X‖p`2,p represents the `2,p-norm

of E, and A is a dictionary matrix comprising a set

of basis vectors or original data points. The central

objective of LRR is to identify a low-rank matrix X

capable of effectively reconstructing the data points

using the provided dictionary.

Crucially, Problem (1) serves as a cohesive frame-
work that unifies various low-rank learning methods,

encompassing Problems (2)-(4), and incorporating al-

ternative measurements for the objective terms like min-

imax concave penalty (MCP) [37] and smoothly clipped

absolute deviation (SCAD) [38], as illustrated in Ta-

ble 1. The inclusion of penalty function techniques al-

lows the transformation of these problems into uncon-

strained formulations, effectively imposing constraints

on the data fidelity term by capturing the discrepancy

between the observed data and the model’s predictions

[31, 46, 47]. Examining these methods through the lens

of Problem (1) provides a deeper exploration of their

strengths, limitations, and interconnections, facilitating

a detailed analysis of their characteristics and relation-

ships. This perspective proves invaluable for compre-

hensively understanding and analyzing these methods,

as elaborated in the following discussion.

– The main challenge presented by the nonconvex and

nonsmooth rank function in Problem (1) has led to
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the adoption of convex nuclear norm substitution

[48, 49]. The nuclear norm encourages low-rankness

by penalizing the sum of singular values, facilitating

efficient optimization algorithms based on factoriza-

tion strategies, such as minX=UV>
1
2 (‖U‖2F +‖V‖2F )

[50]. However, the nuclear norm tends to underesti-

mate the true rank and may not provide an unbiased

estimator in most cases.

To address this limitation, researchers have proposed

alternative norms, including nonconvex truncated

or weighted nuclear norms and Schatten p-norms

[25, 51–53]. These norms act as substitutes for the

nuclear norm and have demonstrated promising re-

sults across various applications. They introduce ad-

ditional parameters, offering more flexibility in con-

trolling the rank approximation and resulting in more

accurate rank estimations. Notably, the Schatten p-

norm has undergone extensive study with factor-

ization formulas for specific values of p, including

p ∈ {2/3, 1/2} [25, 40]. Additionally, some relax-

ations of the `0-norm1, such as the `p-norm [20],

MCP [37], and SCAD [38] of Table 1, have been

explored for singular values. These extensions can

directly promote sparsity in the spectrum of singu-

lar values [21, 53], encouraging the preservation of

a small number of dominant singular values while

suppressing the remaining ones.

– The choice of an appropriate loss function for Prob-

lem (1) is pivotal in quantifying the dissimilarity

between observed data and model predictions, es-

pecially when dealing with diverse types of noise. In

practical applications, both convex and nonconvex

norms are employed in loss functions to capture the

specific characteristics of the noise distribution [22,

42, 54, 55]. For instance, the `1-norm is commonly

used to model noise following a Laplace distribution,

while the `2-norm is suitable for noise following a

Gaussian distribution. The `2,1-norm proves effec-

tive in the presence of column sparse noise, and the

total variation norm is widely employed to promote

piecewise smoothness and preserve edges in images.

It’s essential to note that nonconvex norms, such as

the `p-norm, `2,p-norm, and Schatten p-norm with

0 < p < 1, have also demonstrated efficacy in han-

dling specific noise patterns.

Incorporating these nonconvex norms and extend-

ing them to measure specific loss functions becomes

1 The parameter choices are as follows: `p-norm with 0 <
p < 1, MCP with p > 1, and SCAD with p > 2. The proximal
operators for `p-norm are defined by ν1 = ν+λp|ν|p−1, where

ν = [λp(1 − p)]
1

2−p . Additionally, t1 and t2 are the roots of
h(s) = (s − t) + λp|s|p−1sign(s) = 0 at ν < s < t and
t < s < −ν, respectively.

crucial for achieving more accurate and robust mod-

eling, particularly when dealing with various noise

styles, as exemplified in Problems (2)-(4) together

with Fig. 1 (a)-(c). Leveraging these nonconvex norms

has empirically shown significant improvements in

image low-level and high-level vision tasks.

– The inclusion of penalty function strategies in Prob-

lem (1) plays a crucial role in crafting effective and

efficient optimization algorithms, such as proximal

alternating linearized minimization (PALM) [56] and

scalable proximal Jacobian iteration method (SPJIM)

[47]. These strategies prove particularly adept at

addressing various types of noise or a combination

thereof. The primary aim of these penalty functions

is to impose constraints on model parameters or so-

lutions, serving objectives like variable reduction,

model simplification, computational complexity re-

duction, and ensuring convergence properties [25,

56, 57]. Additionally, penalty functions allow for the

integration of prior knowledge or assumptions about

the underlying data structure, striking a balance

between algorithm design and an accurate repre-

sentation of noise characteristics. Furthermore, the

avoidance of introducing some auxiliary variables,

achieved through the penalty function gµ(D; X,E)

derived from the equality constraints in Problems

(2)-(4), is often employed as a strategy to enhance

the optimization process. This approach facilitates

problem formulation and enables efficient solution

methods. Our work stands out from existing algo-

rithms like ADMM, PALM, and SPJIM by intro-

ducing a unified optimization scheme tailored for

low-rank matrix learning problems and applications

in image low-level and high-level vision.

To gain a deeper understanding of (group) sparse

coding and low-rank matrix learning within the context

of Problem (1), we extend our exploration to encompass

various nonconvex relaxations, as outlined in Table 1,

rather than limiting our focus to a specific function. Our

aim is to develop faster optimization algorithms adept

at efficiently addressing Problems (2)-(4). In these algo-

rithms, we exclusively employ the Schatten p-norm for

low-rank matrix regularization, incorporating the `p-

norm, `2,p-norm, and Schatten p-norm for residual ma-

trix regularization. This comprehensive iterative frame-

work finds applications in diverse image low-level and

high-level vision tasks. Moreover, the utilization of the

Schatten-p norm enhances correlation and adaptabil-

ity for structural analysis. In our approach, variable

updates are accomplished through the application of

proximal operators, a common practice in iterative pro-

cedures [35, 58]. To streamline this process, we provide
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Fig. 2 Visual comparisons of the plotted nonconvex func-
tions under p ∈ {0, 1/2, 2/3, 1.0} and their proximal operators
related to `p-norm in (a) and (b).

generalized proximal operators applicable in all three

cases studied in this work:

Proposition 1 Let f(·) be a proper and lower semi-

continuous function defined on the entries or singular

values (e.g., ei) of a vector or the column vectors (e.g.,

E:,i) of a matrix. The Proxfµ(·) can be obtained by
argminef(e) +

µ

2
‖e− t‖22, (5)

argminE

∑
i

f(‖E:,i‖2) +
µ

2
‖E−T‖2F , (6)

Here, f(·) represents a nonconvex relaxation of the `0-

norm, `2,0-norm, or rank function. The proximal oper-

ators for both (5) and (6) are denoted as follows:
Proxfµ(t) =

[
Proxfµ(t1), ......,Proxfµ(tn)

]
, (7)

Proxfµ(T) =
[
Proxfµ(T:,1), ......,Proxfµ(T:,n)

]
, (8)

where we have

Proxfµ(T:,i) =

{
0, T:,i = 0,
Proxhλ(‖T:,i‖2)
‖T:,i‖2 T:,i, otherwise.

(9)

This proposition outlines a scalable and manageable

strategy for computing the proximal operator associ-

ated with various non-convex functions f(·) in Prob-

lems (2)-(4). To the best of our knowledge, the proxi-

mal operator plays a crucial role in promoting (group)

sparsity and low-rankness through the functions listed

in Table 1 and their extensions, all of which can be

computed using Proposition 1. This computation ap-

proach proves highly efficient for solving a variety of

problems and achieving desirable properties.

To highlight the distinctions, we present visualiza-

tions of the curves corresponding to the listed functions:

specifically, the `p-norm under p ∈ {0, 1/2, 2/3, 1.0} and

their respective proximal operators in Fig. 2 (a) and
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Fig. 3 Visual comparisons of the nonconvex `p-function un-
der p ∈ {0, 1/2, 2/3, 1.0} through the manifold of constant
penalties for a symmetric 2× 2 matrix in (a)-(d).

(b), as well as the manifold of constant penalties for

a symmetric 2 × 2 matrix in Fig. 3 (a)-(d). Our pri-

mary focus centers on four distinct p-values, with an

emphasis on the `p-norm due to its widespread usage in

sparse coding and low-rank matrix recovery. These visu-

alizations provide valuable insights into the variations

and characteristics of the nonconvex functions. When

obtaining closed-form or analytic solutions proves chal-

lenging, researchers have extensively explored the weighted

formulation of nonconvex functions, as previously stud-

ied [52, 53, 59]. This approach offers a flexible way to

address complex optimization problems and achieve de-

sirable properties, even when explicit solutions are not

readily available, by introducing appropriate weightings

based on the computable supergradient.

1.2 Main Contributions

Examining the landscape of low-rank matrix recovery,

it is clear that the field confronts various common lim-

itations that impact diverse aspects, including evalu-

ation efficacy, computational efficiency, robustness, in-

terpretability, and generalization. Then, we categorize

these challenges into three main directions, closely align-

ing with the primary contributions of this work. The

following succinctly summarizes these areas.
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– Improvement for Computational Efficiency:

To address the limitations inherent in existing iter-

ative algorithms for low-rank matrix learning prob-

lems (1)-(4), we propose the adoption of a continu-

ation strategy and RSVD to augment the computa-

tional efficiency of the nonconvex PBCD algorithm.

Firstly, the continuation strategy involves gradually

increasing the penalty parameter value in each it-

eration until it reaches a predetermined maximum

threshold. This incremental approach promotes faster

convergence and reduces the computational burden

by capitalizing on closed-form solutions for updat-

ing each variable. Secondly, the RSVD technique en-

ables the factorization of small-scale matrices, lead-

ing to a more efficient solution with fewer auxil-

iary variables compared to traditional factorization

methods. By incorporating these strategies, we can

significantly reduce computation time and improve

overall feasibility, making the approach more suit-

able for addressing large-scale problems encountered

in image low-level and high-level vision tasks. This

combination contributes to the enhanced computa-

tional efficiency and scalability of the proposed ap-

proach, enabling its successful applications.

– Robustness to Noise and Variation: Real-world

data is often subjected to multiple sources of noise

and variations, each characterized by specific fea-

tures captured in the function f(E). These factors

exert a significant impact on the performance of im-

age low-level and high-level vision tasks, necessitat-

ing the development of noise models and suitable

residual functions based on the `p-norm, `2,p-norm,

and Schatten p-norm with 0 < p < 1 in Problems

(2)-(4). By carefully considering these factors, we

can accurately assess and mitigate the effects caused

by various noise sources, as illustrated in Fig. 1.

Moreover, the integration of data-driven strategies

enhances robustness by adapting to diverse data

distributions and effectively handling outliers. To

further validate the effectiveness of the proposed

methods, this work focuses on conducting a com-

prehensive robustness analysis and validation across

diverse data. This related analysis provides empiri-

cal evidence for handling various noise sources and

variations, ensuring the practical applicability and

reliability of our methodology.

– Interpretability and Generalization: Ensuring

the interpretability and generalization capabilities

of learnable low-rank models derived from Prob-

lem (1) is crucial for their practical utility in var-

ious low-level and high-level vision tasks. In this

work, our focus is on incorporating both the rank

of the coefficient matrix X and the representation

error matrix E to uncover underlying patterns and

structures. By utilizing the nonconvex and specific

function gµ(D; X,E) in the objective terms, our aim

is to provide meaningful insights and interpretable

representations. This approach not only yields ac-

curate predictions or reconstructions but also offers

understandable illustrations, enabling further anal-

ysis and informed decision-making to some extent.

Moreover, the developed methods go beyond achiev-

ing accurate results and focus on strong general-

ization capabilities. This is accomplished through

an extended iteration procedure of the nonconvex

PBCD algorithm and the utilization of RSVD for

learning low-rank models in Problems (2)-(4). To

validate the superiority of the proposed methods,

comprehensive experimental validations and com-

parative analyses are conducted, showcasing the bet-

ter evaluation performance.

Building upon the statements above, we have high-

lighted the real challenges that substantiate the au-

thor’s work from two distinct perspectives:

– Tackling these challenges is vital for the progression

of the field. The incorporation of nearly unbiased es-

timators takes center stage as a crucial effort, play-

ing a pivotal role in improving recovery and recon-

struction capabilities. Simultaneously, the introduc-

tion of a unified framework for addressing multiple

rank-relaxed problems emphasizes its importance,

promising wide applicability across diverse scenar-

ios. Moreover, the creation of an efficient and ef-

fective nonconvex optimization algorithm, coupled

with the assurance of both local and global conver-

gence guarantees, emerges as a critical pursuit. This

not only ensures the practicality of our methods but

also establishes a robust theoretical foundation.

– Attaining nearly unbiased estimators involves sur-

mounting statistical complexities and ensuring a high

level of accuracy in the estimation processes, adding

an additional layer of intricacy to the overall task.

The creation of a unified framework requires a com-

prehensive understanding of diverse rank-relaxed prob-

lems, demanding sophisticated theoretical and com-

putational frameworks. Similarly, developing a non-

convex optimization algorithm that ensures conver-

gence guarantees is a challenge, involving navigating

the complex landscape of optimization theory and

reconciling local and global convergence properties.

