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Abstract. Partial Label Learning (PLL) aims to train a classifier when
each training instance is associated with a set of candidate labels, among
which only one is correct but is not accessible during the training phase.
The common strategy dealing with such ambiguous labeling informa-
tion is to disambiguate the candidate label sets. Nonetheless, existing
methods ignore the disambiguation difficulty of instances and adopt the
single-trend training mechanism. The former would lead to the vulner-
ability of models to the false positive labels and the latter may arouse
error accumulation problem. To remedy these two drawbacks, this paper
proposes a novel approach termed “Network Cooperation with Progres-
sive Disambiguation” (NCPD) for PLL. Specifically, we devise a pro-
gressive disambiguation strategy of which the disambiguation operations
are performed on simple instances firstly and then gradually on more
complicated ones. Therefore, the negative impacts brought by the false
positive labels of complicated instances can be effectively mitigated as
the disambiguation ability of the model has been strengthened via learn-
ing from the simple instances. Moreover, by employing artificial neural
networks as the backbone, we utilize a network cooperation mechanism
which trains two networks collaboratively by letting them interact with
each other. As two networks have different disambiguation ability, such
interaction is beneficial for both networks to reduce their respective dis-
ambiguation errors, and thus is much better than the existing algorithms
with single-trend training process. Extensive experimental results on var-
ious benchmark and practical datasets demonstrate the superiority of our
NCPD approach to other state-of-the-art PLL methods.

Keywords: Weakly-supervised learning · Partial label learning · Pro-
gressive disambiguation · Network cooperation.

1 Introduction

Partial Label Learning (PLL), which is also known as superset label learning [9,
18, 19] and ambiguous label learning [15], is one of the emerging research fields
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Fig. 1: Two example applications of PLL. (a) In crowdsourcing, some annotators
may mistakenly label the picture of a cat with “Tigger” or “Leopard” due to
their limited cognitive ability. In this case, the query image contains three labels
but only one of them is correct. (b) A newsletter contains an image and the cor-
responding text caption, from which we can roughly know that Michael Jordan,
Kobe Bryant, and Lebron James may in the image. However, we can not figure
out the concrete correspondence between the faces and the names.

in weakly-supervised learning [5, 10, 26, 35]. PLL learns from ambiguous labeling
information where each training instance is associated with multiple candidate
labels and only one of them is valid. Due to the prevalence of ambiguous labeling
in real-world scenarios, PLL has many practical applications such as crowdsourc-
ing [9], image classification [4, 6, 21, 29], web mining [22], etc (see Fig. 1).

Formally, let X ∈ Rd denote the d -dimensional input space and Y = {1, 2, · · · , c}
denote the label space with c class labels. The task of PLL is to induce a clas-
sifier f : X → Y from the partial label training set D = {(xi,Si)|1 ≤ i ≤ N},
where xi ∈ X is a d-dimensional feature vector and Si ⊆ Y is the corresponding
candidate label set of xi. Particularly, the basic assumption under PLL frame-
work is that the latent groundtruth label yi of xi lies in Si, i.e., yi ∈ Si, whereas
it is not directly accessible during the training phase.

To learn from such partially labeled instances with ambiguously supervised
information, the common strategy is to disambiguate the set of candidate la-
bels of each training instance, namely to detect the unique correct label among
multiple candidate labels. There are mainly two classes of methods for such dis-
ambiguation operation, namely average-based methods and identification-based
methods. Average-based methods treat all candidate labels equally by assum-
ing that they contribute equally to the trained classifier and the prediction is
made by averaging their model outputs [15, 36]. These methods share a com-
mon deficiency that the effectiveness of the model is greatly affected by the
false positive labels in the candidate label sets, which leads to the suppression of
groundtruth label by these false positive labels. Identification-based methods ad-
dress this shortcoming via considering groundtruth label as a latent variable and
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gradually identifying it by iterative procedures such as Expectation Maximiza-
tion (EM) [16, 24, 31]. One potential drawback of identification-based methods
is that rather than recovering the latent groundtruth labels, the identified la-
bels might turn out to be false positive and they can hardly be rectified in the
subsequent iterations.

