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ABSTRACT
Fraud detection in e-commerce, which is critical to protecting the

capital safety of users and financial corporations, aims at determin-

ing whether an online transaction or other activity is fraudulent or

not. This problem has been previously addressed by various fully

supervised learning methods. However, the true labels for training

a supervised fraud detection model are difficult to collect in many

real-world cases. To circumvent this issue, a series of automatic

annotation techniques are employed instead in generating multiple

noisy annotations for each unknown activity. In order to utilize

these low-quality, multi-sourced annotations in achieving reliable

detection results, we propose an iterative two-staged fraud detec-

tion framework with multi-sourced extremely noisy annotations. In

label aggregation stage, multi-sourced labels are integrated by voting

with adaptive weights; and in label correction stage, the correctness
of the aggregated labels are properly estimated with the help of

a handful of exactly labeled data and the results are used to train

a robust fraud detector. These two stages benefit from each other,

and the iterative executions lead to steadily improved detection

results. Therefore, our method is termed “Label Aggregation and

Correction” (LAC). Experimentally, we collect millions of transac-

tion records from Alipay in two different fraud detection scenarios,

i.e., credit card theft and promotion abuse fraud. When compared

with state-of-the-art counterparts, our method can achieve at least

0.019 and 0.117 improvements in terms of average AUC on the two

collected datasets, which clearly demonstrate the effectiveness.
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1 INTRODUCTION
The problem of fraud detection has a large impact in the field of e-

commerce and has attracted a great deal of attention by e-commerce

platforms such as Alipay. There are many types of fraud on e-

commerce platforms, such as account takeover fraud, credit card

theft, promotion abuse fraud, etc. Account takeover means fraud-

sters use stolen credentials to access a genuine account. When it is

successful, fraudsters can take control of the account and conduct

some illegal activities. Credit card theft means someone’s credit

card is stolen by others for unauthorized purchases. Promotion

abuse fraud refers to fraudsters intentionally create multiple fake

accounts to repeatedly enjoy shopping discounts issued by shop-

ping platforms (e.g., Taobao and Tmall). These fraud activities bring

about a huge economic loss every year for e-commerce platforms

and numerous users. Unfortunately, manually identifying the ab-

normal activities and fraudsters is infeasible, owing to the massive

throughput of the business and the great diversity of fraud be-

haviors. Therefore, in e-commerce, a high-quality automatic fraud

detection system is strongly demanded.

Fraud detection is generally viewed as a binary classification

problem in assigning the label of “genuine” or “fraudulent” to an

unknown transaction
1
. Given the historical records with accurate

annotations, previous methods typically formulate this problem as a

general supervised problem [8, 20, 32]. However, the heavy reliance

on accurate annotations critically restricts the scenarios of deploy-

ing these methods, due to the expensive cost of time and money in

labeling. To circumvent this problem, a series of primitive labeling

techniques are deployed to automatically generate multiple labels

for each transaction with high efficiency (cf., Figure 1). Although
the annotation process is quite efficient, the resulting labels are of

extremely low quality, since they are simply determined by some

fixed business rules or the outputs of out-of-date models in similar

business scenarios. As a result, the performance of canonical su-

pervised methods will be largely affected [38]. Besides, we want to

mention that the conventional crowdsourcing methods [14, 30, 53]

dealing with multi-sourced labels are not applicable here owing

to the severe label noise existed in the annotation results. There-

fore, it is highly demanded to devise a reliable learning approach

with massive multi-sourced noisy annotations for accurate fraud

detection in e-commerce.

1
We use the term “transaction” to refer to fraud activities throughout this paper.

https://doi.org/10.1145/3459637.3482433
https://doi.org/10.1145/3459637.3482433
https://doi.org/10.1145/3459637.3482433
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Figure 1: The annotation process of our method. For every
transaction, a series of automatic annotation techniques (  
annotators) are employed in assigning the label of �genuine�
(� 1) or �fraudulent� ( ¸ 1). The quality of the assigned labels
could be low due to the �xed criteria or business rules, re-
sulting in multi-sourced noisy labels. If necessary, the true
label for a small amount ( � 0”1%) of transaction records can
also be provided manually with some acceptable extra costs.

In this paper, we propose an e�ective learning framework for
fraud detection under multi-sourced extremely noisy annotations.
Concretely, we construct an iterative learning paradigm that con-
sists of two main stages, namely,label aggregation stageandlabel
correction stage. Speci�cally, label aggregation stage tries to infer
a reliable label for each transaction from the multi-sourced noisy
annotations, for which we adopt a weighted voting scheme that
adaptively considers the quality of each annotator in deciding trans-
actions as �genuine� and �fraudulent�. Although label aggregation
stage is able to convert the multi-sourced labels of a transaction into
a single one, the quality of the resulting labels can still be further
improved as the correctness of individual transactions has not been
properly investigated. Therefore, label correction stage is deployed,
where the con�dence score of each individual transaction regarding
the aggregated label is estimated. Then, the con�dence scores are
sent to a robust learning framework in constructing the �nal classi-
�er for fraud detection. It is worth noting that the con�dence scores
are trustable due to the employment of a small set of transactions
with veri�ed true labels2. Therefore, the resulting classi�er can
further enhance the quality of aggregated labels rendered by the
previous aggregation stage. These two stages execute alternatively
and they collaboratively lead to the increased performance of fraud
detection.

