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Understanding How Pretraining Regularizes
Deep Learning Algorithms

Yu Yao, Baosheng Yu, Chen Gong , Member, IEEE, and Tongliang Liu , Senior Member, IEEE

Abstract— Deep learning algorithms have led to a series of
breakthroughs in computer vision, acoustical signal processing,
and others. However, they have only been popularized recently
due to the groundbreaking techniques developed for training
deep architectures. Understanding the training techniques is
important if we want to further improve them. Through extensive
experimentation, Erhan et al. (2010) empirically illustrated that
unsupervised pretraining has an effect of regularization for deep
learning algorithms. However, theoretical justifications for the
observation remain elusive. In this article, we provide theoretical
supports by analyzing how unsupervised pretraining regularizes
deep learning algorithms. Specifically, we interpret deep learning
algorithms as the traditional Tikhonov-regularized batch learning
algorithms that simultaneously learn predictors in the input
feature spaces and the parameters of the neural networks to
produce the Tikhonov matrices. We prove that unsupervised
pretraining helps in learning meaningful Tikhonov matrices,
which will make the deep learning algorithms uniformly stable
and the learned predictor will generalize fast w.r.t. the sample
size. Unsupervised pretraining, therefore, can be interpreted as
to have the function of regularization.

Index Terms— Classification, deep learning, regularization,
representation learning, unsupervised pretrain.

I. INTRODUCTION

DEEP neural networks having deep architectures (or many
layers of nonlinearities) are efficient to compactly rep-

resent highly varying functions [2]–[5] and thus highly dis-
criminative feature representations. Deep learning algorithms
thus usually have small approximation errors and are easy
to be over-fitted [6]–[8] or be stuck into bad local solu-
tions [9]. Before the breakthroughs of optimization techniques,
e.g., [10], [11], it appeared that deep architectures were not
successfully trained due to the aforementioned reasons.
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Unsupervised pretraining methods, such as restricted
Boltzmann machines (RBMs) [12], [13] and autoencoder
[14], [15], had been popular training techniques for deep
neural networks, such as multilayer perceptron (MLP) and
convolutional neural network (CNN). They had been widely
empirically studied and had achieved impressive results in
several areas [16]–[23].

Due to some recent advances, such as large-scale labeled
datasets [24], [25], rectified linear unit (ReLU) [26],
designed initialization [27]–[29], data augmentation [6], and
dropout [30], CNNs without unsupervised pretraining offer
some state-of-the-art performances on large-scale labeled
datasets. As a sequel, unsupervised pretraining seems have
been fallen out of favor for supervised networks due to the
recent advances.

To answer the question “is unsupervised pretraining still
useful given recent advances,” Paine et al. [31] empirically
found that unsupervised pretraining, as expected, is helpful
to train CNNs when the ratio between unsupervised and
supervised sample is high. A review of deep learning in
Nature [32] expects much for learning with unsupervised
observations by concluding with the statement “unsupervised
learning had a catalytic effect in reviving interest in deep
learning, but has since been overshadowed by the successes of
purely supervised learning. Although we have not focused on
it in this review, we expect unsupervised learning to become
far more important in the longer term.” Motivated by this
expectation, in this article, we will focus on analyzing how
unsupervised pretraining regularizes deep learning algorithms.

Theoretical analysis for the success of unsupervised pre-
training remains elusive in the literature. However, it is
essential for deep understanding and further improving the
unsupervised pretraining techniques. Some empirical work has
been conducted to understand the function of unsupervised
pretraining. Bengio et al. [11] empirically concluded that the
unsupervised training strategy helps optimization by initial-
izing weights in a region near a good local minimum that
brings improved generalization; Erhan et al. [1] empirically
showed that unsupervised pretraining plays a significant role
of regularization in training the deep architectures.

Different from the previous works which analyze the prop-
erty of unsupervised pretraining based on the empirical results,
in this article, we analyze the property of unsupervised pre-
training from a theoretical perspective. Specifically, we have
compared unsupervised pretraining with manifold regulariza-
tion which shows that it helps find meaningful representations
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of instances in lower dimensional subspace. We have also pro-
vided the generalization bound when unsupervised pretraining
is used, which shows that unsupervised pretraining helps the
learned predictor generalize fast. Motivated by this, we have
also proposed a computational cost-efficient regularizer that
improves all the baselines on both clean and ambiguous
datasets.

The rest of the article is organized as follows. In Section II,
we set up notation and briefly introduce unsupervised pre-
training and fine-tuning. In Section III, we interpret unsuper-
vised pretraining as to have the function of regularization.
In Section IV, we interpret deep learning algorithms as the
traditional batch learning algorithms with Tikhonov regulariza-
tions that simultaneously learn predictors in the input feature
space and the parameters of the neural networks to form the
Tikhonov matrices. In Section V, we show that unsupervised
pretraining can help deep learning algorithms be uniformly
hypothesis stable and generalize fast. The experimental eval-
uation is included in Section VII. The detailed proofs are
provided in Section VI. Section VIII contains concluding
remarks.

II. NOTATION AND PRELIMINARIES

We use upper case nonitalics to denote sets. We use upper
case italics to denote matrices, Ai to denote the i th column of
the matrix A, and Ai j to denote the i j th entry of A. We use
lower case italics to denote vectors and scalers, where ai means
the i th entry of a. The inner product and norm in Euclidean
space are denoted by 〈·, ·〉 and ‖ · ‖2.

A. Unsupervised Pretraining

In deep learning algorithms, unsupervised pretraining can
be used to initialize the parameters of the neural net-
work. During the unsupervised pretraining procedure, RBM
[12], [13] or auto-encoder [11], [19], [33] is usu-
ally used as single-layer components to perform ini-
tialization. Bengio et al. [11], Larochelle et al. [34], and
Vincent et al. [14] empirically showed that RBM and auto-
encoder have similar performances. Bengio and Delalleau [35]
further showed that the RBMs trained by contrastive diver-
gence and the auto-encoder training criterion are close in
the sense that they both minimize approximations of the
log-likelihood of a generative model. Specifically, they use
the gradient of a stochastic reconstruction error to estimate
the gradient of the log-likelihood of RBM. The mean-field
approximation of the reconstruction error is the same as the
reconstruction error typically used in training auto-encoder.
This can be used to explain why reconstruction error has
been used to monitor the progress in training RBMs; see,
e.g., [11], [36]. In this article, we will theoretically analyze
the function of unsupervised pretraining by exploiting its
reconstruction property. For simplicity and clarity, we will
focus on exploiting the auto-encoder training criterion for
unsupervised pretraining.

