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Abstract— The aim of multi-output learning is to simultane-
ously predict multiple outputs given an input. It is an important
learning problem for decision-making since making decisions
in the real world often involves multiple complex factors and
criteria. In recent times, an increasing number of research
studies have focused on ways to predict multiple outputs at once.
Such efforts have transpired in different forms according to the
particular multi-output learning problem under study. Classic
cases of multi-output learning include multi-label learning, multi-
dimensional learning, multi-target regression, and others. From
our survey of the topic, we were struck by a lack in studies
that generalize the different forms of multi-output learning
into a common framework. This article fills that gap with a
comprehensive review and analysis of the multi-output learning
paradigm. In particular, we characterize the four Vs of multi-
output learning, i.e., volume, velocity, variety, and veracity, and
the ways in which the four Vs both benefit and bring challenges
to multi-output learning by taking inspiration from big data.
We analyze the life cycle of output labeling, present the main
mathematical definitions of multi-output learning, and examine
the field’s key challenges and corresponding solutions as found in
the literature. Several model evaluation metrics and popular data
repositories are also discussed. Last but not least, we highlight
some emerging challenges with multi-output learning from the
perspective of the four Vs as potential research directions worthy
of further studies.

Index Terms— Crowdsourcing, extreme classification, label
distribution, multi-output learning, output label representation,
structured output prediction.
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I. INTRODUCTION

TRADITIONAL supervised learning is one of the most
well established and adopted machine learning para-

digms. It offers fast and accurate predictions for today’s real-
world smart systems and applications. The goal of traditional
supervised learning is to learn a function that maps each
of the given inputs to a corresponding known output. For
prediction tasks, the output comes in the form of a single
label. For regression tasks, it is a single value. Traditional
supervised learning has been shown to be good at solving
these simple single-output problems, classical examples being
binary classification, such as filtering spam in an email system,
or a regression problem where the daily energy consumption
of a machine needs to be predicted based on temperature, wind
speed, humidity levels, and so on.

However, the traditional supervised learning paradigm is not
coping well with the increasing needs of today’s complex
decision making. As a result, there is a pressing need for
new machine learning paradigms. Here, multi-output learning
has emerged as a solution. The aim is to simultaneously
predict multiple outputs given a single input, which means it is
possible to solve far more complex decision-making problems.
Compared to traditional single-output learning, multi-output
learning is multi-variate nature, and the outputs may have
complex interactions that can only be handled by structured
inference. In addition, the potentially diverse data types of
outputs have led to various categories of machine learning
problems and corresponding subfields of study. For exam-
ple, binary output values relate to multi-label classification
problems [1], [2]; nominal output values relate to multi-
dimensional classification problems [3]; ordinal output values
are studied in label ranking problems [4]; and real-valued
outputs are considered in multi-target regression problems [5].

Together, all these problems constitute the multi-output
paradigm, and the body of literature surrounding this field
has grown rapidly. Several works have been presented that
provide a comprehensive review of the emerging challenges
and learning algorithms in each subfield. For instance,
Zhang and Zhou [1] studied the emerging area of multi-label
learning; Borchani et al. [5] summarized the increasing
problems in multi-target regression; Vembu and Gärtner [4]
presented a review on multi-label ranking. However, little
attention has been paid to the global picture of multi-output
learning and the importance of the output labels (see
Section II). In addition, although the problems in each
subfield seem distinctive due to the differences in their output
structures (see Section III-A), they do share common traits
(see Section III-B) and encounter common challenges brought
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by the characteristics of the output labels. In this article,
we attempt to provide such a view.

A. Four Vs Challenges of Multiple Outputs

The popular four Vs, i.e., volume, velocity, variety, and
veracity, have been well established as the main characteristics
of big data. When scholars discuss the four Vs in multi-output
learning scenarios, they are usually referring to input data;
however, the four Vs can also be used to describe output labels.
Moreover, these four Vs bring with them a set of challenges
to multi-output learning processes, explained as follows.

1) Volume refers to explosive growth in output labels,
which poses many challenges to multi-output learning.
First, output label spaces can grow extremely large,
which causes scalability issues. Second, the burden
for label annotators is significantly increased, and still,
there are often insufficient annotations in a data set to
adequately train a model. In turn, this may lead to unseen
outputs during testing. Third, the volume may pose label
imbalance issues, especially if not all the generated
labels in a data set have sufficient data instances (inputs).

2) Velocity refers to how rapidly output labels are acquired,
which includes the phenomenon of concept drift [6].
Velocity can present challenges due to changes in output
distributions, where the target outputs vary over time in
unforeseen ways.

3) Variety refers to the heterogeneous nature of output
labels. Output labels are gathered from multiple sources
and are of various data formats with different structures.
In particular, output labels with complex structures can
create multiple challenges in multi-output learning, such
as finding an appropriate method of modeling output
dependencies, or how to design a multi-variate loss
function, or how to design efficient algorithms.

4) Veracity refers to differences in the quality of the output
labels. Issues such as noise, missing values, abnormali-
ties, or incomplete data are all characteristics of veracity.

B. Purpose and Organization of This Survey

The goal of this article is to provide a comprehensive
overview of the multi-output learning paradigm using the four
Vs as a frame for the current and future challenges facing this
field of study. Multi-output learning has attracted significant
attention from many machine learning disciplines, such as
part-of-speech (POS) sequence tagging, language translation
and natural language processing, motion tracking and optical
character recognition in computer vision, and document cate-
gorization and ranking in information retrieval. We expect this
survey to deliver a complete picture of multi-output learning
and a summation of the different problems being tackled
across multiple communities. Ultimately, we hope to pro-
mote further development in multi-output learning and inspire
researchers to pursue worthy and needed future research
directions.

The remainder of this survey is structured as follows.
Section II illustrates the life cycle of output labels to help
understand the challenges presented by the four Vs. Section III

Fig. 1. Life cycle of the output label.

provides an overview of the myriad output structures along
with definitions for the common subproblems addressed in
multi-output learning. This section also includes some brief
details on the common metrics and publicly available data used
when evaluating models. Section IV presents the challenges
in multi-output learning presented by the four Vs and their
corresponding representative works. Section V concludes the
survey.

II. LIFE CYCLE OF OUTPUT LABELS

Output labels play an important role in multi-output learning
tasks in that how well a model performs a task relies heavily
on the quality of those labels. Fig. 1 depicts the three stages
of a label’s life cycle: annotation, representation, and evalu-
ation. A brief overview of each stage follows along with the
underlying issues that could potentially harm the effectiveness
of multi-output learning systems.

A. How Data Is Labeled

Label annotation requires a human to semantically annotate
a piece of data and is a crucial step for training multi-output
learning models. Data can be used directly with its basic
annotations, or once labeled; they can be aggregated into sets
for further analysis. Depending on the application and the
task, label annotations come in various types. For example,
the images for an image classification task should be labeled
with tags or keywords, whereas a segmentation task would
require each object in the images to be localized with a mask.
A captioning task would require the images to be labeled with
some textual descriptions, and so on.

Typically, creating large annotated data sets from scratch is
time-consuming and labor-intensive no matter the annotation
requirement. There are multiple ways to acquire labeled data.
Social media provides a platform for researchers to search for
labeled data sets, for example, Facebook and Flickr, which
allow users to post pictures and comments with tags. Open-
source collections, such as WordNet and Wikipedia, can also
be useful sources of labeled data sets.

Beyond directly obtaining labeled data sets, crowdsourcing
platforms, such as Amazon Mechanical Turk, help researchers
solicit labels for unlabeled data sets by recruiting online
workers. The annotation type depends on the modeling task,
and due to the efficiency of crowdsourcing, this method has
quickly become a popular way of obtaining labeled data sets.
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ImageNet [7] is a popular data set that was labeled through a
crowdsourcing platform. Its database of images is organized
into a WordNet hierarchy, and it has been used to help
researchers solve problems in a range of areas.