We collect more than a million transaction cases in two di�erent
real-world fraud scenarios from Alipay, which are related to credit
card theft (CCT) and promotion abuse fraud (PAF), respectively.
With multi-sourced noisy labels automatically assigned by the afore-
mentioned annotation process, we construct two corresponding
fraud detection datasets. Then, we conduct extensive experiments
on the two datasets in comparison with state-of-the-art counter-
parts, and our method achieves0”019� 0”188improvements onCCT
and0”117� 0”172improvements onPAFin terms of the average
AUC on test sets.

2Note that the cost for annotating a small amount of transactions is practically ac-
ceptable, and this small clean set has been widely used in many prior works such
as [5, 13, 46].

2 RELATED WORK
In this section, we provide a comprehensive overview on fraud
detection, learning with label noise, and learning from crowds.

2.1 Fraud Detection
Fraud detection has drawn a great deal of attention in the literature
of machine learning [1, 3]. It can be viewed as a binary classi�ca-
tion problem and aims at distinguishing fraudulent transactions
from the genuine ones. In general, previous learning methods can
be attributed to three categories, namely, supervised techniques,
unsupervised techniques, and semi-supervised techniques.

Supervised techniques rely on the historical transactions with
true labels, in which the true labels are collected either from the
feedback of users or the investigation results of �nancial corpora-
tions. These methods adapt traditional supervised techniques into
fraud detection, such as deep neural network [8, 48] and decision
tree [32]. However, the collection of true labels is usually along
with una�ordable time and labor costs. In contrast, unsupervised
techniques [10, 15, 19] do not require any true label. Instead, they
employ various anomaly detectors with the assumption that the
outliers are fraudulent. Nonetheless, the reliability of the detection
results cannot be guaranteed due to the absence of supervision.
Therefore, semi-supervised techniques [9, 47] are further utilized
to conduct fraud detection, which can be viewed as a combination
of the above two kinds of methods. The methods belonging to this
category adopt a large scale of unlabeled transactions with a few
correctly labeled ones. Obviously, their deployment costs are lower
when compared with the supervised techniques, and the detection
reliability is much better than the unsupervised techniques.

Di�erent from previous works, we aim at learning from histori-
cal transactions with multi-sourced noisy annotations, which may
provide more reliable supervision with the minimum labeling cost
in comparison with the completely supervised and unsupervised
cases. Similar to semi-supervised techniques, a small portion of
transactions with true labels are also used in our method, but di�er-
ently, large scale transactions with multi-sourced noisy annotations
are also utilized here to provide more potential supervision.

2.2 Learning with Noisy Labels
Label noise learning is one of the most representative learning
settings in the �eld of weakly supervised learning [25,26,50,56,57],
which aims at learning robust classi�ers in the presence of data
with inaccurate labels. According to the generation process of the
noisy labels, the studies on label noise learning mainly fall into the
following three categories [17], namely, random classi�cation label
noise, class conditional label noise, and instance dependent label
noise.

The setting of random classi�cation label noise assumes that
noisy labels are corrupted completely at random, and various noise-
tolerant loss functions have been explored [22, 23, 35, 38, 51]. The
works of class conditional label noise additionally assume that noisy
labels are dependent on the unknown true labels. It considers the
fact that some class pairs are more prone to be mutually mislabeled.
The noise transition matrix is adopted to depict such phenome-
non, and various statistically consistent learning frameworks are
proposed, such as [24, 33, 40, 54]. Instance dependent label noise
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setting is much general but scarcely studied due to its high com-
plexity, which assumes that the label corruption is related to data
themselves in addition to the unknown class labels. The represen-
tative works are [5, 13, 16, 36, 49]. Note that, the setting of label
correction stage in our method exactly coincides with learning with
noisy labels. We explicitly consider instance dependent label noise
in our method, which is the most general case among the three
noise types mentioned above. Besides, our method is also feasible
in learning with severe label noise, which is a challenging situation
where most of the existing robust methods for handling label noise
may fail.

2.3 Learning from Crowds
Learning from crowds (a.k.a.crowdsourcing) provides a cost-e�ective
solution when the true labels of a dataset are not available [37, 44,
58]. It allows a group of cheap annotators to do the labeling task,
and thus each datum is assigned with multiple labels provided by
the annotators. Such labels might be noisy as the annotators are
not experts and may lack domain knowledge. The ultimate goal is
to use these multiple low-quality labels to infer the corresponding
true labels of data points.

In the literature of learning from crowds, existing methods can be
divided into two major categories depending on how the inference
is integrated with the training of the classi�er. The �rst category
considers a two-staged learning strategy which �rst infers the
ground-truth labels using multi-sourced labels, and then trains the
target classi�er based on the inferred labels. Intensive e�orts have
been devoted to the inferring stage, such as [43, 52, 53]. The second
category is referred as the joint approach, which simultaneously
infers true labels and trains the classi�er [2, 30, 42]. These methods
allow the two processes to bene�t from each other, and thus they
generally perform better than those belonging to the �rst category.
Although the above methods have achieved promising performance
on various tasks, they may fail when the quality of annotators is
extremely unsatisfactory. Therefore, traditional learning methods
for crowdsourcing problem are unsuitable in remedying the severe
label noise for our task of fraud detection.