Auto-encoder combines both encoder and decoder mappings
in the hope that encoder mapping loses little information.
The following deterministic mapping that transforms an input

vector x into a hidden representation x ′ is called the encoder:
x ′ = φ(W x + b)

where W is an affine matrix, b is an offset vector, and φ :
R

D → R
D represents a nonlinear mapping that φi (x) = ψ(xi )

and ψ : R → R. ReLU ψ(·) : xi �→ (xi)+ is currently widely
used for deep learning algorithms.

A deterministic mapping that transforms the hidden rep-
resentation x ′ back to a vector x̂ , which forces a small
reconstruction error ‖x − x̂‖2

2, is called the decoder. x̂ can
be defined as

x̂ = φ
(
W�x ′ + b′) or x̂ = W�x ′ + b′

where W ′ is an affine matrix and b′ is an offset vector. In this
article, for simplicity, we discuss the linear case x̂ = W T x ′
and do not consider the offset.1

Let U be the training sample for unsupervised pretraining.
It contains x1,p, . . . , xm,p ∈ R

c which are the independent
and identically distributed (i.i.d.) observations, where m is the
sample size, and p indicates that the observations are used for
pretraining. Let x (l)1,p, . . . , x (l)m,p be the new representations of
the observations in the lth layer (note that x (0)1,p, . . . , x (0)m,p =
x1,p, . . . , xm,p), where l ∈ {1, . . . , L} and L is the number of
the layers used in the neural network.

In unsupervised pretraining, we consider that the parameters
W (l) ∈ R

D(l−1)×D(l) of the lth layer are learned by an auto-
encoder, where D(l) is the dimensionality of the output of the
lth layer, and D(0) = c and D(L) = d . That is

W (l)
U =arg min

W (l)∈RD(l−1)×D(l)

1

m

m∑
i=1

∥∥∥x (l−1)
i,p −W (l)�φ

(
W (l)x (l−1)

i,p

)∥∥∥2

2
.

Then, auto-encoder encourages the residual

ε
(

xi,p,W (1)
U , . . . ,W (L)

U

)
= xi,p −

(
W (1)

U

)�
, . . . ,

(
W (L)

U

)�
φ
(

W (L)
U , . . . , φ

(
W (1)

U xi,p

))
(1)

to be small.

B. Fine-Tuning

In deep learning algorithms, a supervised fine-tuning step
uses the labeled sample to learn a predictor v ′ and tune the
pretrained parameters of the neural network, simultaneously.

Specifically, let S be the training sample for fine-tuning.
It contains (x1, y1), . . . , (xn, yn) ∈ R

c × R which are the
i.i.d. observations, where n is the sample size. Fine-tuning
can be modeled as{
v ′

S,W (1)
S , . . . ,W (L)

S

}
= arg min

v ′∈Rd ,W (l)∈B
(

W (l)
U ,r

)
,l∈{1,...,L}

1

n

n∑
i=1

�
(
yi ,

〈
v ′, φ

(
W (L), . . . , φ

(
W (1)xi

))〉) + λ‖v ′‖2
2

(2)

1Note that our analysis can be easily extended to the case of nonlinear
decoding or W ′ 
= W or having the offset.
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where � is a convex surrogate loss function, λ is a tradeoff
parameter, and B(W (l)

U , r) denotes the closed ball of radius r
centered at W (l)

U .
Without the unsupervised pretraining step, there will be

no specific restriction placed on the parameters of the neural
network. However, it is reasonable to assume that unsupervised
pretraining makes r to be small, i.e., the parameters learned
by fine-tuning are dependent on the parameters initialized by
unsupervised pretraining. Thus, the residual

ε
(

xi ,W (1)
S , . . . ,W (L)

S

)
= xi −

(
W (1)

S

)�
, . . . ,

(
W (L)

S

)�
φ
(

W (L)
S , . . . , φ

(
W (1)

S xi

))
(3)

will also be small.

III. UNSUPERVISED PRETRAINING

REGULARIZES THE PREDICTOR

To clearly see the regularization property of unsupervised
pretraining, we start with the case that fine-tuning does not
tune the pretrained parameters.

Let v ∈ R
c represent a vector in the dual space of the

input space, and v ′ be a vector in the dual space of the latent
space R

d . If we do not update WU = {W (1)
U , . . . ,W (L)

U } in
the fine-tuning step, the pretrained deep learning (2) can be
modeled as

v ′
S,WU =arg min

v ′∈Rd

1

n

n∑
i=1

�
(

yi ,
〈
v ′, φ

(
W (L)

U , . . . , φ
(

W (1)
U xi

))〉)
+ λ∥∥v ′∥∥2

2. (4)

Lemma 1: Assuming that x j,p, j ∈ {1, . . . ,m} and
xi , i ∈ {1, . . . , n} have the same marginal distribution.
If W (1)

U , . . . ,W (L)
U are fixed in the fine-tuning step, then

unsupervised pretraining regularizes the predictor v as follows:

vS,WU = arg min
v∈Rc

1

n

n∑
i=1

�
(

yi ,
〈
v, xi − ε

(
xi ,W (1)

U , . . . ,W (L)
U

)〉)

+ λ
∥∥∥W (L)

U , . . . ,W (1)
U v

∥∥∥2

2

≈ arg min
v∈Rc

1

n

n∑
i=1

�(yi , 〈v, xi 〉)+ λ
∥∥∥W (L)

U , . . . ,W (1)
U v

∥∥∥2

2

(5)

where W (L)
U , . . . ,W (1)

U v = v ′, and yi is the label of xi .
In (5), we used

∑n
i=1 �(yi , 〈v, xi 〉) to approximate∑n

i=1 �(yi, 〈v, xi −ε(xi ,W (1)
U , . . . ,W (L)

U )〉). We would like to
know how the approximation affects the minimizers. For sim-
plicity, we use v1 = arg minv f (v) and v2 = arg minv ( f (v)+
ε(v)) to represent the problems in (4) and (5), respectively,
where f (v) is a strongly convex function w.r.t. v, and ε(v)
is a small value caused by the residual ε(X,W (1)

U , . . . ,W (L)
U ).

Note that ε(v) will converge to zero when the residuals are
small enough and that a differentiable function f (v) is c-
strongly convex if for any two inputs v1 and v2 it holds
that ‖v1 − v2‖2 ≤ (∇ f (v1)− ∇ f (v2))

�(v1 − v2)/s. Through
some algebra and using Cauchy–Schwarz inequality, we have

‖v1 − v2‖ ≤ ‖ε(v2)‖/s, which means that v1 and v2 will be
close to each other when ‖ε(v2)‖ is encouraged to be small.

