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Abstract—Positive and Unlabeled (PU) learning aims to train
a suitable classifier simply based on a set of positive data and
unlabeled data. The state-of-the-art methods usually formulate
PU learning as a cost-sensitive learning problem, in which every
unlabeled example is treated as negative with modified class
weights. However, existing methods fail to generate high-quality
data representations, which brings about negative-prediction
preference and performance decline. To overcome this prob-
lem, this paper proposes a novel algorithm dubbed “Weighted
Contrastive Learning with Hard Negative Mining for Positive and
Unlabeled Learning” (termed “WConPU”), which specifically
designs a new prototypical contrastive strategy for gaining
discriminative representations for PU learning. Specifically, our
proposed WConPU consists of a contrastive learning module and
a classifier training module, which can benefit from each other
in an iterative manner. Moreover, a novel weighted contrastive
objective function equipped with a prototype-based hard negative
mining module is proposed to further enhance the representa-
tion quality. Theoretically, we show that our WConPU can be
justified from the perspective of Expectation-Maximization (EM)
algorithm. Empirically, we compare our method with state-of-
the-art PU algorithms on a wide range of real-world benchmark
datasets, and the experimental results firmly demonstrate the
advantage of our proposed method over the existing PU learning
approaches.

Index Terms—Positive and Unlabeled Learning, Contrastive
Learning, Hard Negative Mining.

1 INTRODUCTION

RECENT years have witnessed a surge of research interest
in Positive and Unlabeled learning (i.e., PU learning)

[1]–[8], of which the target is to train a binary classifier based
on labeled positive data and unlabeled data. PU learning finds
its usefulness in many real-world problems such as disease
diagnosis [9], hyperspectral image classification [10], anomaly
detection [11], [12], etc.

Numerous PU algorithms have been developed over the past
decades [1], [5], [13], [14]. Early works usually follow a two-
step strategy [15], [16], which first identifies reliable negatives
from unlabeled data, and then uses (semi-)supervised learning
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to train a binary classifier with the reliable negative examples
and labeled positive examples. Another prevalent research
line is to formulate PU learning as a cost-sensitive learning
problem [1], [14], [17], which directly treats unlabeled data
as negative data with modified importance weights and has
achieved state-of-the-art performance.

Although the cost-sensitive methods have achieved good
results, they have some potential limitations, namely treating
unlabeled examples as negative may lead the classifier to
have a negative-prediction preference. This is because these
methods fail to generate high-quality representations (see
in Fig. 4), therefore they cannot discriminate the positive
examples and negative examples within unlabeled data from
the perspective of feature representation, and thus impairing
the learning performance.

To ameliorate this issue, we propose a novel PU learn-
ing algorithm dubbed “Weighted Contrastive Learning with
Hard Negative Mining for Positive and Unlabeled Learning”
(termed “WConPU”), which can well separate the positive
data and negative data in representation space and facilitate
the training of an unbiased classifier. The main strategy is to
utilize prototypical contrastive learning to simultaneously uti-
lize the supervision information as well as find discriminative
representations of PU data. Specifically, two important steps
(i.e., contrastive learning and classifier training) alternate, so
that they can benefit from each other via an iterative manner.
In contrastive learning step, positive pairs and negative pairs
are constructed for conducting contrastive learning to obtain
discriminative data representations. To this end, the predicted
labels output by classifier are employed, where the two exam-
ples with same predicted label constitute a positive pair, and
the examples with dissimilar predicted labels are considered
as a negative pair (Section 4.1). In classifier training step, a
classifier is trained by utilizing the pseudo labels of examples,
where each pseudo label is updated according to the similarity
between the representation of corresponding example and the
class prototype (Section 4.2). As such, a well-trained classifier
obtained in classifier training step could help generate high-
quality representations in the contrastive learning step, which
will in turn facilitate the further improvement of the classifier.
Our algorithm works in an end-to-end manner, which helps
to generate discriminative feature representations for all train-
ing data for reliable PU classifier training. Theoretically, we
demonstrate that the contrastive learning module and classifier
training module can benefit from each other in an iterative
manner through the perspective of Expectation-Maximization
(EM) algorithm (Section 5), where the classifier training
step corresponds to E-step, and the contrastive learning step
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corresponds to M-step.
To further enhance the discriminability of the obtained

classifier, a novel weighted contrastive objective function
along with a prototype-based hard negative mining module
is proposed to further separate the positive examples and
negative examples in the representation space. Hard negative
examples correspond to those examples in a pair which belong
to different classes but are quite close in the representation
space. Since the ground-truth label of unlabeled data is not
accessible in PU learning, the proposed hard negative mining
module resorts to the class prototype to ensure the negativeness
of the selected examples, and the Euclidean distance between
the embeddings of two data points is employed to determine
the hardness of the selected examples. With the mining of
hard negative examples, our proposed contrastive objective
function reweights the hard negative examples according to
their dissimilarity with the anchor input, so that hard negative
examples would be paid more attention during the gradient
descent process. The novel weighted contrastive loss function
could further help improve representation quality without
introducing any extra trade-off parameters. Moreover, a label
distribution alignment loss [18] is employed to further ame-
liorate the negative-prediction preference inherited by cost-
sensitive methods such as [9], [14], and [19].

In summary, the main contributions of this paper are out-
lined as follows:

• Methodology. A novel PU learning algorithm termed
WConPU is presented, which leverages contrastive learn-
ing to incorporate supervisory information and gener-
ate high-quality representations of PU data. Moreover,
a novel weighted contrastive objective function and a
prototype-based hard negative mining module are devel-
oped to enhance the quality of the learned representations.

• Theory. We justify that our WConPU algorithm can
be understood from the perspective of Expectation-
Maximization (EM) algorithm, which ensures the con-
vergence of our WConPU towards an (locally) optimal
solution.

• Experiments. Our WConPU method yields superior per-
formance to existing typical PU learning approaches on
various PU benchmark datasets. For example, we improve
the best baseline method by 3.10% on SVHN [20]
dataset.

2 RELATED WORK

In this section, we review the prior works relevant to this
paper, including PU learning and contrastive learning.

2.1 Positive and Unlabeled Learning

PU learning is proposed for the setting where only positive
and unlabeled data are accessible for training, and the unla-
beled data include both positive and negative examples [21],
but their labels are unknown before training. PU learning [22]
can be roughly attributed to two-step methods [15], [16], and
cost-sensitive methods [9], [13], [14]. The two-step approaches
first identify reliable negative examples from the unlabeled
set, and then build a classifier on the positive set, reliable

negatives, and the remaining unlabeled set. Such methods
mainly differ in the ways to pick up reliable negatives.
For example, “Classification from Positive, Unlabeled and
Biased Negative Data” (PUbN) [23] pretrained a model with
“Positive-Unlabeled Learning with Non-Negative Risk Estima-
tor” (nnPU) [14] algorithm to recognize some reliable negative
examples, and then combined positive risk, negative risk,
and unlabeled risk to train the final classifier. Graph-based
methods [24] assigned unlabeled data a pseudo label according
to the distance between examples on a graph. Generative
learning [25] has also been introduced to PU learning. For
instance, “Generative adversarial positive-unlabeled learning”
(GenPU) [26] utilized the framework of adversarial learning
to train a negative example generator, and then incorporated
the labeled positive data and generated negative data to train a
classifier. HolisticPU [27] assigned pseudo-labels to unlabeled
examples by identifying the unique predictive trend of each
example.

Such sample selection methods might be vulnerable to
the mis-identified negatives, and the current state-of-the-art
result is usually achieved by cost-sensitive methods. The cost-
sensitive approaches attempt to construct an unbiased or biased
risk estimator by assigning the data points with different
importance weights. Since the first unbiased PU (uPU) risk
estimator [13] was proposed, numerous works have been done
to further enhance the performance [9], [17]. The authors
of uPU employed a convex surrogate loss to reduce the
computational cost [1]. Since the empirical risk of training
data could go negative when training a flexible deep neural
network, the non-negative risk estimator, known as nnPU [14],
was proposed. Besides, “Loss Decomposition and Centroid
Estimation” (LDCE) [3] decomposed the loss function of
corrupted negative examples into a label-independent term and
a label-dependent term, where only the latter term is influenced
by the label noise. Dist-PU [18] pursued the consistency
between the distribution of predicted labels and the class
prior and has achieved state-of-the-art performance. Recently,
“Positive-Unlabeled Learning With Label Distribution Align-
ment” (PULDA) [28] extended Dist-PU [18] with a margin-
based formulation, and involved the class prior estimation
process. While the above PU learning methods assume that
whether a positive instance is selected as labeled is irrelevant
to its feature representation, namely instance-independent,
some instance-dependent approaches were proposed, which
assume that the labeling of a positive example depends on its
feature. Representative methods include “Learning from Pos-
itive and Unlabeled Data with a Selection Bias” (PUSB) [19]
and “Labeling Bias Estimation” (LBE) [4].