In a word, existing methods are vulnerable to false positive labels in the can-
didate label sets. There are two critical reasons that account for this. Firstly,
existing approaches scarcely take the disambiguation difficulty of instances into
account, and the disambiguation operations are performed on every training in-
stance all at once. In this case, when the instance is complicated and difficult to
classify, their models are likely to mistakenly regard the false positive label as
the latent groundtruth label, which will mislead the training process and ulti-
mately impair the disambiguation ability of the models. Secondly, the training
process of existing methods are all single-trend, which indicates that the data
disambiguated at the current step will be directly transferred back to the model
itself in the following steps. Under this circumstance, once the identified labels
turn out to be false positive, they would be difficult to correct in the succeed-
ing iterations and thereby raising the error accumulation problem, which will
severely degrade their performances.

To address these two shortcomings, this paper proposes a novel approach
which employs a progressive disambiguation strategy combined with a network
cooperation mechanism for PLL, which is termed “Network Cooperation with
Progressive Disambiguation” (“NCPD” for short). Specifically, to address the
problem of ignoring the disambiguation difficulty of instances, we devise a pro-
gressive disambiguation strategy which disambiguates simple instances firstly
and then gradually disambiguates more complicated ones. Through learning
from the simple instances, the disambiguation ability of the model can be im-
proved steadily. With the proceeding of training process, the model is capable
of disambiguating the complicated instances precisely. As a consequence, the
negative impacts brought by the false positive labels, especially those of compli-
cated instances, can be effectively mitigated. To settle the error accumulation
problem caused by the single-trend training mechanism of traditional methods,
we employ Artificial Neural Networks (ANNs) [14] as the backbone and utilize
a network cooperation mechanism which trains two networks collaboratively by
letting them interact with each other. That is to say, two networks disambiguate
the training instances independently in the forward propagation phase and then
back propagate the data disambiguated by its peer network. As two networks
have different ability and can disambiguate training instances at different levels,
such interaction is beneficial for both networks to learn from each other and thus
their respective disambiguation errors can be reduced. As a result, the error accu-
mulation problem can be significantly alleviated, and that is why we adopt such
network cooperation mechanism rather than the existing single-trend training
process. Intensive experiments on multiple datasets substantiate the superiority
of our proposed NCPD approach to the state-of-the-art methodologies.
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The rest of this paper is organized as follows. We review the related works in
Section 2, and introduce the proposed NCPD approach in Section 3. Section 4
reports the experimental results, followed by the conclusion in Section 5.

2 Related Work

Existing algorithms dealing with partially labeled instances can be roughly
grouped into the following two classes, i.e., average-based methods and identification-
based methods.

The average-based methods treat all candidate labels equally and the pre-
diction is made by averaging their model outputs. For example, the work [15]
straightforwardly generalizes the k-nearest neighbor classifier to resolve the PLL
problem by predicting the label of a test instance x via the voting strategy among
the candidate labels of its neighbors. That is to say, f(x) = argmaxy∈Y

∑
i∈N(x)

I(y ∈
Si), where N (x) denotes the neighbors of the test instance x and I(·) is the indi-
cator function. Zhang et al. [36] also propose a model of which the predictions of
unseen instances are made by the weighted averaging over the candidate labels
of their neighbors. Cour et al. [6] propose a convex learning method and decide
the groundtruth label by averaging the outputs from all candidate labels, i.e.,
1
|Si|

∑
y∈Si F (x, y;Θ) with Θ being the model parameters. Average-based meth-

ods are intuitive and are easy to implement. However, these methods share a
critical shortcoming that the outputs from false positive labels may overwhelm
the groundtruth labels’ outputs, which will severely degrade their performances.