The analysis is mainly based on the reconstruction property
of unsupervised pretraining. If there are non-linear mappings
in decoder, we could build the predictor by finding v such
that〈
v ′, φ

(
W (L)

U , . . . , φ
(

W (1)
U xi

))〉
=

〈
ϕW (L)

U ,...,W (1)
U
(v), φ

(
W (L)

U , . . . , φ
(

W (1)
U xi

))〉
=

〈
v, φ

((
W (1)

U

)�
, . . . , φ

((
W (L)

U

)�

×φ
(

W (L)
U , . . . , φ

(
W (1)

U xi

))))〉
.

Then, Tikhonov regularization has a nonlinear form
‖ϕW (L)

U ,...,W (1)
U
(v)‖2

2. Note that for a given v ′, the predictor v

may not exist because the matrix W (L)
U , . . . ,W (1)

U may not be
invertible. However, we do not really obtain such predictor v.
With the help of v, we could analyze the property of v ′
learned in the newly represented space from the perspective
of the input feature space, which is nontrivial when the
network is nonlinear.

Equation (5) clearly shows that unsupervised pretraining
regularizes the algorithms for learning predictors when all the
parameters of a pretrained neural network are fixed. Learning
algorithm (5) is the well-known Tikhonov-regularized batch
learning algorithm, where the matrix W (L)

U , . . . ,W (1)
U is called

the Tikhonov matrix. When W (L)
U , . . . ,W (1)

U degenerates to
the identity matrix I , the learning algorithm (5) degenerates
to the widely used �2-regularized batch learning algorithm.
Generally, it would be more flexible to let algorithm exploit
suitable values for the regularization matrix W (L)

U , . . . ,W (1)
U

rather than simply fixing W (L)
U , . . . ,W (1)

U = I . Unsupervised
pretraining provides a way to find such a suitable Tikhonov
matrix, and its function as regularization has been empirically
justified [1].

We further show that unsupervised pretraining regularizes
the deep neural network when both the predictor and the
parameters of the pretrained neural network are tuned in the
fine-tuning step. Specifically, let B(W (l)

U , r) denote the closed
ball of radius r centered at W (l)

U . As mentioned in Section II-B,
it is reasonable to assume that r will be small when there is
unsupervised pretraining, and we then modify (5) to{

vS,W (1)
S , . . . ,W (L)

S

}
= arg min

v∈Rc,W (l)∈B
(

W (l)
U ,r

)
,l∈{1,...,L}

1

n

n∑
i=1

�(yi , ŷi)

+ λ∥∥W (L), . . . ,W (1)v
∥∥2

2. (6)

From (6), we can see that the unsupervised pretrained
deep learning algorithms minimize not only the “dis-
tance” between true labels and predictions but also a term
‖W (L)

U , . . . ,W (1)
U v‖2

2 . We will show that it also exploits
the meaningful data representations for learning predic-
tors, which can be seen by comparing it with manifold
regularization [37]–[40].
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Manifold regularization is formulated as λ f �M f , where
f = [v�x1, . . . , v

�xn]� and M is the generalized graph
Laplacian matrix defined by

Mi j =
{

di , if i = j

−	i j , if i 
= j

where di = ∑
j 
=i 	i j is the degree of the i th vertex, 	 is

the adjacency matrix usually defined by 	i j = exp(−‖xi −
x j‖2

2/2σ
2), and σ is an adjustable kernel width. It can be

verified that

f �M f = 1

2

n∑
i=1

	i j
(
v�xi − v�x j

)2
. (7)

Next, we reformulate ‖W (L), . . . ,W (1)v‖2
2 as follows. Let

X = [x1, . . . , xn] ∈ R
c×n, and y ∈ R

n be the corresponding
labels of the instances. Furthermore, let

�
(
X,W (1), . . . ,W (L)

)
= [

φ
(
W (L), . . . , φ

(
W (1)x1

))
, . . . , φ

(
W (L), . . . , φ

(
W (1)xn

))]
∈ R

d×n

and

ε(X,W (1), . . . ,W (L))

= [
ε
(
x1,W (1), . . . ,W (L)

)
, . . . , ε

(
xn,W (1), . . . ,W (L)

)]�

be the newly represented feature matrices and the residu-
als, respectively. For simplicity, we will use � and ε(X)
to denote �

(
X,W (1), . . . ,W (L)

)
and ε(X,W (1), . . . ,W (L)),

respectively. Then, we have

∥∥W (L), . . . ,W (1)v
∥∥2

2

= v�(
W (1)

)�
, . . . ,

(
W (L)

)�
W (L), . . . ,W (1)v

= v�(
W (1))�

, . . . ,
(
W (L)

)�
�

(
���

)+
��

W (L), . . . ,W (1)v

= v�(X − ε(X))
(
���

)+
(X − ε(X))�v

= Ŷ �(
���

)+
Ŷ

= tr
(

Ŷ �(
���

)+
Ŷ

)
(8)

where A+ represents the pseudo inverse of matrix A, tr(·)
denotes the trace operator, and Ŷ = (X − ε(X))�v are the
predicted labels using the predictor v.

Note that the Laplacian matrix M in (7) measures the
data structure and the corresponding manifold regularization
exploits the pairwise (distance) similarities of the observations
to guide predictions.

The matrix (���)+ in (8) is an inverse covariance matrix,
also known as the concentration or precision matrix. It is
helpful to find the pairwise correlation structure among mul-
tiple data points [41], which enables exploiting structure
information across examples and thus leading to a good predic-
tive performance. Specifically, the inverse covariance matrix

measures the partial correlations2 [43] and represents the sta-
tistical dependence relationships. Let E(v) = F�M F be the
quadratic energy function, Zhu [37] interpreted the Laplacian
manifold learning as to have a model of Gaussian–Markov ran-
dom field: pβ(v) = e−βE(v)/Zβ , where pβ(v) is the probability
distribution on v, β is an “inverse temperature” parameter,
and Zβ is the partition function. They also used an inverse
covariance matrix by considering that the independence is
expressed over data features instead of over data points and
explained that the edges in the graph they created correspond
to nonzeros in the inverse covariance matrix.