There are also many annotation tools that have been devel-
oped to annotate different types of data. LabelMe [8], a web-
based tool, provides users with a convenient way to label every
object in an image and also correct labels annotated by other
users. BRAT [9] is also web-based but is specifically designed
for natural language processing tasks, such as named-entity
recognition and POS-tagging. TURKSENT [10] is an annota-
tion tool to support sentiment analysis in social media posts.

B. Forms of Label Representations

There are many different types of label annotations for
different tasks, such as tags, captions, and masks, and each
type of annotation may have several representations, which
are frequently represented as vectors. For example, the most
common is the binary vector, whose size equals the vocabulary
size of the tags. Annotated samples, e.g., samples with tags,
are assigned with a value of 1 and the rest are given a 0.
However, binary vectors are not optimal for more complex
multi-output tasks because these representations do not pre-
serve all useful information. Details such as the semantics or
the inherent structure are lost. To tackle this issue, alternative
representation methods have been developed. For instance,
real-valued vectors of tags [11] indicate the strength and
degree of the annotated tags using real values. Binary vec-
tors of the associations between a tag’s attributes have been
used to convey the characteristics of tags. Hierarchical label
embedding vectors [12] capture the structure information in
tags. Semantic word vectors, such as Word2Vec [13], can
be used to represent the semantics and/or context of tags
and text descriptions. What is key in real-world multi-output
applications is to select the label representation that is most
appropriate for the given task.

C. Label Evaluation and Challenges

Label evaluation is an essential step in guaranteeing the
quality of labels and label representations. Thus, label eval-
uation plays a key role in the performance of multi-output
tasks. Different models can be used to evaluate label qual-
ity, which to choose depends on the task. Generally, labels
can be evaluated in three different respects: 1) whether the
annotation is of good quality (Step A); 2) whether the chosen
label representation represents the labels well (Step B); and
3) whether the provided label set adequately covers the data
set (Label Set). After evaluation, a human expert is generally
required to explore any underlying issues and provide feedback
to improve different aspects of the labels if needed.

1) Issues of Label Annotation: The aforementioned anno-
tation methods, e.g., crowdsourcing, annotation tools, and
social media, help researchers collect annotated data effi-
ciently. However, without experts, these annotations methods
are highly likely to result in the so-called noisy label prob-
lem, which includes both missing annotations and incorrect
annotations. There are various reasons for noisy labels, for
example, using crowdsourced workers that lack the required

domain knowledge, social media users that include irrelevant
tags with their image or post, or ambiguous text in a caption.

2) Issues of Label Representation: Output labels can also
have internal structures, and often, this structure information
is critical to the performance of the multi-output learning
task at hand. Tag-based information retrieval [14] and image
captioning [15] are two examples where structure is crucial.
However, incorporating this information into representation
as the labels is a nontrivial undertaking as the data are
usually many and domain knowledge is required to define their
structure. In addition, the output label space might contain
ambiguity. For example, a bag-of-words (BOW) is traditionally
used as a representation of a label space in natural language
processing tasks, but BOW contains word sense ambiguity,
as two different words may have the same meaning and one
word might refer to multiple meanings.

3) Issues of the Label Set: Constructing a label set for data
annotation requires a human expert with domain knowledge.
Plus, it is common that the provided label set does not contain
sufficient labels for the data, perhaps due to fast data growth or
the low occurrence of some labels. Therefore, there are likely
to be unseen labels in the test data, which leads to open-set
[16], zero-shot [17], or concept drift [18] problems.

III. MULTI-OUTPUT LEARNING

In contrast to traditional single-output learning, multi-output
learning can concurrently predict multiple outputs. The outputs
can be of various types and structures, and the problems that
can be solved are diverse. A summary of the subfields that use
multi-output learning along with their corresponding output
types, structures, and applications is presented in Table I.

We begin this section with an introduction to some of
the output structures in multi-output learning problems. The
different problem definitions common to various subfields are
provided next, along with the different constraints placed on
the output space. We also discuss some special cases of these
problems and give a brief overview of some of the evaluation
metrics that are specific to multi-output learning. This section
concludes with some insights into the evolution of output
dimensions through an analysis of several commonly used
data sets.

A. Myriads of Output Structures

The increasing demand for sophisticated decision-making
tasks has led to new creations of outputs, some of which have
complex structures. With social media, social networks, and
various online services becoming ubiquitous, a wide range of
output labels can be stored and then collected by researchers.
Output labels can be anything; they could be text, images,
audio, or video, or a combination as multimedia. For example,
given a long document as input, the output might be a sum-
mary of the input in text format. Given some text fragments,
the output might be an image with its contents described by
the input text. Similarly, audio, such as music and videos, can
be generated given different types of inputs. In addition to
the different output types, there are also a number of different
possible output structures. Here, we present several typical
output structures given an image as an input using the example
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TABLE I

SUMMARY OF SUBFIELDS OF MULTI-OUTPUT LEARNING AND THEIR CORRESPONDING OUTPUT STRUCTURES, APPLICATIONS, AND DISCIPLINES

Fig. 2. Illustration of the myriads of output structures given an input image
from a social network.

in Fig. 2 as a way to illustrate just how many output structures
might be possible across all the different input types.

1) Independent Vector: An independent vector is a vector
with separate dimensions (features), where each dimension
represents a particular label that does not necessarily depend
on other labels. Binary vectors can be used to represent a
given piece of data as tags, attributes, BOW, bag-of-visual-
words, hash codes, and so on. Real-valued vectors provide
the weighted dimensions, where the real value represents
the strength of the input data against the corresponding
label. Applications include annotation or classification of text,
images, or video with binary vectors [19]–[21] and demand
or energy prediction with real-valued vectors [23]. An inde-
pendent vector can be used to represent the tags of an image,
as shown in Fig. 2(1), where all the tags “people,” “dinner,”
“table,” and “wine” have equal weight.

2) Distribution: Unlike independent vectors, distributions
provide information about the probability that a particular
dimension will be associated with a particular data sample.
In Fig. 2(2), the tag with the largest weight is “people” and
is the main content of the image, while “dinner” and “table”
have similar distributions. Applications for distribution outputs
include head pose estimation [25], facial age estimation [26],
and text mining [27].

3) Ranking: Outputs might also be in the form of a ranking,
which shows the tags ordered from the most to least impor-
tant. The results from a distribution learning model can be
converted into a ranking, but a ranking model is not restricted
to only distribution learning models. Text categorization [28],
question answering [29], and visual object recognition [30] are
applications where rankings are often used.

4) Text: Text can be in the form of keywords, sentences,
paragraphs, or even documents. Fig. 2(4) illustrates an example
of text output as a caption of the image—“People are having
dinner.” Other applications for text outputs are document
summarization [45] and paragraph generation [46].

5) Sequence: Sequence outputs refer to a series of elements
selected from a label set. Each element is predicted depending
on the input as well as the predicted output(s) from the
preceding element. An output sequence often corresponds
to an input sequence. For example, in speech recognition,
we expect the output to be a sequence of text that corresponds
to a given audio signal of speech [47]. In language translation,
we expect the output to be a sentence transformed into the
target language [32]. In the example shown in Fig. 2(5),
the input is an image caption, i.e., text, and the outputs are
POS tags for each word in the sequence.
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6) Tree: Tree outputs are essentially the outputs in the form
of a hierarchy. The outputs, usually labels, have an internal
structure where each output has a label that belongs to, or is
connected to, its ancestors in the tree. For example, in syntactic
parsing [35], as shown in Fig. 2(6), each of the outputs for an
input sentence is a POS tag and the entire output is a parsing
tree; “people” is labeled as a noun N, but it is also a noun
phrase NP as per the tree.