2.2 Contrastive Learning

Contrastive Learning (CL) is a discriminative model that
achieves very impressive performance in self-supervised learn-
ing [29]–[33]. It pulls the examples in a positive pair close to
each other, while driving the examples in a negative pair apart
in the latent embedding space through contrastive loss [29],
[30], [34]. The main difference between various contrastive
learning approaches lies in their strategy for constructing
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positive pairs. Chen et al. [29] extensively studied the effects
of various data augmentation methods. MoCo [30], [35], [36]
proposed a dictionary to maintain a negative sample set,
therefore increasing the number of negative example pairs.
“Bootstrap Your Own Latent” (BYOL) [37] consisted of an
online network and a target network, which tried to get rid
of the necessity of negative examples during the CL process.
“Swapping Assignments between Views” (SwAV) [38] learned
to predict the cluster assignment of one view from the repre-
sentation of another view. “Simple Siamese” (SimSiam) [39]
introduced Siamese networks to CL. Theoretically, Arora
et al. [40] analyzed the effect of contrastive representation
learning on a downstream classification task and provided
a generalization bound for the standard contrastive objective
function. Our work is also related to prototypical contrastive
learning [41]–[44], where prototypes are used as representative
features for classes. PCL [41] introduced prototypes as latent
variables to help find the maximum-likelihood estimation
of the network parameters in an Expectation-Maximization
framework, which encourages representations to be closer
to their prototypes. Different from the aforementioned self-
supervised CL approaches, “Supervised Contrastive Learning”
(SCL) [45] proposed a supervised contrastive objective that
considers the examples in the same category as positive pairs
to increase the utility of data.

It is worth mentioning that “Positive Unlabeled Contrastive
Learning” (puNCE) [46] also introduces CL to PU learn-
ing. However, our WConPU has three main advantages over
puNCE. Firstly, WConPU handles unlabeled examples in a
more effective way. Compared with puNCE which simply
labels each unlabeled example as positive and negative with
different weights, WConPU leverages the output of classifier
to provide precise supervisory information for contrasting
unlabeled examples. Secondly, our WConPU implements CL
in a more effective way. Compared with puNCE which runs
in a two-step manner (i.e., pre-training the encoder using
a contrastive loss, and then linear probing with standard
PU loss), our WConPU is end-to-end which directly utilizes
prototypes to guide the updating of pseudo labels for classifier
training. Thirdly, WConPU utilizes hard negative examples in
a more effective way, as it incorporates hard negative mining
which is not contained by puNCE to enhance the performance
of CL. Above merits of WConPU lead to the improved results
over puNCE (see the experimental results in Section 6).

Another similar work to our WConPU is PiCO [47], which
is designed for partial label learning (PLL) [47]–[50]. Both
PiCO and our WConPU share the similar idea of joint opti-
mization of contrastive learning and classification. However,
PiCO cannot be directly applied to PU learning because it is
originally designed for partial label learning and cannot deal
with PU data. For our proposed WConPU algorithm for PU
learning, to effectively utilize the precious positive labels in
PU learning, we design a contrastive loss consisted of a labeled
positive part and an unlabeled part. Besides, PiCO constructs
the positive peer set directly using predictions of the classifier,
which may introduce noise and impair contrastive learning.
In contrast, our approach introduces a self-adaptive threshold
to refine the selection of positive pairs. Moreover, as the

performance of the classifier in our WConPU depends heavily
on the quality of learned representations, we propose a novel
prototype-based hard negative mining module and a weighted
contrastive loss to decrease the adverse impact of low-quality
embeddings on final model performance. These advantages
over PiCO critically enhance representation quality, ensuring
a clear distinction between positive and negative data in the
representation space, which is crucial for a well-performing
PU classifier.

3 PROBLEM SETTING

In classical binary classification problem, let X ⊆ Rd (d
denotes dimension) and Y = {0, 1} be the input feature
space and output label space, respectively. Let p(x, y) be the
underlying joint density where x ∈ X and y ∈ Y , and p(x)
be the marginal distribution of p(x, y), then the positive set
and negative set for training a classifier can be denoted as:

XP = {xi}
n′
P

i=1 ∼ pP (x) ,

XN = {xi}
n′
N

i=1 ∼ pN (x) ,
(1)

where n′
P and n′

N are the corresponding numbers of positive
examples and negative examples, and pP (x) and pN (x)
denote the marginal distributions of positive data and negative
data accordingly. Let πP = p(y = 1) be the positive class
prior, then the whole set X = XP ∪XN is generated as:

X = {xi}ni=1 ∼ p (x) , (2)
p (x) = πP · pP (x) + πN · pN (x) , (3)

where n = n′
P + n′

N is the total number of training data, and
πN = 1− πP denotes the negative class prior.

When it comes to PU learning, only a few labeled positive
data and some unlabeled data is accessible. In this paper, we
consider the case-control scenario [22], where two sets of data
are sampled independently from pP(x) and p(x) as:

XL = {xi}nP

i=1 ∼ pP (x) , (4)
XU = {xi}nU

i=1 ∼ pU (x) = p (x) , (5)

where nP and nU are the amounts of labeled positive examples
and unlabeled examples, respectively, while XL and XU repre-
sent the labeled positive set and unlabeled set correspondingly.
The aim of PU learning is to learn a classifier f : X → [0, 1]2

with the training set XPU = XL ∪XU, such that the example
xi can obtain the correct label ŷi = argmaxj∈{0,1} f

j(xi)
assigned by f . For each xi ∈ XPU, we use oi to indicate
whether it is labeled as positive (i.e., oi = 1) or unlabeled
(i.e., oi = 0).

4 METHODOLOGY

In this section, we describe our proposed WConPU frame-
work in detail (see Fig. 1). Briefly speaking, the training of
WConPU iterates between the steps of contrastive learning and
classifier training. Specifically, contrastive learning module
uses the output of classifier to determine the positive pairs
and employs a novel weighted contrastive objective function
which leverages hard negative examples to further improve
the discriminability of obtained data representations. The hard
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Fig. 1. Pipeline of WConPU. In contrastive learning module, given an input image xi, data augmentation is performed to create a query view Augq(xi)
and a key view Augk(xi). Then a query embedding qi and a key embedding ki are generated, respectively, where the key embedding will be stored in
a momentum queue. The query embedding qi is used to update the class prototypes µc, which are utilized to construct the hard negative set of the input
example. The hard negative examples will provide weight ωi for our weighted contrastive objective function Lcon. The output of the classifier helps guide the
construction of positive pairs for the contrastive learning module. In classifier training module, the class prototypes µc are used to update the pseudo label
si, which is used to calculate the classification loss Lclass with the predicted label ŷi. Moreover, a label distribution loss Ldis is employed to encourage the
alignment of predicted labels with class prior. The contrastive learning module and classifier training module work in a collaborative manner iteratively.

negative examples are decided by a novel prototype-based hard
negative mining module (Section 4.1). For classifier training,
we employ the prototypes of different classes to update the
pseudo labels of unlabeled examples for training the classifier.
Besides, a label distribution alignment loss is deployed to
further rectify the prediction bias inherited by cost-sensitive
methods (Section 4.2).

4.1 Positive and Unlabeled Contrastive Learning

As mentioned above, CL is adopted by our method to
enhance the discriminability of the obtained data represen-
tations. Since the dataset for PU learning contains precious
positive labels, we should take measures to fully utilize
them in a contrastive manner. Therefore, we propose a CL
framework which is particularly effective under the setting of
PU learning. Specifically, our framework follows the popular
setup of MoCo [30] and SCL [45]. Given an anchor input
xi from the training set, a query view and a key view
are generated through a weak augmentation Augq(xi) and a
strong augmentation Augk(xi). The two augmented images
are then respectively fed into a query network gq(·) and a key
network gk(·), yielding a pair of ℓ2-normalized embeddings
qi = gq(Augq(xi)) and ki = gk(Augk(xi)). The key network
shares the same architecture with the query network, and uses
a momentum update aided by the query network. Formally,
denoting the parameters of gq(·) as θq and those of gk(·) as
θk, we update θk by:

θk := λθk + (1− λ)θq, (6)

where λ ∈ [0, 1) is a momentum coefficient. Moreover, a
momentum queue Q = {k1,k2, ...,km} storing the most
recent key embeddings is maintained, where m is the size
of the momentum queue, and Q is updated chronologically
during the training procedure. Meanwhile, we additionally
save and update the ℓ2-normalized prototype embedding µc for
c ∈ {0, 1}. Here the prototype corresponds to a representative
embedding for a group of semantically similar examples [41],
and the computation of it will be introduced later. Given a
mini-batch of examples B = {xi}bi=1, where b corresponds
to the size of the current mini-batch, we have the following
contrastive embedding pool:

A = Bq ∪ Bk ∪Q, (7)

where Bq = {gq(Augq(xi))|xi ∈ B} and Bk =
{gk(Augk(xi))|xi ∈ B} contain the embeddings generated
from the query view and key view of the current mini-batch,
respectively.
Positive Peer Set Construction. The main challenge of
introducing supervised CL to PU learning lies in constructing
the positive peer set of anchor input xi (see in Fig. 2). Here
positive peers of xi are the embeddings which constitute
positive pairs with the anchor input xi. The true positive peer
set of anchor input xi is defined as:

P(xi) = {k′|k′ ∈ A(xi), y
′ = yi}, (8)

where A(xi) =A\{qi}, yi represents the ground-truth label
of xi, and y′ represents the ground-truth label of the corre-
sponding training example related to k′.
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Fig. 2. Illustration of positive peer set P(xi). The positive peer set of the
anchor input xi is comprised of embeddings that form positive pairs with the
anchor input xi. That is to say, these embeddings in P(xi) are associated
with the examples that have the same ground-truth label as the anchor input
xi.