3 OUR METHOD
To begin with, we �x some necessary notions in this paper. We
consider a dataset of# transactionsfG8g#

8=1 2 R3 with the asso-
ciated true labelsf I 8g#

8=1 2 f� 1•¸ 1g, where3 is the dimension of
the feature vector for the transactions. Here, the true labels are
not accessible in most cases. Instead, each transaction is equipped
with  annotations as shown in Figure 1. Letf~:

8 g 
: =1 denote the

 noisy annotations corresponding toG8, with ~:
8 2 f� 1•¸ 1gbeing

the assigned label for the8-th transaction given by annotator: ,
where~:

8 = � 1 for a genuine transaction and~:
8 = ¸ 1 for a fraudu-

lent transaction. Note that, the assigned label~:
8 may be di�erent

from the corresponding true labelI 8, i.e.,~:
8 < I 8. Therefore, our

goal is to construct a scoring function5¹Gº : R3 7! R with multi-
sourced noisy annotations, such that the corresponding classi�er
6¹Gº = sgn¹5¹Gºº could provide an accurate prediction for any new
transactionG, wheresgn¹�º denotes the sign function that returns
� 1•¸ 1 according to the sign of its input.

3.1 Learning Framework
In this section, we brie�y introduce the iterative learning frame-
work for fraud detection (see Figure 2), where the following two
stages are deployed, namely,i. Label aggregation stage: integrating
the multi-sourced noisy annotations into a single one by consid-
ering the quality levels of di�erent annotators;ii . Label correction
stage: learning a reliable classi�er by considering the con�dence of
aggregated labels.

label aggregation stage aggregates the original multi-sourced
labels by employing a weighted voting scheme. Therein, each an-
notator is related to a pair of weights, respectively characterizing
its quality in deciding a transaction as genuine and fraudulent. In
label correction stage, we further estimate the con�dence scores
of the aggregated labels of all transactions. The con�dence scores
can be e�ectively estimated by canonical clustering techniques,
and the results are of high quality with the aid of a small set of
transactions with manually veri�ed true labels. The aggregated
labels and their con�dence scores are further utilized to train a
statistically consistent classi�er, which could be e�ectively used
for judging a new transaction as fraudulent or not. The two stages
proceed iteratively and each of them is bene�ted from the other,
so the �nal performance of our method can be enhanced. In the
next two parts, we will describe label aggregation stage and label
correction stage in detail.

3.2 Label Aggregation Stage
In this section, we describe label aggregation stage in the proposed
learning framework, which integrates the multi-sourced labels of
each transaction into a single one.

3.2.1 Weighted Voting.A straightforward method of label aggrega-
tion for multi-sourced annotations is majority voting. Accordingly,
the aggregated label~8 for the 8-th transaction can easily be ob-
tained by

~8  sgn
�Õ  

: =1
11 »~:

8 =¸ 1¼¹� 1º1 »~:
8 =� 1¼

�
• (1)

where1 »�¼denotes the indicator function that equals to 1 if the
condition in the bracket is true and 0 otherwise.

However, the majority voting does not consider the quality of
di�erent annotators in assigning genuine and fraudulent labels,
which may lead to inferior results. Therefore, in our method, a
weighted voting method is adopted in label aggregation, namely

~8  sgn
� Õ  

: =1
E

1 »~:
8 =¸ 1¼

:• ¸ 1 ¹� E:• � 1º1 »~:
8 =� 1¼

�
• (2)

whereE:• ¸ 1 andE:• � 1 are de�ned as the overall labeling quality of
the : -th annotator for providing the positive and negative labels.
Intuitively, if the : -th annotator performs better in deciding the
fraudulent transactions than determining the genuine ones, the
value ofE:• ¸ 1 should be larger thanE:• � 1.

3.2.2 Estimation ofE:• ¸ 1 andE:• � 1. Note that, the paired weights
to depict annotator qualityE:• ¸ 1 andE:• � 1 should be properly es-
timated as they play a critical role in inferring the aggregated
labels. Here, we cast the estimation of paired weights of annotators
f¹ E:• ¸ 1• E:• � 1º : : = 1•� � � •  gas a maximum likelihood estimation
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Figure 2: The overview of our framework, where E8 (8= 1•� � � •  ) denotes the annotator quality, ~8 and Î 8 (8= 1•� � � • # ) denote
the aggregated labels and corrected labels, respectively. The label aggregation stageintegrates the multi-sourced annotations
for every transaction. Therein, the quality of annotators in deciding fraudulent/genuine cases are considered, and a weighted
voting strategy is deployed accordingly. Then, with the help of a small amount ( " � # ) of veri�ed transaction data, the label
correction stage further estimates the con�dence scores of the aggregated labels for each transaction via canonical clustering
techniques (e.g., : -means++ in this work), and a statistically consistent learning method is deployed in training the robust clas-
si�er for fraud detection. These two stages execute iteratively until convergence and output is the �nal robust fraud detector.