The difficulty lies in striking a delicate balance be-

tween recovery precision, computational efficiency,

and theoretical robustness, amplifying the complex-

ity of these endeavors in pushing the boundaries of

current low-rank matrix learning approaches.
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1.3 Outline of this work

The structure of this work unfolds as follows: In Section

2, we introduce the unified formulation of the low-rank

matrix learning problem and present efficient and effec-

tive optimization algorithms. This section encompasses

a wide array of crucial techniques, offering detailed al-

gorithm designs for the proposed approaches. It par-

ticularly emphasizes the relevance of low-rank matrices

in addressing various image low-level and high-level vi-

sion tasks. Moving on to Section 3, our focus shifts to

the analysis of the nonconvex PBCD algorithm, provid-

ing provable convergence guarantees at both local and

global levels. This section delves into the theoretical

aspects of the algorithm, enhancing our understanding

of its workings. In Section 4, we extend the proposed

nonconvex PBCD algorithm to handle problems with

multiple variables, supplementing the explanation with

illustrative examples to aid comprehension. Section 5

is dedicated to presenting experimental results on im-

age inpainting, classification, and clustering tasks. We

include ablation analysis to showcase the effects from

several aspects, demonstrating the superiority of our

approach in terms of accuracy and efficiency. These ex-

perimental results further offer empirical evidence sup-

porting our claims. Finally, in Section 6, we conclude

this work by summarizing the key findings and con-

tributions. We also engage in discussions on future re-

search areas for further improvements, highlighting po-

tential directions for exploration.

2 Nonconvex PBCD Algorithm

To simplify the resolution of the nonconvex low-rank

matrix learning Problem (1), we suggest an approach

that involves introducing auxiliary variables X̂ and Ê.

This reformulation allows us to express the problem

without constraints, leading to the expression:

minX,E,X̂,Ê Φλ,µ,φX,φE
(X,E, X̂, Ê)

= hλ(X) + f(E) + gµ(D; X,E)

+
φX
2
‖X− X̂‖2F +

φE
2
‖E− Ê‖2F , (10)

where we establish the following assumptions to guide

the proposed approach:

(A1 ) Both hλ(·) and f(·) are proper, closed, non-

negative, and lower semi-continuous functions.

(A2 ) The function gµ(D; ·, ·) is a C1 function.

As described in Problems (2)-(4), the functions hλ(·)
and f(·) play a role in inducing desired structures. While

convex norms like the nuclear norm, `1-norm, and `2,1-

norm are commonly used, we refrain from considering

them in this work due to their tendency to introduce

biased estimators. The stated assumptions (A1 ) and

(A2 ) have broad applicability in the realm of noncon-

vex optimization problems, where the objective func-

tion often combines nonconvex and convex differentiable

terms. Unlike existing algorithms for such problems, we

integrate proximal terms with two parameters, φX > 0

and φE > 0, and address Problem (10) instead of di-

rectly approaching Problem (1). This specific choice

stems from our objective to devise a nonconvex PBCD

algorithm that efficiently solves subproblems using the

closed-form solutions and minimizes the computational

load associated with variable computations. Most im-

portantly, we need to provide a more detailed explana-

tion and justification for choosing PBCD over ADMM,

focusing on two key aspects:

– Unlike the PBCD algorithm, the ADMM algorithm

often requires updates for a larger number of vari-

ables when dealing with constrained problems. Prov-

ing convergence properties, especially in terms of

global guarantees, is generally more challenging [45,

57]. Moreover, attaining superior efficiency through

acceleration techniques poses inherent challenges.

These considerations have propelled our quest for

a specialized solver crafted to handle nonconvex op-

timization problems, particularly those associated

with low-rank matrices.

– In contrast, our aim was to introduce an effective

and efficient implementation of the nonconvex al-

gorithm, complemented by dual acceleration tech-

niques [44]. This tailored approach, namely the PBCD

algorithm, is crafted to address unified nonconvex

low-rank matrix learning problems without constraints.

The novelty is supported by thorough and prov-

able convergence results, enhancements in compu-

tational efficiency, and rigorous validations.

In this work, our proposed approach exhibits dis-

tinctive iterative characteristics that demonstrate effec-

tiveness and efficiency when compared to widely used

methods, including ADMM and its variants [18, 34–36],

commonly applied to constrained problems. Addition-

ally, we benchmark against PALM [56] and SPJIM [47],

which primarily target unconstrained problems. Draw-

ing insights from these pertinent minimization prob-

lems and optimization algorithms, we address two key

considerations in the development of our approach:

– Convergence to Problem (1): As the proximal

parameters φX and φE approach zero, the solution

of Problem (10) converges to the solution of the orig-

inal Problem (1). A crucial perspective to consider

is that theoretical analysis provides additional sup-

port for this assertion. It suggests that the approxi-
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mate solution derived through the optimization pro-

cess closely approximates the solution of the origi-

nal problem, affirming convergence to the desired

outcome. This analytical insight also reinforces our

confidence in the effectiveness and reliability of the

proposed methodology.

– Higher Efficiency in Optimization: By incorpo-

rating proximal terms, a continuation strategy, and

RSVD into the iteration procedures of the PBCD

algorithm, we can obtain closed-form solutions with

a reduced number of variables. This strategy sub-

stantially boosts computational efficiency by mini-

mizing the computational load at each iteration. As

a result, it accelerates convergence and markedly

enhances the overall efficiency of the optimization

process, particularly for applications in image low-

level and high-level visual tasks.

To address the aforementioned concerns, we furnish

theoretical guarantees that validate the efficacy of our

approach in capturing the desired solution and illumi-

nate the relationship between Problems (1) and (10).

Additionally, we introduce an optimized algorithm tai-

lored specifically for Problem (10). This algorithm har-

nesses advanced techniques and capitalizes on the dis-

tinctive features of the problem to bolster computa-

tional efficiency, enhance convergence towards a high-

quality solution, and ensure the practical feasibility of

Problems (2)-(4) through a unified approach.

Remark 1 Contrasting convex scenarios, nonconvex in-

stances introduce a nearly unbiased estimator, as rigor-

ously established in [60]. Delving into their convergence

properties, nonconvex variants are associated with ver-

ifiable challenges [61]. These challenges span the suf-

ficient decrease property, global subsequential conver-

gence, and global convergence of the entire sequence. In

contrast, convex formulations relying on nuclear norm

minimization problems, being convex, typically exhibit

the local convergence property, inherently implying global

convergence [18] with theoretical assurances.

2.1 Relations between (1) and (10)

By considering Problems (1) and (10) along with the

nonnegativity property of the proximal terms and model

parameters, we observe that the inequality

Φλ,µ,φX,φE
(X,E, X̂, Ê) ≥ Φλ,µ(X,E) (11)

holds easily, and equality holds only if φX = φE = 0.

This implies that the objective function value of Prob-

lem (10) is always greater than or equal to the objec-

tive function value of Problem (1). Therefore, solving

Problem (10) provides an upper bound for the optimal

objective value of Problem (1). Additionally, for any

given ε > 0, by carefully choosing the proximal param-

eters φX and φE, we can ensure that

Φλ,µ,φX,φE
(X,E, X̂, Ê) ≤ Φλ,µ(X,E) + ε (12)

also holds. As ε approaches 0, the solution obtained

by solving Problem (10) serves as an approximation

to the solution of Problem (1). This approximate solu-

tion can be used as a surrogate solution based on the

Majorization-Minimization (MM) strategy, as studied

in [62–64]. The goal of this analysis is to establish the re-

lationships between the various objective values and ap-

proximation solutions involved. Here, let (X∗o,E
∗
o) and

(X∗,E∗) be the optimal solutions to Problems (1) and

(10), respectively. Using the aforementioned inequali-

ties (11) and (12), we can deduce that

0 ≤ Φλ,µ(X∗,E∗)− Φλ,µ(X∗o,E
∗
o)

≤ Φλ,µ,φX,φE
(X∗,E∗, X̂, Ê)

− Φλ,µ,φX,φE
(X∗o,E

∗
o, X̂, Ê) + ε ≤ ε. (13)

This inequality demonstrates that the optimal solu-

tion (X∗,E∗) obtained from solving Problem (10) is

ε-optimal for the optimization Problem (1). In other

words, solving Problem (10) not only provides an upper

bound for Problem (1) but also guides the approxima-

tion of the optimal solution of Problem (1).

2.2 Iteration Procedures for Problem (10)

To optimize Problem (10), we utilize the nonconvex

PBCD algorithm, which iteratively minimizes the ob-

jective function by updating blocks of variables while

keeping others fixed, following a specific update scheme.

The iterations can be summarized as follows:

Xk+1 = argminX hλ(X) + gµ(D; X,Ek)

+
φX
2
‖X−Xk‖2F , (14)

Ek+1 = argminE f(E) + gµ(D; Xk+1,E)

+
φE
2
‖E−Ek‖2F , (15)

where Xk and Ek represent the variables at the k-th

iteration. Then, we have a direct consequence from (14)

and (15), represented as

hλ(Xk+1) + gµ(D; Xk+1,Ek) +
φX
2
‖Xk+1 −Xk‖2F

≤ hλ(X) + gµ(D; X,Ek) +
φX
2
‖X−Xk‖2F ; (16)
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f(Ek+1) + gµ(D; Xk+1,Ek+1) +
φE
2
‖Ek+1 −Ek‖2F

≤ f(E) + gµ(D; Xk+1,E) +
φE
2
‖E−Ek‖2F . (17)

The iteration procedures in this algorithm are inten-

tionally designed to be simple and easily understand-

able, setting it apart from some first-order optimization

algorithms. To expedite computations at the (k+ 1)-th

iteration, we rely on both (16) and (17), incorporating

proximity operators or analytic solvers as outlined in

Table 1. Our primary focus is the efficient optimiza-

tion of (14) and (15), achieved through Algorithm 1,

with d being the fixed or known rank number and µ0 =

µ̂/‖D‖2. Moreover, specific measurement criteria for

hλ(X) and f(E) are determined by considering the cor-

relation between different low-rank structures and noise

styles. These proper measurements play a crucial role

in optimizing the objective function by incorporating

the data fidelity term, especially in relation to the def-

inition of the penalty function. For RMC, the penalty

function is defined as gµ(D; X,E) = µ
2 ‖X + E−D‖2F .

On the other hand, both LRR and RMR employ the

penalty function gµ(D; X,E) = µ
2 ‖AX + E − D‖2F .

This diversity in constructing the matrix A leads to

the exploration of various studies focusing on both sin-

gle and multiple subspace models, as well as supervised

and unsupervised learning tasks.

2.2.1 Solving (14) for Learnable Low-rank Matrix

To obtain closed-form solutions, we approach the prob-

lem by employing specific formulations of gµ(D; X,E)

tailored to three distinct minimization problems (2)-

(4). These formulations are derived based on different

low-rank structures and residual measurements. The so-

lutions are presented as follows:

– For RMC, the closed-form solution is derived by

Xk+1 = argminX hλ(X)

+
φX + µ

2
‖X− φXXk + µ(D−Ek)

φX + µ
‖2F . (18)

– For LRR and RMR, the closed-form solution can

also be achieved as (18), while we need to linearize

the quadratic term for gµ(D; X,Ek) at Xk and adding

a proximal term, it can be denoted as

µ

2
‖AX + Ek −D‖2F

=
βXµ

2
‖X−Xk‖2F +

µ

2
‖AXk + Ek −D‖2F

+ 〈X−Xk, µA>(AXk + Ek −D)〉

=
βXµ

2
‖X− ĝµ,βX

(D; Xk,Ek)‖2F + C, (19)

Algorithm 1 Nonconvex PBCD with RSVD
Input: D, X0, E0

Parameter: λ, p, r, ρ, µ0 and k = 0
Output: X∗ ← Xk+1

1: while not converged do
2: if facing RMC then
3: update Xk+1 by combining (18) with (22);
4: else
5: update Xk+1 by combining (21) with (22);
6: end if
7: update Ek+1 by combining (23) with Proposition 1;
8: end while

where we set βX = 1.05 × max(eig(A>A)) from

[36, 43, 47, 56] commonly used as a proximal pa-

rameter and C is a constant unrelated to X, and

for notational simplicity, we define

ĝµ,βX
(D; Xk,Ek)

= Xk −
1

βX
A>(AXk + Ek −D). (20)

Combining (14) with both (19) and (20), we can

easily derive the following expression:

Xk+1 = argminX hλ(X) +
φX + βXµ

2

× ‖X− φXXk + βXµĝµ,βX
(D; Xk,Ek)

φX + βXµ
‖2F . (21)

The primary challenge in addressing the subprob-

lems (18) and (21) is the computation of proximal op-

erators, which encompasses rank relaxations and often

involves performing the full SVD. However, direct com-

putation of all singular values can be computationally

demanding, especially for large-scale matrices. To ex-

pedite the update of Xk+1 and enhance efficiency, we

introduce an acceleration technique known as RSVD.

This strategy alleviates computational complexity, lead-

ing to faster updates of Xk+1. Formally, we describe

both the proximal operator and RSVD as follows:

Proposition 2 Assume that rank(X) = r < d ≤ min

(m,n), Q ∈ Rm×d is an orthogonal matrix satisfying

Q>Q = I, and Y ∈ Rd×n such that X = QY. Then,

the proximal operator Proxhλ(Q>Z) is the solution to

Proxhλ(Q>Z) = argminYhλ(Y) +
1

2
‖Y−Q>Z‖2F , (22)

where we have hλ(Y) =
∑d
i=1 hλ(σi(Y)), ‖X− Z‖2F =

‖Y−Q>Z‖2F , and the matrices X and Y have the same

singular values. Thus, by finding the optimal Y∗ =

Proxhλ(Q>Z), we have the desired matrix X∗ = QY∗.

