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Abstract
Heterogeneity is a fundamental and challenging issue in fed-
erated learning, especially for the graph data due to the com-
plex relationships among the graph nodes. To deal with the
heterogeneity, lots of existing methods perform the weighted
federation based on their calculated similarities between pair-
wise clients (i.e., subgraphs). However, their inter-subgraph
similarities estimated with the outputs of local models are less
reliable, because the final outputs of local models may not
comprehensively represent the real distribution of subgraph
data. In addition, they ignore the critical intra-heterogeneity
which usually exists within each subgraph itself. To ad-
dress these issues, we propose a novel Federated learning
method by integrally modeling the Inter-Intra Heterogeneity
(FedIIH). For the inter-subgraph relationship, we propose a
novel hierarchical variational model to infer the whole distri-
bution of subgraph data in a multi-level form, so that we can
accurately characterize the inter-subgraph similarities with
the global perspective. For the intra-heterogeneity, we dis-
entangle the subgraph into multiple latent factors and par-
tition the model parameters into multiple parts, where each
part corresponds to a single latent factor. Our FedIIH not only
properly computes the distribution similarities between sub-
graphs, but also learns disentangled representations that are
robust to irrelevant factors within subgraphs, so that it suc-
cessfully considers the inter- and intra- heterogeneity simul-
taneously. Extensive experiments on six homophilic and five
heterophilic graph datasets in both non-overlapping and over-
lapping settings demonstrate the effectiveness of our method
when compared with nine state-of-the-art methods. Specifi-
cally, FedIIH averagely outperforms the second-best method
by a large margin of 5.79% on all heterophilic datasets. Code
is available at https://github.com/blgpb/FedIIH.

Introduction
Graphs are ubiquitous data structures in lots of important
domains such as social media, transportation, and recom-
mendation systems. In many real-world scenarios, a global
graph is usually made up of multiple subgraphs that are dis-
tributed across devices, and subgraphs are only locally ac-
cessible due to privacy and regulatory concerns. Recently,
Graph Federated Learning (GFL) has received increasing at-
tention (He et al. 2022; Wang et al. 2023; Tan et al. 2023b;
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Huang et al. 2023), where each client individually trains a
local model based on the corresponding subgraph, and a cen-
tral server adaptively aggregates the models from all clients.

Since subgraphs are different parts of a global graph, there
inevitably exists heterogeneity among them, making it diffi-
cult to realize federated collaboration. Ignoring this hetero-
geneity will degrade the performance of several traditional
Federated Learning (FL) methods (e.g., FedAvg (McMahan
et al. 2017)) which rely heavily on the assumption that all
clients have similar data distributions. To deal with this de-
ficiency, recently, a number of personalized FL methods (Li
et al. 2020; Pillutla et al. 2022; Tan et al. 2023a; Baek et al.
2023; Zhang et al. 2023) have been proposed. For exam-
ple, in (Baek et al. 2023; Li et al. 2023; Zhang et al. 2024),
personalized GFL methods estimate the pairwise similarities
between clients, and then they perform weighted federations
based on the client similarities.

However, the performance of most existing personalized
GFL methods is still limited due to their improper sim-
ilarity calculations and ignored intra-heterogeneity. First,
most existing methods (Baek et al. 2023; Li et al. 2023;
Zhang et al. 2024) compute the inter-subgraph similari-
ties based on the simplex outputs of local models. Since
the outputs of local models cannot accurately reveal the
whole distribution of subgraph data, the calculated similar-
ities are hardly generalizable, leading to negative impacts
on the weighted federation. Moreover, although most exist-
ing methods successfully consider inter-heterogeneity, they
ignore the crucial intra-heterogeneity (i.e., the heterogene-
ity of intra-subgraph), which commonly exists in real-world
graphs. Intra-heterogeneity can be defined as different types
of connections in the subgraph on each client. For exam-
ple, a user in a social graph is connected to others for vari-
ous different reasons, such as families, hobbies, studies, and
work. Meanwhile, as confirmed by (Xie et al. 2021), inter-
heterogeneity is defined as divergent distributions of both
graph structures and node features among different clients.

To address the above-mentioned issues, we propose a
novel Federated learning method by integrally modeling the
Inter-Intra Heterogeneity (FedIIH), which is shown in the
right panel of Fig. 1. On one hand, we propose a new Hi-
erarchical Variational Graph AutoEncoder (HVGAE) by us-
ing the hierarchical Bayesian model (Gelman and Hill 2006;
Tran, Ranganath, and Blei 2017), so as to build the poste-



cosine 
similarities 

1
iz

2
iz

1
jz

2
jz

iw jw
partition model 

parameters

1
iw

2
iw

1
jw

2
jw

'
iw

'
jw

Server(c)

similarities through 
divergences 

separate federation

Client i

1
iz

2
iz

disentangled 
latent factors

node repres.

inferred 
distributions

(d)

our FedIIH

io
local subgraph

iw

jw

federation

'
iw

'
jw

model 
parameters

Server(a)

GNN

Client i

iw

node repres.

(b)

io

existing methods

test graph 
sent from 
the server

uploading to the server

sending to the clients

GNN iw
jO

Figure 1: A framework comparison between existing methods and our FedIIH.

rior dependencies between the latent factors of the local sub-
graphs and those of the global graph. Subsequently, we can
successfully infer the subgraph data distribution and com-
pute the similarities between pairwise clients (see Fig. 1c).
On the other hand, we disentangle the local subgraph into
multiple latent factors (see Fig. 1d). After that, the model
parameters can be partitioned to correspond exactly to each
latent factor, such that we can accordingly perform the sep-
arate federation based on our calculated similarities.

Our FedIIH not only properly computes the distribution
similarities between subgraphs, but also learns disentangled
representations robust to irrelevant factors within each sub-
graph, effectively alleviating the inter-intra heterogeneity
and significantly improving the model performances on dif-
ferent types of graphs. Main contributions of our work are:
• For the inter-heterogeneity, we propose a novel method

HVGAE to characterize the inter-heterogeneity from a
multi-level global perspective, so that we can infer the
data distributions of local subgraphs and properly com-
pute the distribution similarities between subgraphs.

• For the intra-heterogeneity, we disentangle the subgraph
into several latent factors, such that the federations can
be separately performed, and this is the first time in GFL
that considers the intra-heterogeneity.

• Extensive experiments on eleven datasets demonstrate
the effectiveness of our proposed FedIIH, where our
method averagely outperforms the second-best method
by a large margin of 5.79% on all heterophilic graph data.

Related Work
Here we first describe the preliminaries, and then review the
typical work related to this paper, including GFL and per-
sonalized FL.

Preliminaries
We focus on the task of node classification and aim to col-
laboratively train node classifiers with local subgraphs on
distributed clients under the control of a server. For givenM
clients, each of them has a local subgraph Gm = 〈Vm, Em〉,
where Vm represents the node set, and Em is the edge set
(m = 1, . . . ,M ). The node feature matrix and adjacency
matrix of Gm is denoted as Xm ∈ Rnm×d and Am ∈
Rnm×nm , respectively. Here nm is the number of nodes in
Gm and d is the feature dimension. Due to the privacy con-
straints, Gm on each client is inaccessible to the others.

Graph Federated Learning
Since each client owns only a part of the global graph, there
inevitably exists heterogeneity. To deal with this issue, FED-
PUB (Baek et al. 2023) estimates similarities between sub-
graphs based on the outputs of local models. Then, it per-
forms a weighted averaging of the local models for each
client based on the similarities. Similarly, FedGTA (Li et al.
2023) and FedGT (Zhang et al. 2024) compute the similari-
ties based on the mixed moments of processed neighbor fea-
tures and embedding vectors, respectively. Then, they both
perform the weighted federation, where model parameters
with high similarities are assigned with larger weights dur-
ing the weighted federation. However, the outputs of local
models (e.g., embedding vectors) cannot faithfully reveal the
whole distribution of subgraph data, such that the computed
similarities are improper, which may impact the weighted
federation, thus decreasing the performances on the clients.
Consequently, we infer the whole distribution of subgraph
data in a multi-level global perspective, so as to properly
compute the similarities.

Personalized Federated Learning
Heterogeneity is a fundamental and challenging problem in
FL (Ye et al. 2023). To deal with the heterogeneity, person-
alized FL methods (Li et al. 2020; Tan et al. 2023a; Ari-
vazhagan et al. 2019) have obtained increasing attention.
Unlike FedAvg, which aims to train a global model collabo-
ratively, personalized FL methods not only pursue common-
alities among multiple clients, but also retain the personality
of each client as much as possible. Personalized FL methods
can be categorized as similarity-based methods (Baek et al.
2023; Li et al. 2023; Zhang et al. 2024), local customization-
based methods (Li et al. 2020; Arivazhagan et al. 2019;
T. Dinh, Tran, and Nguyen 2020), and meta-learning-based
methods (Chen et al. 2018; Fallah, Mokhtari, and Ozdaglar
2020). For similarity-based methods, they compute the inter-
subgraph similarities and then perform weighted federation.
In contrast, as one of the local customization-based methods,
FedProx (Li et al. 2020) customizes a personalized model
for each client by adding a proximal term as a subproblem.
Similarly, FedPer (Arivazhagan et al. 2019) only federates
the weights of the backbone while training the personal-
ized classification layer in each client. However, these meth-
ods only consider the inter-heterogeneity, while ignoring the
intra-heterogeneity. Therefore, in this paper, we propose to



characterize both inter- and intra- heterogeneity.

Methodology
This section details our proposed FedIIH. Specifically, we
describe the modeling process of the intra-heterogeneity and
inter-heterogeneity, respectively.

Modeling Intra-heterogeneity
Since there are diverse connecting relations among nodes in
a real-world subgraph (Ma et al. 2019; Li et al. 2021; Guo
et al. 2024), there is inevitably heterogeneity within the sub-
graph. To deal with the intra-heterogeneity, we aim to disen-
tangle the subgraph into K latent factors, which are utilized
to represent different relations within the subgraph. Note
that most of the existing disentangled graph convolutional
networks (Ma et al. 2019; Li et al. 2021; Guo et al. 2024) are
applicable to learning disentangled representations in GFL.
In this paper, the well-known Disentangled Graph Convolu-
tional Network (DisenGCN) (Ma et al. 2019) is considered
for its simplicity. Here we use the node u as an example to
describe the disentangling process of DisenGCN. Given one
node i ∈ {u} ∪ {v|(u, v) ∈ Gm} in the subgraph Gm, let
xi ∈ Rd denote its node feature vector. This node feature xi

is first projected to K subspaces, and its node representation
in the k-th subspace can be represented by

zi,k =
σ[(Wk)>xi + bk]

||σ[(Wk)>xi + bk]||2
, (1)

where Wk ∈ Rd× dout
K and bk ∈ R

dout
K are learnable pa-

rameters. Here σ[·] denotes the nonlinear activation func-
tion, and dout denotes the output dimension of node repre-
sentations. After the projection operation via Eq. (1), zi,k ∈
R

dout
K represents the aspect of node i that are related with

the k-th latent factor. Second, DisenGCN proposes a neigh-
borhood routing mechanism to identify the latent factor that
causes the connection between node u and its neighbor node
v, and accordingly extract features of v that are specific to
that factor. Due to space limitations, details of the neighbor-
hood routing mechanism are provided in the Appendix A.
With this mechanism, the node representation in each sub-
space is aggregated independently, such that we can ob-
tain the disentangled latent factors {cu,1, cu,2, · · · , cu,K},
where cu,k ∈ R

dout
K represents the k-th aspect of node u.

Note that there are no learnable parameters in the neighbor-
hood routing mechanism. Finally, the disentangled node rep-
resentation of u can be obtained by

hu = Con(cu,1, cu,2, · · · , cu,K), (2)

where hu ∈ Rdout , and ‘Con’ denotes the concatenation op-
eration performed along the column. Similarly, we can ob-
tain all of the disentangled node representations in Gm based
on Eq. (2). After that, we use the matrix Hm ∈ Rnm×dout

to denote the disentangled node representations in Gm. Ac-
cording to Eq. (1), we can find that Wk and bk correspond
exactly to the k-th latent factor. Consequently, we propose
to perform the separate federation with parameters (i.e., Wk

and bk) specific to the k-th latent factor, which is described
in the following section.
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Figure 2: The graphical model of our proposed HVGAE,
where H̃1

m, H̃
2
m, · · · , H̃K

m denote the local latent factors on
the m-th client, and α1,α2, · · · ,αK denote the global la-
tent factors on the server.

Modeling Inter-heterogeneity
Since the local views of subgraphs may not be sufficient to
estimate the inter-heterogeneity, we aim to model the inter-
heterogeneity from a multi-level global perspective. More-
over, since the similarities between clients are essentially
determined by the similarities of local subgraph data distri-
butions, we seek to infer the data distribution of subgraphs
and thereby compute the similarities between clients through
divergences. Specifically, we propose the HVGAE to infer
the subgraph data distribution of the m-th client based on
the disentangled node representations (i.e., Hm). For ease
of expression, we rewrite Hm as H1

m,H
2
m, · · · ,HK

m, where
Hk

m ∈ Rnm× dout
K denotes the disentangled node represen-

tations with the k-th latent factor. As H1
m,H

2
m, · · · ,HK

m
are deterministic results output by DisenGCN, we use
H̃1

m, H̃
2
m, · · · , H̃K

m to represent random latent variables.

Hierarchical model To build the posterior dependencies
between the latent factors of the local subgraphs and those
of the global graph, we assume that the latent factors of the
subgraphs are governed by those of the global graph based
on the theory of hierarchical Bayesian model (Gelman and
Hill 2006; Tran, Ranganath, and Blei 2017). As shown in
Fig. 2, H̃1

m, H̃
2
m, · · · , H̃K

m on them-th client are local latent
factors, which are linked via the higher-level global latent
factors α1,α2, · · · ,αK on the server, respectively. Note
that α1,α2, · · · ,αK are shared across all clients, where
αk ∈ R

dout
K .