problem. Taking the predicted labelsf Î 1•� � � •Î # ggiven by the ro-
bust classi�er in label correction stage as the pseudo labels3, we
have the following optimization problem:

arg max
E:• ¸ 1•E:• � 1

Õ #

8=1
log01 »Î 8=¸ 1¼

8 ¹1 � 08º1 »Î 8=� 1¼• (3)

where08 is de�ned as the probability%¹~8 = ¸ 1jG8º and is calcu-

lated byf
�
Í  

: =1E
1 »~:

8 =¸ 1¼
:• ¸ 1

�
� E:• � 1

�1 »~:
8 =� 1¼

�
with f ¹�º being the

sigmoidactivation function. By converting the estimation of an-
notator quality into a maximum likelihood estimation algorithm,
the traditional gradient descent method can be directly used for
optimization.

By combining Eq.(2)and Eq.(3), we have the outputs of label
aggregation stage, namely, the aggregated labelsf~1•� � � •~# g for
the # transactions.

3.3 Label Correction Stage
Although the above label aggregation stage is e�ective in eliminat-
ing the noisy annotations, the aggregated labelsf~1•� � � •~# gare
still expected to be puri�ed as the initial multi-sourced labels are
severely corrupted. Therefore, we further invoke label correction
stage, which focuses on estimating the con�dence score of each ag-
gregated label and accordingly learns the target classi�er for fraud
detection. Note that, the setting of label correction stage exactly
coincides with robust learning with noisy labels [38].

3The establishment of robust classi�er in label correction stage will be introduced in
Section 3.3 below.

In this section, we �rst introduce the general risk-consistent
learning framework and de�ne the con�dence of aggregated labels.
Then, we provide the speci�c method to estimate these con�dence
scores which help to yield the �nal clean labels.

3.3.1 Risk-Consistent Learning.Let- , / , and. denote the random
variables corresponding to the input featureG, clean labelI , and
noisy label~, respectively. If the distribution over¹-• / º is provided
in advance, we can have the optimal classi�er6� ¹5¹- ºº for fraud
detection by minimizing the following expected risk [7]:

' ¹5º = E¹G•Iº�¹ - •/ º »� ¹5¹Gº• Iº¼• (4)

where� ¹�º denotes the speci�ed (surrogate) loss function [4], such
ashingeloss andcrossentropyloss. Practically, the real distribution
over ¹-• / º is unknown to us, and what we can get is a set of train-
ing datafG1•� � � • G# gwith the corresponding labelsf I 1•� � � • I# g.
Therefore, we often use the empirical risk̂' ¹5º to approximate the
expected risk' ¹5º, namely

^' ¹5º =
1
#

Õ #

8=1
� ¹5¹G8º• I8º” (5)

Note that, in label correction stage, we only get access to the
aggregated labels, which may still su�er from label noise, so the em-
pirical risk ^' ¹5º under clean labels is not computable. Fortunately,
the following theorem provides us a feasible way to unbiasedly
estimate the original risk^' ¹5º, which is

Theorem 1. [33] Given the transactionsfG1•� � � • G# gwith the
corrupted aggregated labelsf~1•� � � •~# g, one can approximate the
original risk ^' ¹5º with true labelsf I 1•� � � • I# g by the following
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reweighted risk, namely

^' ¹5º =
1
#

Õ #

8=1
V¹G8•~8º� ¹5¹G8º•~8º• (6)

whereV¹G•~º is de�ned as%̂¹- =G•/=~º
%̂¹- =G•.=~º

, %̂¹�º denotes the (estimated)

probability, and� ¹�º is the original loss function.

Accordingly, given only the aggregated labels, we can still train a
robust classi�er by minimizing the empirical riskw.r.t.the weighted
lossV¹G•~º� ¹5¹Gº•~º, which is

^' w ¹5º =
1
#

Õ #

8=1
V¹G8•~8º� ¹5¹G8º•~8º” (7)

Intuitively, V¹G•~º assigns a large value to� ¹�º if the corresponding
transactionGis correctly labeled by the aggregated label~, and a
small value otherwise. Next, we show how to calculate the value of
V¹G•~º for every example.

3.3.2 EstimatingV¹G•~º. Traditionally, V¹G•~º is interpreted as
the density ratio that can be estimated by existing learning tech-
niques [28, 29, 33]. These methods typically assume that the ob-
served noisy label~ of an example is irrelevant to its feature repre-
sentationG. However, this is often not consistent with the practical
cases as whether an example is correctly labeled should depend
on its featureG. For our problem, the ambiguous transactions that
are near the potential correct decision boundary are more likely to
be mistakenly labeled. Therefore, in this paper, we relateV¹G•~º to
bothGand~ to achieve a more realistic estimation. Fortunately, it
is possible to get a small proportion of transactionsfG0

1•� � � • G0
" g

with the true labelsf I 0
1•� � � • I0

" g(" � # ) that are provided by the
human expert. Although this extra set of veri�ed data may slightly
increase the labeling costs (e.g.,payments for the human experts
and time consumption), the quality of the estimatedV¹G•~º can be
critically enhanced, even when the aggregated labels still contain
severe errors. Here, to facilitate the subsequent derivations, we �rst
provide the following decomposition forV¹G•~º, namely

V¹G•~º =
%̂¹- = G• / = ~º

%̂¹- = G• . = ~º
=

%̂¹- = Gj/ = ~º%̂¹/ = ~º

%̂¹- = Gj. = ~º%̂¹. = ~º
• (8)

which decomposesV¹G•~º into two parts, i.e., %̂¹- =Gj/ =~º
%̂¹- =Gj. =~º

and

%̂¹/ =~º
%̂¹. =~º

. Now, we describe how to estimate their values.