It is well-known that the RSVD is an efficient tech-

nique that involves randomly projecting a large-scale

matrix onto a lower-dimensional subspace. Subsequently,
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it computes an approximate singular value decomposi-

tion (SVD) using the orthogonal basis matrix Q and

the QR decomposition associated with that subspace

to learn X, as outlined in Proposition 2. The de-

tailed computation process is provided in Algorithm

2, where Ŷ represents the given large-scale matrix. By

leveraging RSVD, the computational complexity is sig-

nificantly reduced, especially when d ≤ min(m,n), as it

requires fewer singular values to be calculated, result-

ing in faster running times. This scalable and tractable

formulation underscores the importance of the prox-

imal operator in finding the optimal solution and ap-

proximating the matrix using generalized singular value

thresholding (GSVT) [17, 65]. Algorithms employing

such proximal operators, extended from Equation (22),

have gained popularity in addressing large-scale low-

rank matrix problems due to their superior performance

compared to existing techniques like the power method

[66] and PROPACK [67].

2.2.2 Solving (14) for Learnable Residual Matrix

The utilization of proximal operators plays a crucial

role in effectively solving minimization problems that

involve the relaxations of the `0-norm, `2,0-norm, and

rank function. These operators serve as powerful tools

for promoting (group) sparsity and low-rankness, al-

lowing us to approximate optimization problems and

facilitate efficient computation. By leveraging these op-

erators, we can derive the following update for E:

Ek+1 = argminE f(E)

+
φE + µ

2
‖E− φEEk + µ(D−AXk+1)

φE + µ
‖2F , (23)

where it is important to note that certain methods, such

as RMC, use a fixed matrix A set to I. However, meth-

ods like LRR and RMR derive the matrix A from clus-

tering and training samples, as extensively studied in

[35, 40, 47]. This difference in constructing the matrix

A highlights the diversity of techniques used in the field

of existing low-rank matrix learning problems.

The update equation incorporates the desired (group)

sparsity and low-rank properties, enabling efficient and

effective computation of the solution in a standard par-

allel manner for E and approximation of the underlying

optimization problem. Building upon the use of non-

convex functions for coefficient measurements, such as

the `p-norm, MCP, SCAD, and their extensions from

Table 1 to relax the `0-norm, `2,0-norm, and rank func-

tion, we employ these functions to measure f(E) and

capture various noise styles illustrated in Fig. 1. The

use of these processing methods enables efficient com-

putation and optimization of the problems, as discussed

Algorithm 2 RSVD for Problems (18) and (21)

Input: large-scale matrix Ŷ
Parameter: trunction rank number r;
power of iteration s; oversmpling parameter t;
Output: Y∗

1: ny ← size(Ŷ, 2)
2: P← randn(ny, r + t)

3: Z← ŶP
4: while k = 1 to s do
5: Z← Ŷ(Ŷ>Z)
6: end while
7: [Z1,Z2]← qr(Z, 0)

8: Ȳ ← Z>1 Ŷ;
9: [UȲ,S,V]← SVD(Ȳ, ‘econ′);

10: U← QUȲ;
11: ss = diag(S);
12: vv = GSVT(ss, p, λ);
13: indx = find(vv);
14: Y∗ = U(:, indx)diag(vv(indx))V(:, indx)>;

in [21, 35, 40, 68]. The use of proximal operators serves

as a powerful tool for solving these problems and guar-

antees the existence of closed-form solutions, as stated

in Proposition 1 for higher computational efficiency.

2.2.3 Speed-up with Continuation Strategy

Different from the RSVD technique aimed at reduc-

ing computational complexity at each iteration, Algo-

rithm 1 can be further accelerated from a different

perspective. Specifically, to enhance the convergence

of the alternating scheme with update rules (14) and

(15), a continuation strategy for the penalty parameter

µ can be employed. This strategy, inspired by [16, 17,

45, 53], involves gradually increasing the penalty pa-

rameter during the optimization process. The rate of

increase is controlled by a parameter ρ > 1, which al-

lows for a decrease in the total number of iterations

required, and larger values of ρ result in faster conver-

gence speed while causing lower solution quality. Then,

it is easy to achieve

µk+1 = min(ρµk, µmax), (24)

where by adopting this strategy, the algorithm can ef-

ficiently navigate the optimization landscape and con-

verge to the desired solution. We set the initial value of

µ to a small positive value and increase it at each itera-

tion until it reaches a pre-defined maximum threshold.

This continuation strategy promotes faster convergence

and reduces the computational burden while still ensur-

ing high-quality solutions. Especially, as µk approaches

the maximum value, the penalty function gµ(D; X,E)

decreases, and the objective problem can be approxi-

mately transformed into a constrained problem as de-

scribed in Problems (2)-(4). To better enhance compre-
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Algorithm 3 Algorithm 1 with Continuation
Input: D, X0, E0, µmax

Parameter: λ, p, d, ρ, µ0 and k = 0
Output: X∗ ← Xk+1

1: while µ < µmax do
2: update (Xk+1,Ek+1) by Algorithms 1 and 2;
3: update µk+1 by ρµk with ρ > 1;
4: end while

hension, we further consolidate the presented iteration

procedures into a unified framework, as depicted in Al-

gorithm 3. This algorithm efficiently accelerates the

convergence speed of iterations for solving the general

problem formulation (10).

2.2.4 Analysis of Computational Reduction Techniques

To demonstrate a more in-depth discussion regarding

the differences and a thorough comparison of the pro-

posed acceleration strategies, we further highlight both

the advantages and limitations, offering a more com-

prehensive perspective on the main contributions and

superior performance of our proposed techniques from

two following analysis.

– On the one hand, we introduce a sophisticated ap-

proach that integrates a continuation strategy and

RSVD to enhance the computational efficiency of

the nonconvex PBCD algorithm, as the extension of

[17, 61]. This fusion notably improves the computa-

tional efficiency and scalability of our proposed ap-

proaches, facilitating its successful application across

various low-rank matrix learning problems.

– On the other hand, we formulated RSVD based on
an optimization algorithm, steering clear of the in-

troduction of excessive variables. This deviates from

traditional matrix factorization strategies [8, 25, 40,

46]. Additionally, the adoption of the continuation

strategy proves advantageous by limiting the num-

ber of iterations, setting it apart from extrapolation

and Nesterov’s techniques [21, 47, 69], which involve

additional variables.

It is essential to engage in a comprehensive discus-

sion to address potential challenges and intricacies asso-

ciated with implementing and discussing our proposed

complexity reduction strategies. Subsequently, we will

delve into a detailed explanation of these strategies,

considering four key aspects as follows:

– Algorithmic Integration: Integrating RSVD and con-

tinuity techniques demands meticulous algorithmic

integration. Ensuring seamless collaboration between

these components may present challenges in terms

of synchronization and proper functioning. Careful

consideration and testing are necessary to guaran-

tee the smooth interaction and mutual effectiveness

of these algorithmic elements.

– Algorithmic Stability: Addressing the stability of

the overall algorithm becomes paramount when com-

bining RSVD and continuity techniques. The poten-

tial emergence of instabilities or convergence issues

underscores the need for developing strategies that

enhance the stability of the algorithm. Robustness

in the face of various scenarios and datasets is es-

sential for the algorithm’s reliability.

– Acceleration Scalability: Noting that computational

complexity reduction strategies scale effectively with

larger datasets or more intricate tasks is impera-

tive. Challenges may arise in maintaining efficiency

and computational speed as the scale of the problem

increases. Therefore, achieving scalability is crucial

for the applicability of these strategies to real-world,

large-scale scenarios.

– Parameter Tuning: Observing that fine-tuning pa-

rameters for RSVD and continuity techniques to

attain optimal performance can be a nuanced task.

The delicate interplay between these hyper-parameters

requires careful consideration to strike the right bal-

ance for efficient complexity reduction. Thorough

experimentation and validation are essential to iden-

tify parameter choices that lead to optimal results.

As a whole, our main objective is to enhance read-

ers’ understanding by incorporating these improvements

and providing detailed explanations that elaborate on

the analysis of computational complexity reduction. This

integration is naturally designed to make the central

contributions of this work more accessible and compre-

hensible to the readers.

2.2.5 Stopping Condition

The iteration procedure in Algorithms 1 and 3 does

not involve an inner loop. We initialize the primal vari-

ables and the associated parameters using the technique

suggested in [25, 36, 40]. To terminate the algorithms,

we compute the stopping criterion as follows:

‖Xk+1 −Xk‖F
‖Xk‖F

< ε, (25)

where 0 < ε � 1. Once this criterion is met, implying

that the change in X between consecutive iterations is

sufficiently small, the algorithms will be terminated in

solving revised Problems (2)-(4), efficiently. Thus, the

proposed algorithm effectively achieves the desired low-

rank matrices. This successful attainment is a critical

step towards solving various problems in the field of

low-rank matrix learning and image low-level and high-

level vision applications.
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2.2.6 Connections Between Low-rank Matrices and

Evaluation Criteria for Different Application Tasks

To better address the image low-level and high-level

vision tasks of inpainting, classification, and cluster-

ing, it becomes crucial to incorporate task-specific post-

processing steps for the optimal utilization of the learned

low-rank matrices obtained from (14). These customized

post-processing steps are designed to meet the distinct

requirements of each task, ensuring that the matrices

are applied effectively within their respective contexts

and in conjunction with the developed optimization Al-

gorithms 1 and 3. Subsequently, we provide detailed

descriptions of low-rank matrices along with the asso-

ciated evaluation metrics.

– Using the learned low-rank matrix, denoted as X∗,

for image inpainting involves utilizing the inherent

structure and dependencies within the image data

to fill in missing or corrupted regions. The low-rank

matrix, obtained through the RMC method in Prob-

lem (2), captures the underlying relationships in the

image. Then, the missing regions can be filled in by

incorporating information from the remaining im-

age data. This process is useful for computing the

Peak Signal-to-Noise Ratio (PSNR), i.e.,

PSNR = 10log10

(
2552

1
3mn

∑3
i=1 ‖X∗i −Di‖2F

)
, (26)

where the matrix size is m × n, and the inpainting

image generated using the learned low-rank matrix

X∗ is compared with the original image D, as com-

puted and recovered in previous studies [52, 59].
– In the content of classification of RMR, the learned

low-rank matrix obtained from Problem (3) serves

as a compact and informative representation of in-

put images. To utilize this matrix for classification,

we compute class-wise error matrices for all testing

samples and assign a final label to each sample Di

based on the criterion [42, 70]:

Label(Di) = argminj
h(M(Di −AX∗i,cj ))

‖X∗i,cj‖2
, (27)

where we calculate the difference between the test-

ing sample matrixM(Di) and the reconstructed im-

age matrix M(AX∗i,cj ). This difference is divided

by the `2-norm of the X∗i,cj associated with the i-

th testing sample for the j-th class (cj). The la-

bel Label(Di) is determined as the index j that

minimizes the expression in (27) across all classes,

which ensures that the chosen label corresponds to

the smallest value.

– For clustering purposes using the LRR method, low-

rank matrices play a crucial role in capturing the un-

derlying structure and similarity patterns in data.

By leveraging the low-rank solution, clustering al-

gorithms such as k-means or spectral clustering can

effectively group similar images together. This facil-

itates the discovery of meaningful clusters or sub-

groups, which are desired outcomes. Building on

the insights from previous subspace clustering meth-

ods that utilize the representation coefficient matrix

X∗ to construct a clustering graph, we employ the

learned solution X∗ obtained from solving Problem

(4). This solution is then used to construct a graph

with weights [11, 25], denoted as

W∗ =
|X∗|+ |X∗|

2
, (28)

where to partition the data points into multiple clus-

ters, we utilize the popular Normalized Cut algo-

rithm, which is based on the condition (28). For

evaluating the quality of the resulting performance,

we compute the clustering accuracy (ACC) and Nor-

malized Mutual Information (NMI) metrics. The

mathematical formulas for calculating these metrics

in detail can be found in [25, 71, 72]. These met-

rics provide quantitative measures to assess the ef-

fectiveness of the clustering algorithm in producing

meaningful and reliable cluster assignments.

3 Theoretical Analysis for Convergence

Before delving into the theoretical results, it is crucial to

offer a brief overview of key concepts that play a piv-

otal role in establishing local and global convergence

guarantees for nonconvex optimization algorithms in

generalized assumptions. These fundamental concepts

encompass the subdifferential, critical point, distance,

and the uniformized K L inequality, each of which is

elucidated as follows:

Definition 1 [56, 73] Let %(X) : Rn → (−∞,+∞] be

a proper and lower semicontinuous function. The limit-

ing subdifferential of %(X) at a point X ∈ Rn, denoted

by ∂%(X), is defined as the closure of the set

∂%(X) =
{
u ∈ Rn : ∃ Xk → X, %(Xk)→ %(X),

and u← ∂%̂(Xk) 3 uk as k → +∞
}
, (29)

where ∂%̂(X) is the Frèchet subdifferential of %(X) at a

given point X ∈ dom%. The set ∂%̂(X) consists of all

u ∈ Rn that satisfy

lim inf
y 6=X,y→X

%(y)− %(X)− 〈u,y −X〉
‖y −X‖

≥ 0. (30)
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Remark 2 [56, 73] (i) According to the Fermat’s rule

in the nonsmooth content, if X ∈ Rn is a local mini-

mizer of %(X), then we have 0 ∈ ∂%(X).

(ii) Consider a sequence {(Xk,uk)} that converges

to (X,u) and %(Xk) → %(X) as k → +∞. If uk ∈
∂%(Xk), then we have u ∈ ∂%(X).

(iii) For a continuous differentiable function f(·) :

Rn → R, we have ∂(f + %)(X) = ∇f(X) + ∂%(X).

(iv) Points whose subdifferential contains 0 are called

(limiting-)critical points.