7) Image: Images are a special form of output that consists
of multiple pixel values, where each pixel is predicted
depending on the input and the pixels around it. Fig. 2(7)
shows super-resolution construction [37] as one popular
application where images are common outputs. Super-
resolution construction means constructing a high-resolution
image from a low-resolution image. Other image output
applications include text-to-image synthesis [48], which
generates images from natural language descriptions, and face
generation [49].

8) Bounding Box: Bounding boxes as outputs are often used
to find the exact locations of an object or objects appearing
in an image. This is a common task in object recognition and
object detection [30]. In Fig. 2(8), each of the faces is localized
by a bounding box so that each person can be identified.

9) Link: Links as outputs usually represent the association
between two nodes in a network [36]. Fig. 2(9) illustrates a
task to predict whether two currently unlinked users will be
friends in the future given a partitioned social network where
the edges represent friendships between users.

10) Graph: Graphs are commonly used to model relation-
ships between. They consist of a set of nodes and edges,
where a node represents an object and an edge indicates
a relationship between two objects. Scene graphs [50], for
example, are often output as a way to describe the content
of an image [34]. Fig. 2(10) shows that given an input image,
the output is a graph definition where the nodes are the objects
appearing in the image, i.e., “people,” “dinner,” “table,” and
“wine,” and the edges are the relationships between these
objects. Scene graphs are very useful as representations for
tasks, such as image generation [51] and visual question
answering [52].

11) Other Outputs: Beyond these few types, there are
still many other types of output structures. For example,
contour and polygon outputs are similar to bounding boxes
and can be used as labels for object localization. In infor-
mation retrieval, the output(s) could be of the list type, say,
of data objects that are similar to the given query. In image
segmentation, the outputs are usually segmentation masks of
different objects. In signal processing, outputs might be audio
of speech or music. In addition, some real-world applications
may require more sophisticated output structures relating to
multiple tasks. For example, one may require that objects
be recognized and localized at the same time, such as in
cosaliency, i.e., discovering the common saliency of multi-
ple images [53], simultaneously segmenting similar objects
given multiple images in cosegmentation [54], or detect-
ing and identifying objects in multiple images in object
codetection [55].

B. Problem Definition of Multi-Output Learning

Multi-output learning maps each input (instance) to multiple
outputs. Assume that X = Rd is a d-dimensional input space,
and Y = Rm is an m-dimensional output label space. The aim
of multi-output learning is to learn a function f : X → Y from
the training set D = {(xi , yi )|1≤ i ≤ n}. For each training
example (xi , yi ), xi ∈ X is a d-dimensional feature vector,
and yi ∈ Y is the corresponding output associated with xi .
The general definition of multi-output learning is given as
follows: finding a function F : X × Y → R based on
the training sample of input–output pairs, where F(x, y) is
a compatibility function that evaluates how compatible the
input x and the output y are. Then, given an unseen instance
x at the test state, the output is predicted to be the one
with the largest compatibility score, namely, f (x) = ỹ =
arg maxy∈Y F(x, y) [56].

This definition provides a general framework for multi-
output learning problems. Although different multi-output
learning subfields vary in their output structures, they can be
defined within this framework given certain constraints on the
output label space Y .

We selected several popular subfields and present the con-
straints of their output space in Sections III-B1–III-B9. Note
that multi-output learning is not restricted to these particular
scenarios; they are just examples for illustration.

1) Multi-Label Learning: The task of multi-label learning
is to learn a function f (·) that predicts the proper label sets for
unseen instances [1]. In this task, each instance is associated
with a set of class labels/tags and is represented by a sparse
binary label vector. A value of +1 denotes that the instance is
labeled and 1 means unlabeled. Thus, yi ∈ Y = {−1,+1}m .
Given an unseen instance x ∈ X , the learned multi-label
classification function f (·) outputs f (x) ∈ Y , where the
labels in the output vector with a value of +1 are used as
the predicted labels for x.

2) Multi-Target Regression: The aim of multi-target regres-
sion is to simultaneously predict multiple real-valued output
variables for one instance [5], [57]. Here, multiple labels are
associated with each instance, represented by a real-valued
vector, where the values represent how strongly the instance
corresponds to a label. Therefore, we have the constraint of
yi ∈ Y = Rm . Given an unseen instance x ∈ X , the learned
multi-target regression function f (·) predicts a real-valued
vector f (x) ∈ Y as the output.

3) Label Distribution Learning: Label distribution learning
determines the relative importance of each label in the multi-
label learning problem [58]. This is opposed to multi-label
learning, which simply learns to predict a set of labels.
However, as illustrated in Fig. 2, the idea of label distribution
learning is to predict multiple labels with a degree value
that represents how well each label describes the instance.
Therefore, the sum of the degree values for each instance
is 1. Thus, the output space for label distribution learning
satisfies yi = (y1

i , y2
i , . . . , ym

i ) ∈ Y = Rm with the constraints
y j

i ∈ [0, 1],1≤ j ≤ m and
∑m

j=1 y j
i = 1.

4) Label Ranking: The goal of label ranking is to map
instances to a total order over a finite set of predefined
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labels [4]. In label ranking, each instance is associated with
the rankings of multiple labels. Therefore, the outputs of
the problem are the total order of all the labels for each
instance. Let L = {λ1, λ2, . . . , λm} denotes the predefined
label set. A ranking can be represented as a permutation π on
{1, 2, . . . , m}, such that π( j) = π(λ j ) is the position of the
label λ j in the ranking. Therefore, given an unseen instance
x ∈ X , the learned label ranking function f (·) predicts a per-
mutation f (x) = (yπ(1)

i , yπ(2)
i , . . . , yπ(m)

i ) ∈ Y as the output.
5) Sequence Alignment Learning: Sequence alignment

learning aims to identify the regions of relationships between
two or more sequences. The outputs in this task are a sequence
of multiple labels for the input instance. The output vector
has the constraint yi ∈ Y = {0, 1, . . . , c}m , where c denotes
the total number of labels. In sequence alignment learning, m
may vary depending on the input. Given an unseen instance
x ∈ X , the learned sequence alignment function f (·) outputs
f (x) ∈ Y , where all of the predicted labels in the output vector
form the predicted sequence for x.

6) Network Analysis: Network analysis explores the rela-
tionships and interactions between objects and entities in a
network structure, and link prediction is a common task within
this subfield. Let G = (V , E) denote the graph of a network.
V is the set of nodes, which represent objects, and E is the set
of edges, which represents the relationships between objects.
Given a snapshot of a network, the goal of link prediction is
to infer whether a connection exists between two nodes. The
output vector yi ∈ Y = {−1,+1}m is a binary vector whose
value represents whether there will be an edge e = (u, v)
between any pair of nodes u, v ∈ V and e /∈ E . m is the
number of node pairs that do not appear in the current graph
G, and each dimension in yi represents a pair of nodes that
are not currently connected.

7) Data Generation: Data generation is a subfield of multi-
output learning that aims to create and then output structured
data of a certain distribution. Deep generative models are
usually used to generate the data, which may be in the
form of text, images, or audio. The multiple output labels in
the problem become the different words in the vocabulary,
the pixel values, the audio tones, and so on. Take image
generation as an example. The output vector has the constraint
yi ∈ Y = {0, 1, . . . , 255}mw×mh×3, where mw and mh are
the width and height of the image. Given an unseen instance
x ∈ X , which is usually a random noise or an embedding
vector with some constraints, the learned GAN-based network
f (·) outputs f (x) ∈ Y , where all of the predicted pixel values
in the output vector form the generated image for x.

