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Abstract. Ordinal regression aims at solving the classification problem, where
the categories are related in a natural order. Due to the difficulty in distinguishing
between highly relevant categories, label noise is frequently present in ordinal
data. Moreover, the varying degrees of relevance between categories can lead
to an inconsistent distribution of misclassification loss across categories, posing
a challenge to select clean data consistently from all categories for training. To
overcome this limitation, we develop a sample selection method termed ‘Class-
Aware Sample Selection for Ordinal Regression’ (CASSOR). To be concrete,
we devise a class-specific sample selection strategy in order to adaptively acquire
sufficient clean examples for robust model training. Moreover, a label-ranking
regularizer is designed to help guide the sample selection process via exploring
the ordinal relationship between different examples. As a result, our proposed
CASSOR is endowed with strong discrimination abilities on ordinal data. Inten-
sive experiments have been performed on multiple real-world ordinal regression
datasets, which firmly demonstrates the effectiveness of our method.
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1 Introduction
Ordinal regression, also known as ordinal classification, aims to predict categories

on an ordinal scale [5]. Unlike the nominal classification setting, ordinal regression
involves labels that naturally possess a specific order [6]. To now, ordinal regression has
found its applications in various fields, such as age estimation [2]. The existing methods
to deal with ordinal regression tasks can be roughly divided into two types, namely
regression and classification. The regression approaches aim to predict the values of the
latent variable by mapping the input space to a one-dimensional real space [3] before
predicting the categories of the input examples. The classification approaches, on the
other hand, embed the ordinal relationship between categories into loss functions [12],
labels [4,17], or architectural design [16].

The existing ordinal regression techniques are primarily designed for clean-label
settings. However, the class labels observed in ordinal data may not always be correct.
This is because the potential relevance between adjacent categories will make it chal-
lenging for annotators to accurately distinguish between different categories. As a re-
sult, the label noise can probably lead to performance degradation in model training. To
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now, various deep learning approaches have been proposed for handling classification
problems with label noise. Most of them focus on the estimation of the noise transition
matrix [15] or the selection of clean examples [8,14]. The former aims to employ the
transition matrix to build a risk-consistent estimator or a classifier-consistent estima-
tor, while obtaining an accurate noise transition matrix can be challenging in practical
scenarios [7]. Here, [5] is the only method designed for ordinal regression under la-
bel noise, which uses the noise transition matrix to construct the unbiased estimator of
the true risk. On the other hand, the sample selection methods focus on selecting clean
examples for model training and yield relatively satisfactory performance [8]. They usu-
ally predefine a loss threshold heuristically to regulate the number of clean examples,
assuming that examples with loss below the threshold are probably clean [8,10].

Nevertheless, the above-mentioned sample selection methods are designed for nom-
inal classification problems, which fail to exploit the fundamental characteristics of
ordinal data. To be specific, if a category is highly relevant to its neighbors, it can
be misclassified with a high probability, which leads to a large misclassification loss.
Meanwhile, if a category is weakly related to its neighbors, the corresponding misclas-
sification loss could be small. This will result in inconsistent distribution of misclassi-
fication loss across categories. Simply selecting the small-loss examples with a single
threshold can lead to imbalanced sample selection across categories. As a result, highly
relevant categories cannot provide sufficient information for model learning, ultimately
degrading the model performance. In addition, ordinal data typically exhibit a natural
label order that benefits the learning of ordinal models [6], which is, however, neglected
by the nominal classification methods.

In light of the aforementioned challenges, we propose a new type of sample selec-
tion method termed Class-Aware Sample Selection for Ordinal Regression (CASSOR).
Firstly, we design a class-aware sample selection strategy via calculating a class-specific
score for each category. The score determines the number of examples chosen from each
category, ensuring that categories with significant misclassification contribute adequate
examples for model training. Considering the varying misclassification loss associated
with different categories during the training phase, the class-specific score can be dy-
namically adjusted. This could also help prevent the model from overfitting to certain
noisy examples and improve the generalization abilities. Additionally, since a biased
selection of training examples is inevitable [7], we employ a dual-network architec-
ture. As such, the potential errors caused by the biased selection can be reduced by
the dual networks in a mutually beneficial manner [8]. Furthermore, to incorporate the
inherent ordinal relationship between labels, we design a new type of OT loss called
‘Optimal Transport regularized by label Ranking’ (OTR). Unlike the traditional OT
loss [1,12,16], which neglects the ordinal relationship among examples, our proposed
OTR loss preserves the label order between the predicted results of the dual networks.
Therefore, the inherent ordinal relationship can help guide the sample selection process
and further reduce the accumulated errors caused by the biased sample selection.