However, the absence of ground-truth labels of unlabeled
examples makes it impossible to obtain the true positive peer
set of anchor input xi in PU learning. An intuitive solution is
to use the predicted labels ŷi = argmaxj∈{0,1} f

j(Augq(xi))
rendered by classifier to decide positive pairs. However, the
result of classifier is unreliable during the early training stage,
therefore directly using its output to construct positive pairs
may erroneously identify some negative pairs as positive. To
tackle this issue, we employ a “Self-Adaptive Threshold”
(SAT) [51] to remove the uncertain positive pairs. When train-
ing starts, the threshold is low to accept more possibly correct
examples into training. As the model becomes “stronger”, the
threshold adaptively increases to filter out possibly incorrect
positive pairs to ensure the quality of embeddings. At iteration
t, given a mini-batch of examples {xi}bi=1, where b corre-
sponds to the batch size, by denoting zi = softmax(f(xi)) as
the softmax output for the classifier f(·), the global threshold
τt is updated as:

τt = λτt−1 + (1− λ)
1

b

∑b

i=1
max(zi), (9)

where λ ∈ [0, 1) is the momentum coefficient mentioned
above. SAT also introduces a local threshold to modulate the
global threshold in a class-specific fashion, which is:

p̃t(c) = λp̃t−1(c) + (1− λ)
1

b

∑b

i=1
zi(c), (10)

where c ∈ {0, 1} denotes the Class c, and zi(c) denotes the
c-th entry of zi. Both τt and p̃t(c) are initialized as 1

2 at the
beginning of the training process. By integrating the global
threshold in Eq. (9) and the local threshold in Eq. (10), the
final SAT τt(c) is given as:

τt(c) =
p̃t(c)

max{p̃t(c) : c ∈ {0, 1}}
· τt. (11)

For each xi ∈ XL, its positive peer set is denoted as PP(xi).
Similarly, for each xi ∈ XU, its positive peer set is denoted

as PU(xi). With the introduction of SAT, the positive peer set
of xi is decided as:

PP(xi)={k′|k′ ∈ A(xi), ŷ
′ = 1,max(z′) ≥ τt(1)} ∪X ′

L,

PU(xi)={k′|k′ ∈ A(xi), ŷ
′ = ŷi,max(z′) ≥ τt(ŷ

′)},
(12)

where z′ = softmax(f(x′)) is the softmax result of classi-
fier’s output for the training example corresponding to k′,
ŷ′ = argmaxj f

j(Augq(x
′)) is the predicted label for the cor-

responding training example related to k′, and X ′
L = {qi|qi =

gq(Augq(xi)),xi ∈ XL} comprises of the embeddings of
labeled positive examples.
Weighted Contrastive Learning with Hard Negative Min-
ing. Simply introducing the above positive-pair-based con-
trastive learning to PU learning is not enough to get high-
quality representations. Recently, hard negative mining [52]–
[55] was proposed to construct hard yet important negative
pairs for further boosting the performance of CL, which is
helpful to obtain discriminative data representations. There-
fore, here we propose a novel weighted contrastive objective
function equipped with a prototype-based hard negative min-
ing module to help CL in generating more distinguishable
representations. As mentioned in [52], a hard negative pair
should satisfy two requirements, namely: 1) True negativeness,
which means that the labels of two data points in a hard
negative pair should be different; 2) Hardness, which means
that the most useful hard negative examples are the ones of
which the embeddings are similar to the query embedding.
To measure the hardness of each example, we first propose a
dissimilarity metric DisSim(·, ·) according to the Euclidean
distance between two embeddings, namely:

DisSim(qi,kj) =
1

4

∥∥∥∥ qi
∥qi∥

− kj

∥kj∥

∥∥∥∥2 , (13)

where qi = gq(Augq(xi)), kj = gk(Augk(xj)), and ∥ · ∥
denotes the ℓ2-norm of a vector. Obviously, DisSim(·, ·) ∈
[0, 1].

In PU learning, the ground-truth label of unlabeled data is
not accessible, so the “true negativeness” requirement men-
tioned above is difficult to satisfy exactly. Since a prototype is
a representative embedding for a group of semantically similar
examples [41], we resort to the similarity between the embed-
ding of each example and the corresponding class prototype
µc to construct the hard negative set Bneg

i , which contains
the embeddings constituting hard negative pairs with query
embedding qi. Denoting Q 1

4
(xi) as the first quartile of the val-

ues {DisSim(qi,k1), DisSim(qi,k2), ..., DisSim(qi,km)}
by ascending order, then the hard negative set of xi is given
by:

Bneg
i = {kj |kj ∈Q, ỹi ̸= ỹj , DisSim(qi,kj)≤Q 1

4
(xi)},

(14)
where ỹi = argmaxc∈{0,1} q

⊤
i µc, and ỹj =

argmaxc∈{0,1} k
⊤
j µc. In above Eq. (14), the query embedding

qi and the key embedding kj belong to different class
prototypes, so they satisfy the true negativeness requirement.
Meanwhile, the selected two embeddings are with extremely
small dissimilarity value (i.e., DisSim(qi,kj) ≤ Q 1

4
(xi)),

which meets the hardness requirement.
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To leverage the hard negative examples obtained from the
hard negative mining step, we propose a novel weighted
contrastive objective function which is specially designed for
PU learning. Given an example xi, if it is labeled as positive
(i.e., oi = 1), the weighted contrastive loss for it is given as:

Lp
con(xi)=− 1

|PP(xi)|
∑

k+∈PP(xi)

L̃(qi,k+), (15)

where | · | denotes the size of a set. Otherwise (i.e., oi = 0),
the weighted contrastive loss for xi is:

Lu
con(xi)=− 1

|PU(xi)|
∑

k+∈PU(xi)

L̃(qi,k+), (16)

where the L̃(qi,k+) in Eq. (15) and Eq. (16) is given as:

log
exp(q⊤

i k+/ρ)∑
k′∈A(xi)\Bneg

i

exp(q⊤
i k

′/ρ) +
∑

kj∈Bneg
i

ωj exp(q⊤
i kj/ρ)

,

(17)
where ωj = 1/DisSim(qi,kj) is the weight of the j-th
hard negative pair, and ρ ≥ 0 is the temperature coefficient.
Following [45], {k|k ∈ {A(xi)\k+}} is deemed as negative
peer set, in which every element corresponds to the embedding
of an example constituting the negative pair with anchor input
xi.

Note that above proposed contrastive objective functions
(i.e., Eq. (15) and Eq. (16)) reweight the hard negative exam-
ples according to their dissimilarity with the anchor input. To
be specific, the hard negative examples that are more similar
to the anchor input should be paid more attention in the con-
trastive process as they are easily confused, so their weights ωj

should be enlarged. This weighted contrastive loss helps push
hard negative examples away in the representation space to
improve the discriminability of obtained data representations.
The empirical study in Section 6.3 will show that our weighted
contrastive loss noticeably improves the performance of the
PU classifier without reweighting operation.

By combining Eq. (15) and Eq. (16), the weighted
contrastive loss Lcon in our method is expressed as:

Lcon =
1

n

[ ∑
xi∈XL

Lp
con(xi) +

∑
xi∈XU

Lu
con(xi)

]
. (18)

4.2 Classifier Training

Since the above-mentioned contrastive learning module can
generate discriminative representations which contain implicit
semantic information, we propose a prototype-based pseudo
labeling mechanism on unlabeled data to enrich the supervi-
sion information for classifier training.