Based on the graphical model in Fig. 2, the joint probabil-
ity can be formulated as

p(G1:M , H̃1
1:M , H̃

2
1:M , · · · , H̃K

1:M ,α
1:K) =

K∏
k=1

p(αk) ·
M∏

m=1

K∏
k′=1

p(Gm|H̃1
m, H̃

2
m, · · · , H̃K

m)p(H̃k
m|αk′

),

(3)
where G1:M is the abbreviation for (G1,G2, · · · ,GM ).
(H̃1

1:M , H̃
2
1:M , · · · , H̃K

1:M ) is the abbreviation for
(H̃1

1, H̃
1
2, · · · , H̃1

M , H̃
2
1, H̃

2
2, · · · , H̃2

M , H̃
K
1 , H̃

K
2 , · · · , H̃K

M ),
α1:K is the abbreviation for (α1,α2, · · · ,αK), and
p(αk) denotes the prior distribution of αk. In Eq. (3),
p(Gm|H̃1

m, H̃
2
m, · · · , H̃K

m) denotes the conditional dis-
tribution, and p(H̃k

m|αk′
) denotes the prior distribution

of H̃k
m. Moreover, the true posterior distribution of

both local and global latent factors can be formulated
as p(H̃1

1:M , H̃
2
1:M , · · · , H̃K

1:M ,α
1:K |G1:M ). However,



this true posterior distribution is computationally in-
tractable. Therefore, we attempt to approximate it
with a tractable approximate posterior distribution
q(H̃1

1:M , H̃
2
1:M , · · · , H̃K

1:M ,α
1:K |G1:M ), which can be

formulated as
q(H̃1

1:M , H̃
2
1:M , · · · , H̃K

1:M ,α
1:K |G1:M )

=

K∏
k=1

q(αk) ·
M∏

m=1

K∏
k′=1

q(H̃k′

m|Gm),
(4)

where q(αk) denotes the marginal distribution, and
q(H̃k′

m|Gm) represents the approximate posterior distribution
of H̃k′

m. For ease of derivation, we can flexibly instantiate
the above-mentioned distributions. The detailed instantia-
tions are presented in the Appendix B.

Variational inference Since the approximate posterior
distributions in Eq. (4) are still intractable, we propose to use
the variational inference (Kingma and Welling 2013; Zhang
et al. 2019) to infer them. According to the graphical model
in Fig. 2, the Evidence Lower BOund (ELBO) can be de-
rived as follows:

LELBO =

K∑
k=1

log p(α̃k) +

M∑
m=1

{
Eq(H̃m|Gm)

[
log p(Gm|H̃m)

]
−

K∑
k′=1

DKL

(
q(H̃k′

m|Gm)||p(H̃k′
m|α̃k′

)
)}

,

(5)
where log p(α̃k) denotes the log prior probability of α̃k.
Here α̃k denotes the posterior mean of αk for the k-th global
latent factor, and DKL denotes the Kullback-Leibler (KL)
divergence (Moreno, Ho, and Vasconcelos 2003). The de-
tailed derivation of ELBO and α̃k are provided in the Ap-
pendix C and D, respectively. Eq. (5) shows that the derived
ELBO is the sum of two terms, where the first term is related
to the global latent factors on the server, and the second term
can be parallelly optimized on M clients.

Adaptation to FL However, since the server does not
have access to the private data of the clients, the optimization
process on the server (i.e.,

∑K
k=1 log p(α̃

k)) is challeng-
ing. To adapt Eq. (5) to the federated learning scenario, we
make some modifications to

∑K
k=1 log p(α̃

k). On one hand,
we substitute

∑K
k=1 log p(α̃

k) by
∑M

m=1

∑K
k=1 log p(α̂

k
m),

where α̂k
m denotes the learnable parameter deployed on the

m-th client. On the other hand, α̂k
m on each client is con-

strained by the KL divergence between p(α̂k
m) and p(α̃k).

Finally, we have that

L̂ELBO =

M∑
m=1

K∑
k=1

{
log p(α̂k

m)−DKL

(
p(α̂k

m)||p(α̃k)
)}

+

M∑
m′=1

{
Eq(H̃m′ |Gm′ )

[
log p(Gm′ |H̃m′)

]
−

K∑
k′=1

DKL

(
q(H̃k′

m′ |Gm′)||p(H̃k′

m′ |α̃k′
)
)}
.

(6)

Eq. (6) implies that the optimizations of ELBO can be dis-
tributedly performed on M clients in a parallel way.

Variational graph autoencoder To implement the ap-
proximate posterior distribution q(H̃k

m|Gm) and the mathe-
matical expectation Eq(H̃m|Gm)

[
log p(Gm|H̃m)

]
in Eq. (6),

we introduce a simple yet effective framework (i.e., Vari-
ational Graph AutoEncoder (VGAE) (Kipf and Welling
2016)) on each client, which includes an inference net-
work (a.k.a. encoder) and a generative network (a.k.a.
decoder). First, we take an inference model parameter-
ized by two DisenGCNs (i.e., DisenGCNµm

(Gm) and
DisenGCNσm

(Gm)). Note that DisenGCNµm
(Gm) and

DisenGCNσm
(Gm) are used to infer the means and standard

deviations of Gm forK latent factors (i.e., Hm,µ and Hm,σ),
respectively. For ease of expression, we rewrite them as
H1

m,µ,H
2
m,µ, · · · ,HK

m,µ and H1
m,σ,H

2
m,σ, · · · ,HK

m,σ , re-
spectively. By using the reparameterization trick (Kingma
and Welling 2013), we can have

H̃k
m = Hk

m,µ +Hk
m,σ � ε, (7)

where ε ∼ N (0, I), and � denotes the element-
wise product. Second, our generative network is con-
structed by an inner product between latent variables. Since
Eq(H̃m|Gm)

[
log p(Gm|H̃m)

]
in Eq. (6) can be regarded as a

reconstruction loss, we implement it by

Eq(H̃m|Gm)

[
log p(Gm|H̃m)

]
= p(Am|H̃m)

=

nm∏
i=1

nm∏
j=1

p(Aij
m|ri, rj),

(8)
where p(Aij

m = 1|ri, rj) = σ(r>i rj), and Aij
m denotes the

element of Am. In Eq. (8), ri and rj are the i-th and j-th
rows of the matrix H̃m, respectively. The detailed imple-
mentation of HVGAE can be found in the Appendix E.

Similarity calculation Since the similarities between
clients are essentially determined by the similarities of the
local data distributions, we seek to calculate the similari-
ties between clients based on the divergences of the inferred
subgraph data distributions. Moreover, since HVGAE hasK
disentangled latent factors, we can compute the similarities
corresponding to each latent factor separately. Specifically,
the similarity with respect to the k-th latent factor between
clients m and j can be computed as

S(m, j)k = 1−DJS

(
q(H̃k

m|Gm)||q(H̃k
j |Gj)

)
, (9)

where S(m, j)k denotes the similarity, and DJS denotes the
Jensen-Shannon (JS) divergence (Sutter, Daunhawer, and
Vogt 2020). Note that Eq. (9) uses only approximate pos-
terior distributions sent to the server, which does not com-
promise data privacy.

Federated Aggregation
Before describing the federation process, let us analyze
the learnable parameters that should be federated in our
FedIIH. The first part of the federated parameters are



W1
m,W

2
m, · · · ,WK

m and b1
m,b

2
m, · · · ,bK

m in Eq. (1). The
second part of the federated parameters are Wcls

m ∈ Rc×dout

and bcls
m ∈ Rc, which come from the node classifier. Here

c is the number of node classes. The detailed analysis can
be found in the Appendix G. For the federated aggregation
of W1

m,W
2
m, · · · ,WK

m , b1
m,b

2
m, · · · ,bK

m, and Wcls
m , we

propose a separate federation method. Specifically, with the
computed similarity S(i, j)k, we use the weighted averag-
ing of parameters across different clients. Moreover, since
HVGAE has K disentangled latent factors, and parame-
ters (e.g., Wk and bk in Eq. (1)) correspond exactly to
the k-th latent factor, we can therefore perform the separate
federation according to each latent factor. For ease of ex-
pression, we rewrite Wcls

m as Wcls,1
m ,Wcls,2

m , · · · ,Wcls,K
m ,

where Wcls,k
m ∈ Rc× dout

K denotes the parameters with re-
spect to the k-th latent factor. Our proposed separate federa-
tion can be defined as

W
k

m ←
M∑
j=1

βk
mj ·Wk

j , b
k

m ←
M∑
j=1

βk
mj · bk

j ,

W
cls,k

m ←
M∑
j=1

βk
mj ·W

cls,k
j ,

(10)

where

βk
mj =

exp
(
τ · S(m, j)k

)∑M
l=1 exp

(
τ · S(m, l)k

) , (11)

and βk
mj denotes the normalized similarity with respect to

the k-th latent factor between clients m and j. Here ‘←’
denotes the assignment operation, and τ denotes a hyperpa-
rameter for scaling the similarity score. Our proposed sep-
arate federation not only allows different clients to obtain
personalized parameters, which is beneficial for dealing with
inter-heterogeneity, but also allows parameters in the same
client to be federated separately according to each latent fac-
tor, which is beneficial for dealing with intra-heterogeneity.
For the federation of the remaining parameter bcls

m ∈ Rc, we
use the federation method as proposed in FedAvg (McMa-
han et al. 2017), which is simple but effective. The pseu-
docode of our FedIIH is listed in the Appendix H.

Experiments
To validate the effectiveness of our FedIIH, we perform
extensive experiments on eleven widely used benchmark
datasets. These datasets include both homophilic and het-
erophilic graphs, the statistical information and descriptions
of which are included in the Appendix I.2. We use both the
non-overlapping and overlapping subgraph partitioning set-
tings. To ensure a fair comparison, we compute the mean
accuracy (or mean AUC), and the corresponding standard
deviation over three independent runs according to (Baek
et al. 2023). See Appendix I for more details.

Main Results
Homophilic datasets Tab. 1 and Tab. 2 show the node
classification results on the homophilic datasets in two par-
titioning settings, respectively. We observe that our FedIIH
achieves the best performance among all the methods, and

the standard deviations are also relatively small as well,
suggesting that FedIIH is more effective and stable than
the compared methods. Moreover, the average accuracy of
FedIIH for all six datasets in the non-overlapping scenario
is 83.10%, which is 1.51% higher than the second-best
method (i.e., FED-PUB). In the overlapping scenario, the av-
erage accuracy of FedIIH is 81.01%, which is 1.48% higher
than the second-best method (i.e., FED-PUB). Generally, the
non-overlapping scenario is more challenging than the over-
lapping scenario (Baek et al. 2023; Zhang et al. 2024) due
to the increasing heterogeneity. However, our FedIIH can
still outperform the second-best method in both the non-
overlapping and overlapping scenarios, and this validates
the effectiveness of modeling inter-intra heterogeneity. For
example, as shown in Tab. 1, the classification accuracy of
FedIIH increases from 93.42% to 93.55% when the num-
ber of clients increases from 5 to 20 on the Amazon-Photo
dataset. This is non-trivial because the data heterogeneity in-
creases from 0.664 to 0.759 (Zhang et al. 2024) during this
change, indicating that FedIIH is robust to the heterogeneity.

Heterophilic datasets Tab. 3 and Tab. 4 show the node
classification results on the heterophilic datasets in two par-
titioning settings, respectively. We can find that our pro-
posed FedIIH not only achieves the best average perfor-
mance among all baseline methods, but also outperforms
the second-best method (i.e., FedSage+) by 5.79% and
4.53% in the non-overlapping and overlapping scenarios,
respectively. This is because our FedIIH not only consid-
ers the inter-heterogeneity as these methods do, but also
successfully deals with the intra-heterogeneity that they ig-
nore. Moreover, although the intra-heterogeneity on the het-
erophilic datasets is stronger than that on the homophilic
datasets (Platonov et al. 2023), FedIIH achieves a larger
performance improvement than on the homophilic datasets,
which further validates the effectiveness of our FedIIH.

Ablation Study
Our FedIIH employs the hierarchical model and variational
inference to compute the inter-subgraph similarities. In ad-
dition, we use the disentanglement to learn disentangled
representations. To shed light on the contributions of these
components, we report the experimental results of FedIIH
when each of these components is removed on the Cora
and Amazon-ratings datasets in Tab. 5. For simplicity, ‘w/o
HM’, ‘w/o VI’, and ‘w/o Dis’ denote the reduced mod-
els by removing the hierarchical model, variational infer-
ence, and disentanglement, respectively. We can clearly find
that the performance decreases when any component is re-
moved, showing that each component contributes a lot to
the final performance. For example, the accuracies on the
Cora dataset are obviously reduced when the disentangle-
ment component is removed. The ablation studies on other
datasets are shown in the Appendix J.1.

Effectiveness of Inter-Subgraph Similarity and K
First, we validate the effectiveness of the inter-subgraph sim-
ilarities calculated by our method. In Fig. 3, we show the
similarity heatmaps on the Amazon-ratings dataset in the
overlapping setting with 20 clients. The similarity heatmaps



Table 1: Node classification results of different methods on the homophilic graph datasets in the non-overlapping subgraph
partitioning setting. The best results are shown in bold.