The identification-based methods regard the unique groundtruth label as
a latent variable and identify it as argmaxy∈SiF (x, y;Θ). Maximum likelihood
criterion and maximum margin criterion are the two most widely-used learning
strategies to identify groundtruth labels. Based on EM procedure, the meth-
ods [16, 19] train their models by optimizing the maximum likelihood func-
tion

∑n
i=1 log(

∑
y∈Si F (x, y;Θ)). The work [24] maximizes the margin between

outputs from candidate labels and that from non-candidate labels to refine
groundtruth labels, and the corresponding objective function is

∑n
i=1(maxy∈SiF (x, y;Θ)−

maxy/∈SiF (x, y;Θ)). Nonetheless, the above margin ignores the predictive differ-
ence between the latent groundtruth label and other candidate labels. To address
this problem, Yu et al. [31] maximize the margin between the groundtruth label
and other labels, i.e.,

∑n
i=1(F (xi, yi;Θ)−maxy 6=yiF (xi, y;Θ)) where yi denotes

the groundtruth label of xi. Moreover, by applying the idea of self-paced learn-
ing, Lyu et al. [23] propose a novel algorithm which utilizes the maximum margin
criterion to detect the groundtruth label. Differently, Feng et al. [8] balance the
minimum approximation loss and the maximum infinity norm of the outputs
to differentiate the unique groundtruth label from false positive labels. Chen et
al. [4] eliminate a proportion of the least likely candidates in each iteration to
enhance the discriminability of their proposed approach. One potential short-
coming of identification-based methods is that the identified label in the current
iteration may turn out to be false positive and they can hardly be rectified in
the subsequent iterations.
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Fig. 2: The framework of our method. (a) indicates the data duplication scheme
which transforms each partially labeled instance into a multi-birth group. Af-
ter that, we feed the transformed data into the networks and thus their corre-
sponding loss values can be obtained (the blue line). (b) presents the process of
dividing multi-birth groups into two levels of difficulty and then calculating the
confidence scores of instances among them according to the incurred loss values.
(c) denotes the network cooperation mechanism where two networks interact
with each other via exchanging their respective confidence scores of instances
(i.e., wα and wβ) for back propagation.

In a word, although the aforementioned methods have achieved good perfor-
mances to some degree, they still suffer from two severe drawbacks, i.e., ignoring
the disambiguation difficulty of instances and adopting the unreliable single-
trend training process, and both of them will degrade their performances as
mentioned in the introduction. Therefore, this paper presents a novel algorithm
termed NCPD which will be introduced in the next section.

3 The Proposed NCPD Approach

In this section, we introduce the NCPD approach of which the architecture is
illustrated in Fig. 2. To facilitate the disambiguation process, we firstly em-
ploy a data duplication scheme which transforms each partially labeled instance
into a multi-birth group3 (Fig. 2 (a)). Afterwards, by dividing these multi-birth
groups into two levels of difficulty (i.e., “simple” and “complicated”), we can
calculate the confidence scores of instances among them via averaging or disam-
biguation (Fig. 2 (b)). Finally, two networks collaborate with each other through
exchanging the confidence scores of instances generated by them independently
to compute their respective back propagated loss (Fig. 2 (c)). We will detail
these critical steps in the following sections.

3.1 Data Duplication

We denote X = [x1, . . . ,xN ] as the training set with each column xi (i =
1, 2, . . . , N) representing the feature vector of the i-th instance and N denotes

3 The notion of “multi-birth group” will be detailed later in Section 3.1.
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the total number of training instances. Besides, we represent the candidate label

set of xi as Si = {y1
i , y

2
i , . . . , y

|Si|
i }, where |Si| denotes the cardinality of Si.