For each image xi in the training set XPU, we assign it a
vector si ∈ [0, 1]2 as the pseudo label. For the labeled positive
data, their pseudo labels are exactly the one-hot label vectors
and will not update during the training procedure. In contrast,
the pseudo labels of unlabeled data are updated in a moving
average manner which will be later introduced. With the help
of pseudo labels, we can train a classifier f : X → [0, 1]2 by

using cross-entropy loss. The classification loss Lclass is thus
given by:

Lclass =
1

n

∑n

i=1

∑1

j=0
−si,j log(zi,j), (19)

where zi,j is the j-th entry of the softmax result of f(xi), and
si,j denotes the j-th entry of the pseudo label si.
Pseudo Label Updating. Note that the prototypes mentioned
in Section 4.1 actually contain precious semantic information,
so the pseudo label of each example can be decided according
to its nearest prototype. However, this method might bring
unstableness to the network, as the prototypes might be inaccu-
rate during early training stage. Therefore, we adopt a moving
average manner to update the pseudo labels. Specifically, we
first initialize the pseudo label for xi according to the class
prior, which is:

si =

{
[0, 1]⊤, if oi = 1,

[πN, πP]
⊤, if oi = 0,

(20)

where πP = p(y = 1) is the positive class prior, and πN =
1 − πP. Afterwards, the pseudo label is updated after each
iteration, namely:

si := αsi + (1− α)hi, (21)

where α ∈ [0, 1) controls the updating speed of pseudo label,
and hi is a one-hot vector given by:

hi,j =

{
1, if j = argmaxc∈{0,1} q

⊤
i µc,

0, else,
(22)

where µc is the prototype corresponding to the Class c, and
hi,j is the j-th element of the one-hot vector hi. Note that
according to Eq. (20) and Eq. (21), the updated pseudo labels
naturally satisfy

∑1
j=0 si,j = 1.

Since each prototype incorporates implicit semantic infor-
mation, this moving average mechanism would encourage
pseudo label to gradually move towards the correct one.
Meanwhile, because hi is in a one-hot form, the pseudo label
si would eventually get close to a one-hot vector, which carries
confident label information and would facilitate the training of
the classifier. The empirical study in Section 6.7 further proves
the effectiveness of our prototype-based pseudo label updating
mechanism.
Prototype Updating. The intuitive solution to update the
class prototype is to average the representations of data points
according to the output of the classifier after every epoch.
However, this would bring two side effects, namely: 1) A
large size of training data would incur heavy computational
cost; and 2) Epoch-level updating mechanism might bring
undesirable confirmation bias, which means that the classifier
will mistakenly classify an example into an incorrect class with
a high confidence. To ameliorate these issues, we also employ
a moving average manner to update each class prototype,
which is:

µc := Normalize(λµc + (1− λ)qi), (23)

where c = argmaxj∈{0,1} f
j(Augq(xi)), λ ∈ [0, 1) is the

momentum coefficient mentioned above, and the Normalize(·)
in Eq. (23) is ℓ2-normalization operation.
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Label Distribution Alignment. To further rectify the
negative-prediction preference caused by the absence of clear
negative labels in the training set XPU, in this paper, we resort
to the label distribution loss proposed in Dist-PU [18] to rectify
this prediction bias. Dist-PU solves the PU learning from a
label distribution perspective, in which the expected risk of
conventional binary classifier R can be formulated as:

R =πPEx∼pP(x) [1(ŷ, 1)] + πNEx∼pN(x) [1(ŷ, 0)]

=πPEx∼pP(x) [1− ŷ] + πNEx∼pN(x) [ŷ]

=πP

∣∣Ex∼pP(x) [ŷ]− 1
∣∣︸ ︷︷ ︸

RP

+πN

∣∣Ex∼pN(x) [ŷ]
∣∣︸ ︷︷ ︸

RN

,
(24)

where ŷ = argmaxj∈{0,1} f
j(x) denotes the predicted label

of the classifier, E(·) denotes the expectation, and 1(ŷ, y)
corresponds to the zero-one loss. The value of 1(ŷ, y) is 1
if ŷ ̸= y, and 0 otherwise. Then Dist-PU concentrates on the
difference between the expectation of the predicted labels and
that of the underlying ground-truth labels, namely:

Ex∼p(x) [ŷ]− E(x,y)∼p(x,y) [y]

=πPEx∼pP(x) [ŷ]− πP + πNEx∼pN(x) [ŷ]

=− πPRP + πNRN. (25)

By substituting Eq. (25) into Eq. (24), an equivalent form
of R in a label distribution alignment manner can be derived
as:

R = 2πPRP +
∣∣Ex∼pU(x) [ŷ]− πP

∣∣ . (26)

By denoting zi,j as the j-th entry of the softmax result of
f(xi), the label distribution loss Ldis is expressed as:

Ldis = 2πP

∣∣∣∣∣ 1nP

∑
xi∈XL

zi,1 − 1

∣∣∣∣∣+
∣∣∣∣∣ 1

nU

∑
xi∈XU

zi,1 − πP

∣∣∣∣∣ .
(27)

This loss function forces the distribution of predicted labels
to align with the class prior, and thus further overcoming
the negative-prediction preference inherited by existing cost-
sensitive methods such as [14], [17], and [19].

4.3 Overall Framework

Finally, we aggregate the above-mentioned loss functions as
the total objective of our proposed method, which is:

LWConPU = Lclass + γ0Lcon + γ1Ldis, (28)

where γ0 and γ1 are non-negative tunable hyper-parameters
controlling the importance of each module. The pseudo-code
of our complete algorithm is shown in Algorithm 1

To summarize, two key components of our framework
(i.e., contrastive learning and classifier training) work in a
collaborative fashion. Contrastive learning benefits from the
classifier training in constructing precise positive peer sets,
which play an essential role in generating discriminative data
representations. Such good representations in turn aid classifier
training in obtaining accurate pseudo labels, which are critical
in training a well-performed classifier. These two components
can benefit from each other in an iterative manner.

Algorithm 1: Pseudo-code of WConPU (one epoch).
1 Input: Training set XPU, positive class prior πP, classifier f

parameterized by θf , query network gq , key network gk,
momentum queue Q, initialized pseudo labels si associated
with xi in XPU, initialized class prototypes µc

(c ∈ {0, 1}), trade-off parameters γ0, γ1, α, and λ.
2 Output: The optimal parameters θ∗f for the classifier f
3 for iter = 1, 2, . . . , do
4 Sample a mini-batch B from XPU

// query and key embeddings generation
5 Bq = {qi = gq(Augq(xi))|xi ∈ B}
6 Bk = {ki = gk(Augk(xi))|xi ∈ B}
7 A = Bq ∪ Bk ∪Q

// contrastive learning and classifier
training

8 for xi ∈ B do
9 Update prototype µc with Eq. (23)

10 Generate positive peer set of xi with Eq. (12)
11 Implement hard negative mining with Eq. (14)
12 Update pseudo labels si with Eq. (21)
13 end

// network updating
14 Minimize loss LWConPU = Lclass + γ0Lcon + γ1Ldis
15 Update gk in a momentum manner with Eq. (6)
16 end

5 MODEL JUSTIFICATION

Inspired by PiCO [47], we present justification on why our
WConPU can provide precise supervisory information for the
PU classifier from the perspective of EM algorithm. Since the
ground-truth labels of labeled positive examples are directly
available in PU learning, here we primarily concentrate on the
unlabeled examples in the following analysis.

For the simplicity of analysis, we consider that in each
iteration, all unlabeled examples are involved, namely A =
{gq(xi)|xi ∈ XU}. In the remainder of this paper, the
subscript i associated with x is omitted to simplify the math-
ematics if no confusion will be incurred. Then, the contrastive
loss in Eq. (18) for unlabeled examples will be transformed
to:

L̂con=
1

nU

∑
x∈XU

− 1

|P(x)|
∑

k+∈P(x)

log
exp(q⊤k+/ρ)∑

k′∈A(x)
exp(q⊤k′/ρ)


=

1

nU

∑
x∈XU

− 1

|P(x)|
∑

k+∈P(x)

(q⊤k+/ρ)


+

1

nU

∑
x∈XU

log
∑

k′∈A(x)

exp(q⊤k′/ρ)


=Lalignment + Luniform,

(29)

where P(x) corresponds to the positive peer set of example
x. The uniformity term Luniform aims to maximally preserve
the information of the data, which has been analyzed in [56].
Here we focus on the analysis of the alignment term Lalignment,
which encourages the encoder to generate similar features to
similar examples [56]. Since we construct the positive peer set
of x based on the predicted label ŷ = argmaxj∈{0,1} f

j(x)
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in Eq. (12), we first divide XU into two subsets Sc ∈ XU

with c = 0, 1, where Sc = {x| argmaxj∈{0,1} f
j(x) =

c,x ∈ XU}. To be more specific, each subset Sc contains
the examples with the same predicted label, resulting in the
reformulation of the term Lalignment, which is:

Lalignment =
1

nU

∑
x∈XU

1

|P(x)|
∑

k+∈P(x)

(||q − k+||2 − 2)/(2ρ)

=
1

2ρnU

∑
Sc∈XU

1

|Sc|
∑

x,x′∈Sc

||gq(x)− gq(x
′)||2 +K

=
1

ρnU

∑
Sc∈XU

∑
x∈Sc

||gq(x)− µ̂c||2 +K,

(30)

where K is a constant and µ̂c =
1

|Sc|
∑

x∈Sc
gq(x) represents

the mean center of Sc. The derivation of Eq. (30) is provided
in Appendix A.1.

