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ABSTRACT

Motivated by the semi-supervised learning that uses the un-
labeled data and pseudo annotations to improve the image
classification, this paper proposes a new semi-supervised few-
shot segmentation (FSS) framework of which the training pro-
cess uses not only the annotated images, but also the unla-
beled images, e.g. images from other available datasets, to en-
hance the training of the FSS model. Furthermore, in the test
phase, more support images and pseudo-annotations can also
be generated by the proposed framework to enrich the sup-
port set of novel classes and therefore benefit the inference.
However, unlabeled images are not a free lunch. The noisy
intra-class samples and inter-class samples existed in the un-
labeled images as well as the interferences of the bad quality
of pseudo annotations make it difficult to utilize the correct
images and pseudo annotations for a certain class. To this
end, we further propose a ranking algorithm consisting of an
inter-class confidence term and an intra-class confidence term
to efficiently utilize the pseudo annotations of the class with
high quality. Extensive experiments on COCO-20i dataset
demonstrate that the proposed semi-supervised FSS frame-
work is superior to many state-of-the-art methods.

Index Terms— few-shot segmentation, semi-supervised
learning, noisy images

1. INTRODUCTION

Few-shot segmentation (FSS) [1] aims to segment object re-
gions of a new class based on a small number (N-shot) of
annotated support samples. Existing few-shot segmentation
methods can be categorised into prototype-based approach
[2, 3, 4, 5, 6] and metric-based approach [7, 8]. Prototype-
based approaches focus on generating representative proto-
types from a small number of annotations that can represent
the new class well. Metric-based approaches [7, 8] focus
on learning a robust class-agnostic similarity metric that can
successfully find the common regions with large variations
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Fig. 1. (a) 1-shot setting. (b) 5-shot setting. (c) 1-shot with
additional 4 noise support images with pseudo labels. Using
1-shot and 4 noise support can achieve comparable perfor-
mance to 5-shot without manual annotations.

among support and query images pair. However, the segmen-
tation improvement is very limited due to the fact that learning
powerful representative prototypes or class-agnostic similar-
ity metric from a limited annotation set is also hard work.

Besides, recent works [9, 10, 11, 12] demonstrate that
semi-supervised learning can improve the classification via
generating pseudo labels of unlabeled images. For example,
the method in [9] generates and selects similar pseudo labels
from unlabeled data to exploit the consistency constraint and
thus increases model’s generalization in classification. The
method in [10] trains a teacher model to generate good pseudo
labels to augment the training dataset and thus benefit the stu-
dent model for object detection. The method in [11] utilizes
an unlabeled set to generate and select good pseudo labels
based on similar loss distribution to enhance the classification
model. These semi-supervised methods provide a new solu-
tion for the limited annotation set of FSS.

In this paper, we propose a semi-supervised FSS frame-
work utilizing the support set with a mix of annotated images
and other unlabeled noisy images to enrich the annotation set.
A brief pipeline is shown in Fig. 1 (c). Given the noisy and
unlabeled support images, we firstly generate pseudo labels
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Fig. 2. Examples of two problems. (a) Noisy intra-class sam-
ples as support samples. (b) Noisy inter-class samples as sup-
port samples.

using a pretrained model. Then, the pseudo masks with high
confidence are used as ground truth to expand the support
set. Afterwards, the expanded support set is utilized to en-
hance the few-shot segmentation model in both training and
test phases.

However, unlabeled noisy images are not a free lunch.
There are two problems that complicate pseudo-label selec-
tion (as shown in Fig. 2). 1) Noisy Intra-Class Samples: The
noisy intra-class samples contain ambiguous objects that may
strengthen the background and weaken the foreground, e.g.,
noisy “background” dominates the image as shown in Fig. 2
(a). 2) Noisy Inter-Class Samples: The noisy inter-class
samples introduce irrelevant features to the task, which may
cause feature bias and thus confuse the FSS model, e.g., the
FSS model is confused by “elephant”, “person” and “sheep”
when segmenting “aeroplane” as shown in Fig. 2 (b).