Note that to be positive semidefinite, zero row sums, positive
diagonal, and negative otherwise is a necessary and sufficient
condition for Laplacian matrix. Although it has been well-
defined and frequently studied (see; e.g., [?], [37], [44]) that
when graph signals are analyzed as random vectors with a
Gaussian–Markov random field distribution, its inverse covari-
ance matrix is a Laplacian matrix, it is interesting to see
under what conditions the inverse covariance matrix in (8)
is a Laplacian matrix. A future work is to study and design a
deep network such that the corresponding matrix in (8) is (or
is encouraged to be) a Laplacian matrix.3

Before proving that unsupervised pretraining helps pre-
dictors learned by deep learning algorithms generalize fast,
in Section V, we interpret deep learning algorithms as the
traditional batch learning algorithms with Tikhonov regulariza-
tions that simultaneously learn predictors in the input feature
space and the parameters of the neural networks to form the
Tikhonov matrices. Tikhonov regularization also encourages
the neural networks to learn representations having pairwise
correlations which are close to that of the labels.

IV. UNSUPERVISED PRETRAINING REGULARIZES

DEEP LEARNING ALGORITHM

In Section III, to illustrate the regularization property of
unsupervised pretraining, we have assumed that fine-tuning
does not tune the parameters of the neural networks. However,
in practice, the fine-tuning step tunes both the predictor and
the parameters of the neural network. In this section, we show
how unsupervised pretraining works in this scenario.

For a deep learning algorithm, we have written the model
as{
v ′

S,W (1)
S , . . . ,W (L)

S

}
= arg min

v ′∈Rd ,W (l)∈B
(

W (l)
U ,r

)
,l∈{1,...,L}

1

n

n∑
i=1

�
(
yi ,

〈
v ′, φ

(
W (L), . . . , φ

(
W (1)xi

))〉) + λ‖v ′‖2
2

2If an entry of the inverse of a covariance matrix is equal to 0, it corresponds
to a pair of variables that have no partial correlation. In other words, pairs of
variables that are conditionally independent given all the other features in the
data. We have interpreted ��� as a covariance matrix by considering that the
independence is being expressed over data features instead of over data points.
The credibility of the consideration has been discussed in [42, Sec. 2.4].

3Note that Gaussian process has been exploited to incorporate the inverse
of the regularized Laplacian as a prior [37] to discover structural relationships
from data. Similar methods may be introduced to deep Gaussian processes [46]
or deep probabilistic models [47].
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where B(W (l)
U , r) denotes the closed ball of radius r centered

at W (l)
U .

There is no doubt that the high performance of deep learning
algorithms is due to its ability to learn meaningful new
representations. We now show that deep learning algorithms
can be interpreted as the traditional batch learning algorithms
with Tikhonov regularization that simultaneously learn pre-
dictors in the input feature space and the parameters of the
neural networks to form the Tikhonov matrices for regular-
ization. Let � and ε(X) denote �(X,W (1), . . . ,W (L)) and
ε(X,W (1), . . . ,W (L)), respectively, and Ŷ = (X − ε(X))�v.
Similar to those of (5) and (8), let v ′ = W (L), . . . ,W (1)v,
we can rewrite the model of a deep learning algorithm as{

vS,W (1)
S , . . . ,W (L)

S

}
= arg min

v∈Rc,W (l)∈B
(

W (l)
U ,r

)
,l∈{1,...,L}

1

n

n∑
i=1

�(yi , ŷi )+ λ
∥∥W (L), . . . ,W (1)v

∥∥2

2

= arg min
v∈Rc,W (l)∈B

(
W (l)

U ,r
)
,l∈{1,...,L}

1

n

n∑
i=1

�(yi , ŷi )

+ λtr
(

Ŷ �(
���

)+
Ŷ

)
. (9)

Equation (9) motivates us to explore a regularization
λtr(Ŷ �(���)+Ŷ ) for deep learning algorithms (such as
CNNs).

From (9), we can see that deep learning algorithms not only
minimize the empirical risks for predictions but also learn
meaningful data representations and structures to help learn
predictors. The empirical risk minimization algorithms usually
minimize the distance between true label and predicted label
by learning a predictor v (or v ′) minimizing

∑n
i=1 �(yi , ŷi).

Equation (9) shows that the neural network also provides a
penalty minimizing the difference between the pairwise simi-
larities of the new representations and that of the predictions.
Specifically, since Ŷ �(���)+Ŷ is a semipositive definite
matrix,4 the trace regularization encourages the condition
number λmax/λmin, where λmax and λmin are the largest and
smallest eigenvalues of Ŷ �(���)+Ŷ , to be small. A small
condition number also means that the difference between
��� and Ŷ Ŷ � is small. Moreover, the matrix ��� ∈ R

n×n

can be regarded as representing the pairwise similarities of
new representations and Ŷ Ŷ � ∈ R

n×n represent the pairwise
similarities of the predictions.

The residuals ε(xi ,W (1), . . . ,W (L)), i ∈ {1, . . . , n} are
uncertain noise for generalization. Since Ŷ contains the
residual terms, large residuals imply that small values of∑n

i=1 �(yi, ŷi ) and λtr(Ŷ �(���)+Ŷ ) w.r.t. the learned argu-
ments {vS,W (1)

S , . . . ,W (L)
S } cannot generalize well on unseen

data. Unsupervised pretraining which aims to make the resid-
uals small on unseen data is therefore important for deep
learning algorithms.

4Because every positive definite matrix is invertible and its inverse is also
positive definite, and if a matrix M is positive semidefinite, for any given
matrix Q, Q�M Q is also positive semidefinite.

In Section V, we prove that unsupervised pretraining is
essential. Because by making the residuals small, the predictor
learned by deep learning algorithms generalizes fast w.r.t. the
sample size.

V. UNSUPERVISED PRETRAINING HELPS THE LEARNED

PREDICTOR GENERALIZE FAST

In this section, we show that the generalization ability
of learning algorithms can be improved using unsupervised
pretraining. In summary, Theorem 1 shows that when only the
predictor and are tuned in fine-tuning step, the unsupervised
pre-training encourages deep learning algorithms to be end-to-
end stable, and therefore will generalize fast [48]; Lemma 2
shows that when both the predictor and the parameters of the
pretrained neural network are tuned in the fine-tuning step,
unsupervised pretraining also can encourage deep learning
algorithms more stable than the random initialization seed
when the change in pretrained parameters is not large during
the fine-tuning step.

First, we introduce the stability framework proposed by
Liu et al. [48], which plays a central role in proving the
generalization bound with a fast convergence rate.