2 Our Method
2.1 Preliminaries

In ordinal regression problems, the label of an example with a feature vector x is
denoted as y, where y ∈ Y = {1, 2, . . . ,K}. That is, y is in a label space with K dif-
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Fig. 1. The pipeline of our proposed method.
ferent labels, and the class labels satisfy 1 ≺ 2 ≺ . . . ≺ K with ‘≺’ representing order
relation. The objective of ordinal regression is to find a classification rule or function
to predict the categories of new examples given a training set of N examples, namely
D = {xi, yi}Ni=1. Label noise refers to the situation that the observed label does not
match the ground-truth label y∗, i.e., y ̸= y∗. To ensure the unimodality of model pre-
diction, we adopt the architecture in the ordinal regression model [16] as the backbone
of our method and the baseline methods. Let f (·; θ) be the latent function for the net-
work parameterized by θ. Furthermore, the Optimal Transport (OT) loss [12,16] of the
example xi is employed to measure the misclassification in ordinal regression tasks:

LOT (f (xi; θ) , yi) =
∑K

k=1,d (yi, k) fk (xi; θ) , (1)
wherein d (yi, k) = |yi−k|m measures the label distance between yi and k with m ≥ 1.

2.2 Overall Framework
As shown in Fig. 1, the proposed method consists of two critical components which

are designed for ordinal regression with label noise: (1) Class-Aware selection strategy,
which adaptively selects reliable data from each category for robust modeling training
(see Section 2.3); (2) Regularization with label ranking, which aims to incorporate the
label order inherently contained in ordinal data for model learning (see Section 2.4).
2.3 Class-Aware Sample Selection

We develop a Class-Aware sample selection strategy for ordinal data in order to
sufficiently learn from the categories with much misclassification. Firstly, we aim to
compute an insufficiency score which can be obtained based on the distance between
the average distribution of the prediction from each category and the distribution of
each target category. Here, the average distribution py=k of each observed category can
be calculated by py=k = 1

Nk

∑Nk

i=1 1[yi = k]f (xi; θ), where f (xi; θ) indicates the
predicted probability distribution of the example xi by network parameters θ, and Nk

is the number of examples in the k-th category. The j-th element in py=k represents the
probability of predicting an example of the k-th category to the j-th category. After that,
we use Jensen-Shannon Divergence (JSD) [11] represented as JS(·||·) to measure the
dissimilarity between the average distribution and Dirac point mass[16] characterized
by a one-hot probability mass function. We choose JSD because it is relatively simple
and efficient for computation. A smaller JSD value indicates that the two distributions
are more similar to each other. On this basis, we construct a matrix S with Si,j denoting
the JSD between the average distribution of prediction related to the i-th category and
the one-hot distribution Dirac (j) of class j:

Si,j = JS (py=i||Dirac (j)) , ∀i, j ∈ {1, ...,K}. (2)
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With Eq. (2), we can obtain the insufficiency score for the j-th category, which is
expressed as vj = 1

K

∑K
i=1 Si,j . Here, the insufficiency score can be used to measure

misclassification in a specific category, and a larger score often corresponds to more
misclassified examples. For practical use, the insufficiency score is normalized as fol-
lows in order to eliminate the influences of different scales: ṽj =

vj−mean(v)
max(v)−min(v) , where

ṽj ∈ (−1, 1). The normalized insufficiency score can then be utilized to adjust the ratio
of selected examples for each category. Concretely, the selection ratio of the j-th cate-
gory is presented as rj = 0.5 + λ × ṽj , where λ is a hyperparameter assigned to the
insufficiency score ṽj . Afterward, we select the examples with small classification loss,
i.e., Dclean, based on the ratio rj at each epoch, so that the model can be encouraged to
learn from the categories with relatively much misclassification. Note that the misclas-
sification loss is measured by OT loss [12,16] in our method. Consequently, the model’s
discrimination abilities towards prone-to-misclassification categories will be enhanced.
2.4 Regularization with Label Ranking

We believe the ordering information of ordinal labels can enhance the performance
of the model in ordinal regression tasks [6]. To this end, we have introduced an OTR
loss that aims to maintain the label ranking between the predicted results of the dual
networks, which consists of the traditional OT loss and a label-ranking loss LLR. Dif-
ferent from OT loss which focuses on the individual example, the proposed OTR loss
concentrates on the relationship between each pair of examples. Here, the OTR loss is:

LOTR = L̃OT + β × LLR, (3)

where β is a hyperparameter and L̃OT represents the average OT loss of the selected
examples. The label-ranking loss LLR in Eq. (3) can be expressed as

LLR =
∑K−1

k=1

∑
d(yi,yj)=k JS(f(xi;θ1),f(xj ;θ2))∑
d(yi,yj)≥k JS(f(xi;θ1),f(xj ;θ2))

, (4)

where f (xi; θ1) is the prediction of xi generated from the network parameterized by
θ1, and so on. In Eq. (4), d (·, ·) is the label distance function also used in Eq. (1). The
objective of the Eq. (4) is to enforce a condition where given a pair of examples, the
estimated distribution distance between the sample pair with a greater label distance is
larger than the estimated distribution distance between the sample pair with a smaller
label distance. Finally, the OTR loss of Eq. (3) is used to update the network parameters.

3 Experiments
3.1 Experimental Settings
Datasets. Given the research emphasis on ordinal regression and label noise, we adhere
to established practices [4,16] by using three standard datasets for assessment: Histori-
cal Color Image (HCI), Adience, and Diabetic Retinopathy (DR). HCI [13] comprises
1,325 images for a five-class ordinal task spanning the ‘1930s’ to ‘1970s’. Adience [9]
focuses on age estimation, where we selected and adapted the first six age groups from
train-test splits4. DR5 includes retinal images with diabetic retinopathy categorized into
severity levels. We categorize and adapt it into ‘no DR,’ ‘Mild,’ ‘Moderate,’ and ‘Severe
DR and Proliferative DR,’ and 1,680 images per class are used for evaluation.

4 https://github.com/GilLevi/AgeGenderDeepLearning/tree/master/Folds
5 https://www.kaggle.com/c/diabetic-retinopathy-detection/data

https://github.com/GilLevi/AgeGenderDeepLearning/tree/master/Folds
https://www.kaggle.com/c/diabetic-retinopathy-detection/data
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Ordinal Label Noise Generation. Similar to [5], we hold the assumption that the prob-
ability of mislabeling decreases with the increase of label distance. By letting T be
the noise transition matrix and ρ be the total noise rate, Ti,j denotes the probability
of flipping label i to label j, Ti,i = 1 − ρ(i ∈ {1, . . . ,K}), and Ti,j(i ̸= j) can be
calculated as Ti,j = ρ e

T∗
i,j∑K

k=1 e
T∗

i,k
. Here, T∗

i,j follows the standard normal distribution and

can be formulated as T∗
i,j =

1√
2πσ

e−
1
2 , where σ is set to 2 empirically.

Baseline Methods. We evaluate the effectiveness of our method by comparing it with
multiple representative approaches, including the typical ordinal methods such as
UNIORD [16], SORD [4], and CORAL[2]; label noise-robust learning algorithms such
as forward correction (F-correction), backward correction (B-correction) [15], and Co-
teaching [8]; and label noise-robust ordinal regression methods such as RDORLN [5].
For RDORLN [5], we use the same ordinal regression loss as our method.

Table 1. Experimental results of all compared methods on noisy HCI, Adience, and DR.
Dataset ρ UNIORD [16] SORD [4] CORAL [2] F-correction [15] B-correction [15] Co-teaching [8] RDORLN [5] Our method

HCI
0.2

MAE↓ 0.790 ± 0.039 0.767 ± 0.047 0.935 ± 0.058 0.782 ± 0.037 0.862 ± 0.026 0.809 ± 0.049 0.777 ± 0.025 0.642 ± 0.029
RMSE↓ 1.224 ± 0.038 1.200 ± 0.058 1.377 ± 0.069 1.196 ± 0.048 1.301 ± 0.058 1.261 ± 0.061 1.221 ± 0.041 1.047 ± 0.044

0.4
MAE↓ 0.990 ± 0.044 0.998 ± 0.069 1.100 ± 0.082 0.972 ± 0.031 1.106 ± 0.084 1.020 ± 0.075 1.032 ± 0.049 0.728 ± 0.074

RMSE↓ 1.403 ± 0.057 1.418 ± 0.074 1.555 ± 0.090 1.382 ± 0.015 1.573 ± 0.103 1.487 ± 0.088 1.467 ± 0.071 1.137 ± 0.070

Adience
0.2

MAE↓ 0.566 ± 0.043 0.566 ± 0.032 0.810 ± 0.081 0.533 ± 0.030 0.533 ± 0.043 0.423 ± 0.040 0.543 ± 0.039 0.407 ± 0.030
RMSE↓ 0.898 ± 0.046 0.886 ± 0.033 1.125 ± 0.075 0.876 ± 0.037 0.861 ± 0.048 0.737 ± 0.043 0.881 ± 0.039 0.704 ± 0.038