Cora CiteSeer PubMed -
Methods 5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients -
Local 81.30±0.21 79.94±0.24 80.30±0.25 69.02±0.05 67.82±0.13 65.98±0.17 84.04±0.18 82.81±0.39 82.65±0.03 -
FedAvg (McMahan et al. 2017) 74.45±5.64 69.19±0.67 69.50±3.58 71.06±0.60 63.61±3.59 64.68±1.83 79.40±0.11 82.71±0.29 80.97±0.26 -
FedProx (Li et al. 2020) 72.03±4.56 60.18±7.04 48.22±6.18 71.73±1.11 63.33±3.25 64.85±1.35 79.45±0.25 82.55±0.24 80.50±0.25 -
FedPer (Arivazhagan et al. 2019) 81.68±0.40 79.35±0.04 78.01±0.32 70.41±0.32 70.53±0.28 66.64±0.27 85.80±0.21 84.20±0.28 84.72±0.31 -
GCFL (Xie et al. 2021) 81.47±0.65 78.66±0.27 79.21±0.70 70.34±0.57 69.01±0.12 66.33±0.05 85.14±0.33 84.18±0.19 83.94±0.36 -
FedGNN (Wu et al. 2021) 81.51±0.68 70.12±0.99 70.10±3.52 69.06±0.92 55.52±3.17 52.23±6.00 79.52±0.23 83.25±0.45 81.61±0.59 -
FedSage+(Zhang et al. 2021) 72.97±5.94 69.05±1.59 57.97±12.6 70.74±0.69 65.63±3.10 65.46±0.74 79.57±0.24 82.62±0.31 80.82±0.25 -
FED-PUB (Baek et al. 2023) 83.70±0.19 81.54±0.12 81.75±0.56 72.68±0.44 72.35±0.53 67.62±0.12 86.79±0.09 86.28±0.18 85.53±0.30 -
FedGTA (Li et al. 2023) 80.06±0.63 80.59±0.38 79.01±0.31 70.12±0.10 71.57±0.34 69.94±0.14 87.75±0.01 86.80±0.01 87.12±0.05 -
AdaFGL (Li et al. 2024) 82.01±0.51 80.09±0.00 79.74±0.05 71.44±0.27 72.34±0.00 70.95±0.45 86.91±0.28 86.97±0.10 86.59±0.21 -
FedIIH (Ours) 84.11±0.17 81.85±0.09 83.01±0.15 72.86±0.25 76.50±0.06 73.36±0.41 87.80±0.18 87.65±0.18 87.19±0.25 -

Amazon-Computer Amazon-Photo ogbn-arxiv Avg.
Methods 5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients All
Local 89.22±0.13 88.91±0.17 89.52±0.20 91.67±0.09 91.80±0.02 90.47±0.15 66.76±0.07 64.92±0.09 65.06±0.05 79.57
FedAvg (McMahan et al. 2017) 84.88±1.96 79.54±0.23 74.79±0.24 89.89±0.83 83.15±3.71 81.35±1.04 65.54±0.07 64.44±0.10 63.24±0.13 74.58
FedProx (Li et al. 2020) 85.25±1.27 83.81±1.09 73.05±1.30 90.38±0.48 80.92±4.64 82.32±0.29 65.21±0.20 64.37±0.18 63.03±0.04 72.84
FedPer (Arivazhagan et al. 2019) 89.67±0.34 89.73±0.04 87.86±0.43 91.44±0.37 91.76±0.23 90.59±0.06 66.87±0.05 64.99±0.18 64.66±0.11 79.94
GCFL (Xie et al. 2021) 89.07±0.91 90.03±0.16 89.08±0.25 91.99±0.29 92.06±0.25 90.79±0.17 66.80±0.12 65.09±0.08 65.08±0.04 79.90
FedGNN (Wu et al. 2021) 88.08±0.15 88.18±0.41 83.16±0.13 90.25±0.70 87.12±2.01 81.00±4.48 65.47±0.22 64.21±0.32 63.80±0.05 75.23
FedSage+(Zhang et al. 2021) 85.04±0.61 80.50±1.13 70.42±0.85 90.77±0.44 76.81±8.24 80.58±1.15 65.69±0.09 64.52±0.14 63.31±0.20 73.47
FED-PUB (Baek et al. 2023) 90.74±0.05 90.55±0.13 90.12±0.09 93.29±0.19 92.73±0.18 91.92±0.12 67.77±0.09 66.58±0.08 66.64±0.12 81.59
FedGTA (Li et al. 2023) 86.69±0.18 86.66±0.23 85.01±0.87 93.33±0.12 93.50±0.21 92.61±0.15 60.32±0.04 60.22±0.09 58.74±0.14 79.45
AdaFGL (Li et al. 2024) 80.20±0.05 83.62±0.26 84.53±0.23 86.69±0.19 89.85±0.83 88.11±0.05 52.73±0.19 51.77±0.36 50.94±0.08 76.97
FedIIH (Ours) 90.74±0.13 90.86±0.23 90.44±0.05 93.42±0.02 94.22±0.08 93.55±0.09 70.30±0.06 69.34±0.02 68.65±0.04 83.10

Table 2: Node classification results of different methods on the homophilic graph datasets in the overlapping subgraph parti-
tioning setting. The best results are shown in bold.

Cora CiteSeer PubMed -
Methods 10 Clients 30 Clients 50 Clients 10 Clients 30 Clients 50 Clients 10 Clients 30 Clients 50 Clients -
Local 73.98±0.25 71.65±0.12 76.63±0.10 65.12±0.08 64.54±0.42 66.68±0.44 82.32±0.07 80.72±0.16 80.54±0.11 -
FedAvg (McMahan et al. 2017) 76.48±0.36 53.99±0.98 53.99±4.53 69.48±0.15 66.15±0.64 66.51±1.00 82.67±0.11 82.05±0.12 80.24±0.35 -
FedProx (Li et al. 2020) 77.85±0.50 51.38±1.74 56.27±9.04 69.39±0.35 66.11±0.75 66.53±0.43 82.63±0.17 82.13±0.13 80.50±0.46 -
FedPer (Arivazhagan et al. 2019) 78.73±0.31 74.18±0.24 74.42±0.37 69.81±0.28 65.19±0.81 67.64±0.44 85.31±0.06 84.35±0.38 83.94±0.10 -
GCFL (Xie et al. 2021) 78.84±0.26 73.41±0.27 76.63±0.16 69.48±0.39 64.92±0.18 65.98±0.30 83.59±0.25 80.77±0.12 81.36±0.11 -
FedGNN (Wu et al. 2021) 70.63±0.83 61.38±2.33 56.91±0.82 68.72±0.39 59.98±1.52 58.98±0.98 84.25±0.07 82.02±0.22 81.85±0.10 -
FedSage+(Zhang et al. 2021) 77.52±0.46 51.99±0.42 55.48±11.5 68.75±0.48 65.97±0.02 65.93±0.30 82.77±0.08 82.14±0.11 80.31±0.68 -
FED-PUB (Baek et al. 2023) 79.60±0.12 75.40±0.54 77.84±0.23 70.58±0.20 68.33±0.45 69.21±0.30 85.70±0.08 85.16±0.10 84.84±0.12 -
FedGTA (Li et al. 2023) 76.42±0.62 75.63±0.33 77.69±0.14 70.43±0.08 71.71±0.33 69.19±0.32 85.34±0.42 84.99±0.05 84.47±0.06 -
AdaFGL (Li et al. 2024) 78.50±0.19 75.80±0.23 74.41±0.00 72.63±0.15 68.18±0.31 62.90±0.75 85.58±0.23 85.85±0.41 84.45±0.07 -
FedIIH (Ours) 80.57±0.23 76.82±0.24 78.58±0.25 73.16±0.18 72.27±0.21 69.56±0.11 85.87±0.03 86.65±0.11 85.65±0.12 -

Amazon-Computer Amazon-Photo ogbn-arxiv Avg.
Methods 10 Clients 30 Clients 50 Clients 10 Clients 30 Clients 50 Clients 10 Clients 30 Clients 50 Clients All
Local 88.50±0.20 86.66±0.00 87.04±0.02 92.17±0.12 90.16±0.12 90.42±0.15 62.52±0.07 61.32±0.04 60.04±0.04 76.72
FedAvg (McMahan et al. 2017) 88.99±0.19 83.37±0.47 76.34±0.12 92.91±0.07 89.30±0.22 74.19±0.57 63.56±0.02 59.72±0.06 60.94±0.24 73.38
FedProx (Li et al. 2020) 88.84±0.20 83.84±0.89 76.60±0.47 92.67±0.19 89.17±0.40 72.36±2.06 63.52±0.11 59.86±0.16 61.12±0.04 73.38
FedPer (Arivazhagan et al. 2019) 89.30±0.04 87.99±0.23 88.22±0.27 92.88±0.24 91.23±0.16 90.92±0.38 63.97±0.08 62.29±0.04 61.24±0.11 78.42
GCFL (Xie et al. 2021) 89.01±0.22 87.24±0.09 87.02±0.22 92.45±0.10 90.58±0.11 90.54±0.08 63.24±0.02 61.66±0.10 60.32±0.01 77.61
FedGNN (Wu et al. 2021) 88.15±0.09 87.00±0.10 83.96±0.88 91.47±0.11 87.91±1.34 78.90±6.46 63.08±0.19 60.09±0.04 60.51±0.11 73.66
FedSage+(Zhang et al. 2021) 89.24±0.15 81.33±1.20 76.72±0.39 92.76±0.05 88.69±0.99 72.41±1.36 63.24±0.02 59.90±0.12 60.95±0.09 73.12
FED-PUB (Baek et al. 2023) 89.98±0.08 89.15±0.06 88.76±0.14 93.22±0.07 92.01±0.07 91.71±0.11 64.18±0.04 63.34±0.12 62.55±0.12 79.53
FedGTA (Li et al. 2023) 90.10±0.18 88.79±0.27 88.15±0.21 93.13±0.14 92.49±0.06 91.77±0.06 55.98±0.09 56.76±0.07 57.89±0.09 74.40
AdaFGL (Li et al. 2024) 80.49±0.00 80.42±0.00 82.12±0.00 89.24±0.00 88.34±0.00 87.68±0.00 56.81±0.06 55.17±0.00 54.82±0.00 75.74
FedIIH (Ours) 90.15±0.04 89.56±0.19 89.99±0.00 93.38±0.00 94.17±0.04 93.25±0.16 66.69±0.09 66.10±0.03 65.67±0.06 81.01

Table 3: Node classification results of different methods on the heterophilic graph datasets in the non-overlapping sub-
graph partitioning setting. Accuracy (%) is reported for Roman-empire and Amazon-ratings, and AUC (%) is reported for
Minesweeper, Tolokers, and Questions. The best and second-best results are shown in bold and underlined, respectively.

Roman-empire Amazon-ratings Minesweeper -
Methods 5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients -
Local 33.65±0.13 28.42±0.26 23.89±0.32 45.03±0.31 45.89±0.19 46.02±0.02 71.35±0.17 69.96±0.16 69.31±0.09 -
FedAvg (McMahan et al. 2017) 38.93±0.32 35.43±0.32 32.00±0.39 41.26±0.53 41.66±0.14 42.20±0.21 72.60±0.08 71.84±0.02 71.36±0.16 -
FedProx (Li et al. 2020) 27.95±0.59 26.43±1.41 23.12±0.49 36.92±0.00 36.86±0.14 36.96±0.00 71.91±0.27 70.66±0.20 71.50±0.37 -
FedPer (Arivazhagan et al. 2019) 20.75±1.75 15.51±1.13 15.45±2.76 36.62±0.30 32.34±1.01 36.96±0.00 58.73±10.45 65.35±7.02 53.80±11.40 -
GCFL (Xie et al. 2021) 30.40±0.16 29.44±0.49 26.73±0.19 36.92±0.00 36.86±0.14 36.96±0.00 72.04±0.13 71.14±0.09 47.77±0.14 -
FedGNN (Wu et al. 2021) 30.26±0.11 29.09±0.01 26.60±0.02 36.92±0.00 36.72±0.00 36.96±0.00 72.03±0.13 71.12±0.09 71.71±0.27 -
FedSage+(Zhang et al. 2021) 57.26±0.00 49.07±0.00 38.36±0.00 36.82±0.00 36.71±0.00 37.03±0.00 77.74±0.00 72.80±0.00 69.70±0.00 -
FED-PUB (Baek et al. 2023) 40.80±0.26 36.77±0.30 32.67±0.39 44.41±0.41 44.85±0.17 45.39±0.50 72.18±0.02 71.56±0.05 70.72±0.40 -
FedGTA (Li et al. 2023) 61.56±0.27 60.94±0.19 59.65±0.28 41.22±0.66 39.40±0.44 39.24±0.12 45.60±1.41 64.97±0.35 49.63±8.64 -
AdaFGL (Li et al. 2024) 67.64±0.18 64.55±0.00 62.42±0.26 41.70±0.06 42.30±0.00 42.59±0.14 47.45±2.10 65.59±0.56 51.48±7.14 -
FedIIH (Ours) 68.32±0.05 66.44±0.28 64.61±0.13 44.26±0.24 44.24±0.10 45.19±0.04 74.29±0.02 73.23±0.04 72.81±0.02

Tolokers Questions Avg.
Methods 5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients All
Local 67.81±0.17 70.04±0.23 62.34±0.67 66.73±0.57 57.96±0.10 60.00±0.21 56.91 54.45 52.31 54.56
FedAvg (McMahan et al. 2017) 60.74±0.31 54.73±0.50 56.36±0.39 65.68±0.23 58.91±0.22 60.33±0.15 55.84 52.51 52.45 53.60
FedProx (Li et al. 2020) 42.90±0.24 41.15±0.22 40.42±0.62 47.36±0.38 45.46±0.34 46.83±0.11 45.41 44.11 43.77 44.43
FedPer (Arivazhagan et al. 2019) 46.61±9.88 54.97±13.23 44.82±11.61 58.38±9.39 59.40±9.71 62.32±1.56 44.22 45.51 42.67 44.13
GCFL (Xie et al. 2021) 27.61±2.55 19.81±0.57 17.53±0.04 47.94±0.41 45.71±0.25 47.47±0.21 42.98 40.59 35.29 39.62
FedGNN (Wu et al. 2021) 43.10±0.27 41.57±0.07 40.70±0.74 47.55±0.02 45.73±0.26 47.46±0.25 45.97 44.85 44.69 45.17
FedSage+(Zhang et al. 2021) 75.06±0.00 71.31±0.00 69.73±0.00 64.95±0.00 65.06±0.00 59.33±0.00 62.37 58.99 54.83 58.73
FED-PUB (Baek et al. 2023) 70.88±0.58 72.46±0.68 65.26±0.59 67.71±3.99 54.91±0.42 62.48±2.92 59.20 56.11 55.30 56.87
FedGTA (Li et al. 2023) 33.33±0.51 49.97±2.68 50.68±3.94 53.61±0.36 53.79±0.41 61.70±0.35 47.06 53.81 52.18 51.02
AdaFGL (Li et al. 2024) 34.41±0.63 49.82±2.17 50.62±4.19 54.18±0.45 54.87±0.52 62.84±0.49 49.08 55.43 53.99 52.83
FedIIH (Ours) 71.09±0.26 71.32±0.09 70.30±0.10 68.32±0.03 67.99±0.09 65.40±0.07 65.26 64.64 63.66 64.52



Table 4: Node classification results of different methods on the heterophilic graph datasets in the overlapping subgraph par-
titioning setting. Accuracy (%) is reported for Roman-empire and Amazon-ratings, and AUC (%) is reported for Minesweeper,
Tolokers, and Questions. The best and second-best results are shown in bold and underlined, respectively.