8) Semantic Retrieval: Semantic retrieval means finding the
meanings within some given information. Here, we consider
semantic retrieval in a setting where each input instance has
semantic labels that can be used to help retrieval [59]. Thus,
each instance representation comprises semantic labels as the
output yi ∈ Y = Rm . Given an unseen instance x ∈ X as
the query, the learned retrieval function f (·) predicts a real-
valued vector f (x) ∈ Y as the intermediate output result. The
intermediate output vector can then be used to retrieve a list
of similar data instances from the database by using a proper
distance-based retrieval method.

9) Time-Series Prediction: The goal in time-series predic-
tion is to predict the future values in a series based on previous
observations [60]. The inputs are a series of data vectors for
a period of time, and the output is a data vector for a future
timestamp. Let t denote the time index. The output vector at
time t is represented as yt

i ∈ Y = Rm . Therefore, the outputs
within a period of time from t = 0 to t = T are yi =
(y0

i , . . . , yt
i , . . . yT

i ). Given the previously observed values,
the learned time-series function outputs predicted consecutive
future values.

C. Special Cases of Multi-Output Learning

1) Multi-Class Classification: Multi-class classification can
be categorized as a traditional single-output learning paradigm
if the output class is represented as either an integer encoding
or a one-hot vector.

2) Fine-Grained Classification: Fine-grained classification
is a challenging multi-classification task where the categories
may only have subtle visual differences [61]. Although the
output of fine-grained classification shares the same vector
representation as multi-class classification, the vectors have
different internal structures. Also, in its label hierarchy, labels
with the same parents tend to be more closely related than
labels with different parents.

3) Multi-Task Learning: The aim of multi-task
learning (MTL) is the subfield that aims to improve
generalization performance by learning multiple related tasks
simultaneously [62], [63]. Each task in the problem outputs
one single label or value. This can be thought of as part of
the multi-output learning paradigm in that learning multiple
tasks is similar to learning multiple outputs. MTL leverages
the relatedness between tasks to improve the performance
of learning models. One major difference between MTL and
multi-output learning is that in MTL, different tasks might
be trained on different training sets or features, while in
multi-output learning, the output variables usually share the
same training data or features.

D. Model Evaluation Metrics

In this section, we present the conventional evaluation
metrics used to assess the multi-output learning models with a
test data set. Let T = {(xi , yi )|1≤ i ≤ N} be the test data set,
f (·) be the multi-output learning model, and ŷi = f (xi ) be the
predicted output of f (·) for the testing example xi . In addition,
let Yi and Ŷi denote the set of labels corresponding to yi and
ŷi , respectively. I is an indicator function, where I(g) = 1 if
g is true, and 0 otherwise.

1) Classification-Based Metrics: Classification-based met-
rics evaluate the performance of multi-output learning with
respect to classification problems, such as multi-label classifi-
cation, semantic retrieval, image annotation, and label ranking.
The outputs are usually in discrete values. The conventional
classification metrics fall into three groups: example-based,
label-based, and ranking-based.

a) Example-based metrics: Example-based metrics [64]
evaluate the performance of multi-output learning models with
respect to each data instance. Performance is first evaluated
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on each test instance separately, and then, the mean of all the
individual results is used to reflect the overall performance
of the model. The evaluation for multi-output classification
tasks works under the same mechanism as binary classification
(single output) tasks: the classic metrics for binary classifi-
cation can be extended to evaluate multi-output classification
models [1]. The commonly used metrics are exact match ratio,
accuracy, precision, recall, F1 score and hamming loss.

b) Label-based metrics: Label-based metrics evaluate
performance with respect to each output label. These metrics
aggregate the contributions of all the labels to arrive at an
averaged evaluation of the model. There are two techniques for
obtaining label-based metrics: macroaveraging and microaver-
aging. Macroaveraging-based approaches compute the metrics
for each label independently and then average over all the
labels with equal weights. By contrast, microaveraging-based
approaches give equal weight to every data sample. Let TPl ,
FPl , TNl , and FNl denote the number of true positives, true
negatives, false positives, and false negatives, for each label,
respectively. Let B be a binary evaluation metric (accuracy,
precision, recall, or F1 score) for a particular label. The
macroapproach and microapproach are therefore defined as
follows.

Macroaveraging:

Bmacro = 1

m

m∑
l=1

B(T Pl , F Pl , T Nl , F Nl ).

Microaveraging:

Bmicro

= B

(
1

m

m∑
l=1

T Pl ,
1

m

m∑
l=1

F Pl ,
1

m

m∑
l=1

T Nl ,
1

m

m∑
l=1

F Nl

)
.

c) Ranking-based metrics: Ranking-based metrics
evaluate the performance in terms of the ordering of the
output labels.

One-error is the number of times the top-ranked label is
not in the true label set. This approach only considers the most
confident predicted label of the model. An averaged one-error
over all data instances is computed as

One-error = 1

N

N∑
i=1

I(arg min
λ∈L

πi (λ) /∈ Yi )

where I is an indicator function, L denotes the label set, and
πi (λ) is the predicted rank of label λ for the test instance xi.
The smaller the one-error, the better the performance.

Ranking loss indicates the average proportion of incorrectly
ordered label pairs

Ranking Loss = 1

N

N∑
i=1

1

|Yi�Yi |
|E |

where

E = (λa, λb) : πi (λa) > πi (λb), (λa, λb) ∈ Yi × Yi

where Yi = L\Yi . The smaller the ranking loss, the better the
performance of the model.

Average precision (AP) is the proportion of the labels
ranked above a particular label in the true label set as an
average over all the true labels. The larger the value, the better
the performance of the model. The averaged AP over all test
data instances is defined as follows:

AP = 1

N

N∑
i=1

1

|Yi |
∑
λ∈Yi

{λ� ∈ Yi |πi (λ
�) ≤ πi (λ)}

πi (λ)
.

Discussion: The metrics listed earlier are those commonly
used with classification-based multi-output learning problems,
but the choice of metrics varies according to the different
considerations of each application. Take image annotation
for example. If the aim of the task is to annotate each image
correctly, example-based metrics are optimal for evaluating
performance. However, if the objective is keyword-based
image retrieval, the macroaveraging metric is preferable [64].
Furthermore, some metrics are more suited to special
cases of multi-output learning problems. For instance, for
imbalanced learning tasks, geometric mean [65] for some
classification-based metrics, e.g., the errors, accuracy, and
F1-scores, are more convincing to be used for evaluation.
The minimum sensitivity [66] can help determine the classes
that hinder the performance in the imbalanced setting.
We do not discuss these metrics in detail as they are not the
focus here.

2) Regression-Based Metrics: Unsurprisingly, regression-
based metrics evaluate multi-output learning performance with
regression problems, e.g., object localization or image gen-
eration. The outputs are usually real values. The commonly
used regression-based metrics are mean absolute error (MAE),
mean squared error (MSE), average correlation coefficient
(ACC) and intersection over union (IoU). Details for these
metrics can be found in the Supplementary Materials.

3) New Metrics: Data generation is an emerging subfield
of multi-out learning that uses generative models to output
structured data with certain distributions. Based on the partic-
ulars of the task at hand, a model’s performance is usually
evaluated in two respects: 1) whether the generated data
actually follows the desired real data distribution and 2) the
quality of the generated samples. Metrics such as average log-
likelihood [67], coverage metric [68], maximum mean discrep-
ancy (MMD) [69], and geometry score [70] are frequently
used to assess the veracity of the distribution. Metrics that
quantify the quality of the generated data remain challenging.
The commonly used are inception scores (IS) [71], mode
score (MS) [72], Fréchet inception distance (FID) [73], and
kernel inception distance (KID) [74]. Precision, recall, and
F1 score are also employed in GANs to quantify the degree
of overfitting in the model [75].