Now we are ready to justify our WConPU from the per-
spective of EM algorithm. In E-step, the classifier assigns
each example to one specific cluster. In M-step, minimizing
Eq. (30) enforces the learned representations towards their
cluster center. The detailed interpretation is provided below:
E-Step. Given an encoder gq(·) parameterized by θq , our goal
is to find the network parameters θq that maximizes the log-
likelihood function below:

θ∗q = argmax
θq

∑
x∈XU

log p(x|θq)

=argmax
θq

∑
x∈XU

log

1∑
y=0

p(x, y|θq)

=argmax
θq

∑
x∈XU

log

1∑
y=0

Q(y)
p(x, y|θq)

Q(y)

≥argmax
θq

∑
x∈XU

1∑
y=0

Q(y) log
p(x, y|θq)

Q(y)
,

(31)

where Q(y) denotes some distribution over all unlabeled
examples (y ∈ {0, 1}), and

∑1
y=0 Q(y) = 1. The last step

of derivation uses Jensen’s inequality. To make the inequality
hold with equality, we require p(x,y|θq)

Q(y) to be a constant.
Therefore, we have:

Q(y) =
p(x, y|θq)∑1
y=0 p(x, y|θq)

=
p(x, y|θq)
p(x|θq)

= p(y|x, θq), (32)

which corresponds to the posterior class probability. In
WConPU, we estimate the posterior class probability with the
output of the classifier. Specifically, given the predicted label
ŷ = argmaxj∈{0,1} f

j(x), we have Q(y) = 1(ŷ = y).
M-Step. In M-step, our goal is to maximize the likelihood
stated in Eq. (31) under the assumption that the posterior
class probability is already known. We will show that under
some mild assumptions, minimizing Eq. (30) is equivalent to
maximizing a lower bound of likelihood expressed in Eq. (31),
and the corresponding theorem is:

Theorem 1. Assume data from the same class in the repre-
sentation space follow a d-variate von Mises-Fisher (vMF)

distribution. The probabilistic density of this distribution is
given by f(x|µ̄c, κ) = cd(κ)e

κµ̄⊤
c gq(x), where µ̄c = µ̂c/||µ̂c||

is the mean direction, κ is the concentration parameter, and
cd(κ) is the normalization factor. We further assume a uniform
class prior p(y = 0) = p(y = 1) = 1/2. Denoting nc = |Sc|
(c = 0, 1) as the size of each subset, minimizing Eq. (30)
and maximizing the likelihood in Eq. (31) is equivalent to
maximizing R1 and R2 below correspondingly, which are:

R1 =
∑

Sc∈XU

nc

nU
||µ̂c||2,

R2 =
∑

Sc∈XU

nc

nU
||µ̂c||,

(33)

with R1 ≤ R2 strictly holds.

The proof of Theorem 1 is provided in Appendix A.2.
Theorem 1 indicates that minimizing the alignment term
in Eq. (30) is equivalent to maximizing a lower bound of
likelihood in Eq. (31). The lower bound is tight when ||µ̂c|| is
close to 1, which implies that the examples with the same
predicted label (i.e., x ∈ Sc) are strongly concentrated in
the representation space. By examining Eq. (33), we observe
that the contrastive loss encourages the norm of µ̂c to be
large. Besides, as shown in Fig. 4, our WConPU is indeed
capable of generating compact clusters. Hence, minimizing
the contrastive loss is equivalent to maximizing the likelihood
in Eq. (31).

Since our WConPU can be understood from the perspective
of EM algorithm, the contrastive learning module and classifier
training module in our WConPU can benefit from each other
in an iterative manner, and thus allowing our WConPU to
converge to a (local) optima.

6 EXPERIMENT

To demonstrate the effectiveness of our proposed WConPU,
in this section, we perform exhaustive experiments on several
publicly available benchmark datasets and real-world datasets.

6.1 Experimental Settings

Datasets. We conduct experiments on four popular benchmark
datasets including CIFAR-10, SVHN, STL-10, and Alzheimer
datasets. More details of the datasets are provided below as
well as in Table I.

• CIFAR-10 dataset [57] consists of colored images in
10 different classes including “airplane”, “automobile”,
“bird”, etc. In our experiments, we take the images of ve-
hicles (i.e., “airplanes”, “automobiles”, “ships”, “trucks”)
as the positive class and treat the images of animals (i.e.,
“birds”, “cats”, “deer”, “dogs”, “frogs”, “horses”) as the
negative class.

• SVHN dataset [20] is a collection of colored images of
street view house numbers. The even numbers (i.e., “0”,
“2”, “4”, “6”, “8”) are regarded as positive class and the
odd numbers (i.e., “1”, “3”, “5”, “7”, “9”) are regarded
as negative class.

• STL-10 dataset [58] collects 10 classes of colored im-
ages, such as “airplanes”, “birds”, and “cars”. We build
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TABLE I
SUMMARY OF EMPLOYED DATASETS.

Dataset Input Image Size nP nU # Testing Data πP Positive Class Backbone
CIFAR-10 3× 32× 32 1,000 50,000 10,000 0.4 Vehicles (i.e., Class ID: 0, 1, 8, 9) 13-layer CNN

SVHN 3× 32× 32 1,000 73,257 26,032 0.46 Even (i.e., Class ID: 0, 2, 4, 6, 8) 13-layer CNN
STL-10 3× 96× 96 500 5,000 8,000 0.4 Vehicles (i.e., Class ID: 1, 3, 9, 10) ResNet-18 [59]

Alzheimer 3× 224× 224 769 5,121 1,279 0.5 Alzheimer’s Disease ResNet-50 [59]

a PU dataset by treating the vehicles (i.e., “airplanes”,
“cars”, “ships”, “trucks”) as the positive class, and the
animals (i.e., “birds”, “cats”, “deer”, “dogs”, “horses”,
“monkeys”) as the negative class.

• Alzheimer1 dataset contains the MRI images for iden-
tifying the Alzheimer’s Disease. The MRI images of
demented patients are recognized as positive class and the
MRI images of healthy people are recognized as negative
class.

Baseline Methods. We choose eleven state-of-the-art PU
learning algorithms for comparison, which are listed as fol-
lows:

• uPU [13] designs an unbiased risk estimator for PU
learning.

• nnPU [14] overcomes the overfitting problem by forcing
the risk estimator of negative class to be non-negative.

• RP [60] ranks the training data by confidence and selects
the most confident examples as positive or negative.

• PUSB [19] proposes a threshold estimation algorithm to
deal with the selection bias during the labeling process.

• PUbN [23] first pretrains a model with nnPU algorithm
to classify some reliable positive data, negative data, and
unlabeled data, and then minimizes a risk approximated
by the above three partitions.

• Self-PU [9] employs several self-supervised techniques to
extend the learning capability of the previous PU model.

• aPU [61] deals with the arbitrary positive shift between
source and target distributions.

• VPU [62] introduces a variational principle to relax the
requirement of class prior.

• ImbPU [17] redesigns the nnPU estimator to enable the
learning from imbalanced data.

• Dist-PU [18] forces the distribution of predicted labels
to align with that of ground-truth ones.

• puNCE [46] first pretrains the encoder using a contrastive
loss, and then do linear probing with nnPU algorithm.

• PiCO [47] introduces a prototypical label disambiguation
algorithm for addressing the partial label learning (PLL)
problem. Note that in our experiments, we incorporate
Ldis into PiCO to make it adaptable to PU conditions.

Evaluation Metrics. For each compared method, we report
the results on the test set in terms of six metrics for a com-
prehensive evaluation, including accuracy (ACC), Precision
(Prec.), Recall (Rec.), F1 measure (F1), Area Under ROC
Curve (AUC), and Average Precision (AP). On each dataset,
every algorithm was independently implemented five times

1Dubey, S. Alzheimer’s Dataset. Available online:
https://www.kaggle.com/tourist55/alzheimers-dataset-4-class-of-images

with different labeled positive examples, and the mean and
standard deviation of the results on each metric are recorded.
Besides, the paired t-test with 95% confidence level is also
conducted to see whether our method is statistically better
than the comparators.
Implementation Details. Our proposed WConPU method was
implemented via PyTorch on a Geforce RTX 3090Ti GPU. The
backbone networks of comparators on every dataset are sum-
marized in Table I. For our WConPU, by following [30], [45],
the projection head after the contrastive encoder is a 2-layer
multilayer perceptron (MLP) of which the output is an 128-
dimensional embedding. Since the query view and key view
requires weak and strong augmentation correspondingly, we
respectively employ SimAugment [45] and RandAugment [63]
for such augmentations. For the size of the queue storing key
embeddings, it is set to 4096 for Alzheimer dataset, while it
is 8192 for other datasets. For pseudo label updating, we set
α to 0.9. The momentum coefficient λ is set to 0.999 and
the temperature parameter ρ is set to 0.07. We use a standard
SGD optimizer with a momentum of 0.9 as the optimizer with
a cosine annealing scheduler, where the initial learning rate is
set as 1 × 10−2. The batch size is 8 for Alzheimer dataset,
and 256 for other datasets. By following [23], [27], [64], an
additional clean validation set (10% of the training examples)
is sampled for trade-off parameter selection. Note that the
clean validation set does not contribute to the final training
process. The trade-off parameters γ0 and γ1 are properly
selected from {1×10−3, 1×10−2, 1×10−1, 1} via grid search,
respectively. We do not employ the early stopping technique
but instead report the results of the 800th epoch in iterative
training of all compared methods over all datasets.

