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Abstract

Top-down approaches for human pose estimation (HPE)
have reached a high level of sophistication, exemplified
by models such as HRNet and ViTPose. Nonetheless, the
low efficiency of top-down methods is a recognized is-
sue that has not been sufficiently explored in current re-
search. Our analysis suggests that the primary cause of
inefficiency stems from the substantial diversity found in
pose samples. On one hand, simple poses can be accu-
rately estimated without requiring the computational re-
sources of larger models. On the other hand, a more
prominent issue arises from the abundance of bounding
boxes, which remain excessive even after NMS. In this
paper, we present a straightforward yet effective dynamic
framework called DynPose, designed to match diverse pose
samples with the most appropriate models, thereby en-
suring optimal performance and high efficiency. Specifi-
cally, the framework contains a lightweight router and two
pre-trained HPE models: one small and one large. The
router is optimized to classify samples and dynamically
determine the appropriate inference paths. Extensive ex-
periments demonstrate the effectiveness of the framework.
For example, using ResNet-50 and HRNet-W32 as the pre-
trained models, our DynPose achieves an almost 50% in-
crease in speed over HRNet-W32 while maintaining the
same-level accuracy. More importantly, the framework can
be generalized to other pre-trained models and datasets
without re-training or fine-tuning. Code is available at
https://github.com/Aritoria/DynPose.

1. Introduction
Top-down approaches for human pose estimation (HPE)
have reached a remarkable level of maturity, with signifi-
cant improvements in accuracy. Modern architectures like
HRNet [32] and ViTPose [37] exemplify this progress. HR-
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Figure 1. Comparison of DynPose and other classic methods on
COCO dataset. The red line on the left shows the trade-off be-
tween speed and accuracy of our framework, while the red line on
the right illustrates the generalization results.

Net, which uses multi-scale convolution, provides a signif-
icant boost over the baseline [36]. Subsequently, methods
like ViTPose introduce attention mechanisms [36], reach-
ing state-of-the-art accuracy. Notably, ViTPose-L achieves
an impressive 78.2% AP on the COCO dataset [24].

While current methods excel in accuracy, they often
struggle with efficiency [13, 42]. On one hand, top-down
approaches are inherently composed of two processes, re-
quiring the cropping of samples from images by object de-
tectors [8] before making pose estimation. The computa-
tional cost increases linearly with the number of detection
boxes. On the other hand, the increasing complexity of top-
down model designs leads to higher inference time.

Recent advances such as lightweight networks [31, 41]
and sparse attention methods [1, 5, 16] focus on improv-
ing efficiency through innovative designs of the model it-
self. From another perspective, we discover that the true
bottleneck for the slowness of top-down HPE methods may
stem from the diversity of pose samples. The diversity
arises from two aspects: Pose Diversity and Box Diver-
sity, as illustrated in Fig. 2. Pose Diversity is influenced
by whether a pose is common or not, as well as by fac-
tors such as occlusion, background clutter and the resolu-
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tion of the image where the sample is cropped. Box Diver-
sity, on the other hand, concerns the quality of the bounding
boxes [10]. High-quality boxes, with high Intersection over
Union (IoU), accurately capture the body and reduce back-
ground clutter. In contrast, low-quality boxes often miss
limb details and introduce extra background noise. More
importantly, there’s a significant issue arising from the re-
dundancy of detection boxes. Despite using post-processing
techniques like non-maximum suppression (NMS), the de-
tector still generates numerous redundant boxes. For ex-
ample, there are roughly 140k boxes (detected by Faster R-
CNN [10]) for only 6k samples on COCO val set. Using
one complex model for these diverse samples brings a sig-
nificant computational waste. For example, when dealing
with an easy sample (a common pose with a clean back-
ground), ViTPose-L provides the same accuracy as ResNet-
50 but takes ten times longer. Therefore, assigning each
sample to the most appropriate models will be beneficial.