For the �rst term %̂¹- =Gj/ =~º
%̂¹- =Gj. =~º

, it evaluates the tendency for the

appearance of a transaction given its aggregated label~. For ex-
ample, if a transactionGis considered to be genuine according to
the aggregated label (i.e.,. = � 1), we have that%̂¹- = Gj. = � 1º
will be large. IfGis actually not a genuine transaction, the value of

%̂¹- = Gj/ = � 1º will be small, therefore the value of%̂¹- =Gj/ =� 1º
%̂¹- =Gj. =� 1º

would be extremely small and the transactionGwith a corrupted
label will be less emphasized during training.

To compute the value of%̂¹- =Gj/ =~º
%̂¹- =Gj. =~º

, we make a general and

appropriate assumption that the transactions with similar features
should have similar ground-truth labels. In our implementation, the
traditional clustering algorithm, such as: -means++, is deployed
in measuring the similarity between di�erent transactions. In this

situation, transactions that belong to the same cluster are deemed to
be similar. Mathematically, we have the following approximation:

%̂¹- = Gj/ = ~º

%̂¹- = Gj. = ~º
�

%̂¹- 2 CGj/ = ~º

%̂¹- 2 CGj. = ~º
• (9)

whereCG denotes thecluster(given by the clustering algorithm)
that the transactionGbelongs to. To be speci�c, we �rst deploy
a clustering operation on all observed genuine transactions (i.e.,
f¹ G•~ºj~ = � 1g [ f¹ G0• I0º jI 0 = � 1g) and all observed fraudulent
transactions (i.e.,f¹ G•~ºj ~ = ¸ 1g [ f¹ G0• I0º jI 0 = ¸ 1g), separately4.
Then, with the help of the similarity assumption and the small veri-
�ed clean set, the calculation of Eq.(9)is straightforward. For exam-
ple, to estimate the probabilitŷ%¹G2 CGj. = ~º, we calculate the
proportion of corrupted transactions that belong toCG in the origi-
nal corrupted set,i.e., %̂¹G2 CGj. = ~º =

Í #
8=1¹1 »G8 2 CG¼1 »~8 =

~¼º•# . Similarly,%̂¹G2 CGj/ = ~º can be estimated by calculating
the proportion of the clean transactions belonging toCG in the small
clean set,i.e., %̂¹G2 CGj/ = ~º =

Í "
8=1¹1 »G0

8 2 CG¼1 »I 0
8 = ~¼º•" .

To sum up, we have

%̂¹- = Gj/ = ~º

%̂¹- = Gj. = ~º
�

Í "
8=1¹1 »G0

8 2 CG¼1 »I 0
8 = ~¼º•"

Í #
8=1¹1 »G8 2 CG¼1 »~8 = ~¼º•#

” (10)

Note that in the above process, the clustering operation actually
involves the feature representationG, making the estimation of
V¹G•~º in our method related toG.

For the second term%̂¹/ =~º
%̂¹. =~º

, it plays a role of distribution match-

ing between/ and. , which can be estimated by

%̂¹/ = ~º

%̂¹. = ~º
=

Í "
8=1 1 »I 0

8 = ~¼•"
Í #

8=1 1 »~8 = ~¼•#
• (11)

where the numerator and denominator are considered with the
proportion of the transactions labeled as~ in the small clean set
and that in the original corrupted set, respectively.

By combing Eq.(10)and Eq.(11), we can easily get the weight
V¹G•~º for each transaction, and then we can train a robust classi�er
6¹Gº by minimizing Eq.(7). Finally, we obtain the output of label
correction stage, namely, the corrected labelsf Î 1•� � � •Î # g, which
are generated viâI 8 = 6¹G8º.

3.4 The Overall Algorithm
Algorithm 1 summarizes the overall algorithm that consists of

two stages. In label aggregation stage, the paired weights to depict
annotator qualityE:• � 1 andE:• ¸ 1 are both initialized to 1 at the
beginning, such that the weighted voting in Step 9 degenerates to
traditional majority voting. Otherwise, if the predicted labels from
the robust classi�er are available, the paired weights are updated in
Step 7. Accordingly, we get access to the aggregated labels in Step
9. In label correction stage,: -means++ is respectively deployed
on the data with genuine and fraudulent labels in Step 11, and
the clustering results are used to calculate the weights in Step 12.
In Step 13, the robust classi�er is trained by minimizing Eq.(7),
of which the results can be used to generate the corrected labels
f Î 1•� � � •Î # g. These two stages execute iteratively for a pre-de�ned

4Note that both%̂¹- = Gj/ = ~º and%̂¹- = Gj. = ~º depend on~, which indicates
that the transactions with di�erent labels¹¸ 1•� 1º should be clustered separately.
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Algorithm 1 The overall algorithm.