Definition 1 (Uniform hypothesis stability): An deep learn-
ing algorithm is α(n)-uniformly hypothesis stable w.r.t. a spe-
cific domain Z = (X × Y) ⊂ (Rc × R), if for any training
sample S ∈ Zn , any i ∈ {1, . . . , n}, and any z = (x, y) ∈ Z ,
there exist an α(n), such that the following holds: ‖vS −
vSi ‖2 ≤ α(n), where vS represents the arguments learned by
the algorithm using sample S, and Si denotes the training
sample S with the i th example zi being replaced by an i.i.d.
example z′

i , and α(n) ∈ R+.
Intuitively, the above definition defines the stability of a

deep learning algorithm by the maximum difference between
two hypotheses vS and vSi by minimizing the empirical risk on
two training sets S and Si , respectively, where S and Si only
differ in exactly one example. If the �2 difference between the
two hypotheses vS and vSi can be bounded by α which is a
function on the sample size n of the training sets, then the
algorithm is defined to be α(n)-uniformly hypothesis stable.

The following Lipschitz-like definition on a loss func-
tion [49] is useful to derive upper bound for stability.

Definition 2 (L-admissible): A loss function � is
L-admissible with respect to the hypothesis class H if
there exists a function L ∈ R

+ such that for any v, v ′ ∈ H
and any example z = (x, y) ∈ Z such that

|�(v, z)− �(v ′, z)| ≤ L|〈v − v ′, x
〉|.

Now we show that a linear predictor optimizing the objec-
tive in (5), namely

min
v∈Rc

1

n

n∑
i=1

�(yi , 〈v, xi 〉)+ λ
∥∥∥W (L)

U , . . . ,W (1)
U v

∥∥∥2

2
(10)

is uniformly hypothesis stable as follows.
Theorem 1: Let the loss function � be convex w.r.t. the

predictor, L-admissible, and upper bounded by M , that is
for any z = (x, y) ∈ Z and v ∈ H , �(y, 〈v, x〉) ≤ M .
Assume the new representations φ(X,W (1)

U , . . . ,W (L)
U ) and
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the residual ε(X,W (1)
U , . . . ,W (L)

U ) are upper bounded by ∧φ
and ∧ε, respectively. Algorithms that minimize the objective
function in (10) are uniformly hypothesis stable with respect to
the domain of training sample S. That is, for any independently
distributed training sample S ∈ Zn , any i ∈ {1, . . . , n}, and
any Z = (X,Y ) ∈ Z , the following holds:∥∥∥W (L)

U , . . . ,W (1)
U (vS,WU − vSi ,WU

)
∥∥∥

2
≤ L∧φ

λn + O
(√

∧ε
n

)
where vS,WU denotes the predictor learned by optimizing (10)
using sample S.

It has been proven that support vector machine (SVM) is
uniformly hypothesis stable, e.g., [49], which implies that the
learning algorithm optimizing

min
v∈Rc

1

n

n∑
i=1

�

(
yi ,

〈
v ′,

(
W (1)

U

)�
, . . . ,

(
W (L)

U

)�

× φ
(

W (L)
U , . . . , φ

(
W (1)

U xi

))〉)

+ λ
∥∥∥W (L)

U , . . . ,W (1)
U v

∥∥∥2

2

= min
v∈Rc

1

n

n∑
i=1

�
(

yi ,
〈
W (L)

U , . . . ,W (1)
U v ,

φ
(

W (L)
U , . . . , φ

(
W (1)

U xi

))〉)
+ λ

∥∥∥W (L)
U , . . . ,W (1)

U v
∥∥∥2

2

= min
v∈Rc

1

n

n∑
i=1

�
(

yi ,
〈
v, xi − ε

(
xi ,W (1)

U , . . . ,W (L)
U

)〉)

+ λ
∥∥∥W (L)

U , . . . ,W (1)
U v

∥∥∥2

2
(11)

is also uniformly hypothesis stable. The stability properties of
algorithms that optimize objects (10) and (11) are different by
that the algorithm optimizing object (11) is uniformly hypoth-
esis stable w.r.t. the size of newly represented examples; while
the algorithm optimizing object (10) is uniformly hypothesis
stable w.r.t. the size of the input examples. By comparison,
we can conclude that unsupervised pretraining encourages
deep learning algorithms to be end-to-end stable by minimiz-
ing the residual ε(X,W (1)

U , . . . ,W (L)
U ).

Liu et al. [48] have proved that uniformly hypothesis stable
algorithms will generalize fast. Using the same proof method,
it is easy to show that if the residuals are zero, the predictor
learned by optimizing the object in (10) will generalize fast
w.r.t. the domain of the input examples. This partially explains
why unsupervised pretraining is helpful to improve the test
performance of deep learning algorithms.

For deep learning algorithms when both the predictor
and the parameters of the pretrained neural network are
tuned in the fine-tuning step, it is reasonable to assume
that the unsupervised pretraining step constraints the fine-
tuning step to pick up the parameter W (l) from a closed
ball B(W (l)

U , r), l ∈ {1, . . . , L}, where r is not large. Let
{vS,W (1)

S , . . . ,W (L)
S } and {vSi ,W (1)

Si , . . . ,W (L)
Si } be the argu-

ments learned by algorithm (9) using samples S and Si ,
respectively. Let us write W (L)

S , . . . ,W (1)
S = W (L)

U , . . . ,W (1)
U +


WS and W (L)
Si , . . . ,W (1)

Si = W (L)
U , . . . ,W (1)

U + 
WSi . Then,
‖
WS‖ ≤ r and ‖
WSi ‖2 ≤ r . If we further assume that the

upper bound ∧ε of the residual ‖ε(x,W (1), . . . ,W (L))‖2 is also
small, we could expect that learning algorithms optimizing
the object in (9) are some kind of stable, so unsupervised
pretraining will make its upper bound small.

Lemma 2: Let the loss function � be convex w.r.t. the
predictor, L-admissible, and upper bounded by M . For any
independently distributed training sample S ∈ Zn , any i ∈
{1, . . . , n}, and any z = (x, y) ∈ Z , the following holds:∥∥∥(

W (L)
U , . . . ,W (1)

U

)
(vS − vSi )

∥∥∥
2

≤ L∧φ
λn

+
√

O(∧ε)+ O(r)+ O(r2)

where vS is the output of the learning algorithm that minimizes
the objective function in (9) using the training sample S.

The proof method of Lemma 2 is the same as that of
Theorem 1. We know that unsupervised pretraining makes ∧ε
and
W (or r ) small. If the two terms approach zero, the upper
bound in Lemma 2 will degenerate to that in Theorem 1. Thus,
Lemma 2 shows that unsupervised pretraining makes deep
learning algorithms more stable than the random initializa-
tion seed. Unsupervised pretraining therefore regularizes the
predictor and helps it generalize fast (according to the results
in [48]). This is in accordance with the empirical findings of
Bengio et al. [11] that the unsupervised training strategy helps
optimization by initializing weights in a region near a good
local minimum that brings better generalization than without
using cosine similarity minimized (CSM) regularizer.