In this paper, we present a simple yet effective dynamic
framework called DynPose, which dynamically allocates
resources according to the specific demands of each sample.
It features a router and two pre-trained models: one Small
Network with lower accuracy but faster inference time, and
one Large Network with higher accuracy but slower infer-
ence time. The router, which is the core of our design, man-
ages the inference path. It consists of several convolutional
and fully connected layers. We supervise the router by de-
signing an optimization strategy that considers the perfor-
mance gap between the Small and Large Networks, teach-
ing it to evaluate the estimation difficulty of diverse sam-
ples. During inference, the router only sends relatively hard
samples (those most likely to have accuracy discrepancies
between two pre-trained networks) to the Large Network,
thereby greatly improving efficiency without sacrificing ac-
curacy. Moreover, with the well-trained router, our frame-
work can generalize to other models and datasets by replac-
ing pre-trained networks. To the best of our knowledge, we
are the first to discover sample diversity as a key factor in
the efficiency challenge of top-down HPE, and propose a
simple dynamic framework to address this.

Our framework achieves a good balance between accu-
racy and speed, as shown in Fig. 1. The red line on the
left shows that when using pre-trained models like ResNet-
50 and HRNet-W32, our framework cuts inference time in
half while achieving comparable results with HRNet-W32.
Meanwhile, the red line on the right shows that directly ap-
plying the trained router to ResNet-152 and ViTPose-L still
speeds up inference time by around 40%. In summary, our
contributions are as follows:
• We discover that sample diversity plays a crucial role in

the efficiency issues of Top-Down HPE.
• We introduce a straightforward yet effective dynamic

framework that allocates appropriate computational re-
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Figure 2. Illustrations of sample diversity. The first row shows
variety examples of Pose Diversity. The second row shows the
Box Diversity with decreasing IoU. Orange and green annotations
represent the predictions of ResNet-50 and ViT-L, respectively.

sources to diverse samples to address inefficiencies.
• Experiments show that our framework significantly re-

duces inference time and generalizes well across various
models and datasets.

2. Related Works
2.1. Top-down human pose estimation
In recent years, top-down human pose estimation methods
have made significant strides in accuracy. Primarily, back-
bone is a crucial component of this progress. ResNet [36]
establishes the baseline for the field with commendable re-
sults and spawns several variants [11, 44]. Following this,
HRNet [32] leverages multi-level features and deeper net-
work structures to achieve even greater performance. Mod-
els like Swin [26] and ViTPose [37], which utilize attention
mechanisms, have the advantage of capturing long-range in-
formation, elevating accuracy to state-of-the-art levels. Be-
yond advancements in backbones, some research focuses
on designing more effective loss functions. For example,
SimCC [22] converts the heatmap from 2D to 1D and sub-
divides each pixel into smaller segments to reduce quanti-
zation errors. RLE loss [19] improves accuracy by training
the network to learn from a realistic keypoint distribution.
Additionally, other works boost performance through so-
phisticated algorithm designs. SCAI [15] employs intricate
architectural designs, enabling the model to continually re-
fine its outcomes. Moreover, Poseur [28] introduces DETR
[2] decoder to achieve superior results.

While the methods mentioned above improve accuracy,
they highlight the lingering issue of slow inference speed
in top-down HPE. To address this, some approaches fo-
cus on shrinking the backbone. For example, Lite-HRNet
[41] retains the core design of HRNet while significantly
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Figure 3. The architecture of DynPose. Our framework includes a Router for scoring samples and two pre-trained models that differ
in accuracy and computational cost. During inference, the image is passed through the Router to obtain a score s, which dynamically
determines the inference path. k1 and k2 are the thresholds used to distinguish “Easy”, “Hard” and “Extremely Hard”. We route “Hard”
samples to Large Network. “Easy” and “Extremely Hard” are send to Small Network.