Input: The historical transactionsfG8g#
8=1 with the multi-sourced noisy

annotations f ~1
8• � � � • ~ 

8 g#
8=1 and the veri�ed transactionsfG0

8g"
8=1

with the true labelsf I 0
8g"

8=1.
1: for B 1 to =D< _8C4ABdo
2: //LABEL AGGREGATION STAGE
3: if B= 1 then
4: Initialize E:• ¸ 1 = E:• � 1 = 1 for : = 1• � � � •  ;
5: else
6: Get the corrected labelsf Î 8g#

8=1 via Î 8 = 6¹G8º;
7: Compute the weightsE:• ¸ 1• E:• � 1 for : = 1• � � � •  via Eq. (3);
8: end if
9: Get the aggregated labelsf ~1• � � � • ~# gvia Eq. (2);

10: //LABEL CORRECTION STAGE
11: Conductk-means++ clustering on the data with observed label~ =

I 0 = ¸ 1 and~ = I 0 = � 1, separately;
12: Calculate the weightsV¹G• ~º via Eq. (8);
13: Train a robust classi�er6¹Gº by minimizing Eq. (7);
14: end for
Output: The robust classi�er6¹Gº for fraud detection.

iteration =D<_8C4AB, and the �nal robust classi�er6¹Gº is adopted
as the resulting fraud detector.

4 EXPERIMENTS
In this section, we examine the fraud detection ability of the pro-
posed LAC on the real Alipay datasets by comparing our method
with several existing representative approaches.

4.1 Datasets
In order to investigate the real-world fraud behaviors, we collect
more than one million real-world online transaction records from
two di�erent types fraud scenarios of Alipay, which are respectively
termed asCCTandPAFas mentioned in the Introduction.

In both datasets, each transaction is represented by a feature vec-
tor encoding the information such as basic attributes of accounts,
the historical trading behaviors,etc. The multi-sourced noisy anno-
tations are automatically provided according to di�erent judgment
criteria regarding a transaction. Note that, apart from the multiple
noisy labels, it is possible to collect the true labels for a small pro-
portion of transactions (cf., Figure 1), within the acceptable budget
and time. The basic characteristics of the two collected datasets,
including the number of annotators, the dimension of the trans-
action vectors, and the size of the collected data, are provided in
Table 1. As aforementioned, the label quality of the automatic an-
notation techniques is usually not satisfactory. To be speci�c, the
average accuracy of positive (fraudulent) and negative (genuine)
transactions over all annotators ofCCTare 0.32 and 0.88, respec-
tively. The average accuracy of positive (fraudulent) and negative
(genuine) transactions over all annotators ofPAFare 0.30 and 0.65,
respectively. More details about the annotation quality can be found
in Appendix B.1. We see that the label quality from the multiple
sources is quite low, which poses great di�culty for a learning
algorithm to ful�ll accurate classi�cation.

We conduct extensive experiments on these two fraud detec-
tion datasets in Alipay cases. Each dataset is randomly partitioned

Table 1: The characteristics of the two collected datasets
from Alipay.

Dataset #Annotator #Dimension #Transaction (#Neg. / #Pos.)
CCT 34 63 565,698 (548,450 / 17,248)
PAF 27 156 593,266 (501,834 / 91,432)

into 8:1:1 for training, validation, and test. Such partition is con-
ducted ten times, and we report the average AUC (area under ROC
curve) [34] of every compared method over ten independent trials.
For the training set in each partition, the automatically generated
noisy labels from multiple sources are used for model training.
Moreover, we also randomly select a small proportion of transac-
tion examples (0.1% by default) from the training set, and assign
them with accurate labels to constitute the clean set. Note that the
amounts of clean data are quite small in these two datasets, which
are 560 out of totally 565,698 records onCCTand 590 out of totally
593,266 records onPAF, respectively.

4.2 Model Instantiation
In Section 3.3, we propose a general risk-consistent estimator re-
lated to the weighted lossV¹G•~º� ¹5 ¹Gº •~º, which can be de-
ployed in various basic classi�ers. In this work, we instantiate
our method with the following two backbones:Multi-Layer Per-
ceptron (MLP) : it is a fully connected feedforward arti�cial neural
network [21], which consists of at least three layers with di�erent
numbers of nodes, namely, the input layer, the hidden layer, and
the output layer.Gradient Boosting Decision Tree (GBDT) : it
is a gradient boosting algorithm that utilizes decision stumps or
regression trees as weak classi�ers. More speci�cally, in this work,
the eXtreme Gradient Boosting (XGBoost) [12] is employed as an
e�cient and scalable implementation of GBDT.

4.3 Experimental Results
To evaluate the performance of the proposed two-staged fraud
detection method on the collected datasets, intensive experiments
have been done in comparison with some related methods that can
also handle multi-sourced noisy annotations.