To solve the above two problems, we propose a rank-
ing algorithm to automatically eliminate the noisy intra-class
samples and inter-class samples. Specifically, the proposed
ranking algorithm consists of two terms: an intra-class confi-
dence term R and an inter-class confidence term T based on
the two types of noisy samples. The term R is calculated by
two sub-terms: Esc and Eimc, where Esc measures prediction
uncertainty based on binary entropy of each pixel, and Eimc

identifies different types of errors based on the co-teaching
framework [13, 14]. The term T is calculated by measuring
the feature similarities between the support prototypes and the
noisy unlabeled images with pseudo labels. Finally, a rank-
ing score E is obtained based on R and T , and the top scored
pseudo labels are selected as new annotations. The proposed
semi-supervised FSS framework is validated on COCO-20i

and is superior to many state-of-the-art methods in Sect. 3.

2. METHOD

2.1. Semi-Supervised FSS Framework

Fig. 3 (a) shows the proposed semi-supervised FSS frame-
work. The key innovation is in phase II, where a ranking
algorithm is proposed to evaluate the pseudo labels. Specifi-
cally, an intra-class confidence term R and an inter-class con-
fidence term T are calculated for each pseudo label. Then,
a final ranking score E is obtained by simply calculating the
weighted sum of R and T :

E = α ·R+ β · T (1)

where α and β are weighting coefficients. Afterwards, the top
k scored pseudo labels are selected to form a new annotation
set:

Sbasenew ← Sbase + {(X1, ŶX1
), (X2, ŶX2

), ..., (Xk, ŶXk
)}
(2)

where Sbase indicates the initial annotation set of base classes
in the training phase, ŶX indicates the pseudo label of image
X .

Finally, in phase III, the new annotation set Sbasenew is used
to retrain Nθ and get better predictions. More details of the
intra-class confidence term R and the inter-class confidence
term T are introduced in Sect. 2.1.1 and Sect. 2.1.2, respec-
tively.

2.1.1. Intra-Class Confidence Term R

The term R aims to estimate the credibility of intra-class
pseudo labels, which is calculated by:

R = Esc × Eimc (3)

where Esc estimates the prediction uncertainty of pseudo la-
bels and Eimc identifies different types of errors in pseudo
labels.

Segmentation Confidence Term Esc. This term is calcu-
lated by adopting a binary-entropy-based function to measure
the prediction uncertainty:

Esc = −
1

N

∑
i

H(i) +B (4)

where i indicates a pixel position, H(·) is the binary entropy
function, N is the total number of pixels, and B is a bias term
to ensure Esc ∈ [0, 1]. The formulation of H(x) is shown in
Eq. 5, where p(i) is the logit at pixel position i.

H(x) = −p(i)log(p(i))− (1− p(i))log(1− p(i)) (5)

Instance Mask Consensus Term Eimc. This term is mo-
tivated by the co-teaching framework [13, 14], which proves
that two diverged networks can filter different types of errors.
Therefore, if two diverged FSS networks output similar pre-
dictions to the same unlabeled image, the predictions contain
little errors and have high confidence.

The pipeline of getting Eimc is shown in Fig. 4. Specif-
ically, the unlabeled image X is processed by two FSS net-
works Nθ1 and Nθ2 with a given support sample {S, YS},
where S is the support image and YS is the manual anno-
tation. Then, a metric m(·, ·) is calculated between the two
output Ŷ 1

X and Ŷ 2
X . Thus, the calculation of Eimc is:

Eimc = m(Ŷ 1
X , Ŷ 2

X) (6)

where Ŷ 1
X and Ŷ 2

X are predictions of the same unlabeled im-
age X from two diverged networks Nθ1 and Nθ2. m(·, ·) in-
dicates a segmentation metric score, e.g., mIoU.
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Fig. 4. The pipeline of Eimc. The unlabeled image X is
processed by two FSS networks Nθ1 and Nθ2 with a given
support sample {S, YS}. Then, a metric m(·, ·) is calculated
between the two output Ŷ 1

X and Ŷ 2
X .