reducing the number of parameters. Similarly, the Mo-
bileNet [31] and ShuffleNet [45] series use fewer compu-
tational resources to achieve cost-effective results. Apart
from the backbone, some methods employ innovative al-
gorithm designs to improve efficiency. RepVGG [7] intro-
duces a weight-sharing mechanism to reduce FLOPs during
inference. SHaRPose [1] designs a sparse attention method
that helps the network concentrate on key areas, improving
both accuracy and speed. Additionally, in the field of dis-
tillation, FPD [43] achieves parameter compression through
distillation between a large model and a small model, while
SDPose [4] employs a cyclical distillation method that en-
hances both speed and accuracy. These existing methods
mainly aim to speed up inference by optimizing the com-
plexity of the models. From a different perspective, our ap-
proach views sample diversity as a crucial factor affecting
the speed of inference and designs a dynamic framework to
improve efficiency.

2.2. Dynamic neural networks

Dynamic neural networks [14, 38] are often used to improve
efficiency [9] and are relatively mature in image classifica-
tion. They often employ an early exiting strategy, where the
result exits immediately if an earlier layer reaches a high
confidence level, thereby bypassing subsequent computa-
tions. Branchynet [33] is one of the earliest networks to em-
ploy this strategy. MSDNet [12] advances this by incorpo-
rating multi-level features. Subsequent researches [17, 39]
have further refined this approach. Additionally, DVT [34]
integrates transformer blocks and improve both efficiency
and performance.

Additionally, another class of dynamic methods focus on
predicting inference paths based on features. For example,
BlockDrop [35] enhances inference efficiency by leverag-
ing redundancy between residual blocks. It predicts a se-
ries of parameters from the features to dynamically decide

which blocks to skip. More recently, DynamicDet [25] ex-
tends dynamic networks to object detection tasks by intro-
ducing a routing module to decide whether to execute the
output layer or forward the sample to subsequent blocks.
Our framework extends dynamic networks to HPE. Due to
its unique design, we only need to train a lightweight router
to control the inference path for each sample, and the router
is decoupled from the prediction networks. Thus, we keep
efficient throughout both training and inference.

3. Methodology
3.1. Overall architecture
Our framework dynamically allocates appropriate compu-
tational resources to diverse samples, thereby speeding up
inference. The overall structure consists of a router and two
pre-trained HPE models, as shown in Fig. 3. The router
controls the inference path for diverse samples. The Small
Network (lower performance, faster speed) and the Large
Network (higher performance, slower speed) are replace-
able and used to generate results.

For an image I , we first use the router to predict a score
s ∈ (0, 1) as

s = Router(I), (1)

which reflects the estimation difficulty of the pose sample.
It is influenced by both Pose Diversity and Box Diversity.
For example, a sample with a common pose, clean back-
ground and a high-quality detection box results in a low
s, indicating easier estimation. In contrast, a sample with
occlusions and other complicating factors, along with low-
quality detection boxes, correspond to a higher s.

Based on the predicted score s and the performance
of Small and Large Networks, we categorize the samples
into three groups: “Easy”, “Hard” and “Extremely Hard”.
“Easy” samples yield accurate results with both Small and
Large Networks. “Hard” samples can only be handled by
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the Large Network, while the Small Network struggles. For
“Extremely Hard” samples, neither of them performs well,
as these samples also exceed the Large Network’s capabil-
ities. It is worth noting that the majority of “Extremely
Hard” samples are caused by redundant or incorrect detec-
tion boxes generated by the object detector, making them
meaningless and challenging for accurate pose regression.
As exemplified in Fig. 2, although the OKS values predicted
by the Large Network are higher than those predicted by the
Small Network, they often fall below 0.5 (generally indi-
cates a false prediction).

From the aforementioned analysis, our inference strategy
is as follows:

y =

{
Netl(I) if k1 < s < k2

Nets(I) else
, (2)

where Nets and Netl refer to the Small Network and Large
Network, respectively. k1 and k2 are thresholds that clas-
sify samples into three categories. Intuitively, we feed
both “Easy” and “Extremely Hard” samples into the Small
Network since the performance difference is negligible for
these cases, while using the Large Network would incur
higher inference costs. For the remaining “Hard” samples,
we use the Large Network to ensure overall accuracy.