To pave the way for the subsequent disambiguation operations, we adopt
a data duplication scheme on the original partially labeled training dataset.
Specifically, for an arbitrary training instance xi and its corresponding candidate

label set Si, we first duplicate xi into |Si| replicas, i.e., x1
i , x

2
i , . . . , and x

|Si|
i ,

and each replica is identical to the original feature vector xi. After that, we

decompose the corresponding candidate label set Si = {y1
i , y

2
i , . . . , y

|Si|
i } and

then assign each candidate label yji (j = 1, 2, . . . , |Si|) to a replica xji . Eventually,
from an original training instance xi and its corresponding candidate label set
Si, we can obtain |Si| newly generated instance-label pairs, i.e., (x1

i , y
1
i ), (x2

i , y
2
i ),

. . . , (x
|Si|
i , y

|Si|
i ), and we name these pairs which are generated from the original

one instance as a “multi-birth group”.
After performing the above-mentioned data duplication operation on all

training instances, we have transformed the original partially labeled training
dataset into a new training dataset which contains n =

∑
i |Si| (i = 1, 2, . . . , N)

instances from N multi-birth groups, and meanwhile each instance contains only
one label (can be correct or incorrect). It is worth noting that although learning
from such transformed dataset is similar to corrupted labels learning [11, 20, 30]
at the first glance, it differs from corrupted label learning in that we can defi-
nitely know that only one instance is labeled correctly while the labels of other
instances are all wrong among each multi-birth group.

As we have obtained the new training dataset, disambiguating the origi-
nal partially labeled instances is transformed to disambiguating the multi-birth
groups, i.e., detecting the unique correctly labeled instance in each multi-birth
group. To achieve this target, we take the confidence level of each training in-

stance into consideration. Specifically, we denote w = [w>1 ,w
>
2 , . . . ,w

>
N ]
> ∈

Rn×1 as the confidence vector of n training instances from N multi-birth groups,

where wi = [w1
i , w

2
i , . . . , w

|Si|
i ]

>
indicates the group confidence vector of the i-th

multi-birth group with the j-th element wji ∈ [0, 1] in wi representing the learn-

ing confidence score of the instance xji . As there is only one instance labeled cor-
rectly in each multi-birth group, the instances in the same multi-birth group are
naturally in a competitive relationship. Therefore, we assume that each group

confidence vector should be normalized, i.e.,
∑|Si|
j=1 w

j
i = 1,∀i = 1, 2, . . . , N .

Distinctly, disambiguating the multi-birth groups is equivalent to refining their
corresponding group confidence vectors.

3.2 Progressive Disambiguation

As stated before, we attempt to disambiguate the simple multi-birth groups at
the initial training stages and gradually disambiguate more complicated ones as
the training process goes on. That is to say, the group confidence vectors of the
simple multi-birth groups ought to be acquired firstly so that the trained model
is capable of learning from these disambiguated multi-birth groups. With the
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proceeding of training process, the disambiguation ability of the model will be
improved and thus the group confidence vectors of the complicated multi-birth
groups can be obtained precisely.

Intuitively, if a multi-birth group contains an instance which is probably la-
beled correctly, disambiguating this multi-birth group is relatively easy and thus
we consider it as a simple multi-birth group. Existing researches [1, 34] have
shown that a network will learn clean and easy patterns firstly, which indicates
that the instances with small loss values are likely to be correctly labeled. Based
on such observation and meanwhile employing ANNs as the backbone, we pro-
pose a progressive disambiguation strategy as explained below.

After feeding the mini-batch data Db into the network at the t-th epoch,
we can obtain the cross-entropy loss values of these instances, namely `(Θ,Db),
where Θ indicates the network parameters. After that, we pick up the instances
which are likely to be correctly labeled according to the following two conditions:
1) Their loss values are the first T (t) percentage minimums out of `(Θ,Db),
where T (t) is a time-dependent parameter determining the maximum amount
of the simple multi-birth groups at the t-th epoch, and we will introduce it
later; and 2) They must be predicted correctly, i.e., the network predictions on
them are identical to their labels. After the above screening operation, we can
fetch several small-loss instances from the mini-batch Db and we regard them
as reliable instances. It is worth noting that each multi-birth group contains at
most one reliable instance because of the constraint from the second condition.
Next, we can divide multi-birth groups into two levels of difficulty according
to whether they contain a reliable instance, namely simple multi-birth groups
and complicated multi-birth groups. Each simple multi-birth group contains one
reliable instance which is likely to be correctly labeled, and thus we consider
this multi-birth group is relatively easy to disambiguate at the current epoch.
Therefore, we disambiguate it by assigning distinguishing confidence scores to
the instances among it according to their loss values. If the i-th multi-birth group
is a simple multi-birth group, its corresponding group confidence vector wi can
be updated as:

wji =
exp(−`ji )∑|Si|
k=1 exp(−`ki )