E. Multi-Output Learning Data Sets

Most of the data sets used to experiment with multi-output
learning problems have either been constructed or become
popular because they reflect and, therefore, test a challenge
that needs to be overcome. We have presented these data sets
according to the challenges reflected in the four Vs. Table II
lists the data sets, including their multi-output characteristics,
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TABLE II

CHARACTERISTICS OF THE DATA SETS OF MULTI-OUTPUT LEARNING TASKS

the challenge can be tested, the application domain, plus the
data set name, source, and descriptive statistics.

The large-scale data sets, i.e., the data sets that can be used
to test volume, are extremely large. The enormity of their cor-
responding statistics illustrates the pressing need to overcome
the challenges caused by this particular V among the 4.

Many studies that have focused on change in output distri-
bution, e.g., concept drift/velocity, rely on synthetic stream-
ing data or static databases in their experiments. We have
also included some of the more popular real-world and/or
dynamic databases that are used to experiment with these
tasks. As shown in the table, the data sets come from various
application domains, demonstrating the importance of this
challenge.

1http://manikvarma.org/downloads/XC/XMLRepository.html

The data sets designed to test complex multi-output learning
problems contain a mix of different output structures. For
example, the image data sets listed in the table includes both
labels and bounding boxes for the objects. These data sets can
be used to test a variety of data.

Finally, we come to veracity. Many efforts to detail with
noisy labels evaluate their methods by beginning with a clean
data set to which artificial noise is then added. This helps
researchers control and test different levels of noise. We have
also listed several popular real-world data sets with some
unknown level of errors in the annotation.

IV. CHALLENGES OF MULTI-OUTPUT LEARNING

AND REPRESENTATIVE WORKS

The pressing need for the complex prediction output and
the explosive growth of output labels pose several challenges
to multi-output learning and have exposed the inadequacies
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of many learning models that exist to date. In this section,
we discuss each of these challenges and review several rep-
resentative works on how they cope with these emerging
phenomena. Furthermore, given the success of artificial neural
networks (ANNs), we also present several state-of-the-art
examples of multi-output learning using an ANN for each
challenge.

A. Volume—Extreme Output Dimensions

Large-scale data sets are ubiquitous in real-world appli-
cations. A data set is defined to be large-scale if it meets
one of three criteria: it has a large number of data instances,
the input feature space has high dimensionality, or the output
space has high dimensionality. Many studies have sought to
solve the scalability issues caused by a large number of data
instances, e.g., the instance selection method in [212], or with
high-dimensional feature spaces, such as the feature selection
method in [213]. However, the issues associated with high
output dimensions have received much less attention.

Consider, for example, that if the label for each dimension of
an m-dimensional output vectors can be selected from a label
set with c different labels, then the number of output outcomes
is cm . Hence, these ultrahigh-output dimensions/labels result in
an extremely large output space and, in turn, high computation
costs. Therefore, it is crucial to design multi-output learning
models that can handle the immense and ongoing growth in
outputs.

An analysis of the current state-of-the-art research on
ultrahigh-output dimensions revealed some interesting
insights. Our analysis was based on the data sets used in stud-
ies of multiple disciplines, such as machine learning, computer
vision, natural language processing, information retrieval, and
data mining. We specifically focused on articles in three top
journals and three top international conferences: the IEEE
TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE

INTELLIGENCE (TPAMI), the IEEE TRANSACTIONS ON

NEURAL NETWORKS AND LEARNING SYSTEMS (TNNLS),
the Journal of Machine Learning Research (JMLR),
the International Conference on Machine Learning (ICML),
the Conference on Neural Information Processing
Systems (NIPS), and the Conference on Knowledge Discovery
and Data Mining (KDD). Figs. 3 and 4 summarize our review.
From Figs. 3 and 4, it is evident that the output dimensionality
of the understudied algorithms has continued to increase over
time. In addition, the latest articles to address this issue in all
selected titles are now dealing with more than a million output
dimensions and, in some cases, are approaching billions of out-
puts. Moreover, the statistics for the conferences with shorter
time-lags to publication demonstrate just how rapidly output
dimensionality is increasing. From this analysis, we conclude
that the explosion in output dimensionality is driving many
developments in multi-output learning algorithms.

The studies we reviewed tend to fall into two cate-
gories: qualitative and quantitative approaches. The qualitative
approaches generally involve generative models, while the
quantitative models generally involve discriminative models.
The main difference between the two models is that genera-
tive models focus on learning the joint probability P(x, y)

of the inputs x and the label y, while the discriminative
models focus on the posterior P(y|x). Note that in a gen-
erative model, P(x, y) can be used to generate some data
x , where, in this case, x is the generated output in this
particular case.

1) Qualitative Approaches/Generative Models: The aim of
image synthesis [48], [214] is to synthesize new images from
textual image descriptions of the image. Some pioneering
researchers have synthesized images using a GAN with the
image distribution as multiple outputs [67]. However, in real
life, GANs can only generate low-resolution images. How-
ever, since the first attempts at this foray, there has been
a progress in scaling up GANs to generate high-resolution
images with sensible outputs. For example, Reed et al. [48]
proposed a GAN architecture that generates visually plausible
64 × 64 pixel images given text descriptions. In a follow-
up study, they presented GAWWN [214], which scales the
synthesized image up to 128 × 128 resolution by lever-
aging additional annotations. Subsequently, StackGAN [215]
was proposed, which is capable of generating photo-realistic
images at a 256 × 256 resolution from text descriptions.
HDGAN [216] is the current state of the art in image synthesis.
It models high-resolution images in an end-to-end fashion
at 512 × 512 pixels. Inevitably, the future will see further
increases in resolution.

MaskGAN [217] uses GAN to generate text (i.e., mean-
ingful word sequences). The label set size accords with the
vocabulary size. The output dimension is the length of the
word sequence that is generated, which, technically, can be
unlimited. However, MaskGAN only handles sentence-level
text generation. Document- and book-level text generations
are still challenging.

2) Quantitative Approaches/Discriminative Models: Like
instance and feature selection methods that reduce the number
of input instances and, in turn, reduce input dimensionality,
it is natural to design models that similarly reduce output
dimensionality. Embedding methods can be used to com-
press a space by projecting the original space onto a lower
dimensional space, with the expected information preserved,
such as label correlations and neighborhood structure. Popular
methods, such as random projections or canonical correlation
analysis projections [218]–[221], can be adopted to reduce
the dimensions of the output label space. As a result, these
modeling tasks can be performed on a compressed output
label space, and then, the predicted compressed label can be
projected back onto the original high-dimensional label space.
Recently, several embedding methods have been proposed for
extreme output dimensions. Mineiro and Karampatziakis [222]
proposed a novel randomized embedding for extremely large
output spaces. AnnexML [169] is another novel embedding
method for graphs that captures graph structures in the embed-
ding space. The embeddings are constructed from the k-nearest
neighbors (kNNs) of the label vectors, and the predictions
are made efficiently through an approximate nearest neighbor
search method. Two popular ANN methods for handling
extreme output dimensions are fastText learn tree [223] and
XML-CNN [224]. FastText learn tree [223] jointly learns the
data representation and the tree structure, and the learned

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on July 20,2020 at 14:09:24 UTC from IEEE Xplore.  Restrictions apply. 



2418 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 7, JULY 2020

Fig. 3. Output dimension trends from articles published in the journals TPAMI, TNNLS, and JMLR since 2013 [111]–[165].

Fig. 4. Output dimension trends from articles published in the conferences ICML, NIPS, and KDD since 2013 [79], [82], [166]–[211].

tree structure is then used for efficient hierarchical prediction.
XML-CNN is a CNN-based model that incorporates a dynamic
max-pooling scheme to capture fine-grained features from
regions of the input document. A hidden bottleneck layer is
used to reduce the model size.