Definition 2 [56, 73] Consider a compact subset Γ ⊂
Rn and a point X ∈ Rn. The distance from X to Γ is

defined as

dist(X, Γ ) = inf{‖X− y‖ : y ∈ Γ}. (31)

Here, dist(X, Γ ) = +∞ if Γ = ∅, and dist(X, Γ ) = 0 if

and only if X ∈ Γ .

Definition 3 (K L inequality) [56, 73] A function %(·) :

Rn → (−∞,+∞] is said to satisfy the K L property at

X̄ ∈ dom∂% := {X ∈ Rn : ∂%(X) 6= ∅} if there exists

η ∈ (0,+∞], a neighborhood U of X̄, and a function

Θ ∈ Ξη such that for all X ∈ U ∩ {X ∈ Rn : %(X̄) <

%(X) < %(X̄) + η}, the following K L inequality holds:

Θ′(%(X)− %(X̄))dist(0, ∂%(X)) > 1, (32)

where Φη is a class of functions Θ : [0, η) → R+ satis-

fying the following conditions:

(i) Θ is concave and C1 on (0, η);

(ii) Θ is continuous at 0 and φ(0) = 0;

(iii) Θ′(X) > 0 for all x ∈ (0, η).

Proposition 3 (Uniformized K L inequality) [56] Let

%(X) be a proper and lower semicontinuous function.

Assume that %(X) is constant on a compact set Γ and

satisfies the K L property at each point of Γ . Then %(X)

is called a K L function, and there exist ε > 0, η > 0,

and Θ ∈ Φη such that for all X̄ ∈ Γ and all X ∈ Rn in

the following intersection:

{X : dist(X, Γ ) < ε}
∩ {X : %(X̄) < %(X) < %(X̄) + η}, (33)

which shows that the inequality (32) still holds.

It should be noted that Definition 1 and Remark

2 are crucial for analyzing the objective function, which

can be either differentiable or nondifferentiable. Defi-

nition 2 provides a computational formula for point-

to-set distance. On the other hand, Proposition 3 con-

tributes to the theoretical analysis of global convergence

guarantees and can be seen as a modified version of

Definition 3. They are associated with the widely used

K L property, which generalizes the  Lojasiewicz gradi-

ent inequality to nonconvex nonsmooth functions.

By building upon the preliminary concepts and the-

oretical findings discussed earlier [21, 47, 56], we can es-

tablish convergence guarantees to stationary points for

generalized nonconvex functions that capture both low-

rank and residual components. Our theoretical analy-

sis focuses on finding stationary points of the objec-

tive function and utilizes the well-known K L property.

This property simplifies the main arguments in the lo-

cal and global convergence analysis of the variable se-

quences generated by Algorithms 1 and 3. The K L

property, being closely related to the optimization algo-

rithm, provides valuable insights into its behavior and

ensures convergence towards desirable solutions.

Theorem 1 Suppose that the assumptions (A1) and

(A2) hold. Let a variable sequence {(Xk,Ek)} be gen-

erated by Algorithm 1 for Problem (10). For positive

values φX and φE, then we have the following asser-

tions, which can be made:

(i) (Sufficient decrease property) The objective

function sequence {Φλ,µ(Xk,Ek)} of Problem (1) ex-

hibits non-increasing behavior, expressed as

Φλ,µ(Xk+1,Ek+1)− Φλ,µ(Xk,Ek)

≤ −φX
2
‖Xk+1 −Xk‖2F −

φE
2
‖Ek+1 −Ek‖2F . (34)

(ii) (Boundedness and convergence) As k → +∞,

the following limits hold:

‖Xk+1 −Xk‖F → 0, ‖Ek+1 −Ek‖F → 0. (35)

Proof (i) By substituting X = Xk and E = Ek

into the right side of inequalities (16) and (17), and

considering the definition of Φλ,µ(X,E) in Problem (1),

we can sum both sides of the inequalities to obtain the

following expression:

Φλ,µ(Xk+1,Ek+1) +
φX
2
‖Xk+1 −Xk‖2F

+
φE
2
‖Ek+1 −Ek‖2F ≤ Φλ,µ(Xk,Ek), (36)

which implies that the inequality (34) naturally holds.

Then, it is easy to conclude the sufficient decrease prop-

erty for the objective function sequence.

(ii) The sequence Φλ,µ(Xk,Ek) is proved to be non-

increasing based on (34) or (36). Moreover, since Φλ,µ(·, ·)
is satisfied to be bounded from below, it converges to

a real number denoted by Φλ,µ(X∗,E∗)=̂Φ∗λ,µ. Without

loss of generality, assume that X∗ and E∗ represent the

limiting points of the sequences {Xk} and {Ek}.
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By summing the inequalities (34) or (36) over k

from 1 to +∞ and rearranging the terms on the left-

hand side, we obtain the following expression

Φ∗λ,µ − Φλ,µ(X1,E1)

=

∞∑
k=1

Φλ,µ(Xk+1,Ek+1)− Φλ,µ(Xk,Ek)

≤ −
∞∑
k=1

φX
2
‖Xk+1 −Xk‖2F +

φE
2
‖Ek+1 −Ek‖2F . (37)

Hence, it follows from (37) that

∞∑
k=1

φX
2
‖Xk+1−Xk‖2F +

φE
2
‖Ek+1−Ek‖2F < +∞, (38)

which implies that (35) holds easily. �

Theorem 2 (Global subsequential convergence) Sup-

pose that the sum of both hλ(X) and f(E) is coercive,

i.e., hλ(X) + f(E)→ +∞ if and only if ‖X‖F → +∞
and ‖E‖F → +∞. The other assumptions are the same

as in Theorem 1. Then, we can conclude that any clus-

ter point (X∗,E∗) of a sequence {(Xk,Ek)} is a station-

ary point of Problem (1).

Proof For the coercive property, the boundedness of

the sequence {(Xk,Ek)} is a direct consequence, indi-

cating the existence of a cluster point.

Without loss of generality, let (X∗,E∗) be a cluster

point of the sequence {(Xk,Ek)}, and consider a con-

vergent subsequence {(Xkj ,Ekj )} such that

lim
j→+∞

(Xkj ,Ekj ) = (X∗,E∗), (39)

where we note that {(Xkj+1,Ekj+1,Xkj ,Ekj )} satisfies

the optimality conditions for Φλ,µ,φX,φE
(X,E, X̂, Ê) in

subproblems (14) and (15). Therefore, we can conclude

from Remark 2 that
0 ∈ ∂hλ(Xkj+1) +∇Xgµ(D; Xkj+1,Ekj )

+φX(Xkj+1 −Xkj ); (40)

0 ∈ ∂f(Ekj+1) +∇Egµ(D; Xkj+1,Ekj+1)

+φE(Ekj+1 −Ekj ), (41)

where as j → +∞, we observe that Xkj+1 − Xkj and

Ekj+1 − Ekj both tend to 0, as concluded from (ii) of

Theorem 1. Additionally, the differentiability of gµ(D;

X,E) implies that{ ∇Xgµ(D; Xkj+1,Ekj )→ ∇Xgµ(D; X∗,E∗); (42)

∇Egµ(D; Xkj+1,Ekj+1)→ ∇Egµ(D; X∗,E∗),(43)

hold naturally from the Remark 2. In addition, fol-

lowing from the fact that hλ(Xk) and f(Ek) are closed,

proper, and lower semi-continuous nonconvex functions,

then it follows from Definition 1 that we have

hλ(X∗) ≤ lim inf
j→+∞

hλ(Xkj ), (44)

f(E∗) ≤ lim inf
j→+∞

f(Ekj ). (45)

By substituting X = X∗ and E = E∗ into the in-

equalities (16) and (17), with k = kj, we can obtain the

following expressions:

hλ(Xkj+1) + gµ(D; Xkj+1,Ekj ) +
φX
2
‖Xkj+1 + Xkj‖2F

≤ hλ(X∗) + gµ(D; X∗,Ekj ) +
φX
2
‖X∗ −Xkj‖2F , (46)

f(Ekj+1) + gµ(D; Xkj+1,Ekj+1) +
φE
2
‖Ekj+1 −Ekj‖2F

≤ f(E∗) + gµ(D; Xkj+1,E
∗) +

φE
2
‖E∗ −Ekj‖2F . (47)

Then, taking limit in both sides of above inequalities,

we see from above-given conclusion (35) that

lim sup
j→+∞

hλ(Xkj ) = lim sup
j→+∞

hλ(Xkj+1) ≤ hλ(X∗), (48)

lim sup
j→+∞

f(Ekj ) = lim sup
j→+∞

f(Ekj+1) ≤ f(E∗). (49)

By combining (44) and (45) with (48) and (49), it

is easy to obtain

hλ(X∗) = lim
j→+∞

hλ(Xkj ); (50)

f(E∗) = lim
j→+∞

f(Ekj ), (51)

which further implies that as j → +∞, it is not hard to

achieve that

∂hλ(Xkj+1)→ ∂hλ(X∗); (52)

∂f(Ekj+1)→ ∂f(E∗), (53)

hold through Remark 2. Furthermore, borrowing from

(40)-(43), (52), and (53), it is easy to get that{
0 ∈ ∂hλ(X∗) +∇Xgµ(D; X∗,E∗); (54)

0 ∈ ∂f(E∗) +∇Egµ(D; X∗,E∗), (55)

holds easily. This expression confirms that (X∗,E∗) is

a stationary point of Φλ,µ(X,E), validating the conver-

gence property of the generated subsequence. �

Theorem 3 (Global convergence of the entire se-
quence) Let Φλ,µ(X,E) be a K L function satisfying the

assumptions in Theorems 1 and 2. Then, we have the

assertion, i.e., If there exists a point (X∗,E∗) ∈ Γ at

which Φλ,µ(·, ·) attains its minimum, then the sequence

{(Xk,Ek)} generated by Algorithm 1 converges to the

stationary point (X∗,E∗) of Problem (1).
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Proof Since the objective function sequence {Φλ,µ(Xk,

Ek)} is non-increasing, as proven in Theorem 1, and

it is also bounded from below, we can conclude that

lim
k→+∞

Φλ,µ(Xk,Ek) = Φλ,µ(X∗,E∗)=̂Φ∗λ,µ (56)

exists. In the following, we will consider two cases.

Case 1: Suppose there exists an integer k̂ ≥ 1 for

which Φλ,µ(Xk̂,Ek̂) = Φ∗λ,µ. The non-increasing prop-

erty of the function sequence in Problem (1) implies

that Φλ,µ(Xk,Ek) = Φ∗λ,µ holds for all k ≥ k̂. Through

(34), we have Xk+l = Xk̂ and Ek+l = Ek̂ for all l ≥ 1.

Thus, the sequences {(Xk,Ek)} converge finitely. Fur-

thermore, we can deduce that

+∞∑
k=k̂

‖Xk+1 −Xk‖2F + ‖Ek+1 −Ek‖2F ≤ +∞. (57)

This implies that the generated variable sequence con-

verges globally in this case.

Case 2: Suppose that there exists an integer k ≥ 1

for which Φλ,µ(Xk,Ek) > Φ∗λ,µ. In this case, we divide

the process of proofs into three steps and present a de-

tailed explanation as follows:

Step 1: We will prove that Φλ,µ(X,E) is constant

on the set of cluster points, denoted as Γ , of the gener-

ated sequence {(Xk,Ek)} and then apply the uniformized

K L property provided in Proposition 3.

Let any (X̄, Ē) ∈ Γ be a cluster point of the sequence

{(Xk,Ek)}. Since the sequence {Φλ,µ(Xk,Ek)} is non-

increasing and bounded below (lower semicontinuous),

it follows that lim
k→+∞

Φλ,µ(Xk,Ek) = Φλ,µ(X̄, Ē) exists.

Let us suppose for contradiction that Φλ,µ(X̄, Ē) 6=
Φ∗λ,µ, where without loss of generality, we can assume

Φλ,µ(X̄, Ē) > Φ∗λ,µ. By exploiting the fact that Φλ,µ(Xk,

Ek) is non-increasing again, there must exist an integer

N ≥ k such that

Φλ,µ(Xk,Ek) ≥ Φλ,µ(XN ,EN ) > Φλ,µ(X̄, Ē). (58)

However, this contradicts the fact that lim
k→∞

Φλ,µ(Xk,Ek) =

Φλ,µ(X̄, Ē). Thus, we get that Φλ,µ(X̄, Ē) = Φ∗λ,µ. Con-

sidering that (X̄, Ē) ∈ Γ is arbitrary, it is not hard to

conclude that Φλ,µ(Xk,Ek) is constant on Γ .

Exploiting the aforementioned fact and assuming that

Φλ,µ(X,E) is a K L function, we can apply the uni-

formized K L property. As a result, there exist ε > 0,

η > 0, and Θ ∈ Ξη such that for all (X,E) satisfying

dist((X,E), Γ ) < ε and Φ∗λ,µ < Φλ,µ(X,E) < Φ∗λ,µ + η,

then we can achieve

Θ′(Φλ,µ(X,E)− Φ∗λ,µ)dist(0, ∂Φλ,µ(X,E)) ≥ 1, (59)

where the Definition 3 is used for (59). Moreover, due

to the fact that lim
k→+∞

dist((Xk,Ek), Γ ) = 0 according

to the definition of Γ , and lim
k→∞

Φλ,µ(Xk,Ek) = Φ∗λ,µ,

for such ε > 0 and η > 0, there must exist a k̄ such

that dist((Xk,Ek), Γ ) < ε and

Φ∗λ,µ < Φλ,µ(Xk,Ek) < Φ∗λ,µ + η (60)

hold for all k > k̄. As a result, by setting (Xk,Ek) to

(X,E), we naturally satisfy (59), i.e.,

Θ′(Φλ,µ(Xk,Ek)− Φ∗λ,µ)dist(0, ∂Φλ,µ(Xk,Ek))

≥ 1. (61)

This can be easily achieved from both Proposition 3

and Definition 3.