6.2 Comparison with State-of-the-art Methods

In this section, we evaluate the classification performance
of the proposed method by comparing it with the baseline
methods mentioned in Section 6.1. The performance of all
baseline methods and our WConPU on the adopted four
benchmark datasets is summarized in Table II. According to
the results, we have the following observations:

• On all four datasets, our proposed WConPU outperforms
all competitors by a noticeable margin in terms of most
metrics. In particular, we improve the best baseline
method by 3.10% on SVHN dataset. The comparison
result further validates the effectiveness of our proposed
method.

• The standard deviation of the results of our WConPU
across different trials is relatively small when compared
with most of the other methods, so our method is robust
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TABLE II
COMPARISON RESULTS OF VARIOUS METHODS ON CIFAR-10, SVHN, STL-10, AND ALZHEIMER DATASETS. THE BEST AND SECOND BEST VALUES ARE

BOTH HIGHLIGHTED. ✓DENOTES THAT OUR WCONPU IS SIGNIFICANTLY BETTER THAN THE CORRESPONDING METHODS REVEALED BY THE PAIRED
T-TEST WITH CONFIDENCE LEVEL 95%.

Dataset Method ACC (%) Prec. (%) Rec. (%) F1 (%) AUC (%) AP (%)

CIFAR-10

uPU [13] 88.41±0.41 ✓ 87.21±2.09 ✓ 83.02±1.98 ✓ 85.12±0.43 ✓ 94.98±0.62 ✓ 92.71±1.08 ✓
nnPU [14] 88.91±0.43 ✓ 86.21±1.02 ✓ 86.03±1.22 ✓ 86.11±0.49 ✓ 95.13±0.55 ✓ 92.51±1.32 ✓

RP [60] 88.74±0.16 ✓ 86.02±1.05 ✓ 85.72±1.61 ✓ 85.93±0.30 ✓ 95.21±0.23 ✓ 93.01±0.61 ✓
PUSB [19] 88.97±0.39 ✓ 86.15±0.56 ✓ 86.22±0.45 ✓ 86.18±0.51 ✓ 95.15±0.50 ✓ 92.44±1.34 ✓
PUbN [23] 89.83±0.30 ✓ 87.85±0.98 ✓ 86.56±1.87 ✓ 87.18±0.54 ✓ 94.44±0.35 ✓ 91.28±1.11 ✓
Self-PU [9] 89.31±0.56 ✓ 86.26±0.76 ✓ 87.22±2.16 ✓ 86.77±1.12 ✓ 95.52±0.46 ✓ 93.31±1.02 ✓

aPU [61] 89.09±0.44 ✓ 86.31±1.33 ✓ 86.33±0.71 ✓ 86.41±0.41 ✓ 95.11±0.39 ✓ 92.42±1.22 ✓
VPU [62] 87.89±0.56 ✓ 86.71±1.46 ✓ 82.88±2.93 ✓ 84.42±1.12 ✓ 94.55±0.46 ✓ 92.02±0.69 ✓

ImbPU [17] 89.43±0.42 ✓ 86.72±0.89 ✓ 86.91±0.78 ✓ 86.77±0.56 ✓ 95.53±0.26 ✓ 93.33±0.69 ✓
Dist-PU [18] 91.88±0.52 ✓ 89.87±1.09 ✓ 89.84±0.81 ✓ 89.85±0.62 ✓ 96.92±0.45 ✓ 95.49±0.72 ✓
puNCE [46] 95.34±0.24 ✓ 95.11±0.88 ✓ 93.43±0.45 ✓ 94.21±0.44 ✓ 98.59±0.53 ✓ 98.45±0.63 ✓
PiCO [47] 95.64±0.12 ✓ 94.89±0.76 ✓ 93.97±0.47 ✓ 94.75±0.49 ✓ 98.67±0.44 ✓ 98.22±0.91 ✓
WConPU 97.22±0.15 ✓ 96.87±0.54 ✓ 96.02±0.32 ✓ 96.43±0.29 ✓ 99.49±0.22 ✓ 99.25±0.34 ✓

SVHN

uPU [13] 83.35±0.45 ✓ 87.11±2.39 ✓ 75.93±2.68 ✓ 81.12±0.56 ✓ 91.93±0.62 ✓ 90.22±1.11 ✓
nnPU [14] 83.88±0.45 ✓ 86.78±1.15 ✓ 77.25±1.42 ✓ 82.01±0.58 ✓ 92.02±0.52 ✓ 90.28±1.38 ✓

RP [60] 81.73±0.15 ✓ 84.01±1.01 ✓ 76.12±1.51 ✓ 80.10±0.32 ✓ 89.75±0.23 ✓ 87.99±0.56 ✓
PUSB [19] 83.99±0.41 ✓ 86.81±0.51 ✓ 78.01±0.51 ✓ 82.11±0.51 ✓ 91.89±0.52 ✓ 90.31±1.34 ✓
PUbN [23] 84.89±0.30 ✓ 88.26±0.98 ✓ 83.57±1.87 ✓ 83.16±0.54 ✓ 92.03±0.35 ✓ 91.89±1.11 ✓
Self-PU [9] 84.12±0.72 ✓ 86.16±0.78 ✓ 79.22±2.35 ✓ 82.55±1.06 ✓ 91.73±0.58 ✓ 90.99±1.01 ✓

aPU [61] 84.01±0.52 ✓ 86.29±1.30 ✓ 81.21±0.79 ✓ 82.33±0.56 ✓ 91.56±0.42 ✓ 90.66±1.23 ✓
VPU [62] 76.89±0.48 ✓ 79.56±1.41 ✓ 75.36±2.84 ✓ 73.31±0.91 ✓ 85.78±0.41 ✓ 83.35±0.73 ✓

ImbPU [17] 84.20±0.46 ✓ 86.69±0.87 ✓ 81.18±0.82 ✓ 82.99±0.56 ✓ 91.79±0.27 ✓ 91.21±0.45 ✓
Dist-PU [18] 85.96±0.33 ✓ 89.06±0.89 ✓ 84.36±0.76 ✓ 83.66±0.56 ✓ 92.92±0.49 ✓ 92.29±0.88 ✓
puNCE [46] 88.39±0.35 ✓ 90.35±0.92 ✓ 83.81±1.99 ✓ 87.01±0.55 ✓ 94.87±0.35 ✓ 93.87±0.92 ✓
PiCO [47] 89.01±0.34 ✓ 90.47±0.79 ✓ 85.74±0.64 ✓ 87.51±0.44 ✓ 95.58±0.54 ✓ 94.32±0.63 ✓
WConPU 91.49±0.29 ✓ 93.77±0.67 ✓ 87.54±0.71 ✓ 90.45±0.35 ✓ 96.97±0.59 ✓ 96.82±0.37 ✓

STL-10

uPU [13] 93.13±0.42 ✓ 90.42±1.08 ✓ 92.62±1.28 ✓ 91.51±0.62 ✓ 97.95±0.56 ✓ 97.26±1.21 ✓
nnPU [14] 93.38±0.42 ✓ 91.20±1.01 ✓ 92.34±1.03 ✓ 91.77±0.58 ✓ 97.69±0.51 ✓ 95.99±1.18 ✓

RP [60] 92.88±0.56 ✓ 92.87±1.35 ✓ 89.18±1.88 ✓ 90.97±0.45 ✓ 92.15±0.18 ✓ 95.58±2.29 ✓
PUSB [19] 93.65±0.16 ✓ 92.06±0.52 ✓ 92.06±0.42 ✓ 92.06±0.33 ✓ 98.06±0.52 ✓ 97.21±1.13 ✓
PUbN [23] 94.01±0.31 ✓ 93.01±0.98 ✓ 93.11±1.01 ✓ 92.98±0.54 ✓ 98.20±0.35 ✓ 97.66±1.47 ✓
Self-PU [9] 93.73±0.28 ✓ 92.12±1.01 ✓ 92.61±1.82 ✓ 92.22±1.09 ✓ 91.98±0.22 ✓ 96.88±1.12 ✓

aPU [61] 93.41±0.45 ✓ 91.15±1.24 ✓ 92.55±0.83 ✓ 91.52±0.88 ✓ 97.85±0.66 ✓ 96.23±1.03 ✓
VPU [62] 91.51±0.65 ✓ 93.01±0.66 ✓ 84.00±2.56 ✓ 88.28±1.52 ✓ 96.40±0.82 ✓ 95.53±0.73 ✓