Roman-empire Amazon-ratings Minesweeper -
Methods 10 Clients 30 Clients 50 Clients 10 Clients 30 Clients 50 Clients 10 Clients 30 Clients 50 Clients -
Local 39.47±0.03 34.43±0.14 31.28±0.18 41.43±0.04 41.81±0.14 42.57±0.12 67.98±0.07 64.39±0.10 62.73±0.23 -
FedAvg (McMahan et al. 2017) 40.89±0.25 38.66±0.08 36.71±0.20 39.86±0.06 41.40±0.02 41.02±0.16 69.06±0.07 67.95±0.04 66.89±0.08 -
FedProx (Li et al. 2020) 36.63±0.14 35.31±0.17 33.61±0.59 37.00±0.00 36.60±0.00 36.89±0.00 68.27±0.05 66.75±0.19 66.03±0.16 -
FedPer (Arivazhagan et al. 2019) 23.66±3.27 23.27±3.09 22.23±3.58 32.33±4.23 31.58±0.54 34.48±2.25 61.85±1.02 60.13±1.38 60.06±3.61 -
GCFL (Xie et al. 2021) 37.65±0.27 36.32±0.19 34.80±0.09 37.00±0.00 36.60±0.00 36.89±0.00 68.47±0.06 67.13±0.10 57.41±12.56 -
FedGNN (Wu et al. 2021) 37.46±0.12 36.30±0.16 34.84±0.13 37.00±0.00 36.60±0.00 36.89±0.00 68.47±0.06 67.12±0.11 66.41±0.23 -
FedSage+(Zhang et al. 2021) 57.48±0.00 42.55±0.00 33.99±0.00 36.86±0.00 36.71±0.00 37.03±0.00 76.64±0.00 70.56±0.00 70.34±0.00 -
FED-PUB (Baek et al. 2023) 43.80±0.25 40.46±0.16 37.73±0.09 42.25±0.25 42.25±0.06 42.88±0.34 68.80±0.09 67.43±0.25 65.98±0.15 -
FedGTA (Li et al. 2023) 59.86±0.04 58.32±0.09 57.57±0.21 40.81±0.24 39.44±0.06 39.37±0.04 54.35±0.73 48.20±1.28 52.94±1.77 -
AdaFGL (Li et al. 2024) 64.44±0.03 61.77±0.02 59.55±0.01 39.39±0.05 41.19±0.15 40.71±0.25 55.15±0.84 50.15±1.63 54.18±2.15 -
FedIIH (Ours) 65.48±0.12 63.32±0.06 62.42±0.10 42.63±0.02 42.40±0.05 42.65±0.21 69.35±0.25 68.09±0.26 67.37±0.14 -

Tolokers Questions Avg.
Methods 10 Clients 30 Clients 50 Clients 10 Clients 30 Clients 50 Clients 10 Clients 30 Clients 50 Clients All
Local 73.83±0.03 69.01±0.31 66.63±0.20 63.17±0.02 57.17±0.08 56.13±0.02 57.18 53.36 51.87 54.14
FedAvg (McMahan et al. 2017) 72.99±0.40 58.51±0.27 55.47±0.42 62.80±0.63 58.88±0.18 60.78±0.27 57.12 53.08 52.17 54.12
FedProx (Li et al. 2020) 54.49±1.69 45.59±0.41 41.49±0.45 52.53±0.34 51.54±0.41 50.72±0.40 49.78 47.16 45.75 47.56
FedPer (Arivazhagan et al. 2019) 39.60±0.11 59.44±0.79 41.92±0.06 61.31±0.29 53.41±1.53 50.29±0.10 43.75 45.57 41.80 43.70
GCFL (Xie et al. 2021) 55.91±1.13 23.26±0.70 18.40±0.25 53.04±0.47 51.84±0.38 51.10±0.38 50.41 43.03 39.72 44.39
FedGNN (Wu et al. 2021) 56.21±1.20 46.85±0.31 42.18±0.45 53.04±0.47 51.86±0.36 51.11±0.38 50.44 47.75 46.29 48.16
FedSage+(Zhang et al. 2021) 74.54±0.00 70.88±0.00 69.61±0.00 64.22±0.00 65.34±0.00 62.76±0.00 61.95 57.21 54.75 57.97
FED-PUB (Baek et al. 2023) 74.17±0.29 70.35±0.54 66.80±0.85 65.39±2.44 58.38±1.19 58.76±0.16 58.88 55.77 54.43 56.36
FedGTA (Li et al. 2023) 40.02±1.70 47.34±0.75 45.81±1.96 35.56±5.46 50.43±1.05 53.33±0.40 46.12 48.75 49.80 48.22
AdaFGL (Li et al. 2024) 45.15±2.15 49.18±0.84 47.54±2.48 41.05±6.49 52.18±2.16 56.46±0.92 49.04 50.89 51.69 50.54
FedIIH (Ours) 71.67±0.02 71.69±0.12 69.99±0.03 68.79±0.09 66.98±0.04 64.73±0.35 63.58 62.50 61.43 62.50

Table 5: Ablation studies in both non-overlapping and over-
lapping partitioning settings on two datasets with 10 clients.

Cora Amazon-ratings
Methods non-overlapping overlapping non-overlapping overlapping
w/o HM 78.67±1.17 (↓3.18) 78.58±0.03 (↓1.99) 41.69±0.09 (↓2.55) 38.04±0.09 (↓4.59)
w/o VI 73.51±0.52 (↓8.34) 78.40±0.25 (↓2.17) 41.68±0.05 (↓2.56) 40.70±0.42 (↓1.93)
w/o Dis 78.78±0.63 (↓3.07) 77.18±0.23 (↓3.39) 41.20±0.14 (↓3.04) 39.98±0.06 (↓2.65)
FedIIH 81.85±0.09 80.57±0.23 44.24±0.10 42.63±0.02
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(b) FED-PUB
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(c) FedGTA
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(d) FedIIH of the
1st latent factor
(K = 2)
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(e) FedIIH of the
2nd latent factor
(K = 2)

Figure 3: Similarity heatmaps on the Amazon-ratings dataset in the
overlapping setting with 20 clients.

on other datasets are shown in the Appendix K.2. Baek et
al. (Baek et al. 2023) regard two clients have similar data
distributions if they have similar label distributions. We ar-
gue that the label similarity cannot fully reflect the similarity
of the subgraph data distribution, because both the node fea-
tures and the structure are crucial properties of subgraphs.
Therefore, we compute the subgraph distribution similarity
by using the JS divergence, taking into account both seman-
tic and structural information, and we treat such distribution
similarity (Fig. 3a) as the ground truth. Both Fig. 3d and
Fig. 3e are close to the ground truth, verifying the effec-
tiveness of our similarity calculation scheme based on the
inferred subgraph data distributions. In contrast, the similar-
ity heatmaps of FED-PUB (Fig. 3b) and FedGTA (Fig. 3c)
are both different from the ground truth, which implies that
their calculated similarities are not good enough. Moreover,
as shown in the Appendix K.1, our calculated similarities are
much more stable than the similarities calculated by FED-
PUB. Second, we investigate the effectiveness of K. As
shown in Fig. 4, the performances on the Tolokers dataset in-
crease consistently as the value ofK increases. More results
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Figure 4: Since the intra-heterogeneity of the Tolokers
dataset is high, the performances increase consistently as the
value of K increases.

are provided in the Appendix J.2. We can find that for most
datasets the performances are usually bad when K = 1, and
it means that disentangling the subgraph into several latent
factors is beneficial to improve the performances. Last but
not least, the efficiency and robustness analysis in the Ap-
pendix L and Appendix M clearly shows that our FedIIH is
more efficient and robust than the baseline methods.

Conclusion
In this paper, we proposed a novel method FedIIH, which
naturally integrates the inter- and intra- heterogeneity in
GFL. On one hand, our new method characterizes the inter-
heterogeneity from a multi-level global perspective, and thus
it can properly compute the inter-subgraph similarities based
on the whole distribution. On the other hand, it disentan-
gles the subgraph into several latent factors, so that we
can further consider the critical intra-heterogeneity. To the
best of our knowledge, this is the first time in GFL that
combines both inter- and intra- heterogeneity into a unified
framework. Due to the adequate consideration of inter-intra
heterogeneity, our method achieves satisfactory results on
eleven datasets and outperforms the second-best method by
a large margin of 5.79% on the heterophilic graph data.
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A Details of Neighborhood Routing Mechanism

Recall that we use the node u as an example to describe the disentangling process of DisenGCN.
By using Eq. (1) in the main manuscript, the obtained zi,k describes the aspect of node i that are
related with the k-th latent factor. However, zi,k only denotes the information of the node i itself.
Therefore, for the node u, we have to mine information from the neighborhoods, which are connected
with node u due to the k-th latent factor. Specifically, we aim to identify the latent factor that causes
the connection between node u and its neighbor node v, and accordingly extract features of v that are
specific to that factor. This is exactly the purpose of the neighborhood routing mechanism.

First, we define pv,k, which represents the probability that the latent factor k is the reason why the
node u reaches its neighbor v. Then, we can have pv,k ≥ 0, and

∑K
k′=1 p

v,k′ = 1. Moreover, pv,k is
also the probability that we should use the neighbor v to construct cu,k. The neighborhood routing
mechanism will infer pv,k and construct cu,k in an iterative manner. To initialize this process, we
make (pv,k)(1) ∝ exp[(zv,k)>zu,k/τp]. Then, it subsequently iterates to identify the largest cluster
within each subspace, ensuring that each neighbor is primarily associated with a single subspace
cluster:

(cu,k)(t) =
zu,k +

∑
v:(u,v)∈Gm(pv,k)(t−1)zv,k

||zu,k +
∑
v:(u,v)∈Gm(pv,k)(t−1)zv,k||2

, (1)

(pv,k)(t) =
exp[(zv,k)>(cu,k)(t)/τp]∑K

k′=1 exp[(z
v,k′)>(cu,k′)(t)/τp]

, (2)

where (cu,k)(t) denotes the center of each subspace cluster at the t-th iteration, t = 2, 3, · · · , T , and
τp is a hyperparameter that controls the hardness of the assignment. Here τp is set to 1 according
to [1]. After T times of iterations, the final output is cu,k = (cu,k)(T ).

B Instantiations of Distributions

We summarize the family of distributions instantiated by our proposed FedIIH in Tab. 1. Specifically,
the priors p(αk) and p(H̃k

m) are both centered isotropic multivariate Gaussian distributions. Besides,
∗Corresponding authors: Chen Gong, Shuo Chen.



Table 1: Family of distributions instantiated by our proposed FedIIH.
p(αk) N (0, σ2

αkI)

p(H̃k
m) N (0, σ2

H̃k
m

I)

p(H̃k
m|αk) N (αk, σ2

H̃k
m

I)

q(αk) N (α̃k, σ2
α̃kI)

q(H̃k
m|Gm) N (µ̂H̃k

m
, σ̂2

H̃k
m

)

the prior over the local latent factor H̃k
m conditioned on αk (i.e., p(H̃k

m|αk)) is an isotropic multi-
variate Gaussian distribution centered at αk. Similarly, the marginal distribution of αk (i.e., q(αk))
is a multivariate diagonal Gaussian distribution. As shown in Tab. 1, α̃k and σ2

α̃k denote the posterior
mean and variance of αk, respectively. Moreover, µ̂H̃k

m
and σ̂2

H̃k
m

denote the variational mean and
variance evaluated at Gm, respectively.

C Derivation of the ELBO

First, the ELBO for the marginal likelihood of G1:M (i.e., log p(G1:M )) can be obtained by using the
Jensen inequality:

log p(G1:M )

= log
∑

H̃1
1:M

,H̃2
1:M

,··· ,H̃K
1:M

,α1:K |G1:M

q(H̃
1
1:M , H̃

2
1:M , · · · , H̃K

1:M ,α
1:K |G1:M )

p(G1:M , H̃1
1:M , H̃2

1:M , · · · , H̃K
1:M ,α1:K)

q(H̃1
1:M

, H̃2
1:M

, · · · , H̃K
1:M

,α1:K |G1:M )
,

=
∑

H̃1
1:M

,H̃2
1:M

,··· ,H̃K
1:M

,α1:K |G1:M

q(H̃
1
1:M , H̃

2
1:M , · · · , H̃K

1:M ,α
1:K |G1:M ) log

p(G1:M , H̃1
1:M , H̃2

1:M , · · · , H̃K
1:M ,α1:K)

q(H̃1
1:M

, H̃2
1:M

, · · · , H̃K
1:M

,α1:K |G1:M )
,

, ELBO
(
q(H̃

1
1:M , H̃

2
1:M , · · · , H̃K

1:M ,α
1:K |G1:M ),G1:M

)
,

= E
q(H̃1

1:M
,H̃2

1:M
,··· ,H̃K

1:M
,α1:K |G1:M )

[
log p(G1:M , H̃

1
1:M , H̃

2
1:M , · · · , H̃K

1:M ,α
1:K

)

− log q(H̃
1
1:M , H̃

2
1:M , · · · , H̃K

1:M ,α
1:K |G1:M )

]
.

(3)

Second, inspired by [2], the ELBO can be derived as follows:

Eq(H̃1
1:M ,H̃2

1:M ,··· ,H̃K
1:M ,α1:K |G1:M )

[
log p(G1:M , H̃1

1:M , H̃
2
1:M , · · · , H̃K

1:M ,α
1:K)

− log q(H̃1
1:M , H̃

2
1:M , · · · , H̃K

1:M ,α
1:K |G1:M )

]
=

M∑
m=1

Eq(H̃1
m,H̃

2
m,··· ,H̃K

m|Gm)

[
log p(Gm|H̃1

m, H̃
2
m, · · · , H̃K

m)
]

−
M∑
m=1

K∑
k=1

Eq(αk)

[
DKL

(
q(H̃k

m|Gm)||p(H̃k
m|αk)

)]
−

K∑
k=1

DKL

(
q(αk)||p(αk)

)
.

(4)
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Third, we compute the expected KL divergence of two Gaussian distributions (i.e., q(H̃k
m|Gm) and

p(H̃k
m|αk)) over a Gaussian distribution (i.e., q(αk)) analytically. According to Tab. 1, we can have

Eq(αk)

[
DKL

(
q(H̃k

m|Gm)||p(H̃k
m|αk)

)]
= Eq(αk)

[
DKL

(
N (µ̂H̃k

m
, σ̂2

H̃k
m
)||N (αk, σ2

H̃k
m
I)
)]

= Eq(αk)

[
− 1

2

J∑
j=1

(
1 + log

σ̂2
H̃k

m,j

σ2
H̃k

m

−
(µ̂H̃k

m,j
− αk,j)2 + σ̂2

H̃k
m,j

σ2
H̃k

m

)]
= −1

2

J∑
j=1

(
1 + log

σ̂2
H̃k

m,j

σ2
H̃k

m

−
σ̂2
H̃k

m,j

σ2
H̃k

m

− Eq(αk)[
(µ̂H̃k

m,j
− αk,j)2

σ2
H̃k

m

]
)

= DKL

(
N (µ̂H̃k

m
, σ̂2

H̃k
m
)||N (α̃k, σ2

H̃k
m
)
)
+
J

2

σ2
α̃k

σ2
H̃k

m

= DKL

(
q(H̃k

m|Gm)||p(H̃k
m|α̃k)

)
+
J

2

σ2
α̃k

σ2
H̃k

m

,

(5)

where J denotes the dimension of H̃k
m. Moreover, αk,j , µ̂H̃k

m,j
, and σ̂2

H̃k
m,j

denote the j-th element

of αk, µ̂H̃k
m

, and σ̂2
H̃k

m

, respectively.