3.2. Lightweight router
The router is the core of our framework. It processes each
sample to predict a estimation difficulty score s. We design
the router to be lightweight to keep it efficient.

We first perform dimensionality reduction on the input
image. Specifically, for an image I ∈ R3×H×W , we apply
average pooling across the channel dimension and utilize
max pooling to reduce resolution, transforming I into F0 ∈
R1×H

2 ×W
2 .

Next, we process F0 using four carefully designed
convolution-based layers. They can be described as

Fi =

{
SGE(C(Fi−1)) i ∈ {1, 3}
PConv(C(Fi−1)) i ∈ {2, 4},

(3)

where C() denotes a 3 × 3 convolution block that includes
activation and normalization. PConv() [3] is an efficient
convolution operation. To capture long-range spatial in-
formation, we employ a lightweight attention mechanism,
SGE [20].

Finally, we flatten F4 to obtain F , which is processed
through two fully connected layers with activation functions
to get the result of s:

s = σ(W2(δ(W1F + b1)) + b2), (4)

where δ, σ denote the ReLU and Sigmoid activation func-
tions respectively. W and b are the trainable parameters in
the fully connected layers.

Figure 4. A qualitative analysis of estimation difficulty and OKD.
As the estimation difficulty increases, the OKD for both Small
and Large Networks (Ds and Dl) grows. But Ds grows much
faster than Dl, and we design (Ds-Dl)/Ds to indicate the score of
estimation difficulty.

Notably, the computational cost of router is negligible
compared to that of Small and Large Networks. For 256 ×
192-sized input images, its FLOPs reaches only 0.19G.

3.3. Optimization strategy
In this section, we provide an optimization strategy for
training the router. We aim to supervise the score s en-
abling it to evaluate the estimation difficulty of each sam-
ple. We intend to use the difference in performance between
the Small and Large Networks to reflect the estimation dif-
ficulty. Directly using Object Keypoint Similarity (OKS)
[24] discrepancy is an option, as OKS measures the similar-
ity between predicted keypoints and ground truth.

However, we find that the negative exponential operation
in OKS significantly narrows the prediction gap between the
networks, especially for challenging samples. To better em-
phasize the differences between the Small and Large Net-
works and provide more effective supervision for the router,
we convert OKS into Object Keypoint Distance (OKD) by
omitting the negative exponential operation as

D =

∑17
i=1 d

iρivi∑17
i=1 v

i
, (5)

where v represents keypoints’ visibility, and ρ denotes the
hyperparameters in OKS. d is the Euclidean distance be-
tween the predicted and ground truth keypoint locations.
The variable i denotes the i-th keypoint.

Let Ds and Dl represent the OKD of the Small and Large
Networks, respectively. We observe a large number of sam-
ples during training and find that they generally follow the
relationship shown in Fig. 4. The Large Network has much
stronger prediction capabilities. As estimation difficulty
increases, Dl rises slowly. However, the Small Network,
which is less robust, sees a quick increase in Ds with grow-
ing estimation difficulty. The increase in Ds is much faster
than that of Dl. Therefore, we use the ratio of Ds−Dl

Ds
to

represent the difficulty of the samples and we design the
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loss function as

Lossr = (s− Ds −Dl

Ds
)2. (6)

Additionally, Ds will not be zero due to unavoidable errors.

3.4. Inference strategy
In this section, we introduce how to adaptively process di-
verse pose samples using the most suitable network during
inference. To achieve this, the core problem is determining
the thresholds k1 and k2 of the predicted score s. This strat-
egy allows us to adjust the testing sample split ratio to the
Large Network, enabling various trade-offs between speed
and accuracy.