, j = 1, 2, . . . , |Si|, (1)

where `ji (`ki ) indicates the loss value of the j-th (k-th) instance in the i-th
multi-birth group. Eq. (1) indicates that the instances with small loss values
can acquire relatively large confidence scores and meanwhile the normalization
constraints of group confidence vectors can be satisfied. As to the complicated
multi-birth groups which do not contain any reliable instance, we assign an
average confidence vector to them as we cannot figure out the correctly labeled
instances among them, namely:

wji =
1

|Si|
, j = 1, 2, . . . , |Si|. (2)

As no loss value will be generated before the first epoch, all group confidence
vectors are initialized in an average manner according to Eq. (2).
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After we have obtained the group confidence vector of each multi-birth group,
we can clearly know that the instances with large confidence scores are likely to
be correctly labeled, and thereby the trained network should pay more attention
to them. Otherwise, the network ought to avoid learning from these instances.
Taking this into account, we assign weights to the loss values of the instances
(i.e., `(Θ,Db)) with their respective confidence scores, and the propagated back
loss of Db, i.e., L(Θ,Db), can be calculated as follows:

L(Θ,Db) = wb>`(Θ,Db), (3)

where wb is the confidence vector concatenated by the confidence scores of in-
stances in Db. Finally, by denoting η as the learning rate, the network parameters
Θ can be updated as:

Θ := Θ − η∇L(Θ,Db). (4)

As mentioned previously, T (t) is a time-dependent parameter which implies
that at most T (t) percentage of multi-birth groups will be regarded as simple
multi-birth groups and disambiguated at the t-th epoch, and it will increase from
zero to one as the training process proceeds. The concrete formulation of T (t)
is as follows:

T (t) =

{
exp(−5(t/tr − 1)

2
) t ≤ tr

1 t > tr
, (5)

where tr is a coefficient determining at which epoch T (t) reaches to one, meaning
that almost all the multi-birth groups will be disambiguated after that epoch.
Eq. (5) reveals that at the initial training phase, only very few yet simple multi-
birth groups will be disambiguated as T (t) is relatively small. With the advance
of training steps, the network disambiguation ability will be strengthened and
it is capable of disambiguating the complicated multi-birth groups, and thereby
T (t) ought to increase accordingly.

The pseudo code of the progressive disambiguation strategy is summarized
in Algorithm 1. After initializing the confidence vector w and feeding the data
into the classifier (Steps 1-4), we firstly calculate the widely-used cross-entropy
loss of each instance (Step 5). Then, we are able to obtain the reliable instances
according to the abovementioned two conditions (Steps 6-8). After that, the
confidence vector wb will be updated and the corresponding back propagated
loss can be calculated (Steps 9-10). Finally, we update T (t) for the next epoch
(Step 12).

3.3 Network Cooperation

Although the aforementioned progressive disambiguation strategy has taken the
disambiguation difficulty of multi-birth groups into consideration, the corre-
sponding training process is still single-trend of which the disambiguated data
will be directly transfered back to the model itself, and the accompanied short-
comings have been analyzed before. Inspired by the work [13, 32] dealing with
corrupted label learning problem, we devise a network cooperation mechanism,
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Algorithm 1 The Progressive Disambiguation Algorithm