VI. PROOF OF THINGS

A. Proof of Lemma 1

Let v ′ = W (L)
U , . . . ,W (1)

U v, the objective in (4) becomes

vS,WU = arg min
v∈Rc

1

n

n∑
i=1

�
(

yi ,
〈
W (L)

U , . . . ,W (1)
U v, φ

(
W (L)

U , . . . ,

φ
(

W (1)
U xi

))〉)
+ λ

∥∥∥W (L)
U , . . . ,W (1)

U v
∥∥∥2

2

= 1

n

n∑
i=1

�

(
yi ,

〈
v,

(
W (1)

U

)�
, . . . ,

(
W (L)

U

)�

× φ
(

W (L)
U , . . . , φ

(
W (1)

U xi

))〉)

+ λ
∥∥∥W (L)

U , . . . ,W (1)
U v

∥∥∥2

2

= 1

n

n∑
i=1

�
(

yi ,
〈
v, xi − ε

(
xi ,W (1)

U , . . . ,W (L)
U

)〉)

+ λ
∥∥∥W (L)

U , . . . ,W (1)
U v

∥∥∥2

2
(12)

where ε
(

xi ,W (1)
U , . . . ,W (L)

U

)
is the reconstruction error of the

neural network pretrained by the auto-encoder and is defined
by

ε
(

xi ,W (1)
U , . . . ,W (L)

U

)
= xi −

(
W (1)

U

)�
, . . . ,

(
W (L)

U

)�
φ
(

W (L)
U , . . . , φ

(
W (1)

U xi

))
.

(13)
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We have assumed that X j,p, j ∈ {1, . . . ,m} and
xi , i ∈ {1, . . . , n} have the same marginal distribu-
tion. Thus, unsupervised pretraining encourages the residual
ε(xi ,W (1)

U , . . . ,W (L)
U ) to be zero and thus encourages

vS,WU =arg min
v∈Rc

1

n

n∑
i=1

�(yi , 〈v, xi 〉)+ λ
∥∥∥W (L)

U , . . . ,W (1)
U v

∥∥∥2

2
.

(14)

The proof ends. �

B. Proof of Theorem 1

First, we introduce Bregman divergence [50], which is
helpful to upper bound the uniform hypothesis stability.

Definition 3 (Bregman Divergence): Let f : X → R be a
convex function. For all s, t ∈ X , we have

B f (s‖t) = f (s)− f (t)− 〈s − t,∇ f (t)〉
where ∇ f (t) denotes the gradient of function f (t).

Bregman divergence has the following properties. Detailed
discussions can be found in [50].

Lemma 3: Bregman divergence is additive and nonnegative.
If f = f1+ f2, and both f1 and f2 are convex, for any s, t ∈ X ,
we have

B f (s‖t) = B f1(s‖t)+ B f2(s‖t) and B f (s‖t) ≥ 0.

Now, we are ready to prove Theorem 1. To prove the
algorithms that optimize (5), namely

vS,WU =arg min
v∈RD

1

n

n∑
i=1

�(yi , 〈v, xi 〉)+λ
∥∥∥W (L)

U , . . . ,W (1)
U v

∥∥∥2

2

is uniformly stable, let

fe,S(v) = 1

n

n∑
i=1

�(yi , 〈v, xi 〉)

fr (v) = λ
∥∥∥W (L)

U , . . . ,W (1)
U v

∥∥∥2

2

and

fS(v) = fe,S(v) + fr (v).

Let vS,WU be the solution to optimization problem (5) when the
input training sample is S, and vSi ,WU

be the solution when
the input training sample is Si . Using Bregman divergence,
we have

B fS

(
vSi ,WU

‖vS,WU

) + B fSi

(
vS,WU ‖vSi ,WU

)
≥ B fr

(
vSi ,WU

‖vS,WU

) + B fr

(
vS,WU ‖vSi ,WU

)
. (15)

The right-hand side of inequality (15) can be written as

B fr

(
vSi ,WU

‖vS,WU

) + B fr

(
vS,WU ‖vSi ,WU

)
= −

〈
vSi ,WU

− vS,WU ,

× 2λ
(

W (L)
U , . . . ,W (1)

U

)�
W (L)

U , . . . ,W (1)
U vS,WU

〉

−
〈
vS,WU − vSi ,WU

,

× 2λ
(

W (L)
U , . . . ,W (1)

U

)�
W (L)

U , . . . ,W (1)
U vSi ,WU

〉

= 2λ
∥∥∥W (L)

U , . . . ,W (1)
U (vS,WU − vSi ,WU

)
∥∥∥2

2
. (16)

The left-hand side of inequality (15) can be upper bounded as

B fS

(
vSi ,WU

‖vS,WU

) + B fSi

(
vS,WU ‖vSi ,WU

)
= fS(vSi ,WU

)− fS(vS,WU )

− 〈
vSi ,WU

− vS,WU ,∇ fS(vS,WU )
〉

+ fSi (vS,WU )− fSi (vSi ,WU
)

− 〈
vS,WU − vSi ,WU

,∇ fSi (vSi ,WU
)
〉

= fS(vSi ,WU
)− fS(vS,WU )+ fSi (vS,WU )− fSi (vSi ,WU

)

= 1

n

(
�
(
yi ,

〈
vSi ,WU

, xi
〉) − �

(
yi ,

〈
vS,WU , xi

〉)
+ �(y ′

i ,
〈
vS,WU , x ′

i

〉) − �
(
y ′

i ,
〈
vSi ,WU

, x ′
i

〉))
≤ L

n

(∣∣〈vS,WU − vSi ,WU
, xi

〉∣∣ + ∣∣〈vS,WU − vSi ,WU
, x ′

i

〉∣∣)
= L

n

(∣∣∣∣
〈
vS,WU − vSi ,WU

,
(

W (1)
U

)�
, . . . ,

(
W (L)

U

)�

×φ
(

W (L)
U , . . . , φ

(
W (1)

U xi

))
+ ε

(
xi ,W (1)

U , . . . ,W (L)
U

)〉∣∣∣
+

∣∣∣∣
〈
vS,WU − vSi ,WU

,
(

W (1)
U

)�
, . . . ,

(
W (L)

U

)�

×φ
(

W (L)
U , . . . , φ

(
W (1)

U x ′
i

))
+ ε

(
x ′

i ,W (1)
U , . . . ,W (L)