B. Variety—Complex Structures

With the increasing abundance of labels, there is a pressing
need to understand their inherent structures. Complex output
structures can lead to multiple challenges in multi-output
learning. For instance, it is common for strong correlations
and complex dependencies to exist between labels. Therefore,
appropriately modeling output dependencies in the label
representation is critical but nontrivial in multi-output
learning. In addition, designing a multi-variate loss function
and proposing an efficient algorithm to alleviate the high
complexity caused by complex structures are also challenging.

1) Appropriate Modeling of Output Dependencies: The
simplest method of multi-output learning is to decompose the
learning problem into m independent single-output problems
with each corresponding to a single value in the output space.
A representative approach is a binary relevance (BR) [225],
which independently learns binary classifiers for all the labels
in the output space. Given an unseen instance x, BR predicts

the output labels by predicting each of the binary classifiers
and then aggregating the predicted labels. However, such
independent models do not consider the dependencies between
outputs. A set of predicted output labels might be assigned to
the testing instance even though these labels never co-occur
in the training set. Hence, it is crucial to model the output
dependencies appropriately to obtain better performance for
multi-output tasks.

Many classic learning methods have been proposed to model
multiple outputs with interdependencies. These include label
powersets (LPs) [226], classifier chains (CCs) [227], [228],
structured support vector machine (SSVM) [56], conditional
random fields (CRFs) [229], and so on. LPs model the
output dependencies by treating each different combination
of labels in the output space as a single label, which trans-
forms the problem into one of learning multiple single-
label classifiers. The number of single-label classifiers to be
trained is the number of label combinations, which grows
exponentially with the number of labels. Therefore, LP has
the drawback of high computation cost when training with
a large number of output labels. Random k-labelsets [230],
an ensemble of LP classifiers, is a variant of LP that alleviates
the computational complexity problem by training each LP
classifier on a different random subset of labels.
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CC improves BR by taking the output correlations into
account. It links all the binary classifiers from BR into a chain
via a modified feature space. Given the j th label, the instance
xi is augmented with the first, second, . . ., ( j − 1)th label,
i.e., (xi , l1, l2, . . . , l j−1), as the input to train the j th classifier.
Given an unseen instance, CC predicts the output using the first
classifier and then augments the instance with the prediction
from the first classifier as the input to the second classifier
for predicting the next output. CC processes values in this
way from the first classifier to the last and, thus, preserves
the output correlations. However, a different order of chains
leads to different results. ECC [227], an ensemble of CC,
was proposed to solve this problem. It trains the classifiers
over a set of random ordering chains and averages the results.
Probabilistic CCs (PCCs) [231] provide a probabilistic inter-
pretation of CC by estimating the joint distribution of the
output labels to capture the output correlations. CCMC [114]
is a CC model that considers the order of label difficulties to
reduce the degradation in performance caused by ambiguous
labels. It is an easy-to-hard learning paradigm that identifies
easy and hard labels and uses the predictions for easy labels
to help solve the harder labels.

SSVM leverages the idea of large margins to deal with
multiple interdependent outputs. The compatibility function
is defined as F(x, y) = wT �(x, y), where w is the weight
vector and � : X × Y → Rq is the joint feature map
over input and output pairs. The SSVM aims to find the
classifier hw(x) = arg max

y∈Y
�w, φ(x, y)� with the following

objective:

min
w∈Rq,{ξi ≥0}n

i=1

λ

2
�w�2

+C

n

n∑
i=1

max
y∈Y

{�(yi , y) + wT �(xi , y)} − wT �(xi , yi )︸ ︷︷ ︸
structured hinge loss

.

Constraining the structured hinge loss with �(yi , y) +
wT �(xi , y) − wT �(xi , yi ) ≤ ξi for all y ∈ Y , the objective
can be reformulated as

min
w∈Rq,{ξi ≥0}n

i=1

λ

2
�w�2 + C

n

n∑
i=1

ξ2
i

s.t. wT �(xi , yi ) − wT �(xi , y) ≥ �(yi , y) − ξi

∀y ∈ Y \ yi , ∀i (1)

where � : Y × Y → R is a loss function, C is a positive
constant that controls the tradeoff between the training error
minimization and the margin maximization [56], n is the num-
ber of training samples, and ξi is the slack variable. In practice,
SSVM is solved with the cutting-plane algorithm [232].

Apart from the classic models that learn the correlations
between outputs, some of the state-of-the-art multi-output
learning models are based on ANNs. For example, models
based on convolutional neural networks typically focus on
hierarchical multi-labels [233] or rankings [234]. Recurrent
neural networks (RNNs) model generally focus on sequence-
to-sequence learning [235] and time-series prediction [236].

Generative deep neural networks are used to generate output
data, such as images, text, and audio [67].

2) Multivariate Loss Functions: Various loss functions were
defined to compute the difference between the groundtruth and
the predicted output. Different loss functions present different
errors given the same data set, and they greatly affect the
performance of the model.

0/1 loss is a standard loss function that is commonly used
in classification [237]

L0/1(y, y�) = I(y �= y�) (2)

where I is the indicator function. In general, 0/1 loss refers
to the number of misclassified training examples. However,
it is very restrictive and does not consider label dependence.
Therefore, it is not suitable for large numbers of outputs or for
outputs with complex structures. In addition, it is nonconvex
and nondifferentiable, so it is difficult to minimize the loss
using standard convex optimization methods. In practice, one
typically uses a surrogate loss, which is a convex upper
bound of the task loss. However, a surrogate loss in multi-
output learning usually loses consistency when generalizing
single-output methods to deal with multiple outputs [238].
Several works on subfields of multi-output learning study the
consistency of different surrogate functions and show that they
are consistent under some sufficient conditions [239], [240].
Yet, this is still a challenging aspect of multi-output learning.
More exploration of the theoretical consistency of different
problems is required.

In the following, we describe four popular surrogate losses:
hinge loss, negative log loss, perceptron loss, and softmaxmar-
gin loss.

Hinge loss is one of the most widely used surrogate losses
and is usually used in structured SVMs [241]. It pushes the
score of the correct outputs to be greater than that of the
prediction

LHinge(x, y, w) = max
y�∈Y

[�(y, y�) + wT �(x, y�)] − wT �(x, y).

(3)

The margin, �(y, y�), has different definitions based on the
output structures and task. For example, for sequence learning
or outputs with equal weights, �(y, y�) can be simply defined
as the Hamming loss

∑m
j=1 I(y( j ) �= y�

( j )). For taxonomic
classification with the hierarchical output structure, �(y, y�)
can be defined as the tree distance between y and y� [19]. For
ranking, �(y, y�) can be defined as the mean AP of a ranking
y� compared to the optimal y [242]. In syntactic parsing,
�(y, y�) is defined as the number of labeled spans, where y
and y� do not agree [35]. Nondecomposable losses, such as
the F1 measure, AP, or IOU, can also be defined as a margin.

Negative log loss is commonly used in CRFs [229]. Note
that minimizing negative log loss is the same as maximizing
the log probability of the data

LNegativeLog(x, y, w) = log
∑
y�∈Y

exp[wT �(x, y�)]−wT �(x, y).

(4)
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Perceptron loss is usually adopted in structured perceptron
tasks [243] and is the same as hinge loss without the margin

LPerceptron(x, y, w) = max
y�∈Y

[wT �(x, y�) − wT �(x, y)]. (5)

Softmax-margin loss is one of the most popular loss func-
tions in multi-output learning models, such as SSVMs [244]
and CRFs [245]

LSoftmaxMargin(x, y, w)

= log
∑
y�∈Y

exp[�(y, y�) + wT �(x, y�)] − wT �(x, y) .(6)

Squared loss is a popular and convenient loss function that
quadratically penalizes the difference between the ground truth
and the prediction. It is commonly used in traditional single-
output learning and can be easily extended to multi-output
learning by summing the squared differences over all the
outputs

LSquared(y, y�) = (y − y�)2. (7)

In multi-output learning, it is usually used with continuous-
valued outputs or continuous intermediate results before con-
verting them into discrete-valued outputs. It is also commonly
used in neural networks and boosting.