Input: Θ, learning rate η, epoch tmax, iteration bmax, training set D
Output: Θ

1: Initialize w = [w1;w2; . . . ;wN ]> according to Eq. (2);
2: for t = 1, 2, . . . , tmax do
3: for b = 1, 2, . . . , bmax do
4: Fetch mini-batch Db from D;
5: Obtain cross-entropy loss values `(Θ,Db);
6: Obtain first T (t) percentage minimums small-loss instances Ds from Db;
7: Obtain correctly predicted instances Dc from Db;
8: Obtain reliable instances Dr = Ds ∩ Dc;
9: Update wb according to Eq. (1) and Eq. (2);

10: Obtain L(Θ,Db) according to Eq. (3);
11: Update Θ according to Eq. (4);
12: Update T (t) according to Eq. (5);
13: end for
14: end for
15: return Θ.

which trains two networks collaboratively and lets them interact with each other
regarding the confidence levels of the instances.

By denoting the two networks as α (with parameter Θα) and β (with param-
eter Θβ) respectively, we can obtain two confidence vectors of Db generated by
them independently (according to Section 3.2), i.e., wb

α and wb
β . After that, we

exchange the confidence vectors among two networks to calculate their respective
back propagated loss, i.e., Lα(Θα,Db) and Lβ(Θβ ,Db):

Lα(Θα,Db) = wb
β

>
`(Θα,Db), (6)

Lβ(Θβ ,Db) = wb
α

>
`(Θβ ,Db), (7)

where `(Θα,Db) and `(Θβ ,Db) denote the loss values of the mini-batch Db cal-
culated by the network α and network β respectively in the forward propagation
phase.

Eq. (6) and Eq. (7) indicate that each network exploits the data disam-
biguated by its peer network to train itself. As two networks have different
ability and can disambiguate multi-birth groups at different levels, exchanging
the confidence scores of instances is beneficial for both networks to reduce their
respective disambiguation errors, and therefore the error accumulation problem
inherited by the conventional single-trend training scheme can be effectively al-
leviated. Finally, we update the network parameters Θα and Θβ as follows:

Θα := Θα − η∇Lα(Θα,Db), (8)

Θβ := Θβ − η∇Lβ(Θβ ,Db). (9)
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Algorithm 2 The NCPD Algorithm

Input: Θα, Θβ , learning rate η, epoch tmax, iteration bmax, training set D
Output: Θα, Θβ

1: Initialize w = [w1;w2; . . . ;wN ]> according to Eq. (2);
2: for t = 1, 2, . . . , tmax do
3: for b = 1, 2, . . . , bmax do
4: Update wb

α and wb
β according to Steps 4-9 in Algorithm 1;

5: Obtain Lα(Θα,Db) and Lβ(Θα,Db) according to Eq. (6) and Eq. (7)
respectively;

6: Update Θα and Θβ according to Eq. (8) and Eq. (9) respectively;
7: Update T (t) according to Eq. (5);
8: end for
9: end for

10: return Θα, Θβ .

The pseudo code of the proposed NCPD approach is summarized in Algo-
rithm 2. By employing the progressive disambiguation strategy, we can obtain
two different confidence vectors from the two networks, respectively (Step 4).
After that, two networks exchange their confidence vectors to calculate the back
propagated loss and then update their corresponding parameters (Steps 5-6).
Similar to Algorithm 1, the time-dependent parameter T (t) will be updated at
each epoch (Step 7).

4 Experiments

4.1 Experimental Setup

In this paper, we conduct comparative experiments to demonstrate the effec-
tiveness of NCPD on two kinds of datasets, i.e., controlled UCI datasets and
real-world partial label datasets. The compared state-of-the-art PLL algorithms
includes:

– PLKNN [15]: an averaging-based disambiguation approach which generalizes
k-nearest neighbor classification for partial label learning;

– M3PL [31]: an identification-based approach that utilizes the maximum mar-
gin criterion;

– IPAL [36]: an instance-based approach that employs label propagation pro-
cedure to leverage the structural information in feature space;

– SURE [8]: an approach that employs the idea of self-training to exaggerate
the mutually exclusive relationships among candidate labels;

– AGGD [27]: an approach that discoveries the manifold structure on original
feature space.