First, each testing sample is processed by the router to
obtain a score s, and we can sort all the scores to get
Sall = {S1

all, S
2
all, . . ., S

n
all}, where n denotes the number

of testing samples. Here, Sall is arranged in an ascending
order. We set k1 to a relatively fixed value as

k1 = S1
all + θ(Sn

all − S1
all), (7)

where θ is a hyperparameter. To balance accuracy and
speed, k2 can be set on the desired proportion of data to
the Large Network. For instance, if we aim for p% of the
data to be processed by the Large Network, we find the Sj

all

which is the closest score to k1 in Sall and then set threshold
k2 as

k2 = S
j+⌊n×p%⌋
all . (8)

Generally, k1 is set to a relatively small value and (j +
⌊n× p%⌋) < n can be satisfied.

With k1 and k2, the testing samples can be divided into
three parts: “Easy”, “Hard” and “Extremely Hard”. During
inference, “Hard” samples are routed to the Large Network
and their predicted score s satisfy k1 < s < k2. Other sam-
ples are processed by the Small Network. Note that “Ex-
tremely Hard” samples are handled by the Small Network,
as even the Large Network cannot produce good results for
these samples. Based on this strategy, we achieve variable-
speed inference for any pair of Small and Large Networks.

4. Experiments
4.1. Experimental setups
Our experiments are conducted on MMPose [6] and use the
COCO 2017 Keypoint Detection [24] benchmark. We train
all models on the train set with approximately 100K pose
samples and report results on the val set. The Average Pre-
cision (AP) metric is used for evaluation. For selecting the
Small and Large Networks, we focus on ensuring their per-
formance and speed differences. They can be adjusted flex-
ibly according to the requirements. In this paper, we use
the classic ResNet-50 and HRNet-32 as the default combi-
nation unless otherwise stated. The training process uses

Model AP50 AP FPS↑ FLOPs↓
ResNet-50 89.8 71.8 313 5.45G

Dyn-R50-H32/25 90.3 73.5 297 6.21G
Dyn-R50-H32/50 90.6 74.8 270 6.76G
Dyn-R50-H32/75 90.6 74.8 252 7.32G

HRNet-W32 90.6 74.9 223 7.69G

ResNet-101 90.4 72.8 261 9.01G
Dyn-R101-SL/25 90.5 74.0 151 17.19G
Dyn-R101-SL/50 90.6 74.3 106 25.18G
Dyn-R101-SL/75 90.6 74.3 81 33.16G

Swin-L 90.6 74.4 66 40.96G

ResNet-152 90.4 73.6 208 12.75G
Dyn-R152-VL/25 90.9 76.9 132 24.42G
Dyn-R152-VL/50 91.4 78.0 93 35.90G
Dyn-R152-VL/75 91.4 78.0 73 47.39G

ViTPose-L 91.4 78.2 59 58.68G

Table 1. The results of DynPose on the COCO benchmark using
different combinations of Small and Large Networks for training.

the Adam optimizer with a learning rate of 1 × 10−4 and a
batch size of 1. During inference, we utilize the commonly
used person detection results from Faster R-CNN [29]. For
k1 and k2, we set θ to 0.1 and the expected split ratio to
Large Network as 50% by default. Speed performance is
measured on one NVIDIA 3090 GPU.

4.2. Efficiency improvement of DynPose
To validate effectiveness of our framework, we train the
router using three sets of Small and Large Networks com-
binations. We use concise notations to represent different
combinations and add suffixes like “/50” to indicate data
split ratios. For instance, “Dyn-R50-H32/50” signifies that
we train the router with ResNet-50 and HRNet-W32. Dur-
ing inference, we direct 50% samples to the Large Network.
We also select ResNet-101 with Swin-L and ResNet-152
with ViTPose-L for the other two sets, abbreviate as “Dyn-
R101-SL” and “Dyn-R152-VL”, respectively. We compute
the final FLOPs by multiplying the FLOPs of the Small
and Large Networks by their respective split ratios, then
adding the router’s overhead (0.19 GFLOPs). The final re-
sults, shown in Tab. 3, demonstrate that we can significantly
reduce FLOPs and FPS while maintaining performance on
par with the Large Network for each group. For example,
compared to ViTPose-L, Dyn-R152-VL maintain an AP of
78.0% while increasing FPS from 59 to 93 and decreasing
FLOPs from 58.68G to 35.90G.