U

)〉∣∣∣∣
)

≤
2L ∧φ

∥∥∥W (L)
U , . . . ,W (1)

U (vS,WU − vSi ,WU
)
∥∥∥

2
+ O(∧ε)

n
(17)

where the second equality holds since vSi ,WU
and vS,WU

are optimal solutions, and we have ∇ fS(vS,WU ) =
∇ fSi (vSi ,WU

) = 0; the first inequality holds since the loss
function is L-admissible. Combining (15)–(17), we get∥∥∥W (L)

U , . . . ,W (1)
U (vS,WU − vSi ,WU

)
∥∥∥

2
≤ L∧φ

λn + O
(√

∧ε
n

)
which completes the proof. �

VII. EXPERIMENTS

To demonstrate the regularization property of unsupervised
pretraining, (9) motivates us to explore a regularizer similar
to tr(Ŷ Ŷ �(���)+) as follows:

λ‖Y Y � − ���‖2
2 (18)

where λ ≥ 0 is the weight of the regularizer. The pro-
posed regularizer (18) encourages the representations of the
examples with the same label to be similar by punishing the
difference between ��� and Y Y �. Specifically, according
to (8), if the true label y is well-learned by a learning algo-
rithm, the residual ε(X) will be small, then tr(Ŷ Ŷ �(���)+)
can be approximated by tr(Y Y T (���)+) which punishes the
difference between ��� and Y Y �. A good property of the
proposed regularizer (18) is that the inverse matrix operation
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TABLE I

SUMMARY OF DATASETS USED IN THE EXPERIMENTS

Fig. 1. Average and standard deviation (shaded area) of test classification
accuracy with different choices of hyperparameter λ on CIFAR10. (a) Models
are trained with 50% training data. (b) Models are trained with 100% training
data.

can be avoided, which is computationally more efficient.
Additionally, for any pair of instances, the proposed regularizer
minimizes the difference between the cosine similarity of their
latent representations and the cosine similarity of their labels.
Motivated by this property, we name the proposed regularizer
“CSM regularizer.”

We then evaluate the effectiveness of the proposed
regularizer (18) on three popular image classification
datasets, CIFAR10, CIFAR100 [6], and Fashion-MNIST (or
F-MNIST) [51]. Because the datasets originally do not provide
validation set, therefore, for all the experiments, we leave out
20% examples from the original training set to be our valida-
tion set, and the rest of the 80% examples become our new
training set. The sizes of the training set, validation set, and
test set are summarized in Table I. Two different popular neural
network structures are used in our experiments, which are
18-layer-ResNet (ResNet18) [52] and 18-layer preactivation
ResNet (ResNeXt18) [52]. Stochastic gradient descent (SGD)
optimizer is used with the batch size 128. The initial learning
rate is 0.1 and is decayed by a factor 10 for every 100 epochs.
The network is trained for 350 epochs in total. To clearly
illustrate the effect of the proposed regularizer, we do not use
the weight decay.5

The rest of this section is organized as follows.
In Section VII-A, we investigate the selection of the weight
parameter of CSM regularizer. In Section VII-B, we compare
the test accuracy of ResNet18 and ResNeXt18 when CSM
regularizer is deployed or not on different datasets and sample
sizes. In Section VII-D, we visualize the latent representa-
tions of ResNet18 and ResNeXt18 when CSM regularizer is
deployed or not.

5The code will be published on GitHub upon acceptance.

A. Hyperparameter Selection

In this section, we investigate the selection of the hyper-
parameter λ. Specifically, we compare the test classifica-
tion accuracy under different choices of λ = {0.0125,
0.025, 0.5, 1, 2, 4, 8, 16}. The experiments are conducted on
both ResNet18 and ResNeXt18. The classification accuracy
and the standard deviation generated by investigated methods
under different λ are illustrated in Fig. 1. The curves in the
figures represent the average classification accuracy over five
repeated trials. The shaded area around the accuracy curve
indicates the standard deviation of classification accuracy over
the five repeated trials. The figures show that for different
sample sizes and different neural network structures, the aver-
age classification accuracy keeps increasing when the value
of λ increases from 0 to 1, and the average classification
accuracy keeps decreasing when the value of λ increases from
1 to 16. By observing the shaded area, the standard deviation
of classification accuracy does not change significantly when
the value of λ is in the range of [0, 1], and the standard
deviation of classification accuracy increases when the value
of λ increases from 1 to 16. Overall, for both neural network
structures and different sample sizes, the best average clas-
sification accuracy is achieved at λ = 1, and the standard
deviation is also small at λ = 1. This means that for different
random experiments, setting λ = 1 is most likely to produce
the optimal results. Therefore, we select the hyperparameter
λ = 1 for the following experiments.

B. Classification Accuracy on Clean Data

To verify that the proposed regularizer helps improve the
classification accuracy, we evaluate the classification accuracy
of ResNet18 and ResNeXt18 on CIFAR10, and F-MNIST with
or without adding our regularizer. Different training sample
sizes, i.e., 50% and 100% of the original examples in the
datasets, are used to train both ResNet18 and ResNeXt18.
Additionally, to investigate how the depth of networks affects
the regularization effect, we also use ResNets and ResNeXts
with different hidden layers on CIFAR100. All the experiments
are independently implemented for five trials.

In Figs. 2–4, we illustrate both the training and test accuracy
with the increase in training epoch on CIFAR10, CIFAR100,
and Fashion-MNIST (or F-MNIST) [51]. The red lines indi-
cate the average accuracy of the neural networks with using
CSM regularizer over repeated experiments, and the blue
line indicates the average accuracy of the neural networks
without using CSM regularizer. By observing the average test
accuracy with the increase in training epoch in these figures,
we conclude that for most of the experiments, the red lines
are continuously aligned above the blue lines. This means
that using CSM regularizer, the test accuracy consistently
outperforms baselines with the same amount of training epoch.
This illustrates the effectiveness of the proposed regularizer.
By observing the average training accuracy with the increase
in training epoch in these figures, we can observe that for all
the experiments, the training accuracy is similar at the same
training epoch when CSM regularizer is deployed or not. This
reflects that our regularizer has an encouraging generalization
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Fig. 2. Average and standard deviation (shaded area) of the training and test
accuracy with the increase in training epoch on F-MNIST.

TABLE II

AVERAGE TEST ACCURACY ± STANDARD DEVIATION OVER 350
TRAINING EPOCHS ON CIFAR10 AND F-MNIST

WITH 50% TRAINING DATA

property with respect to the sample size. That is to say, with
the same training accuracy, the test accuracy is higher than the
baseline.