Fourth, the KL divergence between q(αk) and p(αk) can be computed analytically as

DKL

(
q(αk)||p(αk)

)
= DKL

(
N (α̃k, σ2

α̃kI)||N (0, σ2
αkI)

)
= −1

2

J∑
j=1

(
1 + log

σ2
α̃k

σ2
αk

−
(α̃k,j − 0)2 + σ2

α̃k

σ2
αk

)
= −1

2

J∑
j=1

(1 + log σ2
α̃k)−

1

2
log 2π − log p(α̃k),

(6)

where α̃k,j denote the j-th element of α̃k.

Fifth, we substitute the result of Eq. (5) and Eq. (6) into Eq. (4), respectively. Then, we can have

Eq(H̃1
1:M ,H̃2

1:M ,··· ,H̃K
1:M ,α1:K |G1:M )

[
log p(G1:M , H̃1

1:M , H̃
2
1:M , · · · , H̃K

1:M ,α
1:K)

− log q(H̃1
1:M , H̃

2
1:M , · · · , H̃K

1:M ,α
1:K |G1:M )

]
=

M∑
m=1

Eq(H̃1
m,H̃

2
m,··· ,H̃K

m|Gm)

[
log p(Gm|H̃1

m, H̃
2
m, · · · , H̃K

m)
]

−
M∑
m=1

K∑
k=1

Eq(αk)

[
DKL

(
q(H̃k

m|Gm)||p(H̃k
m|αk)

)]
(7)
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−
K∑
k=1

DKL

(
q(αk)||p(αk)

)
=

M∑
m=1

Eq(H̃1
m,H̃

2
m,··· ,H̃K

m|Gm)

[
log p(Gm|H̃1

m, H̃
2
m, · · · , H̃K

m)
]

−
M∑
m=1

K∑
k=1

DKL

(
q(H̃k

m|Gm)||p(H̃k
m|α̃k)

)
−

M∑
m=1

K∑
k=1

J

2

σ2
α̃k

σ2
H̃k

m

+

K∑
k=1

[1
2

J∑
j=1

(1 + log σ2
α̃k) +

1

2
log 2π + log p(α̃k)

]
=

M∑
m=1

{
Eq(H̃1

m,H̃
2
m,··· ,H̃K

m|Gm)

[
log p(Gm|H̃1

m, H̃
2
m, · · · , H̃K

m)
]

−
K∑
k=1

DKL

(
q(H̃k

m|Gm)||p(H̃k
m|α̃k)

)
−

K∑
k=1

J

2

σ2
α̃k

σ2
H̃k

m︸ ︷︷ ︸
constant

}

+

K∑
k=1

[
log p(α̃k) +

1

2

J∑
j=1

(1 + log σ2
α̃k) +

1

2
log 2π︸ ︷︷ ︸

constant

]
.

(8)

Finally, since two constants in the above Eq. (7) can be omitted, we can have

Eq(H̃1
1:M ,H̃2

1:M ,··· ,H̃K
1:M ,α1:K |G1:M )

[
log p(G1:M , H̃1

1:M , H̃
2
1:M , · · · , H̃K

1:M ,α
1:K)

− log q(H̃1
1:M , H̃

2
1:M , · · · , H̃K

1:M ,α
1:K |G1:M )

]
≈

M∑
m=1

{
Eq(H̃1

m,H̃
2
m,··· ,H̃K

m|Gm)

[
log p(Gm|H̃1

m, H̃
2
m, · · · , H̃K

m)
]

−
K∑
k=1

DKL

(
q(H̃k

m|Gm)||p(H̃k
m|α̃k)

)}
+

K∑
k=1

log p(α̃k)

=

M∑
m=1

{
Eq(H̃m|Gm)

[
log p(Gm|H̃m)

]
−

K∑
k=1

DKL

(
q(H̃k

m|Gm)||p(H̃k
m|α̃k)

)}
+

K∑
k=1

log p(α̃k).

(9)
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D Derivation of α̃k

Since estimating the exact Maximum A Posterior (MAP) of αk is intractable, inspired by [2], we
approximate αk with the help of ELBO as follows:

α̃k = argmax
αk

log p(αk|G1:M )

= argmax
αk

log
p(G1:M ,αk)
p(G1:M )

= argmax
αk

log p(G1:M ,αk)

= argmax
αk

( M∑
m=1

log p(Gm|αk)
)
+ log p(αk)

≈ argmax
αk

M∑
m=1

{
Eq(H̃m|Gm)

[
log p(Gm|H̃m)

]
−

K∑
k=1

DKL

(
q(H̃k

m|Gm)||p(H̃k
m|α̃k)

)}
+ log p(αk)

= argmax
αk

M∑
m=1

K∑
k=1

−DKL

(
q(H̃k

m|Gm)||p(H̃k
m|αk)

)
+ log p(αk)

= argmax
αk

M∑
m=1

K∑
k=1

J∑
j=1

(µ̂H̃k
m,j
− αk,j)2

σ2
H̃k

m

−
J∑
j=1

(αk,j − 0)2

σ2
αk

= argmax
αk

f(αk),

(10)
where f(αk) is a concave quadratic function with only one maximum point, and αk,j denotes the
j-th element of αk. The closed-form solution of α̃k can be derived by differentiating Eq. (10) with
respect to αk. Specifically, we let

∂f(αk)

∂αk

∣∣∣∣
αk=α̃k

= 0, (11)

and then we can have

α̃k =

∑M
m=1 µ̂H̃k

m

M +
σ2

H̃k
m

σ2

αk

. (12)

E Details of HVGAE

In this section, we introduce the detailed neural network architectures for our proposed HVGAE.
Since HVGAE is deployed in each client, we take the m-th client as an example. Recall that Gm is
the subgraph on the m-th client, which contains the node feature matrix Xm and adjacency matrix
Am. We use two DisenGCNs (i.e., DisenGCNµm

(Gm) and DisenGCNσm
(Gm)) as the encoder

and an inner product as the decoder of HVGAE, respectively. Note that DisenGCNµm
(Gm) and

DisenGCNσm
(Gm) are used to infer the means and standard deviations of Gm for K latent factors,

respectively. Moreover, DisenGCNµ(Gm) and DisenGCNσ(Gm) share the same node feature
projection layer.

Fig. 1 shows the architecture of our proposed HVGAE. First, we project the node feature to K
subspaces according to Eq. (1) in the main manuscript. Meanwhile, the node representations after the
node feature projection layer are used to train a local node classifier. Second, we use the neighborhood
routing mechanism to obtain H1:K

m,µ and H1:K
m,σ, respectively. Third, we use the reparameterization

trick [3] to sample H̃1:K
m from H1:K

m,µ and H1:K
m,σ (see Eq. (7) in the main manuscript). Fourth,

HVGAE decodes from H̃1:K
m and then computes Eq(H̃m|Gm)

[
log p(Gm|H̃m)

]
(see Eq. (8) in the

main manuscript). The implementations of two prior distributions p(α̃k) and p(H̃k
m|α̃k) are shown

in the Appendix I.6.

5



node feature 
projection

node 
classifier

see Eq. (1) in the 
main manuscript 

neighborhood 
routing 

mechanism

reconstruction loss

see Eq. (8) in the 
main manuscript 

encoder

decoder

1:K

mH

neighborhood 
routing 

mechanism

1:

,

K

m μH

1:

,

K

m σH

m

Figure 1: The architecture of our proposed HVGAE. The dashed lines show the process of sampling
using the reparameterization trick [3].

F Additional Related Work

Here we review the typical works related to the FL via Bayesian methods. Recently, some methods [4,
5, 6] have tried to model the FL problem by using the Bayesian theories. Specifically, they take the
network weights as a whole entity and treat them as a single random variable shared by all clients.
For example, FedPA [4] infers the global posterior by averaging the local posteriors. However, FedPA
targets a general FL setting, so it does not apply to the personalized FL, and its performance may
be degraded. Different from FedPA, pFedBayes [5] assigns a personalized Bayesian neural network
to each client. It infers the global posterior from individual posteriors under a regularizer based on
the KL divergence. However, it cannot model the posterior of each client from a global perspective.
To address this deficiency, Kim et. al propose a hierarchical Bayesian approach called FedHB [6],
which mitigates the heterogeneity problem in a personalized way. Specifically, it introduces two
types of latent random variables, one used as the network weights for each client’s backbone, and the
other used as a globally shared random variable to be associated with each client. Unlike FedHB, we
model the local subgraph data rather than the network weight, so that we can infer the subgraph data
distribution on each client.

G Analysis of Federated Parameters

According to the architecture of our proposed HVGAE, there are several components: a node feature
projection layer, two neighborhood routing mechanism layers, a node classifier, and a reconstruction
layer. First, recall that there are no learnable parameters in the neighborhood routing mechanism.
Second, the reconstruction layer is constructed by an inner product, so there are no learnable param-
eters. Third, although we use two DisenGCNs (i.e., DisenGCNµm

(Gm) and DisenGCNσm
(Gm))

as the encoder of our proposed HVGAE, they share the same node feature projection layer (see
Appendix E). Consequently, according to the node feature projection layer defined by Eq. (1) in
the main manuscript, we can find that W1

m,W
2
m, · · · ,WK

m and b1
m,b

2
m, · · · ,bKm are learnable

parameters that should be federated. Last but not least, since we introduce a node classifier, which
is actually a Multi-Layer Perceptron (MLP), we can find that Wcls

m ∈ Rc×dout and bcls
m ∈ Rc are

learnable parameters that should be federated.

In Eq. (6) of the main manuscript, although we have defined the learnable parameter α̂km on each
client, α̂km is only used to approximate the data distribution instead of a parameter in a neural network.
Consequently, α̂km does not participate in the federation.

H Pseudocode of FedIIH

In this section, we show the pseudocode of our proposed FedIIH for the clients and server in
Algorithm 1 and Algorithm 2, respectively. Moreover, the framework of our proposed FedIIH from
the perspective of the clients and the server is shown in Fig. 2 and Fig. 3, respectively. Inspired by [7],
we regard the posterior mean of αk for the k-th global latent factor (i.e., α̃k) in the last round as the
prior for the k-th local latent factor on each client in the current round.
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denotes the similarity matrix with respect to the k-th latent factor. Here we use blue and orange to
represent the first and the K-th latent factors, respectively.

I Implementation Details

In this section, we provide the implementation details, including the experimental platform, the
dataset descriptions, the details of subgraph partitioning, the information on baseline methods,
training details, and the implementations of two prior distributions (i.e., p(α̃k) and p(H̃k

m|α̃k)).

I.1 Experimental Platform

All the experiments in this work are conducted on a Linux server with a 2.90 GHz Intel Xeon Gold
6326 CPU, 64 GB of RAM, and two NVIDIA GeForce RTX 4090 GPUs with 48GB of memory. Our
proposed method is implemented via Python 3.8.8, PyTorch 1.12.0, and PyTorch Geometric (PyG)
2.3.0 with the Adam optimizer.

I.2 Datasets

To validate the effectiveness of our proposed FedIIH, we perform extensive experiments on eleven
widely used benchmark datasets, including six homophilic and five heterophilic graph datasets. In
the homophilic graph datasets, there are Cora, CiteSeer, PubMed, and ogbn-arxiv for the citation
graphs; Amazon-Computer and Amazon-Photo for Amazon product graphs. In the heterophilic graph
datasets [9], there are Roman-empire, Amazon-ratings, Minesweeper, Tolokers, and Questions. The
statistical information of the above benchmark datasets is described in Tab. 2. Note that we use
the Area Under the ROC curve (AUC) as the evaluation metric (higher values are better) for the
Minesweeper, Tolokers, and Questions datasets, and use the accuracy as the evaluation metric (higher
values are better) for other datasets.
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Algorithm 1: FedIIH Client Algorithm
Input: Number of local epochs E; number of latent factors K; subgraph Gm on client m; node

feature matrix Xm on client m; label matrix Ym on client m; parameters of two
DisenGCNs W1:K

m and b1:K
m on client m; parameters of the node classifier Wcls

m and
bcls
m on client m; federated parameters W

cls

m , b
cls

m , W
1:K

m , and b
1:K

m from the server;
global latent factors α̃1:K from the server.

Output: Predicted label for each unlabeled graph node in subgraph Gm.

1 Download federated parameters W
cls

m , b
cls

m , W
1:K

m , and b
1:K

m from the server;
2 Download the global latent factors α̃1:K from the server;

3 Wcls
m ←W

cls

m , bcls
m ← b

cls

m , W1:K
m ←W

1:K

m , b1:K
m ← b

1:K

m ;
4 for each local epoch e from 1 to E do
5 Project the node feature into K subspaces via Eq. (1) in the main manuscript;
6 Optimize Wcls

m and bcls
m via the cross-entropy loss;

7 Disentangle projected node representations into K latent factors via the neighborhood
routing mechanism, and then obtain H1:K

m,µ and H1:K
m,σ , respectively;

8 Sample H̃1:K
m from H1:K

m,µ and H1:K
m,σ via Eq. (7) in the main manuscript so as to obtain

q(H̃1:K
m |Gm);

9 Compute Eq(H̃m|Gm)

[
log p(Gm|H̃m)

]
via Eq. (8) in the main manuscript;

10 Approximate α̃1:K by using α̂1:K
m so as to compute∑K

k=1

{
log p(α̂km)−DKL

(
p(α̂km)||p(α̃k)

)}
;

11 Compute
∑K
k=1DKL

(
q(H̃k

m|Gm)||p(H̃k
m|α̃k)

)
, where

p(H̃1:K
m |α̃1:K) ∼ N (α̃1:K , σ2

H̃1:K
m

I);

12 Optimize W1:K
m and b1:K

m via Eq. (6) in the main manuscript;
13 end
14 Upload Wcls

m , bcls
m , W1:K

m , b1:K
m , and H̃1:K

m to the server;
15 Predict labels based on the trained node classifier.