ImbPU [17] 93.88±0.81 ✓ 92.25±1.12 ✓ 91.66±0.83 ✓ 92.01±0.54 ✓ 97.98±0.72 ✓ 97.33±1.02 ✓
Dist-PU [18] 94.73±0.31 ✓ 93.35±1.01 ✓ 93.47±0.81 ✓ 93.41±0.41 ✓ 98.54±0.71 ✓ 97.96±1.01 ✓
puNCE [46] 95.13±0.22 ✓ 94.09±0.55 ✓ 94.95±0.82 ✓ 94.51±0.51 ✓ 98.66±0.24 ✓ 98.23±0.69 ✓
PiCO [47] 95.55±0.23 ✓ 94.36±0.42 ✓ 95.12±0.81 ✓ 94.75±0.44 ✓ 98.78±0.15 ✓ 98.55±0.34 ✓
WConPU 97.02±0.21 ✓ 95.53±0.41 ✓ 97.42±0.91 ✓ 96.35±0.26 ✓ 99.58±0.12 ✓ 99.46±0.21 ✓

Alzheimer

uPU [13] 68.42±2.22 ✓ 69.71±3.44 ✓ 67.33±5.18 ✓ 68.63±1.73 ✓ 73.99±2.72 ✓ 70.12±2.98 ✓
nnPU [14] 68.21±2.15 ✓ 68.09±2.21 ✓ 71.01±5.88 ✓ 68.11±2.99 ✓ 71.99±3.01 ✓ 70.01±2.21 ✓

RP [60] 62.03±2.85 ✓ 63.11±3.77 ✓ 66.23±9.86 ✓ 61.99±6.03 ✓ 66.32±2.99 ✓ 64.10±2.11 ✓
PUSB [19] 69.19±2.41 ✓ 70.11±1.88 ✓ 69.43±2.13 ✓ 69.41±2.15 ✓ 74.66±2.42 ✓ 70.12±1.64 ✓
PUbN [23] 70.00±1.02 ✓ 69.43±2.25 ✓ 74.22±6.01 ✓ 71.18±2.89 ✓ 74.98±0.89 ✓ 69.66±1.63 ✓
Self-PU [9] 70.79±0.73 ✓ 69.55±2.51 ✓ 75.51±4.99 ✓ 72.10±1.02 ✓ 75.85±1.68 ✓ 71.79±3.63 ✓

aPU [61] 68.41±1.71 ✓ 66.23±0.88 ✓ 75.71±6.21 ✓ 71.01±3.06 ✓ 73.66±2.44 ✓ 70.23±3.33 ✓
VPU [62] 66.51±0.61 ✓ 64.89±1.01 ✓ 75.18±3.71 ✓ 71.01±0.98 ✓ 72.99±0.91 ✓ 71.21±0.65 ✓

ImbPU [17] 68.19±0.69 ✓ 67.34±2.31 ✓ 71.24±6.21 ✓ 68.79±1.81 ✓ 73.69±0.75 ✓ 70.56±0.97 ✓
Dist-PU [18] 71.57±0.62 ✓ 68.48±1.16 ✓ 80.09±5.10 ✓ 73.74±1.64 ✓ 77.13±0.69 ✓ 73.33±1.47 ✓
puNCE [46] 70.59±0.77 ✓ 68.99±1.56 ✓ 75.99±6.11 ✓ 71.55±1.11 ✓ 75.55±1.03 ✓ 71.23±1.66 ✓
PiCO [47] 71.94±0.71 ✓ 69.59±1.12 ✓ 79.01±5.03 ✓ 73.92±1.02 ✓ 77.59±0.78 ✓ 72.17±0.97 ✓
WConPU 73.02±0.66 ✓ 70.87±2.42 ✓ 79.12±4.99 ✓ 74.23±0.76 ✓ 78.55±1.07 ✓ 72.66±1.07 ✓

to different selections of initial labeled positive examples
in XL.

• The PU algorithms based on contrastive learning (i.e.,
our WConPU and puNCE) exhibit superior performance
when compared with the methods that do not incorporate
contrastive learning, such as nnPU, Self-PU, and Dist-

PU. This supports our argument that utilizing high-quality
representations is beneficial for training a well-performed
PU classifier.

• Although both PiCO and our WConPU employ a joint
optimization approach combining contrastive learning
with classification, our WConPU significantly outper-
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TABLE III
ABLATION STUDY OF WCONPU ON CIFAR-10 WITH nP = 1k.

Variant Setting ACC (%) Prec. (%) Rec. (%) F1 (%) AUC (%) AP (%)
I WConPU w/o Lcon 82.15±2.25 90.82±1.99 61.60±6.11 73.41±1.73 92.55±2.31 88.86±1.01
II WConPU w/o pseudo label updating 90.03±1.01 90.33±1.33 85.01±1.33 87.01±1.06 95.45±0.99 93.33±0.87
III WConPU w/o Ldis 94.23±1.02 95.85±1.21 89.03±0.76 92.33±0.72 98.51±0.56 97.19±0.83
IV WConPU w/o hard negative mining 95.87±0.81 95.91±0.45 93.21±0.87 94.76±1.35 98.93±0.64 98.65±0.45
V WConPU 97.22±0.15 96.87±0.54 96.02±0.32 96.43±0.29 99.49±0.22 99.25±0.34

(a) (b) (c) (d)

Fig. 3. Parametric sensitivity analysis on CIFAR-10, SVHN, STL-10, and Alzheimer datasets. (a), (b), (c), and (d) show the impact of different values of
γ0, γ1, α, and λ on test accuracy, respectively.

Fig. 4. t-SNE [65] visualization of learned representations of nnPU, Dist-PU
and our WConPU on the training data of CIFAR-10, where “Vehicles” are
deemed as positive class. Compared with nnPU and Dist-PU, the proposed
WConPU significantly improves the embedding quality. Meanwhile, the
subfigure (b) shows the t-SNE visualization of hard negative examples.

forms PiCO on all four datasets in terms of most
metrics. This superior performance can be attributed to
our methodological innovations such as prototype-based
hard negative mining module and weighted contrastive
loss, which enable our WConPU algorithm to leverage
contrastive learning in a more effective way than PiCO.

The main reason for the above merits is that our algorithm
can generate high-quality representations, which guarantees
the performance stability and superiority of the induced PU
classifier when compared with other popular PU learning
methodologies.

6.3 Ablation Studies

In order to analyze the impact of each module in
WConPU, i.e., weighted contrastive loss, pseudo label updat-

ing, prototype-based hard negative mining, and label distribu-
tion alignment, we conduct ablation studies on CIFAR-10 and
investigate the algorithmic performance. The results are shown
in Table III.

Effect of Contrastive Learning. From the Table III, we can
see that the contrastive learning module contributes signifi-
cantly to WConPU. To be specific, without Lcon (see Variant I),
the performance of WConPU decreases dramatically. The
reason is that without CL, we cannot obtain high-quality
representations, and the prototype-based pseudo label updating
module also cannot work properly.

Effect of Prototype-based Pseudo Label Updating and Ldis.
In Variant II, we make the pseudo labels unchanged during
the training process. Without the pseudo label updating, the
supervisory information for classifier training is weak, so the
model predictions on unlabeled data will show high-entropy
and low-confidence. In Variant III, we treat all unlabeled
examples as negative, and then use the cross entropy loss to
replace Ldis. Without Ldis, some positive examples would be
wrongly deemed as negative, which impairs the performance
of WConPU.

Effect of Hard Negative Mining. In Variant IV, we remove
the hard negative mining module from our WConPU model,
and our weighted contrastive objective function would degen-
erate to traditional SCL loss function. From Table III, we can
see that there is a noticeable decline in the performance of
WConPU without hard negative mining module. The reason
is that without this module, the model cannot separate positive
and negative examples well in the embedding space, and
this will bring challenges to the training of a well-performed
classifier. For better understanding the impact of hard negative
mining on further improving the representation quality, we
show the t-SNE [65] visualization result of hard negative
examples in Fig. 4(b).



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

(a) Pseudo label accuracy (b) Mean of the max value of pseudo labels

Fig. 5. Pseudo label updating process on CIFAR-10 with nP = 1k. The subfigure (a) shows the accuracy curve of pseudo labels during the training process,
and the subfigure (b) shows the mean of the max value of pseudo labels, which is calculated by 1

n

∑n
i=1 max(si).

Fig. 6. Sensitivity analysis regarding class prior on CIFAR-10 dataset. The
real value of positive class prior πP is 0.4.