For our NCPD approach, we employ the 4-layer perceptron as the backbone
and meanwhile utilize Adam [17] to optimize the networks for all experiments.
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Table 1: Characteristics and the parameter configurations of the controlled UCI
datasets.

Datasets glass ecoil vehicle abalone
# Instances 214 336 846 4,177
# Features 10 7 18 7
# Labels 5 8 4 29

Configurations:
(I) r = 1, p ∈ {0.1, 0.2, · · · , 0.7}
(II) r = 2, p ∈ {0.1, 0.2, · · · , 0.7}
(III) r = 3, p ∈ {0.1, 0.2, · · · , 0.7}

Besides, we employ the minibatch size of 128 for all runnings and choose the
parameter tr via cross-validation. For baseline methods, they are implemented
with parameters setup suggested in respective literatures. Specifically, the regu-
larization parameter Cmax in M3PL is chosen from the set {0.01, 0.1, 1, 10, 100}
via cross-validation. In PLKNN, IPAL, and AGGD, the number of nearest num-
bers k is chosen from set {5, 10, 15, 20}. Furthermore, we perform ten-fold cross-
validation to record the mean prediction accuracies and standard deviations for
all comparing algorithms on all the datasets adopted below.

4.2 Experiments on Controlled UCI Datasets

Following the widely-used controlling protocol in previous PLL works [7, 25, 28,
36–38], an artificial partial label dataset can be generated from an original UCI
dataset with two controlling parameters p and r. To be specific, p controls the
proportion of instances which are partially labeled (i.e., |Si| > 1), and r controls
the number of false positive labels in each candidate label set (i.e., |Si| = r+ 1).
The characteristics of these controlled UCI datasets as well as the parameter
configurations are listed in Table 1.

Fig. 3, Fig. 4, and Fig. 5 show the classification accuracy of each algorithm
as p ranges from 0.1 to 0.7 with the step size 0.1, when r = 1, r = 2, and r = 3
(Configuration (I), (II), and (III)), respectively. As illustrated in these figures,
NCPD achieves superior performance against other comparing algorithms on
these controlled UCI datasets. Specifically, NCPD achieves superior or at least
comparable performance against PLKNN, M3PL, and IPAL in all experiments.
As to SURE and AGGD, although their classification accuracies are slightly
higher than NCPD in a few parameter configurations, they are inferior to NCPD
in most cases.

4.3 Experiments on Real-world Datasets

Apart from the controlled UCI datasets, we also conduct experiments on five real-
world partial label datasets which are collected from several application domains
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Fig. 3: Classification accuracy of each algorithm on controlled UCI datasets with
p ranging from 0.1 to 0.7 (r = 1).

Table 2: Characteristics of adopted real-world partial label datasets.

Datasets Lost BirdSong MSRCv2 Soccer Player Yahoo!News
# Instances 1,122 4,998 1,758 17,472 22,991
# Features 108 38 48 279 163
# Labels 16 13 23 171 219

# Avg. CLs 2.23 2.18 3.16 2.09 1.91

including Lost [6], Soccer Player [33], and Yahoo!News [12] for automatic face
naming, MSRCv2 [19] for object classification, and BirdSong [3] for bird song
classification. The characteristics of these real-world datasets are summarized in
Table 2 where the average number of candidate labels of each dataset (i.e., #
Avg. CLs) is also reported4.

The average classification accuracies as well as the standard deviations of
different approaches on these real-world datasets are shown in Table 3. Pairwise
t-test at 0.05 significance level is also conducted based on the results of ten-fold
cross-validation. From Table 3, we have three findings: 1) NCPD achieves the
highest classification accuracies among all baselines on all adopted real-world

4 These datasets are available at http://palm.seu.edu.cn/zhangml.
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Fig. 4: Classification accuracy of each algorithm on controlled UCI datasets with
p ranging from 0.1 to 0.7 (r = 2).