Analysis of efficiency improvement. We statistically
analyze the estimation difficulty scores of samples with de-
tection boxes and plot the distribution, as shown in Fig. 5.
The significant redundancy of detection boxes (6K real sam-
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Method AP50 AP75 APM APL AR GFLOPs AP

TokenPose-S*[21] 88.7 79.0 68.3 78.5 77.0 4.7 71.8
TokenPose-B*[21] 89.5 80.2 70.1 79.8 78.7 5.2 73.2
PPT-S*[27] 87.7 76.8 66.1 76.7 75.1 2.0 69.8
PPT-B*[27] 89.5 80.8 70.3 79.8 78.8 4.7 73.4

OKDHP-2HG[23] 91.5 79.5 69.9 77.1 75.6 25.5 72.8
DistilPose-L[40] 89.9 81.4 71.0 81.8 79.8 10.3 †74.4
SDPose-S*[4] 89.5 80.4 70.1 80.3 78.7 4.7 ‡73.5

Dyn-M2-H48(ours) 90.6 82.1 71.2 81.8 80.3 8.8 †75.0(↑0.6%)
Dyn-M2-H32(ours) 90.5 81.5 70.6 81.0 79.7 4.8 ‡74.3(↑0.8%)

Table 2. Comparison with the state-of-the-arts small-scale and distillation methods on COCO val set. We construct our model using the
classic HRNet and MobileNet architectures. The abbreviation for MobileNet-V2 is M2, while HRNet-W32 and HRNet-W48 are referred
to as H32 and H48, respectively. * means the results from SDPose [4]. † and ‡ represents the data pair for comparison.
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Figure 5. The predicted score distribution from the router of sam-
ples with detection boxes. The areas within the dashed boxes in-
dicate the scores for “Easy” and “Extremely Hard” samples.

ples corresponding to 140K boxes) leads to a large number
of invalid pose samples. This is because the detection boxes
for these samples have relatively low IoUs. When the split
ratio is 50%, k2 is set to 0.69. We find that approximately
50% of the samples accumulate within a narrow range of
(0.69, 0.72), corresponding to “Extremely Hard” samples.
Our model achieves significant efficiency by routing these
samples to the Small Network.

4.3. Comparison with the state-of-the-arts

As shown in Tab. 2, DynPose achieves superior perfor-
mance compared to other small-scale and distillation meth-
ods. Specifically, we compare our method primarily with
the small-scale models TokenPose [21] and PPT [27], as
well as distillation-based methods OKDHP [23], DistilPose
[40] and SDPose [4]. Notably, SDPose combines the ad-
vantages of small models and distillation, representing the
state-of-the-art. Dyn-M2-H32 achieves 74.3% AP with 4.8
GFLOPs, which outperforms SDPose-S [4] in accuracy by
0.8% while maintaining a comparable FLOPs.

Netsmall Netlarge FPS FLOPs AP

MobileNet V2 - 415 1.58G 64.8
ShuffleNet V2 - 457 1.37G 60.2

ResNet-50 - 313 5.45G 71.8

- HRNet-W48 161 15.75G 75.6
MobileNet V2 HRNet-W48 222 8.86G 74.9
ShuffleNet V2 HRNet-W48 238 8.75G 75.1

ResNet-50 HRNet-W48 210 10.79G 75.4

- Swin-L 66 40.96G 74.4
MobileNet V2 Swin-L 115 21.46G 73.9
ShuffleNet V2 Swin-L 123 21.36G 73.8

ResNet-50 Swin-L 108 23.40G 74.3

- ViTPose-L 59 58.68G 78.2
MobileNet V2 ViTPose-L 110 30.32G 77.5
ShuffleNet V2 ViTPose-L 119 30.22G 77.6

ResNet-50 ViTPose-L 98 32.26G 78.0

Table 3. Generalization results across different models on COCO.
The parameters of router directly comes from Dyn-R50-H32 with-
out any fine-tuning. By default, we set the data split ratio to 50%.