3) Efficient Algorithms: Complex output structures signifi-
cantly increase the burden on algorithms to formulate a model.
Large-scale outputs, complex output dependencies, and/or
complex loss functions can all be problematic. Therefore,
several algorithms have been proposed specifically to tackle
these challenges efficiently. Many leverage classic machine
learning models so as to speed up the algorithms and alleviate
the burden of complexity. The four most widely used classic
models are based on kNN, decision trees, k-means, and
hashing.

1) kNN-based methods are simple yet powerful machine
learning models. Predictions are made based on the
closest k instances to the test instance vector in terms
of the Euclidean distance. LMMO-kNN [246] is an
SSVM-based model involving an exponential number
of constraints with respect to the number of labels.
This model imposes kNN constraints instantiated by the
label vectors from neighboring examples to significantly
reduce the training time and make rapid predictions.

2) Decision tree-based methods [247], [248] learn a tree
from the training data with a hierarchical output label
space. They recursively partition the nodes until each
leaf contains a small number of labels. Each novel data
point is passed down the tree until it reaches a leaf. This
method usually achieves a logarithmic time prediction.

3) k-means based methods, such as SLEEC [79], cluster the
training data using k-means clustering. SLEEC learns a
separate embedding per cluster and performs classifica-
tion for a novel instance within its cluster alone. This
significantly reduces the prediction time.

4) Hashing methods, such as cohashing [249], [250] and
DBPC [251], reduce the prediction time by using
hashing on the input or the intermediate embedding
space. Cohashing learns an embedding space to

preserve semantic similarity structures between inputs
and outputs. Compact binary representations are then
generated for the learned embeddings for prediction
efficiency. DBPC jointly learns a deep latent Hamming
space and binary prototypes while capturing the
latent nonlinear structures of the data with an ANN.
The learned Hamming space and binary prototypes
significantly decrease the prediction complexity and
reduce memory/storage costs.

C. Volume—Extreme Class Imbalances

Real-world multi-output applications rarely provide data
with an equal number of training instances for all
labels/classes. Too many instances in one class over another
mean the data is imbalanced, this is, common in many appli-
cations. Therefore, traditional models learned from such data
tend to favor majority classes more. For example, in face gen-
eration, a trained model tends to generate the faces of famous
people because there are so many more images of celebrities
than other people. Though class imbalance problems have
been studied extensively in the context of binary classification,
this issue still remains a challenge in multi-output learning,
especially with extreme imbalances.

Many studies on multi-output learning either create a bal-
anced data set or ignore the problems introduced by imbal-
anced data. A natural way to balance class distributions is to
resample the data set. There are two main resampling tech-
niques: undersampling and oversampling [252]. Undersam-
pling methods downsize the majority classes. The NearMiss
family of methods [253] are representative works of this cate-
gory. The oversampling methods, such as SMOTE and its vari-
ants [254], adopt oversampling technique on minority classes
to handle the imbalanced class learning problem. However,
all these resampling methods are mainly designed for single
output learning problems. There are other techniques to handle
class imbalance in multi-output learning tasks with ANN.

For example, Dong et al. [255] combined incremental
rectification of mini-batches with a deep neural network.
Then, a hard sample mining strategy minimizes the dominant
effect of the majority classes by discovering the boundaries
of sparsely sampled minority classes. Both of the methods
in [256] and [257] leveraged adversarial training to mitigate
imbalance by using a reweighting technique so that majority
classes tend to have a similar impact as minority classes.

D. Volume—Unseen Outputs

Traditional multi-output learning assumes that the output
set in testing is the same as the one in training, i.e., the
output labels of a testing instance have already appeared
during training. However, this may not be true in real-world
applications. For example, a new emerging living species can
not be detected using a learned classifier based on existing
living animals. Similarly, it is infeasible to recognize the
actions or events in a real-time video if no such actions or
events with the same labels appeared in the training video
set, nor could a coarse animal classifier provide details of
the species of a detected animal, such as whether a dog is
a labrador or a shepherd.
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Depending on the complexity of the learning task, label
annotation is usually very costly. In addition, the enormous
growth in the number labels not only leads to high-dimensional
output space as a result of computation inefficiency but also
makes supervised learning tasks challenging due to unseen
output labels during testing.

1) Zero-Shot Multi-Label Classification: Multi-label clas-
sification is a typical multi-output learning problem. Multi-
label classification problems can have various inputs, such as
text, images, and video, depending on the application. The
output for each input instance is usually a binary label vector,
indicating what labels are associated with the input. Multi-
label classification problems learn a mapping from the input
to the output. However, as the label space increases, it is
common to find unseen output labels during testing, where
no such labels have appeared in the training set. To study
such cases, the zero-shot multi-class classification problem
was first proposed in [17] and [260] and most leverage the
predefined semantic information, such as attributes [11] and
word representations [13]. This technique was then extended
to zero-shot multi-label classification to assign multiple unseen
labels to an instance. Similarly, zero-shot multi-label learning
leverages the knowledge of the seen and unseen labels and
models the relationships between the input features, label
representations, and labels. For example, Gaure et al. [259]
leverage the co-occurrence statistics of seen and unseen labels
and model the label matrix and co-occurrence matrix jointly
using a generative model. Rios and Kavuluru [260] and
Lee et al. [261] incorporate knowledge graphs of the label
relationships with neural networks.

2) Zero-Shot Action Localization: Similar to zero-shot clas-
sification problems, localizing human actions in videos without
any training video examples is a challenging task. Inspired
by zero-shot image classification, many studies into zero-
shot action classification predict unseen actions from disjunct
training actions based on the prior knowledge of action-to-
attribute mappings [262]–[264]. Such mappings are usually
predefined, and the seen and unseen actions are linked through
a description of the attributes. Thus, they can be used to
generalize undefined actions but are unable to localize actions.
More recently, some works are proposed to overcome the
issue. Jain et al. [265] propose Objects2action without using
any video data or action annotations. It leverages vast object
annotations, images, and text descriptions that can be obtained
from open-source collections, such as WordNet and Ima-
geNet. Mettes and Snoek [266] have subsequently enhanced
Objects2action by considering the relationships between actors
and objects.

3) Open-Set Recognition: Traditional multi-output learning
problems, including zero-shot multi-output learning, operate
under a closed-set assumption, i.e., where all the testing
classes are known at the time of training time either through
the training samples or because they are predefined in a
semantic label space. However, Scheirer et al. [16] proposed
a concept called open-set recognition to describe a scenario
where unknown classes appear in testing. Open-set recognition
presents one-vs-set machine to classify the known classes as
well as deal with the unknown classes. In later studies [267],

Fig. 5. Relationship among different levels of unseen outputs. All of these
learning problems belong to multi-output learning.

[268], they extended this idea into multi-class settings by
formulating a compact abating probability model. Bendale
and Boult [269] adapted ANNs for open-set recognition by
proposing a new model layer that estimates the probability
of an input being an unknown class.

Fig. 5 illustrates the relationships between different levels of
unseen outputs in multi-output learning. Open-set recognition
is the most generalized problem of all. Few-shot and zero-
shot learning have studied with different multi-output learning
problems, such as multi-label learning and event localization.
However, open-set recognition has only been studied in con-
junctions with multi-class classification. Other problems in the
context of multi-output learning are still unexplored.

E. Veracity—Noisy Output Labels

Almost all methods of label annotation lead to some amount
of noise for various reasons. Associations may be weak,
the text may be ambiguous, and crowdsourced workers may
not be domain experts, so labels may be incorrect [270].
Therefore, it is usually necessary to handle noisy outputs, such
as missing, corrupt, incorrect, and/or partial labels, in real-
world tasks.