2.1.2. Inter-Class Confidence Term T

The term T aims to identify the noisy inter-class samples
based on the feature similarities between the support proto-
types and the pseudo labels. First, the prototype of class c
of the initial support set Sc = {Sc

1, S
c
2, ..., S

c
n} are calculated

by:

Pc =
1

n

n∑
i=1

σ(FSc
i
, YSc

i
) (7)

where FSc
i
∈ RC×H×W is the feature map of support Sc

i

of class c, YSc
i

is the manual annotation, σ(·) is the masked
global average pooling, andPc ∈ RC is the prototype of class
c. Then, the term T can be calculated by:

T = s(Pc, σ(FX , ŶX)) (8)

where FX ∈ RC×H×X is the feature map of X , ŶX is the
generated pseudo label, s(·, ·) is a similarity metric, e.g., co-
sine similarity.

2.2. Our FSS Test with Semi-Supervised Framework

Based on the proposed semi-supervised FSS framework, we
can further expand the initial support set of novel classes
simply in the test phase to improve the segmentation perfor-
mance, of which the pipeline is shown in Fig. 3 (c). Specif-
ically, different from the conventional FSS test (Fig. 3 (b))
where only a small annotated support set Snovel of novel
classes is utilized, our test enriches Snovel following the
pipeline of phase I and phase II in the semi-supervised frame-
work to obtain the new support set Snovelnew :

Snovel
new ← Snovel + {(X1, ŶX1), (X2, ŶX2), ..., (Xk, ŶXk )} (9)

Then, the query images will be segmented with the new sup-
port set Snovelnew to get better predictions.

3. EXPERIMENT

3.1. Dataset, Metrics and Training Details

We train and validate our method on COCO-20i [1] following
the dataset settings of existing FSS methods [15, 8, 16, 2]. Be-
sides, we use 123,403 unlabeled images in COCO2017 [17]
as the noisy unlabeled image dataset. The mean intersection
over union (mIoU) and foreground-background IoU (FB-IoU)
are adopted as the evaluation metrics.

Our experiments are conducted on two NVIDIA Titan XP
GPUs and Intel Core i9-9900k CPU @ 3.60GHz× 16. Our
code is constructed on PyTorch. We adopt HSNet [16] as the
base model Nθ in Fig. 3. In Sect. 2.2, the two diverged net-
works Nθ1, Nθ2 of Eimc are set to the base model with dif-
ferent backbones: ResNet50 and ResNet101. The publicly re-
leased pretrained models of HSNet are used directly in phase
I and phase II. We set m(·, ·) to mIoU score in Sect. 2.1.1
and set s(·, ·) to cosine similarity in Sect. 2.1.2. The feature
maps F ∈ RC×H×W in Sect. 2.1.2 are extracted from the
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Table 1. IoU and FB-IoU scores on COCO-20i. “†” is the
results of the conventional test. “‡” is the results of our test
based on the proposed semi supervised framework. “Oracle”
is the 5-shot performance of base model. “±0.1” is the stan-
dard deviation of repeating 5 times.

1-shotBackbone Method mean FB-IoU
HSNet [16] 39.2 68.2
CyCTR [18] 40.3 -
VAT [19] 41.3 68.8
ASNet [20] 42.2 68.8
Ours (HSNet) † 40.5 (±0.3) 69.0 (±0.3)
Ours (HSNet) ‡ 49.5 (±0.3) 71.8 (±0.4)

ResNet50

Oracle 46.9 70.7
MLC [6] 36.4 -
PFENet [8] 38.5 63.0
HSNet [16] 41.2 69.1
ASNet [20] 43.1 69.4
Ours (HSNet) † 42.7 (±0.3) 69.7 (±0.2)
Ours (HSNet) ‡ 51.0 (±0.5) 72.5 (±0.6)