4.4. Strong Generalization Ability

Generalization across models. We present the results
of directly transferring the router parameters from Dyn-
R50-H32 to other models. For Small Network, we select
ResNet-50 and two lightweight networks, MobileNet-V2
and ShuffleNet-V2. For Large Network, we use models
like HRNet-W48, Swin-L and ViTPose-L. By combining
these networks in different configurations, we obtain the re-
sults shown in Tab. 3. For instance, with the combination of
ResNet-50 and ViTPose-L, we maintain an AP of 78% and
increasing FPS from 59 to 98.

Generalization across datasets. We conduct general-
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Model AP50 AP FPS FLOPs

ResNet-50 80.8 63.7 313 5.45G
Dyn-R50-H32/25 81.8 65.6 297 6.21G
Dyn-R50-H32/50 82.3 66.9 270 6.76G
Dyn-R50-H32/60 82.4 67.3 258 6.98G

HRNet-W32 82.5 67.5 223 7.69G

Table 4. The results of directly transferring the router in Dyn-R50-
H32 from COCO to CrowdPose.

Pooling PConv SGE Time(ms) AP

0.52 74.64
√

0.10 74.71√ √
0.09 74.73√ √
0.13 74.78√ √ √
0.10 74.81

Table 5. Ablation study of the router designs

ization experiments across different datasets. Specifically,
the router Dyn-R50-H32 is directly applied to CrowdPose
[18]. As shown in Tab. 4, when the data split ratio is set to
60%, our dynamic framework achieves performance com-
parable to the Large Network while increasing FPS from
223 to 258. Compared to the 50% split ratio used for
COCO, achieving comparable performance on CrowdPose
requires directing 60% of the samples to the Large Network
and setting θ to 0.3. This is because CrowdPose, designed
specifically for crowded scenarios, has a data distribution
that diverges significantly from open-world sampling.

4.5. Memory Usage Analysis
Our model includes two networks, which might intuitively
imply higher memory usage. However, this is not the case.
The GPU memory usage primarily consists of two parts:
storage memory (for storing the program and model) and
runtime memory (for the memory required during infer-
ence). Typically, the Small Network requires less runtime
memory than the Large Network. By default, our frame-

work routes 50% samples to the Small Network, resulting in
significant runtime memory saving that exceed the storage
memory required to store the Small Network. As shown in
Fig. 7, Dyn-M2-H48 consumes less memory than HRNet-
W48, because MobileNet-V2 requires only about 0.04GB
for storage, much less than the saved runtime memory.

4.6. Ablation study
4.6.1. Efficiency of our framework
To validate efficiency, we compare the inference strategy
using the router with a random path inference strategy. The
results are shown in Fig. 6. The red line represents the re-
sults with the router-controlled data split, while the blue
dashed line shows the results when samples are randomly
routed to the Large Network. Our method outperforms the
random-path inference strategy under all split ratios.

4.6.2. Lightweight router design
To validate the lightweight design of the router, we con-
duct ablation studies on its specific components. First, we
discuss the necessity of pooling the image across differ-
ent dimensions, referred to as Pooling. Next, we explore
the PConv and SGE components, detailed in Eq. (3). For
the ablation experiments, we remove the Pooling and SGE
components, and replace PConv with a standard convolu-
tion. The final results are shown in Tab. 5. We observe that
Pooling significantly reduces the inference time. PConv and
SGE primarily contribute to accuracy improvements.