1) Missing Labels: Often human annotators annotate an
image or document with prominent labels but miss some of the
less emphasized labels. In addition, all the objects in an image
may not be localized because there are, say, too many objects
or the objects are too small. Social media, such as Instagram,
allow users to tag uploaded images. However, the tags could
relate to anything: the type of event, the person’s mood, and
the weather. Plus, no user is likely to tag every object or every
aspect of an image. Directly using such labeled data sets in
traditional multi-output learning models cannot guarantee the
performance of the given tasks. Therefore, handling missing
labels is necessary in real-world applications.

In early studies, missing labels were handled by treating
them as negative labels [271]–[273]. Then, modeling tasks
are performed based on a fully labeled data set. However,
this approach can introduce undesirable bias into the learning
problem. Therefore, a more widely used method now is
missing value imputation through matrix completion [186],
[192], [274]. Most of these approaches are based on a low-rank
assumption and, more recently, on label correlations, which
improves learning performance [275], [276].

2) Incorrect Labels: Many labels in high-dimensional out-
put space are noninformative or simply wrong [277]. This
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Fig. 6. Range of noisy labels in multi-label classification. Training may be multi-label (sample associates with multiple labels), missing-label (sample has
incomplete label assignment), incorrect-label (sample has at least one incorrect labels and possible incomplete label assignment), partial-label (each sample
has multiple labels, only one of which is correct), and partial multi-label (each sample has multiple labels, at least one of which is correct). A line connecting
a label with the sample represents that the sample associates with the label. The label in red color represents the correct label to the sample. The label in
gray box represents an incorrect label to the sample.

is especially common with annotations from crowdsourcing
platforms that hire nonexpert workers. Labeled data sets from
social media networks are also often less than useful. A basic
approach for handling incorrect labels is to simply remove
those samples [278], [279]. That said, it is frequently difficult
to detect that samples have been mislabeled. Therefore, design-
ing multi-output learning algorithms that learn from noisy data
sets is of great practical importance.

Existing multi-output learning methods handling noisy
labels generally fall into two groups. The first group is based
on building robust loss functions [280]–[282], which modify
the labels in the loss function to alleviate the effect of noise.
The second group models latent labels and learns the transition
from the latent to the noisy labels [283]–[285].

Partial Labels: A special case of incorrect labels is partial
labels [286]–[288], where each training instance is associated
with a set of candidate labels but only one of them is correct.
This is a common problem in real-world applications. For
example, a photograph might contain many faces with captions
listing who is in the photograph, but the names are not matched
to the face. Many methods for learning partial labels have been
developed to recover the ground-truth labels from a candidate
set [289], [290]. However, most are based on the assumption
of exactly one ground truth for each instance, which may not
always hold true by different label annotation methods. With
the use of multiple workers on the crowdsourcing platform to
annotate a data set, the final annotations are usually gathered
from the union set of the annotations of all the workers, where
each instance might associate with both multiple relevant and
irrelevant labels. Hence, Xie and Huang [291] developed a
new learning framework, partial multi-label learning (PML),
that relaxes this assumption by leveraging the data structure
information to optimize the confidence weighted rank loss.
Fig. 6 summarizes all the scenarios with noisy output labels,
including multi-label learning, missing labels, incorrect labels,
partial label learning, and PML.

F. Velocity—Changes in Output Distribution

Many real-world applications must deal with data streams,
where data arrive continuously and possibly endlessly. In these
cases, the output distributions can change over time or concept
drift can occur. Streaming data are common in surveillance
[98], driver route prediction [95], demand forecasting [97],
and many other applications. Take visual tracking [292] in
the surveillance video as an example, where the video stream
is potentially endless. Data streams come in high velocity as
the video keeps generating consecutive frames. The goal is

to detect, identify, and locate events or objects in the video.
Therefore, the learning model must adapt to possible concept
drift while working with limited memory.

Existing multi-output learning methods model changes in
output distribution by updating the learning system each time
data streams arrive. The update method might be ensemble-
based [293]–[297] or ANN-based methods [292], [298]. Other
strategies to handle concept drift include the assumption of a
fading effect on past data [296]; maintaining a change detector
on predictive performance measurements, and recalibrating
models accordingly [295], [299]; using stochastic gradient
descent to update the network and accommodate new data
streams with an ANN [292]. Notably, the kNN is one of the
most classic frameworks in handling multi-output problems,
but it cannot be successfully adapted to deal with the challenge
of change of output distribution due to the inefficiency issue.
Many online hashing and online quantization-based methods
[300], [301] are proposed to improve the efficiency of kNN
while accommodating the changing output distribution.

G. Other Challenges

Any two of the aforementioned challenges can be combined
to form a more complex challenge. For example, noisy labels
and unseen outputs can be combined to form an open-set
noisy label problem [302]. In addition, the combination of
noisy labels and extreme output dimensions are also worthy
of study and further exploration [206]. Changes in output
distribution together with noisy labels result in online time-
series prediction problems with missing values [303], while
changes in distributions combined with dynamic label sets
(unseen outputs) lead to open-world recognition problems
with incremental labels [304]. Changing output distribution
with extreme class imbalances creates the common problem
of streaming data with concept drift and class imbalances
at the same time [18], [305]. Moreover, the combination of
complex output structures with changing output distribution is
also frequent in real-world applications [306].

H. Open Challenges

1) Output Label Interpretation: There are different ways to
represent output labels, and each expresses label information
from a specific perspective. Taking label tags as an output,
for example, binary attributed output embeddings represent
what attributes the input relates to. Hierarchical label output
embedding conveys the hierarchical structure of the inputs.
Semantic word output embeddings reflect the semantic rela-
tionships between the outputs. As one can see, each exhibits

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on July 20,2020 at 14:09:24 UTC from IEEE Xplore.  Restrictions apply. 



XU et al.: SURVEY ON MULTI-OUTPUT LEARNING 2423

a certain level of human interpretability. Hence, an emerging
approach to label embedding is to incorporate different label
information from multiple perspectives and rich contexts to
enhance interpretability [307]. This is a challenging under-
taking because it is quite difficult to appropriately model the
interdependencies between outputs in a way that humans can
easily interpret and understand. For example, an image of
a centaur is expected to be described with semantic labels,
such as horse and person. Moreover, the image is expected
to be described with attributes, such as head, arm, and tail.
As such, appropriately modeling the relationships between
input and outputs with rich interpretations of the labels is an
open challenge that should be explored in the future studies.

2) Output Heterogeneity: As the demand for sophisticated
decision-making increases, so does demand for outputs with
more complex structures. Returning to the example of surveil-
lance, people reidentification in traditional approaches usually
consists of two steps: people detection and then reidentifying
that person if they are input. These steps are essentially two
separate tasks that need to be learned together if performance
is to be enhanced. Several researchers have recently attempted
this demanding challenge, i.e., building a model that can
simultaneously learn multiple tasks with different outputs.
Mousavian et al. [308] undertook joint people detection in
tandem with reidentification, while Van Ranst et al. [309]
tackled image segmentation with depth estimation. However,
more exploration and investigation to overcome this challenge
are needed. As an example, one worthy undertaking would
be to answer the question: Can we simultaneously learn the
representation of a new user in a social network as well as
their potential links to existing users?

V. CONCLUSION

Multi-output learning has attracted significant attention over
the last decade. This article provides a comprehensive review
of the study of multi-output learning using the four Vs as
a frame. We explore the characteristics of the multi-output
learning paradigm beginning with the life cycle of the output
labels. We emphasize the issues associated with each step of
the learning process. In addition, we provide an overview of
the types of outputs, the structures, selected problem defini-
tions, common model evaluation metrics, and the popular data
repositories used in experiments, with representative works
referenced throughout. The article concludes with a discussion
on the challenges caused by four Vs and some future research
directions that are worthy of further study.
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