6.4 Embedding Visualization

In this part, we compare the t-SNE visualization results
of nnPU [14], Dist-PU [18], and our WConPU, as nnPU
is a classical PU method, and Dist-PU is the latest state-
of-the-art model. The results are shown in Fig. 4. From
the figure, we have two observations: 1) As a represen-
tative of cost-sensitive methods, nnPU performs poorly in
separating positive examples and negative examples in the
representation space; and 2) Although Dist-PU solves PU
learning problem from a label distribution perspective and
can generate relatively better representations than nnPU, it
still performs worse than our WConPU. To summarize, with
the employment of CL, our WConPU can generate more
discriminative representations than other methods, which is
the key to the superior performance of our method. Moreover,
Fig. 4(b) shows that our prototype-based hard negative mining
module can successfully mine the hard negative examples
during the training process, and our weighted contrastive loss

can leverage the hard negative examples to generate well-
separated representations.

6.5 Parametric Sensitivity

In our WConPU model, there are four trade-off parameters
γ0, γ1, α, and λ that should be pre-tuned manually. In
this section, we analyze the parametric sensitivity of our
WConPU to these parameters on CIFAR-10, SVHN, STL-
10, and Alzheimer datasets. Specifically, we examine the test
accuracy by varying one of γ0, γ1, α, and λ, and meanwhile
fixing the other parameters to a constant value. By changing
γ0 and γ1 from 0.001 to 1, α and λ from 0.9 to 0.9999, the
results on CIFAR-10, SVHN, STL-10, and Alzheimer datasets
are shown in Fig. 3.

From the curves presented in Fig. 3, we find that these four
parameters are critical for our WConPU to achieving good
performance. To be specific, the performance of our WConPU
is relatively stable when γ0, γ1, and λ vary within a wide
range. For γ1, the performance will slightly drop if it is set
within [0.001, 0.01]. In contrast, Fig. 3(c) reveals that α = 0.9
usually leads to high classification accuracy. Therefore, α is
consistently set to 0.9 throughout our experiments.

6.6 Sensitivity to Class Prior

Since our proposed WConPU needs the estimated class prior
πP as input, here we study the impact of inaccurate input class
prior on our model in Fig. 6. Besides, other three existing
methods (i.e., nnPU, Self-PU, and Dist-PU) which also rely
on class prior are also incorporated for comparison. From
Fig. 6, we can see that even with misspecified class prior,
our WConPU still considerably outperforms other competitors
which operate under ground-truth class prior. Moreover, the
performance of our WConPU is much more stable than other
competitors, especially when the prior is underestimated. This
further demonstrates the practicality of WConPU. This lower
sensitivity to class prior can be attributed to two factors: 1)
The side effects brought by misspecified class prior could
be offset by the high-quality representations originated from
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contrastive learning module; and 2) Our pseudo label updating
mechanism works in a moving-average manner, which can
prevent our model from being trapped in bad local optima
caused by inaccurate class prior.

6.7 Qualitative Analysis of Pseudo Labels

To show the effectiveness of our prototype-based pseudo
label updating strategy, we show the pseudo label updating
process in Fig. 5. Specifically, Fig. 5(a) shows the accuracy
curve of pseudo labels, and Fig. 5(b) shows the mean of
the maximal value of pseudo labels, which is calculated by
1
n

∑n
i=1 max(si). From the figure, we can see that the pseudo

labels would gradually move towards the ground-truth labels
and converge to nearly one-hot vectors during the training
procedure. This further confirms that our pseudo label updating
mechanism can provide high-quality supervisory information
for classifier training.

7 CONCLUSION

In this paper, we propose a new PU learning algorithm
termed “WConPU” which utilizes the contrastively learned
prototypes to guide the learning of the classifier. The advan-
tages of WConPU are three-fold: 1) The employment of con-
trastive learning guarantees the generation of discriminative
representations; 2) The novel weighted contrastive objective
function equipped with a prototype-based hard negative min-
ing module further improves the quality of representations;
and 3) The pseudo label updating strategy takes full advantage
of the implicit semantic information of prototypes, which
guides the classifier to make confident and precise predictions.
Due to the above reasons, our method has shown superior
performance to various state-of-the-art PU learning methods
on diverse datasets.
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APPENDIX A
PROOF AND DERIVATION

In this appendix, we provide the proofs and mathematical
derivations for some theoretical findings in Section 5.

A.1 Derivation of Eq. (30)

By denoting nc = |Sc| (c = 0, 1) as the size of each
subset, the derivation of the second equality in Eq. (30)
suffices to show that 1

2nc

∑
x,x′∈Sc

||gq(x) − gq(x
′)||2 =



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

∑
x∈Sc

||gq(x)−µ̂c||2. The detailed derivation is given below:

1

2nc

∑
x,x′∈Sc

||gq(x)− gq(x
′)||2

=
1

2nc

∑
x∈Sc

∑
x′∈Sc

(
||gq(x)||2−2gq(x)

⊤gq(x
′)+||gq(x′)||2

)
=

1

nc

∑
x∈Sc

(
nc − gq(x)

⊤

( ∑
x′∈Sc

gq(x
′)

))

=
1

nc

∑
x∈Sc

(
nc − gq(x)

⊤ (ncµ̂c)
)

=nc −

(∑
x∈Sc

gq(x)

)⊤

µ̂c

=nc(1− ||µ̂c||2)

=

nc − 2

(∑
x∈Sc

gq(x)

)⊤

µ̂c + nc||µ̂c||2


=
∑
x∈Sc

(
||gq(x)||2 − 2gq(x)

⊤µ̂c + ||µ̂c||2
)

=
∑
x∈Sc

||gq(x)− µ̂c||2.

(34)

A.2 Proof of Theorem 1

By ignoring the constant −
∑

x∈XU

∑1
y=0 Q(y) logQ(y) in

Eq. (31), maximizing the log-likelihood function in Eq. (31)
can be written as:

max
θq

∑
x∈XU

1∑
y=0

Q(y) log p(x, y|θq)

=max
θq

∑
x∈XU

1∑
y=0

Q(y) log p(x|y, θq)p(y)

=max
θq

∑
x∈XU

1∑
y=0

1(ŷi = y) log p(x|y, θq)

=max
θq

∑
Sc∈XU

∑
x∈Sc

log p(x|y = c, θq)

=max
θq

∑
Sc∈XU

∑
x∈Sc

(
κµ̄⊤

c gq(x) + log (cd(κ))
)

=max
θq

∑
Sc∈XU

nc

nU
||µ̂c||,

(35)

where nc = |Sc|.
Besides, minimizing Eq. (30) is equivalent to:

min
θq

∑
Sc∈XU

∑
x∈Sc

||gq(x)− µ̂c||2

=min
θq

∑
Sc∈XU

∑
x∈Sc

(||gq(x)||2 − 2gq(x)
⊤µ̂c + ||µ̂c||2)

=min
θq

∑
Sc∈XU

(nc − nc||µ̂c||2)

=max
θq

∑
Sc∈XU

nc

nU
||µ̂c||2.

(36)

Note that all the embeddings are ℓ2-normalized and thus
∥µ̂c∥ ∈ [0, 1]. Therefore, this theorem is proved.

APPENDIX B
MORE EXPERIMENTAL RESULTS

B.1 Different Hard Negative Mining Strategies

TABLE IV
TEST ACCURACY OF DIFFERENT HARD NEGATIVE MINING

STRATEGIES ON CIFAR-10, SVHN, AND STL-10 DATASETS.

Dataset Method Accuracy

CIFAR-10 WConPU 97.22± 0.15
Pseudo Label-based 96.72± 0.19

SVHN WConPU 91.49± 0.29
Pseudo Label-based 91.11± 0.32

STL-10 WConPU 97.02± 0.21
Pseudo Label-based 96.79± 0.21

In our WConPU, the hard negative set is constructed based
on the similarity between the embedding of each example and
the corresponding class prototype. Nevertheless, an alternative
approach involves selecting the hard negative examples based
on pseudo labels. Therefore, to evaluate the effectiveness of
these two distinct hard negative mining strategies, we have
made a comprehensive comparison on CIFAR-10, SVHN, and
STL-10 datasets. From Table IV, we can see that the test
accuracy achieved through pseudo label-based hard negative
mining is lower than that of the method proposed by our
WConPU. This is because the prototypes exhibit better re-
liability than predicted labels at the initial stage of training
procedure.

B.2 Different Prototype Updating Strategies

TABLE V
TRAINING TIME (MIN/EPOCH) AND TEST ACCURACY OF

DIFFERENT PROTOTYPE UPDATING METHODS ON CIFAR-10,
SVHN, AND STL-10 DATASETS.

Dataset Method Time Accuracy

CIFAR-10 WConPU 0.45 97.22± 0.15
Re-compute 0.63 97.17± 0.18

SVHN WConPU 0.54 91.49± 0.29
Re-compute 0.75 91.32± 0.25

STL-10 WConPU 0.49 97.02± 0.21
Re-compute 0.68 96.98± 0.23

An alternative strategy for updating prototypes is to re-
compute the prototypes by averaging embeddings of all train-
ing examples at the end of each epoch. A comparative analysis
is conducted between this technique and the method proposed
in our WConPU. From Table V, we can see that our WConPU
method not only achieves competitive results with the re-
compute method, but also surpasses the re-compute method
significantly in terms of efficiency.
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