In order to facilitate the division of datasets, a random sample of 20% of nodes is selected for training
purposes, 40% for the purpose of validation, and 40% for testing, with the exception of the ogbn-arxiv
dataset. This is due to the fact that the ogbn-arxiv dataset comprises a relatively large number of
nodes in comparison to the other datasets, as reported in Tab. 2. Consequently, for the ogbn-arxiv
dataset, a random sample of 5% of the nodes is used for training, while the remaining half of the
nodes are used for validation and testing, respectively.

I.3 Subgraph Partitioning

Inspired by real-world requirements and following [10], we consider two subgraph partitioning
settings: non-overlapping and overlapping. In the non-overlapping setting, ∪Mm=1Vm = V and
Vm ∩ Vn = ∅ for ∀m 6= n ∈ {1, 2, · · · ,M}, where V represents the node set of the global graph.
Partitioning without this property is called overlapping. Here we present the details of how to partition
the original graph into multiple subgraphs. It should be noted that the number of subgraphs is equal
to the number of clients. Both non-overlapping and overlapping subgraph partitioning settings are
used in the experiments for all datasets.

Non-overlapping partitioning First, if there are M clients, the number of non-overlapping sub-
graphs to be generated is specified as M . Second, the METIS graph partitioning algorithm, as
described in [11], is used to divide the original graph into M subgraphs. In other words, the non-
overlapping partitioning subgraph for each client is directly obtained by the output of the METIS
algorithm.

Overlapping partitioning First, if there are M clients, the number of overlapping subgraphs to be
generated is specified as M . Second, the METIS [11] graph partitioning algorithm is used to divide
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Algorithm 2: FedIIH Server Algorithm
Input: Number of rounds R; number of clients M ; number of latent factors K; parameters of

two DisenGCNs W1:K
m and b1:K

m from client m; parameters of the node classifier Wcls
m

and bcls
m from client m; approximate posterior distributions H̃1:K

m from client m.
Output: Federated model parameters for client m.

1 Initialize parameters (W
cls
)(1), (b

cls
)(1), (W

1:K
)(1), and (b

1:K
)(1);

2 Initialize (α̃1:K)(1);
3 for each round r from 1 to R do
4 for client m ∈ {1, 2, · · · ,M} in parallel do
5 if r = 1 then
6 Send (W

cls
)(r), (b

cls
)(r), (W

1:K
)(r), and (b

1:K
)(r) to client m;

7 Send (α̃1:K)(r) to client m;
8 end
9 else

10 Receive Wcls
m , bcls

m , W1:K
m , b1:K

m , and H̃1:K
m from client m;

11 Compute S(m, j)1:K via Eq. (9) in the main manuscript, where j ∈ {1, 2, · · · ,M};
12 Compute β1:K

mj via Eq. (11) in the main manuscript, where j ∈ {1, 2, · · · ,M};
13 Perform the separate federation to obtain (W

cls

m )(r), (W
1:K

m )(r), and (b
1:K

m )(r) via
Eq. (10) in the main manuscript;

14 Perform the FedAvg [8] to obtain (b
cls

m )(r);

15 Sample (α̃1:K)(r) from N (

∑M
j=1 µ̂

H̃1:K
j

M+0.25 , I);

16 Send (W
cls

m )(r), (b
cls

m )(r), (W
1:K

m )(r), and (b
1:K

m )(r) to client m;
17 Send (α̃1:K)(r) to client m;
18 end
19 Perform Algorithm 1 on client m;
20 end
21 end

Table 2: Statistical information of eleven used graph datasets.
Types Datasets # Nodes # Edges # Classes # Node Features

homophilic graph

Cora 2,708 5,429 7 1,433
CiteSeer 3,327 4,732 6 3,703
PubMed 19,717 44,324 3 500

Amazon-Computer 13,752 491,722 10 767
Amazon-Photo 7,650 238,162 8 745

ogbn-arxiv 169,343 2,315,598 40 128

heterophilic graph

Roman-empire 22,662 32,927 18 300
Amazon-ratings 24,492 93,050 5 300

Minesweeper 10,000 39,402 2 7
Tolokers 11,758 519,000 2 10

Questions 48,921 153,540 2 301

the original graph into bM5 c subgraphs. Third, in each subgraph generated by METIS, half of the
nodes and their associated edges are randomly sampled. This procedure is performed five times to
generate five different yet overlapped subgraphs. By doing so, the number of overlapping subgraphs
is equal to the number of clients.

I.4 Baseline Methods

We compare our proposed FedIIH with the following baseline methods, which can be categorized
into two groups. The first group comprises general FL baseline methods, including FedAvg [8],
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FedProx [12], and FedPer [13]. The second group consists of six GFL baseline methods, namely
GCFL [14], FedGNN [15], FedSage+ [16], FED-PUB [10], FedGTA [17], and AdaFGL [18]. More-
over, we perform experiments with local training, that is, training each client without federated
aggregation. The detailed descriptions of these baseline methods are provided below.

FedAvg This method [8] represents one of the fundamental baseline methods in the field of FL.
First, each client independently trains a model, which is subsequently transmitted to a server. Then,
the server aggregates the locally updated models by averaging and transmits the aggregated model
back to the clients.

FedProx This method [12] is one of the personalized FL baseline methods. It customizes a
personalized model for each client by adding a proximal term as a subproblem that minimizes weight
differences between local and global models.

FedPer This method [13] is one of the personalized FL baseline methods. It only federates the
weights of the backbone while training the personalized classification layer in each client.

GCFL This method [14] is one of the basic GFL methods. Specifically, GCFL is designed for
vertical GFL (e.g., GFL for molecular graphs). In particular, it uses the bi-partitioning scheme, which
divides a set of clients into two disjoint groups of clients based on the similarity of their gradients.
This is similar to the mechanism proposed for image classification in clustered-FL [19]. Then, after
partitioning, the model weights are shared only among clustered clients with similar gradients.

FedGNN This method [15] is one of the GFL baseline methods. It extends local subgraphs by
exchanging node embeddings from other clients. Specifically, if two nodes in two different clients
have exactly the same neighbors, FedGNN transfers the nodes with the same neighbors from other
clients and expands them.

FedSage+ This method [16] is one of the GFL baseline methods. It generates the missing edges
between subgraphs and the corresponding neighbor nodes by using the missing neighbor generator.
To train this neighbor generator, each client first receives node representations from other clients,
and then computes the gradient of the distances between the local node features and the node
representations of the other clients. After that, the gradient is sent back to the other clients, and this
gradient is then used to train the neighbor generator.

FED-PUB This method [10] is one of the personalized GFL baseline methods. It estimates the
similarities between the subgraphs based on the outputs of the local models that are given the same
test graph. Then, based on the similarities, it performs a weighted averaging of the local models
for each client. In addition, it learns a personalized sparse mask at each client in order to select and
update only the subgraph-relevant subset of the aggregated parameters.

FedGTA This method [17] is one of the personalized GFL baseline methods. In this method, each
client first computes topology-aware local smoothing confidence and mixed moments of neighbor
features. They are then used to compute the inter-subgraph similarities, which are uploaded to the
server along with the model parameters. Finally, the server is able to perform a weighted federation
for each client.

AdaFGL This method [18] is one of the personalized GFL baseline methods. Actually, it is a
decoupled two-step personalized approach. First, it uses standard multi-client federated collaborative
training to acquire the federated knowledge extractor by aggregating uploaded models in the final
round at the server. Second, each client performs personalized training based on the local subgraph
and the federated knowledge extractor.

Local This method is the non-FL baseline, where the model is trained only locally for each client,
with no weight sharing.
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I.5 Training Details

Training rounds and epochs For the Cora, CiteSeer, PubMed, Roman-empire, Amazon-ratings,
Minesweeper, Tolokers, and Questions datasets, we set the number of local training epochs and total
rounds to 1 and 100, respectively. For larger datasets, such as Amazon-Computer, Amazon-Photo, and
ogbn-arxiv, we set the number of total rounds to 200. Note that the number of local epochs is set to 2
for the Amazon-Photo and ogbn-arxiv datasets, and to 3 for the Amazon-Computer dataset. Finally,
we report the test performance of all models at the best validation epoch, and the performance is
measured by averaging across all clients in terms of node classification accuracies (or AUCs).

Hyperparameters We report the detailed hyperparameters used to train our proposed FedIIH
in Tab. 3 and Tab. 4. These hyperparameters are determined by grid search. Note that we set
the similarity scaling hyperparameter (i.e., τ in Eq. (11) of the main manuscript) to 10 in both
non-overlapping and overlapping subgraph partitioning scenarios according to the recommendation
of FED-PUB [10]. We provide the detailed reasons in the Appendix K.7. The search range of
hyperparameters is shown in Tab. 5. The code of our proposed FedIIH will be released on GitHub
upon acceptance of the paper. The detailed hyperparameter sensitivity analysis can be found in the
Appendix M.2.

Hyperparameter tuning guidelines There are four vital hyperparameters (i.e., number of latent
factors, number of neighborhood routing layers, number of neighborhood routing iterations, and τ )
in our proposed FedIIH. First, the number of latent factors (i.e., K) is related to whether the graph
tends to be homophilic or heterophilic. If the graph dataset tends to be homophilic, a small K is
recommended. If the graph dataset tends to be heterophilic, a large K is recommended. Second, the
variations in performance under different numbers of neighborhood routing layers, different numbers
of neighborhood routing iterations, and different values of τ are all small. Therefore, these three
hyperparameters can be tuned by grid search.

Network architectures For the experiments of all baseline methods, except FedSage+, FedGTA,
and our proposed FedIIH, we use two layers of the Graph Convolutional Network (GCN) [20] and a
linear classifier layer as their network architectures. For the hyperparameter settings of the baseline
methods, we use the default settings given in their original papers. Because of the inductive and
scalability advantages of GraphSAGE [21], FedSage+ uses GraphSAGE as the encoder and then
trains a missing neighbor generator to handle missing links across local subgraphs. For our proposed
FedIIH, we use the node feature projection layer of DisenGCN [1] to obtain the node representations
(see Fig. 1) and a linear classifier layer (i.e., MLP) to perform node classifications. In contrast,
FedGTA uses a Graph Attention Multi-Layer Perceptron (GAMLP) [22] as its backbone and a linear
classifier layer to classify nodes. Note that GAMLP [22] is one of the scalable Graph Neural Network
(GNN) models, which can capture the underlying correlations between different scales of graph
knowledge.

I.6 Implementations of Two Prior Distributions

Here we describe the detailed implementations of p(α̃k) and p(H̃k
m|α̃k), respectively. Since

α̃k denotes the posterior mean of αk for the k-th global latent factor, we assume that p(α̃k) ∼
N (α̃k, σ2

αkI), where α̃k is given in Eq. (12). Moreover, σ2
αk and σ2

H̃k
m

is set to 1 and 0.25,

respectively. In other words, p(α̃k) ∼ N (

∑M
m=1 µ̂

H̃k
m

M+0.25 , I). According to Tab. 1, p(H̃k
m|αk) ∼

N (αk, σ2
H̃k

m

I). Consequently, we can have

p(H̃k
m|α̃k) ∼ N (α̃k, 0.25I)

∼ N (

∑M
m=1 µ̂H̃k

m

M + 0.25
, 0.25I).

(13)

J Additional Experiments

In this section, we provide the additional experiments related to the ablation studies and hyperparam-
eter analysis, respectively.

11



Table 3: Hyperparameters used in our proposed FedIIH on the homophilic graph datasets in both the
non-overlapping and overlapping subgraph partitioning settings.

Cora CiteSeer PubMed
Hyperparameters non-overlapping overlapping non-overlapping overlapping non-overlapping overlapping
# latent factors 2 2 2 2 4 2
learning rate 0.02 0.01 0.01 0.01 0.01 0.015

# hidden dimensions 128 256 256 256 256 256
dropout rate 0.3 0.35 0.35 0.35 0.25 0.4
weight decay 0.005 1e-6 1e-6 1e-6 0.0045 1e-6

# neighborhood
routing layers 4 5 5 5 1 1

# neighborhood
routing iterations 6 6 6 6 6 6

Amazon-Computer Amazon-Photo ogbn-arxiv
Hyperparameters non-overlapping overlapping non-overlapping overlapping non-overlapping overlapping
# latent factors 6 4 6 10 2 2
learning rate 0.015 0.015 0.015 0.01 0.01 0.01

# hidden dimensions 128 128 256 128 128 128
dropout rate 0.4 0.35 0.4 0.35 0.35 0.35
weight decay 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6

# neighborhood
routing layers 1 5 1 1 5 5

# neighborhood
routing iterations 6 6 6 5 6 6

Table 4: Hyperparameters used in our proposed FedIIH on the heterophilic graph datasets in both
the non-overlapping and overlapping subgraph partitioning settings.

Roman-empire Amazon-ratings Minesweeper
Hyperparameters non-overlapping overlapping non-overlapping overlapping non-overlapping overlapping
# latent factors 4 4 4 4 6 4
learning rate 0.015 0.015 0.01 0.01 0.01 0.01

# hidden dimensions 128 128 128 256 256 128
dropout rate 0.35 0.35 0.35 0.35 0.35 0.35
weight decay 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6

# neighborhood
routing layers 1 1 3 5 5 6

# neighborhood
routing iterations 6 6 7 6 6 7

Tolokers Questions
Hyperparameters non-overlapping overlapping non-overlapping overlapping
# latent factors 10 10 8 2
learning rate 0.01 0.01 0.01 0.01

# hidden dimensions 128 128 256 256
dropout rate 0.35 0.35 0.35 0.35
weight decay 0.0045 0.0045 1e-6 1e-6

# neighborhood
routing layers 1 1 5 5

# neighborhood
routing iterations 2 2 6 6

J.1 Ablation Studies on Other Datasets

To further analyze the contribution of each component, we conduct ablation studies on the remaining
datasets in both non-overlapping and overlapping partitioning settings with 10 clients. As shown in
Tab. 6, we can find that the performance of FedIIH is significantly better than the three variants. It
validates that each component indeed contributes a lot to the final performance.