0.4
MAE↓ 0.759 ± 0.037 0.797 ± 0.053 0.947 ± 0.072 0.812 ± 0.060 0.811 ± 0.070 0.492 ± 0.033 0.786 ± 0.022 0.420 ± 0.035

RMSE↓ 1.091 ± 0.045 1.150 ± 0.057 1.301 ± 0.065 1.264 ± 0.086 1.180 ± 0.074 0.797 ± 0.028 1.149 ± 0.031 0.715 ± 0.037

DR
0.2

MAE↓ 0.636 ± 0.015 0.651 ± 0.021 0.730 ± 0.011 0.635 ± 0.017 0.673 ± 0.016 0.597 ± 0.025 0.653 ± 0.011 0.577 ± 0.016
RMSE↓ 0.911 ± 0.014 0.948 ± 0.017 1.041 ± 0.015 0.917 ± 0.019 0.973 ± 0.019 0.927 ± 0.030 0.936 ± 0.012 0.862 ± 0.020

0.4
MAE↓ 0.769 ± 0.012 0.775 ± 0.017 0.848 ± 0.017 0.777 ± 0.016 0.792 ± 0.021 0.617 ± 0.020 0.762 ± 0.019 0.609 ± 0.012

RMSE↓ 1.029 ± 0.011 1.057 ± 0.025 1.155 ± 0.024 1.048 ± 0.020 1.093 ± 0.029 0.943 ± 0.030 1.029 ± 0.013 0.902 ± 0.021

3.2 Experimental Results
For HCI, we evaluate the proposed method with synthetic label noise, where the

noise rate ρ is chosen from {0.2, 0.4}. We run five individual trials for all compared
methods under each noise level and report the mean MAE, RMSE, and standard devia-
tion in Table 1. Note that the performance of the ordinal regression methods consistently
decreases as the noise level increases. Particularly, RDORLN [5] achieves poor results
due to its reliance on the assumption that the noise transition matrix accurately reflects
the true-noisy label relationship, which may not hold for the HCI dataset. In contrast,
our method consistently achieves good results, showcasing its effectiveness across all
noise rates. For Adience, the ordinal regression methods, such as UNIORD, SORD, and
CORAL, exhibit unsatisfactory performance as a result of their inability to address label
noise. Similarly, the label noise-robust methods, such as B-correction and Co-teaching,
also yield poor results due to the inadequate consideration of ordinal information. We
also performed well on DR, especially in RMSE.

Table 2. Experimental results of the proposed method with different key components.
Dataset ρ

MAE↓ RMSE↓
A B C D A B C D

DR
0.2 0.632 ± 0.020 0.593 ± 0.008 0.579 ± 0.011 0.577 ± 0.016 0.964 ± 0.015 0.888 ± 0.015 0.879 ± 0.017 0.862 ± 0.020
0.4 0.671 ± 0.006 0.632 ± 0.010 0.621 ± 0.013 0.609 ± 0.012 0.983 ± 0.007 0.922 ± 0.008 0.908 ± 0.006 0.902 ± 0.021

3.3 Ablation Study
Our method includes three crucial elements, namely the class-aware sample selec-

tion, the dual-network architecture, and the label-ranking regularization. We incremen-
tally add these key components from A to D. A: A naı̈ve baseline method, where 50%
of small-loss examples over all the training data are selected for training. B: Incorporat-
ing the class-aware selection strategy. C: Incorporating the dual-network architecture.
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D: Incorporating the regularization with label ranking equipped with dual-network. The
experimental results are shown in Table 2. As expected, the performance of the model
can be improved when each component is applied.

4 Conclusion
In this paper, we introduce CASSOR, a novel sample selection approach for han-

dling label noise in ordinal regression. CASSOR aims to mitigate the negative effects of
inconsistent misclassification loss in the sample selection of ordinal data. Furthermore,
a label-ranking regularizer is devised to guide the sample selection process with ordinal
relations. As a result, our proposed method demonstrates strong performance on various
real-world ordinal datasets. Future work will focus on developing a robust quantitative
framework for measuring the essential differences between ordinal class labels.
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