First of all, we describe the implementation details for our algo-
rithm on each dataset. For both datasets, the number of clusters#2
in the : -means++ operation is set to 30 for examples with observed
label~ = I 0 = ¸ 1and~ = I 0 = � 1, separately. For the parameters in
MLP, we realize a 3-layer MLP with 128-dimension hidden layers
and atanh activation function. Then, we use mini-batch gradient
ascent with a momentum of 0.9, a weight decay of10� 3, a batch
size of 256, and a learning rate of 0.1 forCCTand 0.01 forPAF. For
the parameters in GBDT, we take the max tree depth as 6 forCCT
and 9 forPAF, and other parameters such as[ and_ in GBDT are
set to the default values [45].

To demonstrate the e�ectiveness of our method, we compare it
with various crowdsourcing algorithms on the two aforementioned
datasets, which are

� Majority voting: a naïve method that takes the results of
majority voting as the true labels for all examples.

� MeTal [41]: an ensemble method to produce reliable labels
with weak supervision from diverse, multi-task sources hav-
ing di�erent granularities, accuracies, and correlations.
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Table 2: Experimental results of the compared methods on
CCT and PAF datasets. The best and second best results on
each dataset are indicated in red and blue, respectively.

Dataset CCT PAF

Majority voting 0”780� 0”031 0”402� 0”023
MeTal [41] 0”810� 0”021 0”419� 0”023
CVL [31] 0”703� 0”035 0”457� 0”029

Yan2014 [55] 0”641� 0”023 0”409� 0”023
LAC"!% 0”821� 0”014 0”497� 0”020

LAC� ��) 0”829� 0”011 0”574� 0”031

� CVL [31]: a couple view learning approach for learning with
multiple noisy labels, which alternately learns a data classi-
�er and a label aggregator.

� Yan2014 [55]: a method that can estimate the true labels of
examples and annotator expertise.

� LAC"!% : the proposed method with MLP being the back-
bone in label correction stage.

� LAC� ��) : the proposed method with GBDT being the back-
bone in label correction stage.

Table 2 summarizes the average AUC values of all compared
methods on the test sets of the two datasets. We observe that our
proposed approachesLAC"!% andLAC� ��) are consistently the
two best methods among all compared methods for both datasets,
with at least 0.019 and 0.117 AUC improvements over existing
methods onCCTandPAF, respectively. Majority voting, MeTal [41],
CVL [31], and Yan2014 [55] all perform unsatisfactorily due to the
notoriously poor labeling quality of the annotators. By contrast,
our method is able to handle the extremely noisy annotations with
the help of a small set of veri�ed data, and thus leading to superior
results. It is worth noting that the performances of all compared
methods onPAFare generally inferior toCCT, as the labeling quality
of PAFis much worse as mentioned before. Note that, our method
deploying the GBDT backbone performs better than that employing
MLP, as GBDT has better generalization ability on imbalanced
datasets than MLP as indicated in [18].

4.4 Veri�cation of Label Correction
Note that the problem setting of label correction stage exactly coin-
cides with the learning problem with noisy labels, so the proposed
method for label correction stage can execute independently to
deal with label noise problems. In this section, we investigate the
e�ectiveness of the label noise processing method proposed in la-
bel correction stage by comparing it with typical algorithms that
are robust to label noise. We follow the conventional setting of
label noise learning, where the noisy labels provided by a single
annotator are employed for training at each time. Similar to the
experimental setting in Section 4.3, each dataset under a single
annotator is randomly partitioned into 8:1:1 for training, valida-
tion, and test. A small proportion (0.1%) of training transactions
are provided with true labels, which is used to assist training. The
parameters of MLP and GBDT are kept consistent with the exper-
imental setting in Section 4.3. The compared methods in dealing
with label noise include

� BILN [13]: learning with bounded instance and label depen-
dent label noise, which also deploys a few manually labeled
clean data to assist training5.

� RP [39]: rank pruning for robust classi�cation with noisy
labels.

� Re-weighting [33]: classi�cation with noisy labels by impor-
tance re-weighting.

� ULE [38]: unbiased logistic estimator for learning with noisy
labels.

� LR: traditional logistic regressor trained on noisy labels,
which can be viewed as a baseline without tackling label
noise.

� wMLP (ours): weighted multi-layer perceptron, which is the
proposed label noise processing method in label correction
stage with MLP being the backbone.

� wGBDT (ours): weighted gradient boosting decision tree,
which refers to the proposed label noise processing method
in label correction stage with GBDT being the backbone.

The average AUC values yielded by the compared algorithms on
ten typical annotators ofCCTdataset are shown in Table 3. Due to
the page limit, the experimental results regarding veri�cation of
label correction onPAFdataset are deferred to Appendix B.3. We
observe that our proposed approaches wMLP and wGBDT are su-
perior to other compared methods in most cases. In particular, our
methods perform much better than the method without noise cor-
rection,i.e., LR, which demonstrates the signi�cance of our methods
in handling label noise. It is also shown that the canonical robust
algorithms for dealing with label noise all fail here, as they cannot
deal with the extremely low-quality labels as mentioned before.
By contrast, the proposed method still performs well, verifying its
e�ectiveness in dealing with extremely noisy labels.

4.5 Model Behavior Analyses
In this section, we investigatei) The AUC variation of our method
w.r.t. the increase of the proportion of used veri�ed transactions in
label correction stage;ii) The parametric sensitivity of our approach
to #2, i.e., the number of clusters constructed in label correction
stage;iii) The convergence behavior of our method, since our model
is trained via an iterative way (see Algorithm 1).