4.6.3. Robust inference strategy
Our inference process is robust and is primarily determined
by two parameters, K1 and K2. K2 depends on p, which
determines the proportion of samples that need to be for-
warded to the Large Network, and is independent of the
model itself. K1, on the other hand, is a crucial hyper-
parameter for distinguishing “Easy” and “Hard” samples,
and it is mainly determined by θ, which should be a rel-
atively small value. This is because easy samples, such
as those with complete and common human poses against
clean backgrounds, are rare in open-world datasets. [30]
conduct statistics on the COCO dataset, indicating that only
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Easy Hard Extremely Hard

score 0.58 0.63 0.66 0.68 0.720.70
OKS: 0.16OKS: 0.18OKS: 0.47OKS: 0.99 OKS: 0.95 OKS: 0.92

Figure 9. Visualization of diverse pose samples and their corresponding estimation difficulty scores evaluated by the router. The orange
and green annotations represent the pose estimation results provided by the Small and Large Networks, respectively.

11.2% of the samples are annotated with complete key-
points (16 or 17). We experiment with θ values ranging
from 0.05 to 0.3, as shown in Tab. 6. In comparison, setting
θ to 0.1 yields the best performance, which is consistent
with the statistical results in [30]. Notably, it can be ob-
served that the choice of θ is not highly sensitive, as good
results are achieved within the range of 0.05 to 0.2. Addi-
tionally, it requires only minimal sampling to determine an
excellent threshold, facilitating application. On COCO val
set, sampling 200 instances (0.2% of 104K) is sufficient for
K1 determination, as shown in Fig. 8.

In practical scenarios, the parameters can be directly ref-
erenced from the COCO val set, as COCO is sampled from
an open-world environment. Furthermore, as demonstrated
earlier, K1 exhibits good robustness. As shown in Tab. 7,
we directly transferred the parameters to test-dev. The
router sends 49% of the samples to the Large Network and
reaches an 73.7% AP. It shows the same data splitting ratio
and excellent performance retention. This experiment fur-
ther validates the robustness of our inference strategy from
the perspective of parameter reuse.

4.7. Visualization of results

We visualize pose samples with different scores in Fig. 9,
showing an increase estimation difficulty from left to right.
The leftmost sample features a clear, unoccluded person,
while the second shows partial occlusion and a missing
foot. The third and fourth samples highlight challenges
from noisy backgrounds, significant occlusion, and lower
resolution. The last samples are severely affected, making it
difficult even for humans. OKS results show high accuracy
for the first sample with the Small Network, while the Large
Network handles middle samples well. “Extremely Hard”
samples, processed with the Small Network, challenge even
the Large Network. In summary, our framework correctly
categorizes samples into “Easy”, “Hard” and “Extremely
Hard”, allowing for a rational allocation of computational
resources to accelerate inference.

θ 0.05 0.1 0.15 0.2 0.3

AP 74.78 74.81 74.68 74.48 73.91

Table 6. Setting of the hyperparameter θ on COCO val

Model Set AP Split Ratio

Dyn-R50-H32/50 val 74.8 50%

ResNet-50 test-dev 71.1 -
Dyn-R50-H32/50 test-dev 73.7 49%

HRNet-W32 test-dev 73.8 -

Table 7. Accuracy and split ratio results of directly transferring
thresholds k1 and k2 from COCO val to test-dev.

5. Conclusion

In this paper, we discover that the diversity of pose sam-
ples significantly impacts the efficiency of top-down HPE.
Hence, an effective yet simple dynamic framework called
DynPose is proposed to handle diverse pose samples with
the most suitable models, thus achieving a favorable trade-
off between speed and accuracy. Specifically, during infer-
ence, the router dynamically determines the inference path.
Small Network handles both “Easy” and “Extremely Hard”
samples, while Large Network processes “Hard” samples.
DynPose significantly improves the efficiency of top-down
HPE, and additional experiments further confirm its gener-
alization across various models and datasets.
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