ResNet101

Oracle 49.5 72.4

Table 2. Computational complexity of our with the baseline.
Method Learnable Params FPS FLOPs (G)
HSNet 2.6 M 16.33 20.56
Ours (HSNet) 2.6 M 16.45 20.52

last convolutional layer of the backbone. The coefficients α
and β in Eq. 1 are set to 0.3 and 0.7, respectively. In the
training phase, pseudo labels with E ≥ 0.65 are selected as
new annotations of base classes. In the test phase, the top
4 scored pseudo labels are introduced into the support set of
novel classes. In phase III, the retraining setting strictly fol-
lows the base model [16].

3.2. Results

We evaluate the proposed method on COCO-20i dataset and
compare it with existing FSS methods [8, 6, 18, 19, 20, 16]
in Table 1. “Ours (HSNet) †” achieves mIoU improvements
of 1.3% and 1.5% on ResNet50 and ResNet101, respectively,
compared with HSNet (baseline). Besides, “Ours (HSNet)
‡” achieves larger mIoU improvements of 10.3% and 9.8%
on ResNet50 and ResNet101, respectively. Meanwhile, the
proposed method surprisingly surpasses the “Oracle” in some
cases. This can be contributed to the introduced unlabeled
images, which enriches the support image set of novel classes
and thus enhances the inference of the FSS model. Most no-
tably, “Ours (HSNet) ‡” on ResNet101 obtains 1.5% mIoU
gains and 0.1% FB-IoU gains compared with the “oracle”,
which is a new state-of-the-art to our best knowledge.

In addition, we have compared the learnable params, FPS,
and FLOPs of our method with the baseline in Table 2. One
can observe that our method does not introduce additional
learnable params and our FPS and FLOPs are also close to
the baseline. The reason is that the pseudo label generation
in phase I and ranking process in phase II are completed once
before the training phase and does not affect the computa-
tional complexity of both the training and test phases.

Table 3. Ablation study of the proposed method with dif-
ferent design choices. “±0.1” is the standard deviation of
repeating 5 times.

R T mIoU FB-IoU
Esc Eimc

41.2 69.1
✓ 41.6 (±0.4) 69.3 (±0.3)

✓ 41.9 (±0.3) 69.8 (±0.4)
✓ ✓ 43.4 (±0.3) 70.3 (±0.4)

✓ 50.1 (±0.4) 71.7 (±0.5)
✓ ✓ 50.6 (±0.8) 72.0 (±0.4)

✓ ✓ 50.5 (±0.6) 71.9 (±0.3)
✓ ✓ ✓ 51.0 (±0.6) 72.5 (±0.6)

3.3. Ablation Study

We conduct a series of ablation experiments in Table 3. With-
out loss of generality, the ablation study experiments are per-
formed on “Ours (HSNet) ‡” with ResNet101 backbone on
COCO-20i. First, when only with the Esc or Eimc, the pro-
posed method achieves mIoU improvement of 0.4% and 0.7%
respectively and their combination leads to 2.2% mIoU im-
provement. Then, when only using the inter-class confidence
term T , the proposed method achieves mIoU improvements
of 8.9%, and FB-IoU improvements of 2.6%. Next, with T ,
Esc and Eimc of the intra-class confidence term R contributes
further mIoU improvements to different extents, which are
shown in the 6th and 7th rows. Finally, the full combination
of R and T achieves the best mIoU of 51.0% and FB-IoU of
72.5%. The ablation study proves the effectiveness of both R
and T in the proposed method.

4. CONCLUSION

We have presented a novel semi-supervised FSS framework.
The core idea is to expand the initial support set by intro-
ducing pseudo labeled images in both training and test phase.
A ranking algorithm is proposed in the framework to elim-
inate the noisy intra-class samples and inter-class samples.
Then, the pseudo labels with high ranking scores are kept
and utilized to expand the support set. Extensive experiments
demonstrate the effectiveness of the proposed method and
new state-of-the-arts are achieved on COCO-20i.
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