We report the average test accuracy and the standard devia-
tion obtained by the models with the best validation accuracy
in Tables II and III. Both the tables show that using CSM reg-
ularizer (18), the classification accuracy for different network
structures is improved, It indicates that the proposed CSM
regularizer can be integrated into different neural network
structures to improve their accuracy. The tables also show
that SCM regularizer helps improve the classification accuracy
with not only the small training sample size but also the large

Fig. 3. Average and standard deviation (shaded area) of the training and test
accuracy with the increase in training epoch on CIFAR10.

TABLE III

AVERAGE TEST ACCURACY ± STANDARD DEVIATION OVER 350
TRAINING EPOCHS ON CIFAR10 AND F-MNIST

WITH 100% TRAINING DATA

training sample size. The improvement of the average accuracy
further validates that our regularizer helps the learned predictor
generalize fast with respect to the sample size.

In Tables IV and V, we report the average test accuracy and
the standard deviation using ResNet and ResNeXt with 18, 34,
and 50 layers on CIFAR100. For most of the experiments, our
regularizer improves the classification accuracy. However, the
generalization ability of ResNeXt is much better than ResNet
on CIAR100 which has much smaller sample size per class,
when compared with CIFAR10 and F-MNIST. It is also worth
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Fig. 4. Average and standard deviation (shaded area) of the training and test
accuracy with the increase in training epoch on CIFAR100.

TABLE IV

AVERAGE TEST ACCURACY ± STANDARD DEVIATION OVER 350
TRAINING EPOCHS ON CIFAR100 USING RESNET WITH

DIFFERENT DEPTHS AND DIFFERENT

TRAINING SAMPLE SIZES

to mention that for ResNeXt, the number of layers does not
influence the classification accuracy too much. In contrast, the
classification accuracy of ResNet drops with the increase in
the number of layers, especially the accuracy, is decreased
by approximately 10% from 34 to 50 layers. The results show
that ResNeXt is earlier to be optimized compared with ResNet
when the number of layers of network is large.

TABLE V

AVERAGE TEST ACCURACY ± STANDARD DEVIATION OVER 350
TRAINING EPOCHS ON CIFAR100 USING RESNEXT WITH

DIFFERENT DEPTHS AND DIFFERENT

TRAINING SAMPLE SIZES

TABLE VI

AVERAGE TEST ACCURACY ± STANDARD DEVIATION OF RESNET

OVER 350 TRAINING EPOCHS ON CIFAR10 AND CIFAR100
CONTAINING 50% SYMMETRY NOISE

AND 45% PAIR-FLIP NOISE

C. Classification Accuracy on Noisy Data

To further validate the regularization property, we use CSM
regularizer on the data containing label noise [53], [54].
Because labels Ỹ in training sample contains noise and cannot
be fully trusted, we implicitly reduce the importance of noisy
labels using predicted labels of models in our regularizer,
i.e., λ‖Ŷ Ŷ � − ���‖2

2.
Two types of popular label noise [55], [56] are used in

experiments, which are 50% symmetry noise [54] and 45%
pair-flip noise [55]. To generate noisy datasets, we manually
corrupt the training and validation sets of each dataset accord-
ing to noise types. We use 18-layer and 34-layer ResNets for
CIFAR10 and CIFAR100, respectively. The results are sum-
marized in Table VI, which shows that using SCM regularizer,
the classification accuracy on both CIFAR10 and CIFAR100
has been improved in a large margin. This further validates
that our method helps improve the robustness of deep learning
models and can prevent outfitting.

D. Latent Representations Visualization on Clean Data

To investigate the influence of latent representations using
our regularizer, we visualize the latent representations of the
test data using t-distributed stochastic neighbor embedding
(t-SNE) visualization [57]. The t-SNE algorithm is a popular
nonlinear technique for dimensionality reduction and is well-
suited for visualization of high-dimensional datasets, which
is commonly used in many literatures [58]–[64]. Intuitively,
it calculates the similarities among instances in the high-
dimensional space and the similarities among instances in
the corresponding low-dimensional space, and it iteratively
minimizes the difference between these similarities in higher
dimensional and lower dimensional spaces to find meaningful
representations of instances in lower dimensional space. The
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Fig. 5. Latent representation of ResNet18 with or without using SCM
Regularizer on F-MNIST and CIFAR10. (a) Without SCM regularizer (λ = 0).
(b) With SCM regularizer (λ = 1).

Fig. 6. Latent representation of ResNeXt18 with or without using SCM
Regularizer on F-MNIST and CIFAR10. (a) Without SCM regularizer (λ = 0).
(b) With SCM regularizer (λ = 1).

distance between a pair of instances indicates the similarity of
their latent representations. The closer the distance, the more
similar the latent representations.

In Figs. 5 and 6, we illustrate the latent representations
on test set learned by neutral networks on CIFAR10 and
CIFAR100. Both ResNet18 and ResNeXt18 are used for
visualization. The models with the best validation accuracy
are used for visualization. Each point in the figures represents
the latent representation of an instance in 2-D space. Different
colors represent different labels. The visualization shows that
CSM regularizer helps learn meaningful data representations.

Both the figures show that without using cosine similarity
minimized (CSM) regularizer, the classification models prefer
to learn ball-shaped clusters. However, the latent representa-
tions for instances in different classes are not well-separated,
i.e., the interclass distances are small, and the boundary
between the classes is not clear. This means that the latent
representations of the instances in different classes are close
to each other, which obviously has a negative effect on the
classification accuracy of the classification models.

The proposed regularizer helps the classification models
learn line-shaped clusters which are better than ball-shaped
clusters. Because the interclass distances for both the neural
network structures are significantly increased, there exists clear
boundaries between different classes. It is worth to mention
that there still exist some instances with different classes
aligned closely in line-shaped clusters. The reason may be that
these instances are similar and have some common features,
and it is hard for the classification models to completely
eliminate all the common features.

VIII. CONCLUSION

In this article, we analyze why unsupervised pretraining
regularizes deep learning algorithms by exploiting its recon-
struction property. Specifically, we provide a theoretical justi-
fication for observations that unsupervised pretraining works
as regularization and helps predictors learned by deep learning
algorithms generalize fast. We have interpreted deep learning
algorithms as the traditional batch learning algorithms with
Tikhonov regularizations that simultaneously learn predictors
in the input feature space and the parameters of neural
networks to form the Tikhonov matrices. Tikhonov regular-
ization also encourages the neural networks to learn similar
representations for examples with the same label.
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