Step 2: We aim to prove the boundedness for the

distance from 0 to ∂Φλ,µ(X,E). To achieve this, we

consider the subdifferential with respect to X and E, ac-

cordingly. By computing the corresponding expressions,

it is easy from Problem (1) to obtain:

∂XΦλ,µ(X,Ek)|X=Xk

= ∂hλ(Xk) +∇Xgµ(D; Xk,Ek−1)

+∇Xgµ(D; Xk,Ek)−∇Xgµ(D; Xk,Ek−1)

3 −φX(Xk −Xk−1)

+∇Xgµ(D; Xk,Ek)−∇Xgµ(D; Xk,Ek−1); (62)

∂EΦλ,µ(Xk,E)|E=Ek

= ∂f(Ek) +∇Egµ(D; Xk,Ek)

3 −φE(Ek −Ek−1), (63)

where both (62) and (63) hold derived from the above-

given (40) and (41), accordingly.

By using the decent Lemma 1 of [56] for the differ-

entiable property of gµ(D; X,E), for instance, µ
2 ‖X +

E−D‖2F or µ
2 ‖AX+E−D‖2F , with respect to E, there

exist a constant C̄µ > 0 such that

‖∇Xgµ(D; Xk,Ek)−∇Xgµ(D; Xk,Ek−1)‖F
≤ C̄µ‖Ek −Ek−1‖F . (64)

Thus, from the aforementioned relations in (62)-(64),

there exists Cµ,φX,φE
> 0 so that

dist(0, ∂Φλ,µ(Xk,Ek))

≤ Cµ,φX,φE
(‖Xk −Xk−1‖F + ‖Ek −Ek−1‖F ), (65)

where Cµ,φX,φE
is related to the parameters µ, φX, and

φE, and this inequality validates the desired bounded-

ness of this distance.

Step 3: We, for notational simplicity, first define

4k,k+1 = Θ(Φλ,µ(Xk,Ek)− Φ∗λ,µ)

−Θ(Φλ,µ(Xk+1,Ek+1)− Φ∗λ,µ), (66)
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where since Φλ,µ(·, ·) is non-increasing and Θ(·) is mono-

tonic, it is easy to have 4k,k+1 ≥ 0 for all k ≥ 1. Then,

we have for all k ≥ k̄ such that

Cµ,φX,φE
(‖Xk −Xk−1‖F + ‖Ek −Ek−1‖F )4k,k+1

≥ dist(0, ∂Φλ,µ(Xk,Ek))4k,k+1

≥ dist(0, ∂Φλ,µ(Xk,Ek))Θ′(Φλ,µ(Xk,Ek)− Φ∗λ,µ)

× (Φλ,µ(Xk,Ek)− Φλ,µ(Xk+1,Ek+1))

≥ Φλ,µ(Xk,Ek)− Φλ,µ(Xk+1,Ek+1)

≥ φX
2
‖Xk+1 −Xk‖2F +

φE
2
‖Ek+1 −Ek‖2F

≥ γ (‖Xk+1 −Xk‖F + ‖Ek+1 −Ek‖F )
2
, (67)

where γ = min(φX,φE)
4 , the last inequality holds from

the basic inequality, i.e., (a + b)2 ≤ 2(a2 + b2) for a,

b ≥ 0, and the forth inequality holds from (34, directly.

The first to third inequalities hold from (59), (61), (65),

(66), and the concavity of Θ.

Taking the square root of (67) and using the basic

inequality, i.e., 2
√
ab ≤ a+b for a, b ≥ 0, we obtain for

β =
Cµ,φX,φE

γ and rearrange the objective terms that

2‖Xk+1 −Xk‖F + 2‖Ek+1 −Ek‖F
≤ (‖Xk −Xk−1‖F + ‖Ek −Ek−1‖F ) + β4k,k+1, (68)

where let us prove that for any k > l, the subsequent

inequality can be achieved by summing up both sides of

(68) for i = l + 1, ......, k, represented by

2

k∑
i=l+1

‖Xi+1 −Xi‖F + 2

k∑
i=l+1

‖Ei+1 −Ei‖F

≤
k∑

i=l+1

(‖Xi −Xi−1‖F + ‖Ek −Ek−1‖F ) + β

k∑
i=l+1

4i,i+1

≤
k∑

i=l+1

(‖Xi+1 −Xi‖F + ‖Ei+1 −Ei‖F ) + β4l+1,k+1

+ ‖Xl+1 −Xl‖F + ‖El+1 −El‖F
− ‖Xk+1 −Xk‖F + ‖Ek+1 −Ek‖F , (69)

where the last inequality follows from the relations for

computations of sum, and the fact that 4s,v = 4s,t +

4t,v, for all the integers s, t, and r. Using Θ ≥ 0 and

‖ · ‖F ≥ 0, we thus have for any k > l that (69) shows

k∑
i=l+1

‖Xi+1 −Xi‖F +

k∑
i=l+1

‖Ei+1 −Ei‖F

≤ βΘ(Φλ,µ(Xl+1,El+1)− Φ∗λ,µ)

+ ‖Xl+1 −Xl‖F + ‖El+1 −El‖F . (70)

This inequality implies that the sequence {(Xk,Ek)}
has finite length as j → +∞, that is to say,

+∞∑
i=1

‖Xi+1 −Xi‖F +

+∞∑
i=1

‖Ei+1 −Ei‖F < +∞. (71)

Importantly, for v > t > s, we have

‖Xv −Xs‖F + ‖Ev −Es‖F

= ‖
v−1∑
i=s

(Xi+1 −Xi)‖F + ‖
v−1∑
i=s

(Ei+1 −Ei)‖F

≤
v−1∑
i=s

‖Xi+1 −Xi‖F +

v−1∑
i=s

‖Ei+1 −Ei‖F . (72)

Then, combining (72) with (71) implies that {Xk} is

a Cauchy sequence due to the fact that
+∞∑
i=s+1

‖Xi+1 −

Xi‖F converges to 0 as s → +∞. Similarly, we con-

clude that {Ek} is also a Cauchy sequence. Thus, it is

clear that {Xk,Ek} is a convergent sequence. �

Remark 3 The proofs of Theorems 1–3 are valid for

nonconvex PBCD, where the solutions of (14) and (15)

are usually analytic. While the usage of RSVD and lin-

earization techniques to obtain low-rank solutions is not

explicitly mentioned, it is necessary to modify the in-

equalities (16) and (17) to account for the specific cases

considered in (21) and Proposition 2.

Similar processing techniques for the proofs have been

provided in previous works, including [45, 47, 74]. How-

ever, these works do not elaborate on the application
of faster SVD strategies and linearization techniques to

achieve low-rank solutions with proximal operators and

thus motivate us give the modifications required in the

above proof steps. By incorporating these techniques, the

proofs can be adapted modified to show the theoretical

analysis to Theorems 1–3.

Theorem 4 Consider a variable sequence {(Xk,Ek)}
generated by Algorithm 1 for Problem (10). Under the

conditions φX > 0 and φE > 0 with the continuation

strategy, i.e., µk = min(αµk−1, µmax) for α > 1, we

can establish the following inequality for the objective

function sequence {Φλ,µk(Xk,Ek)} of Problem (1):

Φλ,µk+1
(Xk+1,Ek+1)− αΦλ,µk(Xk,Ek)

≤ −φX
2
‖Xk+1 −Xk‖2F −

φE
2
‖Ek+1 −Ek‖2F . (73)

Proof By considering the definition of Φλ,µ(X,E)

in Problem (1) and summing both sides of (16) and
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(17) with X = Xk and E = Ek, respectively, and then

setting µ = µk+1, we obtain the expression:

Φλ,µk+1
(Xk+1,Ek+1) +

φX
2
‖Xk+1 −Xk‖2F

+
φE
2
‖Ek+1 −Ek‖2F ≤ Φλ,µk+1

(Xk,Ek). (74)

From the representation of Φλ,µk+1
(Xk,Ek) defined in

Problem (1), together with the non-negative property of

the involved terms, we conclude from µk+1 ≤ αµk that

for all α > 1, it is easy to get

Φλ,µk+1
(Xk,Ek) ≤ αΦλ,µk(Xk,Ek). (75)

This inequality holds easily. Thus, a direct consequence

of (73) is achieved from both (74) and (75). �

Remark 4 The inequality (73) indeed provides a gen-

eralized extension that encompasses various choices of

α. When α = 1, it corresponds to the result obtained

in (i) of Theorems 1 without using the continuation

strategy. As the value of α increases, the difference on

the left-hand side of the inequality for “ ≤ ” becomes

smaller, indicating faster convergence.

Followed by Theorem 4, we can naturally provide

theoretical analysis and guarantees for local and global

convergence by incorporating the revisions to Theo-
rems 1–3 for nonconvex PBCD with the continuation

strategy in a similar way. Therefore, for the sake of

brevity and space constraints, we have omitted the de-

tailed proofs and revisions in this content.

4 Extensions of Nonconvex PBCD

In this section, our main focus is to extend and study

the proposed nonconvex PBCD algorithm, allowing us

to handle problems with multiple variables. This exten-

sion enables efficient updates of each variable within a

cycle of iteration procedures. The extended formulation

of the multi-variable minimization problem can be rep-

resented as follows:

min
({Xi}),({X̂i})

Φ({λi}),µ,({φi})({Xi}, {X̂i})

=

I∑
i=1

ρλi(Xi) + gµ(D; ({Xi}))

+

I∑
i=1

φi
2
‖Xi − X̂i‖2F , (76)

Here, I represents the total number of variables in ({Xi}),
which denotes the set of multiple variables (X1, . . . ,XI).

({λi}) represents the sequences of regularization pa-

rameters (λ1, λ2, . . . , λI), while both ({X̂i}) and ({φi})
have their corresponding definitions as given above.

Algorithm 4 Optimization for Problem (76)

Input: D, Xk, λi > 0, µ > 0, 1 ≤ i ≤ I,
ηXi

> lµ,Xi
, ρ > 1, k = 0.

Output: X∗ ← Xk+1.

While not converged do
for i = 1 : I

Update Xk+1
i by solving (82) with two specific

cases as shown in (83) and (84), accordingly.
end

until convergence

It is evident that Problem (1) can be considered as

a special case of Problem (76) with I = 2 and φ1 =

φ2 = 0, by setting ρλ1
(X1) = hλ(X) with λ1 = λ,

ρλ2
(X2) = f(E) with λ2 = 1, and gµ(D; X1,X2) =

gµ(D; X,E). With these settings and by requiring X̂1 =

X̂, X̂2 = Ê, φ1 = φX, and φ2 = φE, Problem (10) can

also be viewed as a specific instance of Problem (76).

Hence, each ρi(Xi) can be utilized to quantify the low-

rank matrix or residual matrix with the proper choices

and explanations. Then, we assume that gµ(D; ({Xi}))
possesses the property defined below.

Definition 4 The function gµ(D; {Xi}) is a C1 func-

tion with respect to each involved variable Xi, and its

gradient ∇gµ(D; {Xi}) is Lipschitz continuous when all

Xj’s are fixed for j 6= i (1 ≤ j ≤ I). Specifically, there

exist the Lipschitz constants lµ,Xi
≥ 0 such that

‖∇gµ(D; {Xi})−∇gµ(D; {X̃i})‖F

≤
I∑
i=1

lµ,Xi‖Xi − X̃i‖F , (77)

which plays a key role in the theoretical convergence

analysis, as exemplified in (64) for this extension.

This definition highlights the nontrivial extension of

the proposed algorithms to handle Problem (76). For

the sake of notational simplicity, we introduce the fol-

lowing definitions:
X k = (Xk

1 ,X
k
2 , ......,X

k
I ); (78)

X k0 (i) = (Xk+1
1 , ......,Xk+1

i−1 ,Xi,X
k
i+1......,X

k
I ); (79)

X k0 (i+) = (Xk+1
1 , ......,Xk+1

i−1 ,X
k
i ,X

k
i+1......,X

k
I ); (80)

X k0 (i ) = (Xk+1
1 , ......,Xk+1

i−1 ,X
k
i+1......,X

k
I ); (81)

From (78)-(81), we can outline the optimization pro-

cedure of the algorithms for multiple separable vari-

ables. Starting with any initial point X 0, the multi-

variable solution can generate the sequence value at the

(k + 1)-step, denoted by X k+1 in (78), via the succes-

sively updating rule for each involved variable for all
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1 ≤ i ≤ I, as follows:

Xk+1
i ∈ argminXi

ρλi(Xi) + gµ(D;X k0 (i))

+
φi
2
‖Xi −Xk

i ‖2F , (82)

where the closed-form solution relies on various ρλi(Xi)

and the specific structure of gµ(D;X k0 (i)), as discussed

in the formulations (18), (21), and (23), respectively.

In the subsequent analysis, we focus on consider-

ing two cases of the subproblem (82) aiming to solve

Problem (76), effectively. These cases can be regarded

as extensions of (18), (21), and (23) in the optimization

of Problem (10). Subsequently, we provide the detailed

revisions for the updated variables:

– First, we extend (18) and (23) to the following equa-

tion, as follows

Xk+1
i = argminXi

1

φi + µ
ρλi(Xi)

+
1

2

∥∥Xi − ĝµ,φi(D;X k0 (i))
∥∥2
F
, (83)

This minimization problem is achieved by setting

ĝµ,φi(D;X k0 (i+)) = 1
φi+µ

[φiX
k
i +µ(D−A(X k0 (i )))],

where A(X k0 (i )) is represented by the linearization

combination of the variables in (81) that are unre-

lated to the desired Xi.