J.2 Hyperparameter Sensitivity Analysis of K

The hyperparameter sensitivity analysis of K on the remaining datasets are shown in Fig. 5, Fig. 6, ...,
to Fig. 13. According to the experimental results, we have the following observations and insights:
1) In general, the performance variation under different K is small except for the Roman-empire
dataset (see Fig. 10). The Roman-empire dataset has low homophily [9], which is based on the
Roman Empire article from the English Wikipedia. Each node in the graph corresponds to a (non-
unique) word in the text, and the node label is determined by the syntactic role of the word. Due to
the syntactic dependencies within neighboring words, there exists strong heterogeneity within the
Roman-empire graph. Consequently, if we ignore this intra-heterogeneity (i.e., without disentangling),
the performance will decrease significantly on the Roman-empire dataset. This is consistent with
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Table 5: The search range of the hyperparameters used in our proposed FedIIH.
Hyperparameters # latent factors learning rate # hidden dimensions dropout rate

Range {1, 2, 4, 6, 8, 10} {0.01, 0.015, 0.02} {128, 256} [0.25, 0.4]

Hyperparameters weight decay # neighborhood
routing layers

# neighborhood
routing iterations

Range [1e-6, 5e-3] {1, 2, 3, 4, 5, 6} {2, 3, 4, 5, 6, 7}

Table 6: Ablation studies in both non-overlapping and overlapping partitioning settings on other
datasets with 10 clients.

CiteSeer PubMed Amazon-Computer
Methods non-overlapping overlapping non-overlapping overlapping non-overlapping overlapping
FedIIH (w/o HM) 74.91±0.27 (↓1.59) 72.29±0.16 (↓0.87) 85.19±0.05 (↓2.46) 85.16±0.17 (↓0.71) 85.75±0.90 (↓5.11) 87.71±0.20 (↓2.44)
FedIIH (w/o VI) 72.27±2.16 (↓4.23) 72.60±0.16 (↓0.56) 81.35±0.20 (↓6.30) 84.56±0.04 (↓1.31) 69.16±1.15 (↓21.70) 74.90±1.24 (↓15.25)
FedIIH (w/o Dis) 75.71±0.38 (↓0.79) 71.54±0.12 (↓1.62) 85.71±0.12 (↓1.94) 84.30±0.03 (↓1.57) 88.96±0.08 (↓1.90) 88.51±0.04 (↓1.64)
FedIIH 76.50±0.06 73.16±0.18 87.65±0.18 85.87±0.03 90.86±0.23 90.15±0.04

Amazon-Photo ogbn-arxiv Roman-empire
Methods non-overlapping overlapping non-overlapping overlapping non-overlapping overlapping
FedIIH (w/o HM) 91.84±0.05 (↓2.38) 91.88±0.27 (↓1.50) 65.18±0.41 (↓4.16) 63.54±0.15 (↓3.15) 56.28±0.20 (↓10.16) 60.90±0.21 (↓4.58)
FedIIH (w/o VI) 79.25±0.96 (↓14.97) 82.16±0.56(↓11.22) 49.26±0.74 (↓20.08) 46.20±1.73 (↓20.49) 57.38±0.18 (↓9.06) 61.69±0.09 (↓3.79)
FedIIH (w/o Dis) 92.43±0.01 (↓1.79) 92.01±0.04(↓1.37) 61.51±0.15 (↓7.83) 60.64±0.16 (↓6.05) 40.51±0.27 (↓25.93) 42.84±0.09 (↓22.64)
FedIIH 94.22±0.08 93.38±0.00 69.34±0.02 66.69±0.09 66.44±0.28 65.48±0.12

Minesweeper Tolokers Questions
Methods non-overlapping overlapping non-overlapping overlapping non-overlapping overlapping
FedIIH (w/o HM) 70.88±0.01 (↓2.35) 66.56±0.07 (↓2.79) 64.56±0.17 (↓6.76) 69.21±0.22 (↓2.46) 65.90±0.09 (↓2.09) 67.77±0.10 (↓1.02)
FedIIH (w/o VI) 71.34±0.09 (↓1.89) 68.47±0.06 (↓0.88) 64.34±0.12 (↓6.98) 68.03±0.34 (↓3.64) 66.63±0.08 (↓1.36) 68.24±0.06 (↓0.55)
FedIIH (w/o Dis) 70.67±0.02 (↓2.56) 68.75±0.19 (↓0.60) 62.53±0.29 (↓8.79) 68.10±0.12 (↓3.57) 66.42±0.01 (↓1.57) 67.52±0.17 (↓1.27)
FedIIH 73.23±0.04 69.35±0.25 71.32±0.09 71.67±0.02 67.99±0.09 68.79±0.09

the experimental results in Tab. 3 and Tab. 4 in the main manuscript, where our FedIIH outperforms
other methods by a large margin. 2) As the value of K increases, the performance may increase or
decrease depending on the datasets. For example, on the Roman-empire (see Fig. 10) and Tolokers
(see Fig. 4 in the main manuscript) datasets, their performances increase consistently as the value of
K increases. On the contrary, on the Cora dataset (see Fig. 4), the accuracy reaches its highest value
when K = 2, and then it decreases as the value of K is further increased.

K Discussions

K.1 Similarity Heatmaps of FED-PUB and FedIIH over Three Independent Runs

As shown in Fig. 14, Fig. 15, Fig. 16, and Fig. 17, we present the similarity heatmaps of FED-PUB and
our FedIIH over three independent runs on the Cora and Amazon-ratings datasets in the overlapping
setting with 20 clients, respectively. We can find that our calculated similarities are fairly much
more stable than the similarities calculated by FED-PUB. This is because FED-PUB estimates the
similarities between subgraphs based on the outputs of local models given the same random test
graph. Since the random test graph varies over three independent runs, the outputs of the local models
also change. In contrast, our FedIIH successfully infers the whole distribution of subgraph data in a
multi-level global perspective, such that we can stably characterize the inter-subgraph similarities.
Note that the similarity ground truth of the Cora and Amazon-ratings datasets in the overlapping
setting with 20 clients are presented in Fig. 18a and Fig. 3a of the main manuscript, respectively.

K.2 Similarity Heatmaps on Other Datasets

The similarity heatmaps on other datasets are shown in Fig. 18, Fig. 19, ..., to Fig. 38. We present
the similarity heatmaps for each dataset (except the Cora dataset) in two settings, namely, non-
overlapping with 20 clients and overlapping with 30 clients. However, for the Cora dataset, we
present the similarity heatmaps in the overlapping setting with 20 clients. This is because in [10],
Baek et al. present the heatmaps on the Cora dataset in the overlapping setting with 20 clients, and
we specifically want to be consistent with that here. According to the experimental results on these
datasets, we can find that the similarity heatmaps of our FedIIH are always much closer to the ground
truth than FED-PUB and FedGTA, verifying the effectiveness of our similarity calculation scheme
based on the inferred subgraph data distribution.
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Figure 4: Sensitivity of the number of latent factors K on the Cora dataset.
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Figure 5: Sensitivity of the number of latent factors K on the CiteSeer dataset.

K.3 Case Study of Different Latent Factors

Since our proposed FedIIH disentangles the subgraph into several latent factors, one may ask what is
the difference between the similarity heatmaps under different latent factors. To illustrate this, we
take the Roman-empire dataset as an example to perform a case study. As demonstrated in Fig. 10,
the accuracies of our FedIIH obviously increase as K changes from 1, to 2, to 4. Consequently, in
Fig. 39, we present the similarity heatmaps of FedIIH on the Roman-empire dataset when K is set to
1, 2, and 4, respectively. From Fig. 39, it can be observed that there are indeed differences between
different similarity heatmaps. Although these differences may seem trivial, they have a very large
impact on the separate federation and thus on the final performance.

K.4 Disentangled Latent Factors

Here we provide some insights into the interpretability of the disentangled latent factors. Disentangled
latent factors, as widely explored in [1, 23, 24], are used to explore the reasons why a node is
connected to others. In other words, the interpretability of the disentangled latent factors can be
considered as the relationship from a given node to one of its neighbors. For example, a user in a
social graph is connected to others for various different reasons, such as families, hobbies, studies,
and work. Each disentangled latent factor is capable of capturing mutually exclusive information. For
example, the correlation plot of DisenGCN on the eight-factor synthetic graph dataset (Figure 3 in [1])
clearly shows eight diagonal blocks, verifying that the latent factors have indeed been successfully
disentangled.

One might ask: Is it possible that the parameter positions corresponding to the same disentangled latent
factor differ between clients? We would like to clarify that the parameter positions corresponding to
the same latent factor usually remain the same in the disentangled GNNs of different clients. Taking
the DisenGCN as an example, there are two crucial processes: node feature projection (Eq. (1) in
the main manuscript) and neighborhood routing mechanism (Eq. (1) and Eq. (2) in the Appendix A).
According to Eq. (1) in the main manuscript, we can find that the position of parameters corresponding
to the k-th latent factor (i.e., Wk) is determined and then fixed by the node feature xi. Since the
distributions of xi are similar in different clients, the parameter positions corresponding to K latent
factors on each client are determined and then fixed in the same way. Moreover, the parameter
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Figure 6: Sensitivity of the number of latent factors K on the PubMed dataset.
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Figure 7: Sensitivity of the number of latent factors K on the Amazon-Computer dataset.

positions corresponding to K latent factors are not changed by the neighborhood routing mechanism,
because there are no learnable parameters in the neighborhood routing mechanism. Therefore, the
parameter positions corresponding to the same latent factor usually remain the same. This can be
verified by the experiments, where the standard deviations of our FedIIH are quite small on different
datasets (see Tables 1, 2, 3, and 4 in the main manuscript).

K.5 Disentangled Graph Neural Networks

The current implementation of our proposed FedIIH is based on the existing method DisenGCN [1],
which is used to instantiate the inference network in our HVGAE. Instantiation in variational inference
is very common in many existing approaches [25, 26, 27]. For example, [25] and [26] use the GCN
and Graph Attention neTworks (GAT) to instantiate their inference networks, respectively.

Although many disentangled graph neural networks [1, 23, 24] can be chosen flexibly, we directly
choose a simple but popular model (i.e., DisenGCN). This is because DisenGCN is a pioneering
work in the field. Moreover, our proposed FedIIH is flexible since other disentangled graph neural
networks [23, 24] can easily be used.

K.6 Differences Between FED-PUB and Our FedIIH

First, in FED-PUB [10], each client simply feeds the randomly generated graph to the local model
and sends the output to the server. In stark contrast, our FedIIH differs noticeably in that it uses
HVGAE to disentangle the subgraph into multiple latent factors and accurately infer the distribution
of the subgraph data. Then, each client sends this inferred data distribution to the server.

Second, in FED-PUB, the server only measures the similarities of the clients by computing the cosine
similarities of the outputs of local models. Conversely, in our FedIIH, the server specifically measures
the similarities by computing the JS divergences of the inferred subgraph data distributions, therefore
providing a more accurate and stable measure of client similarities.

In summary, our FedIIH differs noticeably from FED-PUB, as FED-PUB mainly focuses on comput-
ing the cosine similarities based on the outputs of local models. Unlike FED-PUB, we measure the
similarities of clients by computing the JS divergences of the inferred subgraph data distribution.
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Figure 8: Sensitivity of the number of latent factors K on the Amazon-Photo dataset.
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Figure 9: Sensitivity of the number of latent factors K on the ogbn-arxiv dataset.

K.7 Reasons for Setting τ to 10

On one hand, τ is recommended by FED-PUB [10] to be set to 10. On the other hand, according to
the experimental results of grid search, the performance can achieve the best result when τ is around
10. Tab. 7 provides the accuracies when using different values of τ .

K.8 Why do local model outputs not accurately reflect the distribution of subgraph?

Most existing methods [10, 17, 28] compute the inter-subgraph similarities based on the simplex
outputs of local models. However, we argue that the outputs of local models cannot accurately reveal
the whole distribution of subgraph data. Here we provide the reason.

According to the universal approximation theorem of neural networks [29], even if two neural
networks (e.g., two local models on different clients) have different inputs, they can still produce the
completely same output. Therefore, the outputs of local models cannot accurately reveal the whole
distribution of subgraph data. This can be verified by experiments. In Fig. 3 of the main manuscript,
the similarity heatmap of FED-PUB (Fig. 3b) is quite different from the ground truth (Fig. 3a), which
means that the calculated similarities based on the local model outputs cannot accurately reflect the
overall distribution of subgraph data.

L Efficiency Analysis

In this section, we present the spatial and temporal complexity of our proposed FedIIH and that
of two baseline methods (i.e., FedAvg and FED-PUB) on the client and server sides, respectively.
Furthermore, we also compare the training time of our proposed FedIIH and that of two baseline
methods (i.e., FedAvg and FED-PUB).

L.1 Spatial Complexity

First, the spatial complexity of our FedIIH on each client side and that of two baseline methods
(i.e., FedAvg and FED-PUB) are both O(nm × d+ L× d2), where nm, d, and L denote the node
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Figure 10: Sensitivity of the number of latent factors K on the Roman-empire dataset.
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Figure 11: Sensitivity of the number of latent factors K on the Amazon-ratings dataset.

number, feature dimensionality, and layer number, respectively. Therefore, the spatial complexity of
our FedIIH on each client is the same as that of two baseline methods.

Second, the spatial complexity of our method on the server side is O
(
M × d × (L × d2 + K ×

M)
)
, where M and K denote the number of clients and the number of disentangled latent factors,

respectively. The spatial complexity of the baseline method (i.e., FED-PUB) on each client is
O
(
M × d× (L× d2 +M)

)
. By comparing the spatial complexity of our FedIIH with that of the

baseline method (i.e., FED-PUB), we find that the only difference is that the third factor in FedIIH’s
spatial complexity is L × d2 + K ×M while the third factor in FED-PUB’s spatial complexity
is L × d2 +M . Since K ≤ 10 (as mentioned in the Appendix I.5), we can find that the spatial
complexity of our FedIIH on the server side is similar to that of the baseline method.

L.2 Temporal Complexity

First, the temporal complexity of HVGAE on each client is O
(
nm × d× (L+ nm + d)

)
. Since the

model deployed on each client is actually a HVGAE, the total temporal complexity of our FedIIH
on each client is O

(
nm × d× (L+ nm + d)

)
. The temporal complexity of two baseline methods

(i.e., FedAvg and FED-PUB) on each client is O
(
nm × d× (L+ L× d+ d)

)
. By comparing the

temporal complexity of our FedIIH with that of two baseline methods (i.e., FedAvg and FED-PUB),
the only difference is that the third factor in FedIIH’s temporal complexity is L+ nm + d while the
third factor in their temporal complexity is L+L× d+ d. Since nm ≤ L× d in most situations (can
be verified in the Appendix I.5), we can find that the temporal complexity of our FedIIH on the client
side is similar to that of two baseline methods (i.e., FedAvg and FED-PUB). Therefore, we can find
that the introduction of HVGAE does not increase too much computational overhead of our FedIIH.