Table 3: Classification accuracy (mean ± std) of each algorithm on five real-
world datasets. •/◦ indicates that NCPD is significantly superior / inferior to
the comparing algorithm on the corresponding dataset (pairwise t-test with 0.05
significance level).

Lost BirdSong MSRCv2 Soccer Player Yahoo!News
PLKNN 0.471 ± 0.032 • 0.686 ± 0.015 • 0.457 ± 0.049 • 0.530 ± 0.016 • 0.482 ± 0.011 •
M3PL 0.721 ± 0.037 • 0.667 ± 0.042 • 0.474 ± 0.038 • 0.500 ± 0.007 • 0.628 ± 0.013 •
IPAL 0.653 ± 0.022 • 0.734 ± 0.013 • 0.537 ± 0.045 • 0.547 ± 0.016 • 0.577 ± 0.010 •
SURE 0.739 ± 0.036 • 0.730 ± 0.015 • 0.508 ± 0.043 • 0.522 ± 0.013 • 0.562 ± 0.011 •
AGGD 0.778 ± 0.040 0.737 ± 0.018 0.506 ± 0.041 • 0.543 ± 0.016 • 0.637 ± 0.008 •
NCPD 0.790 ± 0.055 0.751 ± 0.018 0.589 ± 0.046 0.573 ± 0.013 0.657 ± 0.013

datasets; 2) NCPD significantly outperforms PLKNN, M3PL, IPAL, and SURE
on all these datasets; 3) NCPD is never statistically inferior to any comparing
algorithms in all cases. These findings convincingly substantiate the superiority
of our NCPD approach to other comparators.
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Fig. 5: Classification accuracy of each algorithm on controlled UCI datasets with
p ranging from 0.1 to 0.7 (r = 3).

4.4 Ablation Study

The superiority of the proposed NCPD approach has been verified by thorough
experimental results presented above. In this section, we conduct ablation study
on adopted real-world datasets to further demonstrate the effectiveness of the
two crucial techniques employed by NPCD, i.e., the progressive disambiguation
strategy and the network cooperation mechanism.

Specifically, to demonstrate the effectiveness of the progressive disambigua-
tion strategy, we discard this strategy and merely train two networks with net-
work cooperation mechanism, i.e., all multi-birth groups are disambiguated ac-
cording to Eq. (1) in every epoch regardless their disambiguation difficulty. To
confirm the effectiveness of the network cooperation mechanism, we barely train
one network equipped with the progressive disambiguation strategy (see Sec-
tion 3.2). Fig. 6 shows the results, from which we can observe that the integrated
NCPD approach generates the highest accuracies than other two settings (i.e.,
“w/o NC” and “w/o PD”). In contrast, the accuracies will decrease when either
the progressive disambiguation strategy or the network cooperation mechanism
is removed, therefore the effectiveness and indispensability of these two crucial
techniques are validated.
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Fig. 6: Validation accuracy with different settings on adopted real-world datasets.
The blue curve denotes the accuracy of the integrated NCPD approach (legend
by “NCPD”). The red curve and the yellow curve indicate the accuracy of NCPD
that removes the network cooperation mechanism (denoted by “w/o NC”) and
the progressive disambiguation strategy (denoted by “w/o PD”), respectively.

5 Conclusion

In this paper, we propose a novel approach for PLL which is dubbed as “NCPD”.
By employing the progressive disambiguation strategy, our approach is able to
exploit the disambiguation difficulty of the instances and then disambiguate
them in a progressive manner, which is beneficial for the steady improvement of
model capability and thereby the adverse impacts brought by false positive labels
can be effectively reduced. Furthermore, the network cooperation mechanism
greatly facilitates the salutary mutual learning process between two networks,
and therefore can effectively alleviate the error accumulation problem inherited
by the existing single-trend training framework. Thorough experimental results
on various datasets demonstrate the effectiveness of the proposed NCPD ap-
proach. Considering that how to determine the disambiguation difficulty of the
instances plays a vital role in our algorithm, we will devise a more advanced
methodology to judge the disambiguation difficulty of these partially labeled
instances in the future.
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