– Next, we extend (21) to the following equation:

Xk+1
i = argminXi

1

φi + lµ,Xi

ρλi(Xi)

+
1

2

∥∥Xi − ḡµ,lµ,Xi (D;X k0 (i))
∥∥2
F
, (84)

Here, the minimization problem is achieved by set-

ting ḡµ,lµ,Xi (D;X k0 (i+)) = 1
φi+lµ,Xi

[φiX
k
i +lµ,Xi(D−

A(X k0 (i )))]. The value of lµ,Xi
is obtained using

(77). It should be special noted that the resulting

solutions of (83) and (84) can be easily obtained us-

ing the generalized proximal operators described in

Proposition 2 or Proposition 1.

Remark 5 The proposed nonconvex PBCD algorithm

for solving Problems (10) and (76) differs from existing

methods such as PALM [56] and SPJIM [47] in several

aspects. While PALM and SPJIM update the variables

in an alternating order or jointly optimize them, the

PBCD algorithm minimizes the unconstrained problems

with respect to each variable belonging to {Xi} indepen-

dently in a cyclic iteration. Then, combined this strat-

egy with the employment of the RSVD and continuity

strategies, enhances the efficiency of the proposed algo-

rithms. The closed-form solutions for each variable con-

tribute to its computational simplicity in solving low-

rank matrix learning problems. These advantages of the

proposed algorithms are thus further highlighted.

5 Numerical Experiments

In this section, we present the experimental validation

of our proposed methods on a diverse set of original

data to evaluate their superiority in three image low-

level and high-level vision tasks. To establish a compre-

hensive comparison, we benchmark our methods against

several existing algorithms, which are referenced using

concise abbreviated notations commonly used in the

literature. The databases used in our experiments com-

prise a collection of raw images, each accompanied by

a brief description, as outlined below:

– For the Image Inpainting task, our primary objec-

tive is to apply the revised RMC (ReRMC) ap-

proach to color images that consist of three chan-

nels: R (red), G (green), and B (blue), with each

channel being treatable as a matrix. We capture a

test image of dimensions 600 × 650 using a mobile

phone, which serves as the non-strictly low-rank ref-

erence, representing the original image. To investi-

gate the strictly low-rank case, we perform trun-

cation of the singular values of the original image

and retain only the top 10% largest values. Subse-

quently, we introduce various missing pixel patterns,

such as random (30% ratio), text, and curves, to

simulate different inpainting scenarios. In this pro-

cess, we treat each channel of the image as an in-

dependent low-rank matrix and further perform in-

painting on each channel separately.

– For the Image Classification task, our primary focus

is on utilizing the revised RMR (ReRMR) approach

for both face images. To conduct our experiments,

we utilize the following datasets:

– AR2: This database comprises 126 face images

of subjects, each with a size of 60× 43, showcas-

ing various facial expressions, illuminations, and

occlusions. For our experiments, we utilize the

images of the first 100 individuals for training,

with 7 samples per subject, and testing, with

6 samples per subject occluded by sunglasses.

This leads to the creation of data matrices of

size 2580× 700 and 2580× 600, respectively.

– ExtYaleB3: This database consists of 2,414 frontal-

face images distributed among 38 subjects. Each

subject is represented by 64 images captured un-

der varying illuminations. All experimental im-

ages are resized to a uniform size of 96×84 pixels.

For the training data, we utilize the first 7 images

for each subject, resulting in a size of 8064×266.

For the testing data of each subject, we employ

2 https://www2.ece.ohio-state.edu/ aleix/ARdatabase.html
3 https://paperswithcode.com/dataset/extended-yale-b-1
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Fig. 4 Illustration of raw-image based photography, showcasing: (a) the original image, (b) the processed image, and (c)-(e)
three different sampling masks with 10% of pixels corrupted with sparse noise on the top row. The corresponding sorted
singular values for each channel are also plotted in curves on the bottom row.

19 images with different illuminations, leading

to a size of 8064× 722, and introduce “banbon”

occlusions to an additional 12 images, resulting

in a size of 8064× 456.

– For the Image Clustering task, our main focus is

on utilizing the revised LRR (ReLRR) approach for

face, digital, and object images. To validate the ef-

fectiveness and efficiency of our proposed method,

we consider the following datasets:

– GT 4: This dataset comprises 750 grayscale face

images of 50 subjects, with each subject having

15 images of size 40×30. The images show some

variations, resulting in a clustering data matrix

with a size of 1200× 750.

– USPS5: This is a handwritten digit database con-

taining 9,298 images. For clustering, we selected

the first 100 images of each digit. Each image in

USPS has a resolution of 16×16 pixels, resulting

in a 256-dimensional vector. Thus, a clustering

data matrix of size 256× 1000 was constructed.

– FLAVIA6: This dataset is a leaf recognition sys-

tem comprising 1907 images from 32 different

plant species. The data matrix size is 1907×1200

pixels, with each image resized to 30 × 40 pix-

els. For clustering, we selected the first 20 classes

with 40 samples per subject, resulting in a clus-

tering data matrix with a size of 1200× 800.

4 https://academictorrents.com/details/0848b2c9b40e49041
eff85ac4a2da71ae13a3e4f

5 https://paperswithcode.com/dataset/usps
6 https://www.researchgate.net/figure/Leaves-in-Flavia-

dataset fig7 224954031

– COIL207: This dataset includes 1,440 images of

20 objects. Each object provides 72 images cap-

tured from various angles. The original images

are resized to grayscale images of 32× 32 pixels.

For clustering, we select the first 30 images per

object, resulting in a clustering data matrix with

a size of 1024× 600.

In the following subsections, we first provide partial

images of the databases used in our experiments as a

prelude to our evaluations. The experiments were con-

ducted using MATLAB R2021b on a 64-bit PC with an

Intel(R) Core(TM) i7-7700 CPU @ 3.6GHz and 8.0GB

RAM. To implement the relevant methods, we utilized

their released codes and carefully fine-tuned the param-

eters while keeping the given termination conditions

fixed with the same stopping thresholding value to en-

sure the best possible results. The quantitative eval-

uations involve the use of numerical metrics to assess

the performance of the methods, encompassing both

traditional and recently published works. By combin-

ing these evaluations, our goal is to offer a comprehen-

sive and insightful analysis of the performance of the

image processing and analysis methods optimized us-

ing Algorithm 3 with double acceleration strategies.

Note that the underlying reason stems from the the-

oretical analysis of computational complexity, which

is essential for efficiently learning low-rank matrices.

This foundational insight allows us to conduct a more

insightful analysis of the acceleration performance of

RSVD in comparison to full SVD. The proposed meth-

7 https://git-disl.github.io/GTDLBench/datasets/coil20/
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Table 2 Evaluation metrics for various methods applied to
color image inpainting using three sampling masks and cor-
ruption noises.

//
Random Text Curve

PSNR TIME PSNR TIME PSNR TIME

APG [16] 21.780 8s 22.349 8s 22.384 9s

NNM [18] 18.611 36s 18.430 39s 18.372 31s

IRNN [53] 22.566 14s 22.944 15s 22.935 14s

GPG [17] 22.675 13s 23.111 14s 23.084 14s

FNM [40] 31.469 3s 31.600 6s 31.540 5s

BiNM [40] 31.700 4s 31.770 4s 31.742 5s

UNBF [50] 28.554 10s 28.545 9s 28.438 9s

PSVT [51] 22.773 12s 23.375 17s 23.355 21s

WNNM [52] 16.703 111s 17.585 130s 17.564 131s

DNNR [59] 22.433 11s 23.123 12s 23.025 12s

FaNCL [74] 21.825 14s 23.023 29s 23.079 29s

HQASD [75] 23.728 4s 24.589 4s 24.288 6s

HOAT [76] 31.497 336s 31.523 372s 31.685 380s

HOMT [76] 32.000 135s 31.999 128s 31.995 306s

ReRMC1/2 31.999 28s 31.991 17s 31.940 19s

ReRMC2/3 31.996 28s 31.975 17s 31.869 17s

ods, which are revised variants of Problems (2)-(4), are

denoted as ReRMCp, ReRMRp, and ReLRRp, where

p ∈ {1/2, 2/3}. These variants are designed to achieve

effectiveness and efficiency in handling the low-rank

matrix learning problem across the image low-level and

high-level application tasks.

It is crucial to perform a thorough analysis that

highlights the differences and advantages of our pro-

posed method in comparison to existing approaches

across various application tasks. This endeavor is in

line with our commitment to delivering a comprehen-

sive evaluation, enhancing the discussion across diverse

dimensions. These aspects primarily include: 1) Real-

world applications and databases (as introduced above),

2) Different methods for various vision tasks, 3) Both

numerical and visual comparisons, and 4) Results from

the ablation analysis. To save space in the subsequent

experimental comparisons, we will use symbol names

to substitute the full names of the comparison meth-

ods among the various application tasks. If interested

in these comparison methods, please refer to the corre-

sponding references. Additionally, our proposed meth-

ods exhibit superior performance and computational ef-

ficiency, attributes attributed to nonconvexity and the

application of dual acceleration techniques.
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(c) Two plotted convergence curves on the curve mask

Fig. 5 Visual comparisons of the proposed inpainting meth-
ods, i.e., ReRMC1/2 and ReRMC2/3, from different perspec-
tives in various experimental settings, including (a) with ran-
dom mask, (b) with text mask, and (c) with curve mask.

5.1 Experiments on the Image Inpainting

In this subsection, we present Fig. 4, which showcases

the original image along with the corresponding strictly

low-rank images generated for three different missing

masks. The objective of this subsection is to investi-

gate the effectiveness and efficiency of various inpaint-

ing methods, as listed in Table 2, for completing the

missing entries in images (c)-(e) with 10% sparse cor-

ruption noises. The comparison includes both convex

and nonconvex matrix completion methods solved us-

ing first-order optimization algorithms. Notably, APG

[16] and NNM [18] achieve lower PSNR values com-

pared to other methods, primarily due to the biased

estimator used for the nuclear norm in the rank func-

tion. On the other hand, nonconvex inpainting methods

such as IRNN [53], GPG [17], DNNR [59], PSVT [51],
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PSNR: 31.957 TIME: 75s

(c) APG [16]

PSNR: 28.239 TIME: 27s

(d) NNM [18]

PSNR: 31.601 TIME: 26s

(e) IRNN [53]

PSNR: 34.108 TIME: 25s

(f) GPG [17]

PSNR: 32.459 TIME: 23s

(g) FNM [40]

PSNR: 30.300 TIME: 25s

(h) BiNM [40]

PSNR: 30.825 TIME: 14s

(i) UNBF [50]

PSNR: 32.001 TIME: 43s

(j) PSVT [51]

PSNR: 32.001 TIME: 28s

(k) WNNM [52]

PSNR: 31.736 TIME: 30s

(l) DNNR [59]

PSNR: 31.999 TIME: 50s

(m) FaNCL [74]

PSNR: 29.636 TIME: 18s

(n) HQASD [75]

PSNR: 31.900 TIME: 299s

(o) HOAT [76]

PSNR: 31.998 TIME: 130s

(p) HOMT [76]

PSNR: 32.326 TIME: 14s

(q) ReRMC1/2

PSNR: 32.151 TIME: 16s

(r) ReRMC2/3

Fig. 6 Illustrations for quantitative and qualitative evaluations on the original inpainting image only with missing entries are
shown. Additionally, (a) displays the corresponding image with plotted curves of singular values in (b). The inpainting results
obtained by various methods are depicted in (c)-(p), while our proposed two methods are presented in (q) and (r).

HOAT, and HOMT [76], and HQASD [75] exhibit bet-

ter evaluation performance in most cases. Additionally,

the adoption of factorization and continuity strategies

helps reduce the computational time in methods such as

UNBF [50], FNM and BiNM [40], FaNCL [74], IRNN

[53], and GPG [17]. However, some methods such as

NNM [18], WNNM [52], HOAT, and HOMT [76] have

higher computation times, as reflected in Table 2. No-

tably, our proposed ReRMC method, which combines a

nonconvex formulation and two-fold acceleration strate-

gies, demonstrates superiority in terms of higher PSNR

values and lower computation time (TIME) in seconds

under most cases. These results solidly confirm the ad-

vantages of the proposed methods to some degree.

To further analyze both ReRMC1/2 and ReRMC2/3,

we conducted experiments on three different inpaint-

ing tasks and examined the impact of various parame-

ters, including random initialization variables and the

convergence property of the relative error. The visual

comparisons of these analyses are presented in Fig. 5

(a)-(c). In detail, we first analyzed the effect of the func-

tion parameters, such as λ and µ̂, on the PSNR values

for the random mask scenario, as depicted in (a). The

PSNR values are provided for different choices of the

model parameter φ by setting it equal to φX = φE and

the algorithm parameter, i.e., step size ρ, for the case

of the text mask, as shown in (b). Furthermore, in (c),

we plotted the relative error values for the R, G, and B

channels in the case of the curve mask. These visual re-

sults provide meaningful insights into the distributions

of numerical results, the non-increasing property of the

relative errors, and the evaluation efficacy and efficiency

of the involved parameters for setting φ = 1e − 5 and

ρ = 1.1. This analysis effectively validates the effective-

ness of the proposed methods.

In Fig. 6 (c)-(r), we present the inpainting perfor-

mance and recovery images of the compared algorithms,

but this time without the corruption of sparse noises,

focusing solely on text missing entries. Interestingly,

each algorithm achieves significantly higher PSNR val-

ues when recovering the inpainting image. This discrep-

ancy can be attributed to the noise measurements used

in the objective formulation of the inpainting model.