Firstly, we study the in�uence of the number of manually la-
beled clean data to the model output. As mentioned above, a small
proportion of training transactions are provided with true labels in
advance, which is crucial to improving the performance when the
aggregated labels are still noisy. In this part, we provide a quanti-
tative analysis on the in�uence of the proportion?2 of this small
clean set to the entire training set. Figure 4 (a) and (b) show the
experimental results of the proposed method onCCTandPAFwith
the proportion?2 changes withinf 0”01%•0”05%•0”1%•0”5%•1%•5%g,
respectively. We can see that, with the increase of the proportion,
the AUC value of our method keeps rising and achieves a stable
result when?2 � 0”1%. It means that at most0”1%clean examples
are su�cient for our method to get a satisfactory performance.
Such proportion is quite small, and manually labeling these transac-
tion examples is acceptable in real-world fraud detection scenarios.

5In the experiments, we feed BILN with the same amount of clean data as that in our
method to ensure a fair comparison.
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Table 3: Experimental results of the compared label noise robust methods on ten typical annotators selected from CCT dataset.
The best and second best results on each annotator are indicated in red and blue, respectively

Annotator BILN [13] RP [39] Re-weighting [33] ULE [38] LR wMLP(ours) wGBDT(ours)

1 0”780� 0”046 0”648� 0”060 0”821� 0”031 0”614� 0”023 0”534� 0”020 0”832� 0”032 0”841� 0”033
2 0”719� 0”041 0”703� 0”023 0”735� 0”022 0”653� 0”032 0”510� 0”034 0”715� 0”021 0”770� 0”030
3 0”749� 0”026 0”724� 0”055 0”817� 0”036 0”697� 0”042 0”503� 0”045 0”805� 0”043 0”818� 0”045
4 0”735� 0”042 0”699� 0”028 0”780� 0”030 0”632� 0”029 0”558� 0”033 0”785� 0”032 0”805� 0”034
5 0”777� 0”040 0”697� 0”016 0”780� 0”015 0”624� 0”024 0”485� 0”015 0”781� 0”017 0”798� 0”018
6 0”635� 0”049 0”676� 0”004 0”620� 0”024 0”628� 0”023 0”438� 0”027 0”664� 0”025 0”633� 0”034
7 0”643� 0”049 0”711� 0”023 0”706� 0”028 0”662� 0”033 0”584� 0”023 0”711� 0”022 0”738� 0”024
8 0”691� 0”044 0”412� 0”034 0”487� 0”024 0”655� 0”035 0”602� 0”024 0”483� 0”023 0”695� 0”021
9 0”651� 0”018 0”448� 0”033 0”306� 0”032 0”636� 0”021 0”573� 0”023 0”571� 0”024 0”651� 0”033
10 0”702� 0”035 0”687� 0”026 0”782� 0”018 0”632� 0”034 0”483� 0”025 0”791� 0”027 0”798� 0”028

Average 0.708 0.640 0.683 0.643 0.540 0.713 0.753

Figure 3: The convergence curves of our LAC on CCT and
PAF datasets.

Besides, the performance of the supervised backbone (i.e., MLP)
trained with only 0”1%clean data are also shown in Figure 4,i.e.,
the black dash line, which performs far from satisfactory due to
scarce supervision.

Secondly, it is worth noting that the number of clusters#2 in
label correction stage needs to be tuned manually. In this part,
we examine the parametric sensitivity of our approach to#2. The
experimental results onCCTandPAFwith di�erent #2, i.e., #2 2
f 20•30•40•50g, are reported in Figure 5 (a) and (b), respectively.
From Figure 5, we observe that#2 = 30is suggested for bothCCT
andPAFdatasets to achieve the best performance.

Finally, it is also interesting to investigate the convergence be-
havior of our method. Figure 3 shows the convergence curves of our
method during training, where our approach gradually converges
to optimal and shows minor oscillation. We can have the conclusion
that the iterative strategy is e�ective and label aggregation stage
and label correction stage can bene�t from each other.

5 CONCLUSION
In this paper, we propose a novel iterative two-staged fraud detec-
tion approach for protecting the capital safety of users, of which
the target is to train a fraud detector under multi-sourced extremely
noisy annotations. In label aggregation stage, we try to infer a reli-
able assignment for each transaction by modeling di�erent annota-
tors' labeling quality. In label correction stage, a label noise-robust
algorithm is deployed to further correct the aggregated labels, with a
handful of manually veri�ed transactions. These two stages execute
iteratively until convergence. Experimentally, we collected millions

Figure 4: The in�uence of ?2 to the performance of our LAC
on CCT and PAF datasets, where the black dash line indi-
cates the performance of the supervised model trained with
only 0”1%clean data.

Figure 5: The parametric sensitivity of our LAC to #2 on CCT
and PAF datasets.

of transaction records in two di�erent real-world fraud detection
scenarios from Alipay, and the results on two collected datasets
clearly demonstrate the e�ectiveness of the proposed method in de-
tecting frauds. In the future, we plan to explore an active selection
manner for choosing the very few yet critical transaction exam-
ples that need human annotation, and will also apply the proposed
approach to more real-world fraud detection tasks.
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