Second, the temporal complexity of the divergence computation on the server isO(K×M2×d), and
the total temporal complexity of our FedIIH on the server side isO

(
M×d× (K×M+L×d)

)
. The

temporal complexity of the baseline method (i.e., FED-PUB) on the server side is O
(
M × d× (M +

L× d)
)
. By comparing the temporal complexity of our FedIIH with that of the baseline method (i.e.,

FED-PUB), we find that the only difference is that the third factor in FedIIH’s temporal complexity is
K ×M + L × d while the third factor in FED-PUB’s temporal complexity is M + L × d. Since
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Figure 12: Sensitivity of the number of latent factors K on the Minesweeper dataset.
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Figure 13: Sensitivity of the number of latent factors K on the Questions dataset.

K ≤ 10 (as mentioned in the Appendix I.5), we can find that the temporal complexity of our FedIIH
on the server side is similar to that of the baseline method (i.e., FED-PUB).

L.3 Training Time

We report the training time of one communication round of our FedIIH and two baseline methods
(i.e., FedAvg and FED-PUB). The experimental platform is shown in the Appendix I.1. We conduct
experiments on a homophilic graph dataset (i.e., Cora) and a heterophilic graph dataset (i.e., Roman-
empire). As shown in Tab. 8, we can find that our FedIIH is more efficient in practice than the baseline
methods (i.e., FedAvg and FED-PUB).

M Robustness Analysis

In this section, we analyze the robustness of our FedIIH in terms of client sparsity and hyperparameter
sensitivity, respectively.

M.1 Client Sparsity Analysis

Robustness to client sparsity is a critical aspect in evaluating the effectiveness of a similarity-based
personalized federated optimization strategy. Here we conduct experiments on a homophilic graph
dataset (i.e., Cora) and a heterophilic graph dataset (i.e., Roman-empire) as the percentage of
participating clients increases from 10% to 100%. As shown in Fig. 40, the experimental results
clearly show that the performance of our FedIIH is more robust and stable than baseline methods,
and is not too affected when the number of participating clients decreases.

M.2 Hyperparameter Sensitivity Analysis

There are four vital hyperparameters (i.e., number of latent factors, number of neighborhood routing
layers, number of neighborhood routing iterations, and τ ) in our proposed FedIIH. Here we perform
experiments to analyze the hyperparameter sensitivity.
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Figure 14: The similarity heatmaps of FED-PUB over three independent runs on the Cora dataset in
the overlapping setting with 20 clients.
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Figure 15: The similarity heatmaps of FedIIH over three independent runs on the Cora dataset in the
overlapping setting with 20 clients.

First, as shown in the Appendix J.2, the variation in performance under different numbers of latent fac-
tors (i.e., K) is small. Second, as shown in Tab. 9, Tab. 10, and Tab. 11, the variations in performance
under different numbers of neighborhood routing layers, different numbers of neighborhood routing
iterations, and different values of τ are all small. These experimental results clearly demonstrate that
the performances of our proposed FedIIH are very stable within a given range of hyperparameters,
therefore the hyperparameter of our FedIIH can be easily tuned in practical use.

N Broader Impact

Our work could have the following positive impacts: (1) We provide a new method for GFL to deal
with the inter-intra heterogeneity. (2) Our proposed method can greatly improve the performance of
GFL on homophilic and heterophilic graph datasets in both non-overlapping and overlapping settings.

The proposed method can be used for both good and bad, similar to many other FL methods. Note
that most existing methods and our proposal are not immune to such misuse. We believe that such a
problem can be solved in the future, although we do not have an optimal solution.

In summary, we believe that our proposed method can benefit society because many important real-
world graphs face inter-intra heterogeneity when performing the GFL. Therefore, they can benefit
from our proposed FedIIH.
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Figure 16: The similarity heatmaps of FED-PUB over three independent runs on the Amazon-ratings
dataset in the overlapping setting with 20 clients.
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run of the 1st latent factor
(K = 2)
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(d) the first independent
run of the 2nd latent fac-
tor (K = 2)
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(e) the second indepen-
dent run of the 2nd latent
factor (K = 2)
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(f) the third independent
run of the 2nd latent fac-
tor (K = 2)

Figure 17: The similarity heatmaps of FedIIH over three independent runs on the Amazon-ratings
dataset in the overlapping setting with 20 clients.
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Figure 18: Similarity heatmaps on the Cora dataset in the overlapping setting with 20 clients.
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Figure 20: Similarity heatmaps on the CiteSeer dataset in the overlapping setting with 30 clients.

1 2 3 4 5 6 7 8 9 1011121314151617181920

Clients

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

Cl
ie

nt
s

0.05

0.10

0.15

0.20

0.25

(a) Distr. Sim.

1 2 3 4 5 6 7 8 9 1011121314151617181920

Clients

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

Cl
ie

nt
s

0.04985

0.04990

0.04995

0.05000

0.05005

0.05010

(b) FED-PUB

1 2 3 4 5 6 7 8 9 1011121314151617181920

Clients

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

Cl
ie

nt
s

0.03

0.04

0.05

0.06

0.07

(c) FedGTA

1 2 3 4 5 6 7 8 9 1011121314151617181920

Clients

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

Cl
ie

nt
s

0.05

0.10

0.15

0.20

0.25

(d) FedIIH of the
1st latent factor
(K = 2)

1 2 3 4 5 6 7 8 9 1011121314151617181920

Clients

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

Cl
ie

nt
s

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(e) FedIIH of the
2nd latent factor
(K = 2)

Figure 21: Similarity heatmaps on the PubMed dataset in the non-overlapping setting with 20 clients.
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Figure 22: Similarity heatmaps on the PubMed dataset in the overlapping setting with 30 clients.
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Figure 23: Similarity heatmaps on the Amazon-Computer dataset in the non-overlapping setting with
20 clients.
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Figure 24: Similarity heatmaps on the Amazon-Computer dataset in the overlapping setting with 30
clients.
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Figure 25: Similarity heatmaps on the Amazon-Photo dataset in the non-overlapping setting with 20
clients.
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Figure 26: Similarity heatmaps on the Amazon-Photo dataset in the overlapping setting with 30
clients.
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Figure 27: Similarity heatmaps on the ogbn-arxiv dataset in the non-overlapping setting with 20
clients.
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Figure 28: Similarity heatmaps on the ogbn-arxiv dataset in the overlapping setting with 30 clients.
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Figure 29: Similarity heatmaps on the Roman-empire dataset in the non-overlapping setting with 20
clients.
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results.
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Justification: We provide them in this Appendix.
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appropriate statistical tests (e.g., Wilcoxon signed-rank). (yes/partial/no)

26

https://github.com/blgpb/FedIIH


1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

Clients
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
Cl

ie
nt

s
0.032

0.034

0.036

0.038

0.040

(a) Distr. Sim.

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

Clients

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

Cl
ie

nt
s

0.030

0.035

0.040

0.045

0.050

0.055

(b) FED-PUB

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

Clients

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

Cl
ie

nt
s

0.0328

0.0330

0.0332

0.0334

0.0336

0.0338

(c) FedGTA

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

Clients

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

Cl
ie

nt
s

0.030

0.032

0.034

0.036

0.038

0.040

(d) FedIIH of the
1st latent factor
(K = 2)

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

Clients

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

Cl
ie

nt
s

0.030

0.032

0.034

0.036

0.038

0.040

(e) FedIIH of the
2nd latent factor
(K = 2)

Figure 30: Similarity heatmaps on the Roman-empire dataset in the overlapping setting with 30
clients.
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Figure 31: Similarity heatmaps on the Amazon-ratings dataset in the non-overlapping setting with 20
clients.
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development of the paper, along with the criterion used for selecting the final parameter
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27



1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

Clients

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

Cl
ie

nt
s

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

(a) Distr. Sim.

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

Clients

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

Cl
ie

nt
s

0.030

0.031

0.032

0.033

0.034

0.035

0.036

(b) FED-PUB

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

Clients

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

Cl
ie

nt
s

0.028

0.030

0.032

0.034

0.036

(c) FedGTA

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

Clients

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

Cl
ie

nt
s

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

(d) FedIIH of the
1st latent factor
(K = 2)

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

Clients

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

Cl
ie

nt
s

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

(e) FedIIH of the
2nd latent factor
(K = 2)

Figure 32: Similarity heatmaps on the Amazon-ratings dataset in the overlapping setting with 30
clients.
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Figure 33: Similarity heatmaps on the Minesweeper dataset in the non-overlapping setting with 20
clients.
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(c) FedGTA
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Figure 34: Similarity heatmaps on the Minesweeper dataset in the overlapping setting with 30 clients.
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(c) FedGTA
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Figure 35: Similarity heatmaps on the Tolokers dataset in the non-overlapping setting with 20 clients.
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Figure 36: Similarity heatmaps on the Tolokers dataset in the overlapping setting with 30 clients.
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Figure 37: Similarity heatmaps on the Questions dataset in the non-overlapping setting with 20
clients.
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Figure 38: Similarity heatmaps on the Questions dataset in the overlapping setting with 30 clients.
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(b) FedIIH of the 1st latent
factor (K = 1)
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(c) FedIIH of the 1st latent
factor (K = 2)
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(d) FedIIH of the 2nd latent
factor (K = 2)
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(e) FedIIH of the 1st latent
factor (K = 4)
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(f) FedIIH of the 2nd latent
factor (K = 4)
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(g) FedIIH of the 3rd latent
factor (K = 4)
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(h) FedIIH of the 4th latent
factor (K = 4)

Figure 39: Similarity heatmaps on the Roman-empire dataset in the overlapping setting with 30
clients. There are indeed differences between different similarity heatmaps when K is set to 1, 2, and
4.

Table 7: The hyperparameter sensitivity analysis of τ . The best results are shown in bold.
τ

Cora Non-overlapping
10 Clients

Cora Overlapping
30 Clients

Roman-empire Non-overlapping
10 Clients

Roman-empire Overlapping
30 Clients

1 81.58±0.15 76.74±0.34 66.12±0.25 63.15±0.15
2 81.61±0.12 76.52±0.16 66.41±0.34 63.23±0.12
3 81.76±0.16 76.69±0.20 66.34±0.32 63.19±0.25
4 81.80±0.17 76.72±0.23 66.40±0.36 63.29±0.30
5 81.65±0.05 76.66±0.31 66.36±0.27 63.26±0.31
6 81.82±0.10 76.75±0.26 66.21±0.19 63.28±0.24
7 81.75±0.11 76.80±0.15 66.37±0.33 63.13±0.15
8 81.81±0.18 76.79±0.25 66.36±0.40 63.22±0.22
9 81.82±0.14 76.74±0.26 66.34±0.21 63.30±0.15

10 81.85±0.09 76.82±0.24 66.44±0.28 63.32±0.06
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Table 8: The training time of one communication round of our FedIIH and two baseline methods.
Cora Nonoverlapping Cora Overlapping

Methods 5 Clients 10 Clients 20 Clients 10 Clients 30 Clients 50 Clients
FedAvg 20.81s 24.90s 59.58s 30.63s 72.55s 141.82s
FED-PUB 22.04s 27.34s 60.31s 33.46s 80.54s 147.84s
FedIIH (Ours) 19.57s 22.76s 56.09s 19.67s 65.49s 139.03s

Roman-empire Nonoverlapping Roman-empire Overlapping
Methods 5 Clients 10 Clients 20 Clients 10 Clients 30 Clients 50 Clients
FedAvg 18.25s 29.85s 55.21s 28.30s 79.12s 127.61s
FED-PUB 18.81s 28.03s 61.75s 28.45s 83.07s 133.05s
FedIIH (Ours) 17.45s 24.90s 47.01s 28.19s 61.17s 100.10s

Table 9: The hyperparameter sensitivity analysis of the number of neighborhood routing layers.
# neighborhood
routing layers

Cora Non-overlapping
10 Clients

Cora Overlapping
30 Clients

Roman-empire Non-overlapping
10 Clients

Roman-empire Overlapping
30 Clients

1 81.19±0.27 76.18±0.46 66.44±0.28 63.32±0.06
2 81.41±0.15 76.34±0.31 66.16±0.41 63.15±0.15
3 81.46±0.12 76.48±0.15 66.23±0.36 63.12±0.21
4 81.85±0.09 76.67±0.18 66.15±0.46 63.15±0.42
5 81.62±0.08 76.82±0.24 66.11±0.55 63.10±0.24
6 81.37±0.24 76.46±0.45 66.08±0.39 63.04±0.38

max - min 0.66 0.64 0.36 0.28

Table 10: The hyperparameter sensitivity analysis of the number of neighborhood routing iterations.
# neighborhood

routing iterations
Cora Non-overlapping

10 Clients
Cora Overlapping

30 Clients
Roman-empire Non-overlapping

10 Clients
Roman-empire Overlapping

30 Clients
2 81.24±0.50 76.22±0.30 66.04±0.43 63.01±0.45
3 81.38±0.45 76.31±0.44 66.10±0.46 63.10±0.34
4 81.45±0.41 76.37±0.45 66.16±0.44 63.18±0.29
5 81.57±0.35 76.45±0.41 66.15±0.35 63.24±0.17
6 81.85±0.09 76.82±0.24 66.44±0.28 63.32±0.06
7 81.36±0.42 76.68±0.39 66.24±0.29 63.12±0.22

max - min 0.61 0.60 0.40 0.31

Table 11: The hyperparameter sensitivity analysis of τ .
τ

Cora Non-overlapping
10 Clients

Cora Overlapping
30 Clients

Roman-empire Non-overlapping
10 Clients

Roman-empire Overlapping
30 Clients

1 81.58±0.15 76.74±0.34 66.12±0.25 63.15±0.15
2 81.61±0.12 76.52±0.16 66.41±0.34 63.23±0.12
3 81.76±0.16 76.69±0.20 66.34±0.32 63.19±0.25
4 81.80±0.17 76.72±0.23 66.40±0.36 63.29±0.30
5 81.65±0.05 76.66±0.31 66.36±0.27 63.26±0.31
6 81.82±0.10 76.75±0.26 66.21±0.19 63.28±0.24
7 81.75±0.11 76.80±0.15 66.37±0.33 63.13±0.15
8 81.81±0.18 76.79±0.25 66.36±0.40 63.22±0.22
9 81.82±0.14 76.74±0.26 66.34±0.21 63.30±0.15
10 81.85±0.09 76.82±0.24 66.44±0.28 63.32±0.06

max - min 0.27 0.30 0.32 0.19
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(a) Cora Non-overlapping 20 Clients
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(b) Cora Overlapping 50 Clients
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(c) Roman-empire Non-overlapping 20 Clients
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Figure 40: Performances with different percentages of participating clients.
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