Additionally, with the absence of sparse noise corrup-

tion, the inpainting tasks become relatively easier. It

can be observed that most of methods perform better

in this case. Meanwhile, the involved clustering meth-

ods have shown good performance in this task. As a re-
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(a) Test Mask (b) Original Image (c) ReRMC1/2 (d) ReRMC2/3

Fig. 7 Incorporating visual comparisons for presenting close-ups of local regions over the original inpainting image, both
with and without missing entries, alongside the recovered images using proposed ReRMC1/2 and ReRMC2/3, respectively.

(a) AR

(b) ExYaleB

Fig. 8 Illustrations of partial training and testing face im-
ages selected from two experimental databases.

sult, the algorithms showcase higher PSNR values and

reduced timing costs under these specific experimental

settings with appropriate noise measurements.

To further enhance the clarity of our image inpaint-

ing experiments, we have incorporated detailed visual

comparisons that focus on close-ups of local regions.

In Fig. 7, we meticulously present the visual compar-

ison results, starting with (a) and (b), which show-

case the original natural image both with and without

missing text entries. Subsequently, (c) and (d) guide

you through the visual revisions, accompanied by corre-

sponding descriptions specifically tailored for ReRMC1/2

and ReRMC2/3, respectively. By delving into these vi-

sual comparisons and zooming in on local regions, our

main intention is to provide a clear understanding of

the proposed method’s outcomes, effectively highlight-

ing its inpainting ability in the low-level task of recov-

ering the missing entries.
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(c) ExtYaleB occ

Fig. 9 Visual results of the error images with heatmaps of
columns and rows, as well as the histograms, are presented
for three different types of corruption noises.

5.2 Experiments on the Image Classification

In this subsection, we present partial face and object

images in Fig. 8 (a)-(c). The training samples appear

clear, while the testing ones are intentionally corrupted

with occlusions, illuminations, or other types of cor-

ruptions. Furthermore, we provide visual analysis from

multiple viewpoints for the residual images to enhance

the usage of correlations in Fig. 9 (a)-(c). Note that

the residual images in the first row are obtained by sub-

tracting the first training image from the first testing
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Table 3 The evaluation values for various methods applied
to image classification using three real-world databases.

//
AR ExtYaleB ill ExtYaleB occ

ACC TIME ACC TIME ACC TIME

SRC [19] 49.500 4s 27.285 5s 53.290 3s

CRC [29] 53.167 2s 49.031 3s 51.097 2s

NMR [22] 73.000 226s 48.338 440s 94.518 298s

FNMR [22] 72.667 158s 47.230 255s 94.518 171s

ALPR [77] 41.667 176s 14.543 623s 28.070 470s

CESR [78] 78.833 74s 22.161 74s 39.693 57s

DLSR [79] 40.000 24s 28.033 490s 47.149 525s

ULR∗ [70] 47.149 7s 49.308 10s 45.614 7s

ULR∗∗ [70] 50.833 13s 49.308 12s 47.149 6s

GIST1/2 [21] 50.500 5s 27.285 5s 53.290 4s

GIST2/3 [21] 50.000 5s 27.285 6s 53.509 3s

ReRMR1/2 64.000 23s 90.028 50s 97.807 27s

ReRMR2/3 62.833 22s 83.657 46s 95.833 25s

image. These visual examples aim to show the impor-

tance for the removal of corruptions from the testing

images, validating the capability of preserving image fi-

delity and effectively handling various types of corrup-

tions. Besides this, this visual evidence can also confirm

the effectiveness and importance of considering the re-

lations among columns, rows, and elements.

The quantitative results, summarized in Table 3,
include the proposed methods and ten comparison tech-

niques across three face databases. These methods en-

compass both convex and nonconvex approaches, as

well as vector and matrix-level linear regressions. Due

to the presence of occlusions and illuminations in the

corrupted images, the residual matrix exhibits low-rank

or approximated low-rank structures. It makes sense

that NMR and FNMM [22] achieve higher classifica-

tion accuracy compared to SRC [19], CRC [29], ULR∗
and ULR∗∗ [70], and CESR [78]. The use of unbiased

estimators in nonconvex GIST [21] also contributes to

its strong performance, surpassing SRC. Incorporating

prior information into the regression models, such as

ALPR [77], DLSR [79], NMR, and FNMM [22], leads to

superior performance as well. Additionally, CRC, ULR,

GIST, and FNMR demonstrate higher computational

efficiency due to the differentiable nature of the objec-

tive function, the specific optimization procedure, and

the use of acceleration strategies. Overall, we observe

that the proposed methods exhibit advantages in terms

0V
a

lu
e

s
 o

f 
A

C
C

500

50

1000

5
.0

1500

1
.00

.12000

0
.0

12500

0
.0

0
1

0

500

V
a

lu
e

s
 o

f 
A

C
C

50

1000 5
.01500

1
.0

2000

0
.1

2500

0
.0

1

0
.0

0
1

(a) Coefficients vector on the AR database

0 5 10 15 20 25 30 35

690

690.5

691

691.5

692

692.5

693

0 5 10 15 20 25 30 35

381

381.2

381.4

381.6

381.8

382

382.2

382.4

382.6

382.8

383

X 1

Y 382.026

X 1

Y 691.232

(b) Reconstruction error on the ExtYaleB ill database

3

3.2

3.4

3.6

3.8

4
10

-3

0 50 100 150 200 250

Samples with Incorrect Subject

Samples with Correct Subject

3

3.2

3.4

3.6

3.8

4
10

-3

0 50 100 150 200 250

Samples with Incorrect Subject

Samples with Correct Subject

(c) Coefficients matrix on the ExtYaleB occ database

Fig. 10 Visual illustrations of (a) the influences of (λ, µ̂),
(b) reconstruction error values, and (c) coefficient values for
the two proposed methods across three databases.

of classification accuracy and computation time over

the rank-relaxed regression methods.

In addition to the quantitative results, we further

analyze the influences of parameters (λ, µ̂), the recon-

struction errors, and the distributions of representa-

tion coefficients of the proposed methods on the AR,

ExtYaleB ill, and ExtYaleB occ databases, which con-

tain illumination and occlusion corruptions. In Fig. 10

(a), we depict the influences of parameters (λ, µ̂) on the

performance. The reconstruction errors for the same

subjects as the testing samples display lower values,

while errors for different subjects exhibit higher val-

ues, as shown in Fig. 10 (b). Furthermore, the coeffi-

cient values for the same subjects exhibit larger mag-

nitudes, while values for different subjects tend to be

lower, as illustrated in Fig. 10 (c). These visual results



24 Hengmin Zhang et al.

(a) GT (b) USPS (c) FLAVIA (d) COIL20

Fig. 11 Illustrations of partial face, digital, and object images selected from four publicly real-world databases.

Table 4 Comparisons of performance evaluations and timing consumptions for various unsupervised methods applied to image
clustering on four real-world databases.

//
GT USPS FLAVIA COIL20

ACC NMI TIME ACC NMI TIME ACC NMI TIME ACC NMI TIME

LRR [11] 47.600 63.939 28s 66.200 62.030 7s 64.750 74.314 48s 68.167 80.139 25s

SSC [26] 44.933 53.996 7s 44.400 39.124 7s 73.125 77.221 13s 74.000 80.621 7s

SGL [80] 45.200 62.084 117s 85.700 77.875 207s 69.125 73.743 77s 70.500 80.555 93s

IRLS [68] 46.000 62.445 143s 67.500 66.006 135s 65.125 71.318 110s 66.167 75.861 107s

LSR1 [81] 49.333 64.284 <1s 78.900 66.746 <1s 68.000 71.899 <1s 68.833 77.095 <1s

LSR2 [81] 50.267 64.196 <1s 79.000 66.219 <1s 69.500 72.621 <1s 69.667 78.251 <1s

LRSSC [27] 53.867 66.516 18s 67.900 67.381 50s 68.625 75.199 25s 81.000 90.472 15s

SSRSC [82] 49.733 67.241 58s 93.200 87.016 58s 72.875 78.174 59s 92.833 97.686 32s

FULRR1/2 [71] 44.933 59.679 46s 73.900 62.718 9s 63.750 73.204 68s 65.333 78.167 35s

FULRR2/3 [71] 47.200 60.116 41s 74.500 63.746 9s 66.750 71.800 56s 63.667 74.883 29s

WSLog1/2 [83] 48.133 61.662 33s 75.800 61.789 8s 66.375 72.704 50s 62.500 70.869 17s

WSLog2/3 [83] 46.400 62.204 37s 73.000 59.548 8s 66.000 71.840 50s 64.167 75.401 22s

ReLRR1/2 50.800 63.954 63s 78.400 73.983 9s 70.875 75.165 62s 71.167 79.189 43s

ReLRR2/3 52.933 64.675 65s 77.200 71.425 7s 70.875 75.109 57s 70.833 79.504 41s

indicate the coherent representation of subjects in the

coefficient matrix, aligning with the inherent grouping

of data samples, and ensure the preservation of effective

performance under proper parameter choices.

5.3 Experiments on the Image Clustering

In this subsection, we present experimental results for

subspace clustering using images obtained from four

commonly used databases, as depicted in Fig. 11 (a)-

(d). We compare our proposed methods with several ex-

isting approaches, including standard methods like SSC

[26], LSR [81], SGL [80], and LRR [11], as well as their

extensions such as IRLS [68], SSRSC [82], and LRSSC

[27]. Additionally, we consider SGL and LSR, which in-

volve differentiable clustering model formulations, and

WSLog [83] and FULRR [71], which are primarily re-

lated to matrix factorization using Schatten-p norm.

These diverse approaches yield varying clustering per-

formance and timing consumption. Then, we have some

observations and explanations as follows:

It follows from Table 4 that the extended meth-

ods consistently outperform the standard ones in most

cases. Each clustering method, coupled with its cor-

responding optimization algorithm, shows its specific

applicability. These findings underscore the effective-

ness and efficiency of our proposed methods, achieved

by carefully selecting appropriate parameters for λ ∈
{0.0001, 0.001, 0.01, 0.1, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0} and µ̂ ∈
{10, 20, 30, 40, 50}. The evidence is supported by higher

values of ACC and NMI, as well as lower timing costs.

While the results show the superiority of the proposed

methods compared to other involved methods, includ-

ing SSC, LRR, IRLS, LSR, WSLog, and FULRR, we ac-

knowledge that the proposed two methods have compa-

rable timing costs and indeed exhibit a degree of advan-
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Fig. 12 Visual comparison results of the proposed methods include (a) convergence curves, (b) block-diagonal structures,
(c) coefficient distributions, and (d) parameter sensitivity across four different databases.

tage. Additionally, introducing prior information can

be helpful for improving the clustering performance,

as verified in SSRSC and LRSSC. This further explain

that they have the achieved better performance.

To provide visual comparisons, Fig. 12 showcases

informative results for our proposed two methods. In

(a), we present plotted curves for the values of objec-

tive function over the number of iterations, validating

their convergence behavior on the GT database. In (b),

we depict the block-diagonal structures of the coeffi-

cient matrix with normalization, highlighting the re-

lationship with the number of subjects in the USPS

database. Additionally, in (c), we display the statisti-

cal distribution of the coefficient matrix, offering in-

sights into the clustering samples’ representation in the

FLAVIA database. Lastly, in (d), we analyze the influ-

ences of the parameter choices of (λ, µ̂) by conducting

experiments on the COIL20 database. These visual re-

sults enhance the understanding of the performance and

behavior, confirming the feasibility and stability.

5.4 Further Discussion and Analysis

In this subsection, we have chosen specific experimen-

tal settings for each application task: inpainting for the

curve mask, classification for the ExtYaleB occ database,

and clustering for the COIL20 database. Our primary

focus is to test the proposed two methods of interest for

p = 1/2 and 2/3 and investigate the impact with and

without the RSVD acceleration module. The compar-

isons are conducted using the following two setups:

– (A) Algorithm 1 using full SVD with the contin-

uation strategy;

– (B) Algorithm 1 using RSVD with the continua-

tion strategy;

To analyze the acceleration techniques, it is crucial

to consider the time complexity of full SVD, specifi-

cally O(mn2) for an m × n matrix with n ≤ m, mak-

ing it computationally demanding for large matrices.

In contrast, RSVD primarily accrues costs associated

with matrix multiplication, exhibiting a complexity of

O(mnr), where r represents the target rank. Addition-

ally, the continuation strategy, as verified in [45], can

reduce the number of iterations. Through the ablation

analysis, we have made the following observations:

– Table 5 presents quantitative results that empha-

size the effectiveness of the acceleration modules in

reducing timing costs on experimental data. It is

important to note that the RSVD is employed to

decrease complexity at each iteration for inpaint-

ing, classification, and clustering tasks. Remarkably,

these changes in the computational approach do not

significantly impact the evaluation performance and

the total number of iterations. This validation un-

derscores the efficiency of incorporating the RSVD

into the proposed nonconvex PBCD algorithm, mak-

ing it a sensible and effective choice.
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Table 5 Comparisons and ablation analysis of evaluation accuracy, timing computation, and iteration numbers for the pro-
posed methods with and without acceleration RSVD strategy on selected three image vision tasks.

//
Inpainting (Curve Mask) Classification (ExtYaleB occ) Clustering (COIL20)

PSNR TIME ITER ACC TIME ITER ACC NMI TIME ITER

Setup (A1/2) 31.928 53s (135, 133, 133) 97.807 29s 70 69.167 78.175 98s 554

Setup (A2/3) 31.828 49s (122, 121, 120) 96.053 28s 66 69.167 78.175 96s 542

Setup (B1/2) 31.940 19s (153, 150, 150) 97.807 27s 70 71.167 79.189 43s 422

Setup (B2/3) 31.869 17s (135, 135, 136) 95.833 25s 66 70.833 79.504 41s 411
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Fig. 13 Plotted curves values of relative errors over CPU time for the two setups on three different application tasks.

– Fig 13 provides visual results illustrating how the

convergence curves with and without the RSVD in-

fluence computational efficiency. By comparing the

setups in (A) and (B), which not only achieve com-

parable performance but also result in faster conver-

gence speed, the acceleration strategies lead to re-

duced computational time, as demonstrated in (a)-

(c). It should be mentioning that the single channel

is considered, and the plotted curve exhibits a float-

ing trend but keeps decreasing in (a). This, in turn,

achieves higher computational efficiency and further

validates the effectiveness of the RSVD strategy.

Considering that in the preceding experiments, we

constrained the parameter p to specific values, i.e., 1/2

and 2/3, guided by the availability of closed-form solu-

tions for relevant proximal operators in (group) sparse

coding and low-rank matrix recovery problems. Subse-

quently, we present additional experiments focused on

ablation analysis for the hyper-parameters and discuss

the impact of parameter p as follows:

– To address concerns about the extensive number

of hyper-parameters, we conducted experiments in-

volving ablation analysis, as illustrated in Fig. 14.

Panels (a)-(c) focus on examining the influence and

necessity of specific hyper-parameter pairs, such as

(λ, p), (µ̂, p), and (d, p), on the overall model and

algorithmic performance. This comprehensive ap-

proach involves systematically isolating and modify-

ing individual hyper-parameters while keeping oth-

ers constant. By doing so, researchers can gain in-

sights into the relative importance and contribu-

tions of each parameter to the model’s effectiveness

across three various application tasks.

– Acknowledging the importance of discerning the im-

pact of varied p values, we conducted supplemen-

tary experiments spanning a spectrum of p values,

as illustrated in Fig. 14. (d)-(f). Then, we concisely

present our findings, underscoring the thorough in-

vestigations carried out by altering the parameter

p within the range {0.1, 0.2, 0.3, . . . , 0.9, 1.0} across

three application tasks. This investigation aims to

highlight the varied impacts on PSNR, ACC, and

NMI values linked to different p-values, while main-

taining fixed values for λ at 50, 0.01, and 0.5 respec-

tively. This demonstration underscores the relative

robustness of diverse settings.

Through a comprehensive analysis and the derived

experimental results, our goal is to elucidate the signif-

icance and sensitivity of the accelerations and hyper-

parameters within the given set. Subsequently, we ex-

tend our investigation by exploring how the proposed

method performs in large-scale data scenarios. More-
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Fig. 14 Comparisons of performance across different parameter choices, including λ, µ̂, d, and p values, within the experi-
mental settings of the three previously mentioned application tasks.
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(b) COIL20 (1024× 1440)

Fig. 15 Comparison of clustering accuracy and computational time values across various parameter settings for the two
large-scale datasets: (a) FLAVIA with ReLRR1/2 and (b) COIL20 with ReLRR2/3.

over, we systematically present instances of possible

failure cases, offering readers opportunities for in-depth

analysis. These aspects are introduced and discussed to

foster a deeper understanding of the method’s perfor-

mance and limitations among the readers.

– Addressing concerns regarding the proposed method’s

applicability in large-scale data settings, we con-

ducted experiments to evaluate its robustness for

clustering accuracy and computational complexity,

as illustrated in Fig. 15. (a) and (b). Assessing the

performance of the method with different parameter

choices and experimental settings on a larger scale is

crucial to validate its effectiveness and generalizabil-

ity in real-world scenarios with extensive datasets.

Notably, the dimensions of FLAVIA and COIL20

datasets are 1200 × 1907 and 1024 × 1440, respec-

tively. Conducting experiments on complete, large-

scale datasets instead of subsets enables researchers
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to explore potential scalability issues, evaluate the

method’s computational efficiency, and collect in-

sights into its adaptability to diverse and more com-

plex datasets. This comprehensive evaluation focuses

on enhancing the overall credibility of the research

findings, emphasizing the method’s robustness in

handling large-scale data scenarios.

– In the domain of low-rank matrix recovery, which

encompasses tasks like matrix completion, image

classification, and subspace clustering, it is crucial

to systematically analyze cases where the recovery

process fails. Specifically, in non-strictly low-rank

matrix learning scenarios, we explore the challenges

associated with learning low-rank matrices. Tradi-

tional algorithms face difficulties in these situations

due to the absence of a strictly low-rank structure,

which is particularly evident in image low-level and

high-level vision tasks. In addition, these methods

are inherently limited in effectively capturing in-

tricate structures within non-strictly low-rank ma-

trices. These instances highlight the pressing need

for adaptive approaches capable of accommodating

diverse matrix structures. Such adaptability is es-

sential for ensuring robust performance across vari-

ous real-world applications, especially in situations

where strict low-rank assumptions cannot be con-

sistently maintained. Therefore, a thorough exami-

nation of the effectiveness of low-rank constraints is

essential, ensuring that it considers the presence of

low-rank structure in the data and involves appro-

priate preprocessing steps.

6 Conclusion and Future Work

In this work, our focus is on introducing a unified prob-

lem framework designed to effectively tackle common

challenges encountered in real-world images, such as

noise, variations, and missing data. By capitalizing on

the inherent low-rank structure of the data and inte-

grating specific residual measurements, we present ro-

bust and efficient solutions to the optimization problem

associated with low-rank matrix learning. Our chosen

approach employs the nonconvex PBCD algorithm, en-

suring both local and global convergence through iter-

ative updates of variable blocks using closed-form solu-

tions. To enhance efficiency, we incorporate the RSVD

technique and employ a continuous strategy for adap-

tive model parameter updates. These strategies serve to

reduce computational complexity and offer control over

the desired rank of the learned matrix, all while pre-

serving result quality. Additionally, our framework ex-

tends the nonconvex PBCD algorithm to handle prob-

lems involving multiple variables, supported by a series

of thorough analyses. Experimental evaluations, con-

ducted across various image low-level and high-level vi-

sion tasks, including inpainting, clustering, and classifi-

cation, showcase the effectiveness and efficiency of our

approach across diverse datum.

In our future research directions, we envision two

primary directions for expanding upon the current study.

Firstly, our goal is to extend the efficient optimization

algorithms developed in this work to address tensor re-

covery problems, similar to those explored in [72, 84].

This extension holds the potential to advance tensor-

based data analysis, paving the way for tackling com-

plex data structures in innovative ways. Secondly, we

plan to delve into the integration of additional informa-

tion into our unified frameworks. This involves incorpo-

rating discriminative information or latent variables, as

demonstrated in previous studies like [80, 85, 86]. Solely

relying on low-rank matrix recovery, without leveraging

supplementary information, might lead to suboptimal

outcomes, especially when dealing with intricate and

diverse image content. Therefore, by harnessing this

additional information, our aim is to bolster the per-

formance and robustness of our approach, ultimately

enhancing accuracy and reliability across various im-

age low-level and high-level vision tasks.

Acknowledgment

The authors would like to thank the editors and the

anonymous reviewers for their critical and constructive

comments. This work was supported in part by the Min-

istry of Education, Republic of Singapore, through its

Start-Up Grant and Academic Research Fund Tier 1

under Grant RG61/22; in part by the National Natural

Science Fund (NSF) of China under Grant 61906067,

Grant 62176124, Grant 61973162, and Grant 12371510;

in part by the China Postdoctoral Science Foundation

under Grant 2019M651415 and Grant 2020T130191;

in part by the Fundamental Research Funds for the

Central Universities under Grant 30918014108, Grant

30920032202, and Grant 30921013114; in part by the

NSF of Jiangsu Province under Grant BZ2021013; in

part by the NSF for Distinguished Young Scholar of

Jiangsu Province under Grant BK20220080; and in part

by the “111” Program under Grant B13022.

References

1. R. Dian, S. Li, L. Fang, Learning a low tensor-train

rank representation for hyperspectral image super-

resolution, IEEE Trans. Neural. Netw. Learn. Syst.

30 (9) (2019) 2672–2683.



Faster Nonconvex Low-rank Matrix Learning for Image Low-level and High-level Vision: A Unified Framework 29

2. R. Dian, S. Li, Hyperspectral image super-

resolution via subspace-based low tensor multi-rank

regularization, IEEE Trans. Image. Process. 28 (10)

(2019) 5135–5146.

3. S. Zhao, J. Wu, L. Fei, B. Zhang, P. Zhao, Double-

cohesion learning based multiview and discriminant

palmprint recognition, Inf. Fusion 83 (2022) 96–

109.

4. H. Zhang, J. Yang, J. Xie, J. Qian, B. Zhang,

Weighted sparse coding regularized nonconvex ma-

trix regression for robust face recognition, Inf. Sci.

394-395 (2017) 1–17.

5. R. Dian, S. Li, L. Fang, Q. Wei, Multispectral and

hyperspectral image fusion with spatial-spectral

sparse representation, Inf. Fusion 49 (2019) 262–

270.

6. R. Dian, A. Guo, S. Li, Zero-shot hyperspectral

sharpening, IEEE Trans. Pattern. Anal. Mach. In-

tell. 45 (10) (2023) 12650–12666.

7. B. Wen, S. Ravishankar, Y. Bresler, Structured

overcomplete sparsifying transform learning with

convergence guarantees and applications, Inter. J.

Comput. Vis. 114 (2-3) (2015) 137–167.

8. H. Zhang, J. Yang, J. Qian, G. Gao, X. Lan,

Z. Zha, B. Wen, Efficient image classification via

structured low-rank matrix factorization regres-

sion, IEEE Trans. Inf. Forensics Security 19 (2023)

1496–1509.

9. T. Bouwmans, A. Sobral, S. Javed, S. Jung, E. Za-

hzah, Decomposition into low-rank plus additive

matrices for background/foreground separation: A

review for a comparative evaluation with a large-

scale dataset, Comput. Sci. Rev. 23 (2017) 1–71.

10. H. Yin, S. Li, L. Fang, Simultaneous image fusion

and super-resolution using sparse representation,

Inf. Fusion 14 (3) (2013) 229–240.

11. G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, Y. Ma, Ro-

bust recovery of subspace structures by low-rank

representation, IEEE Trans. Pattern. Anal. Mach.

Intell. 35 (1) (2012) 171–184.

12. Q. Wang, S. Li, H. Qin, A. Hao, Robust multi-

modal medical image fusion via anisotropic heat

diffusion guided low-rank structural analysis, Inf.

Fusion 26 (2015) 103–121.

13. Q. Zhang, Y. Liu, R. S. Blum, J. Han, D. Tao,

Sparse representation based multi-sensor image fu-

sion for multi-focus and multi-modality images: A

review, Inf. Fusion 40 (2018) 57–75.

14. T. Oh, Y. Matsushita, Y. Tai, I. Kweon, Fast ran-

domized singular value thresholding for low-rank

optimization, IEEE Trans. Pattern. Anal. Mach.

Intell. 40 (2) (2017) 376–391.

15. H. Zhang, J. Yang, J. Qian, W. Luo, Nonconvex

relaxation based matrix regression for face recogni-

tion with structural noise and mixed noise, Neuro-

Computing 269 (2017) 188–198.

16. K. Toh, S. Yun, An accelerated proximal gradi-

ent algorithm for nuclear norm regularized linear

least squares problems, Pac. J. Optim. 6 (615-640)

(2010) 15.

17. C. Lu, C. Zhu, C. Xu, S. Yan, Z. Lin, Generalized

singular value thresholding, in: Proc. Assoc. Adv.

Artif. Intell (AAAI), 2015, pp. 1805–1811.

18. Z. Lin, M. Chen, Y. Ma, The augmented lagrange

multiplier method for exact recovery of corrupted

low-rank matrices, arXiv preprint arXiv:1009.5055

(2010).

19. J. Wright, A. Yang, A. Ganesh, S. Sastry, Y. Ma,

Robust face recognition via sparse representation,

IEEE Trans. Pattern. Anal. Mach. Intell. 31 (2)

(2009) 210–227.

20. W. Zuo, D. Meng, L. Zhang, X. Feng, D. Zhang,

A generalized iterated shrinkage algorithm for non-

convex sparse coding, in: Proc. IEEE Conf. Com-

put. Vis. Pattern. Recogn (CVPR), 2013, pp. 217–

224.

21. H. Zhang, F. Qian, F. Shang, W. Du, J. Qian,

J. Yang, Global convergence guarantees of

(A)GIST for a family of nonconvex sparse learn-

ing problems, IEEE Trans. Cybern. 52 (5) (2022)

3276–3288.

22. J. Yang, L. Luo, J. Qian, Y. Tai, F. Zhang, Y. Xu,

Nuclear norm based matrix regression with applica-

tions to face recognition with occlusion and illumi-

nation changes, IEEE Trans. Pattern. Anal. Mach.

Intell. 39 (1) (2017) 156–171.

23. J. Qian, W. K. Wong, H. Zhang, J. Xie, J. Yang,

Joint optimal transport with convex regularization

for robust image classification, IEEE Trans. Cy-

bern. 52 (3) (2020) 1553–1564.

24. M. Abavisani, V. M. Patel, Multimodal sparse and

low-rank subspace clustering, Inf. Fusion 39 (2018)

168–177.

25. H. Zhang, J. Yang, F. Shang, C. Gong, Z. Zhang,

LRR for subspace segmentation via tractable

Schatten-p norm minimization and factorization,

IEEE Trans. Cybern. 49 (5) (2019) 1722–1734.

26. E. Elhamifar, R. Vidal, Sparse subspace clustering:

Algorithm, theory, and applications, IEEE Trans.

Pattern. Anal. Mach. Intell. 35 (11) (2013) 2765–

2781.
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