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Abstract

Open-world Semi-Supervised Learning (OSSL) has drawn significant attention re-
cently which assumes that the scarce labeled data and abundant unlabeled data for clas-
sifier training are sampled from different distributions. Existing methods typically as-
sume that all unlabeled examples are drawn from the same domain following the same
distribution. Nevertheless, this assumption may be violated as the unlabeled data are
often collected from multiple unknown domains practically. Therefore, this paper tries
to solve the OSSL problem under compound distribution shifts, in which the unlabeled
data are from multiple unknown domains which may deviate from the distribution of
labeled data. Specifically, we propose a novel Adversarial Mutual Information Disentan-
glement (AMID) framework to capture domain-invariant features for classifier training
without the knowledge of domains. Particularly, we find that the class tokens of the
pre-trained Vision Transformer (ViT) carry critical cues reflecting the styles of unlabeled
data which can be deployed to attribute unlabeled data into different discovered domains.
Subsequently, we train a feature encoder which captures the domain-invariant features
shared among the attributed domains via designed adversarial confusion loss, so that the
trained feature encoder can accurately represent the semantic information of unlabeled
examples regardless of their domains. To further enhance feature disentanglement and
enlarge the gap between useful domain-invariant features and interfered domain-specific
features, we minimize the mutual information between the outputs of the encoders cor-
responding to domain-invariant features and domain-specific features. Comprehensive
experiments conducted on various benchmark datasets demonstrate the effectiveness and
generalizability of our approach in resolving the issue of compound distribution shifts in
OSSL.
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1 Introduction
The success of deep neural networks largely depends on large-scale labeled datasets, which
are quite difficult to acquire in many cases due to the unaffordable human labor and mone-
tary cost. Therefore, Semi-Supervised Learning (SSL) [12, 18, 22, 32, 37] has emerged as
an effective learning paradigm to mitigate the reliance on labeled data, which attempts to
leverage scarce labeled data and abundant unlabeled data to train an accurate model.

Classical SSL methods [2, 6, 29, 36, 46] assume that the labeled and unlabeled data are
drawn from the same distribution (see Figure 1(a)). However, in open-world scenarios, the
class distribution or feature distribution of unlabeled data may differ from that of labeled
data, as shown in Figure 1(b) and Figure 1(c). Therefore, various methods [7, 13, 14, 16, 25,
35, 43, 44] have been proposed to deal with the class mismatch problem. However, research
on the problem of feature distribution mismatch among labeled data and unlabeled data is
still in its early stages. CAFA [15] applies an adversarial feature adaptation strategy to elim-
inate the feature distribution mismatch between labeled and unlabeled data. BDA [17] pro-
poses a weighted pseudo-labeling method to align the distributions of labeled and unlabeled
data. Nevertheless, these methods mentioned above primarily focus on a simpler scenario
where all unlabeled data are drawn from a single distribution, so the potential distribution
inconsistency within the unlabeled data may be ignored (see Figure 1(c)). We call this case
as compound feature distribution shifts. When faced with this more challenging compound
feature distribution shifts, directly aligning the feature distributions of labeled and unlabeled
data will result in negative transfer and suffer from performance degradation.

Figure 1: Problem illustration. (a) Traditional SSL
setting. (b) Class mismatch: unlabeled data contain
unknown classes not appeared in labeled data. (c)
Compound distribution shifts: multiple domains are
contained by unlabeled data. In this figure, the dashed
pink box denotes images of mismatched classes, and
the solid red, green and blue boxes denote the images
belonging to different domains.

We think that the key to solve
OSSL under compound distribution
shifts is to explore domain-invariant
features shared among different do-
mains. Because domain-invariant
features reveal semantic invariance
across domains, which can promote
transfer and help classifier training
in OSSL. Therefore, a novel Ad-
versarial Mutual Information Dis-
entanglement (AMID) approach is
proposed in this paper. First, con-
sidering that unlabeled data are
from multiple unknown domains,
and also inspired by the previous
works [5, 8, 28, 38, 48] assuming
the latent domain of images is re-
flected in their style, we utilize the
class tokens extracted from the pre-
trained DINO-ViT [4] model that is
capable of capturing style information to discover the optimal latent domains of unlabeled
data. Then we design an adversarial confusion loss to train a feature encoder which captures
the domain-invariant features. In addition, to remove the interference of domain-specific
features existing in domain-invariant features, a domain classifier is used to identify domain-
specific features. After that, we utilize a variational formulation to estimate the upper bound
of mutual information and minimize it between the domain-invariant and domain-specific
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features. This strategy enhances the feature disentanglement and enlarges the gap between
these features. We conduct experiments thoroughly on various datasets and demonstrate the
superior performance of the proposed AMID to other typical SSL methods.

2 Related Work
In this part, we briefly introduce some studies that are closely relate to our work, including
traditional semi-supervised learning and open-world semi-supervised learning.
Traditional Semi-Supervised Learning: Traditional SSL algorithms utilize both labeled
and unlabeled data for training. There are mainly three classic strategies to train deep semi-
supervised learning classifiers, namely: entropy minimization, consistency regularization,
and generic regularization. Entropy minimization methods [12, 22, 32] minimize the label
prediction entropy and enforce the networks to make confident predictions on unlabeled data.
Consistency regularization methods [20, 29, 37] encourage consistent outputs for the same
sample in temporally and spatially different models. For generic regularization methods [2,
3, 6, 36, 41, 46], semi-supervised learning algorithms utilize data augmentation strategies,
combined with entropy minimization and consistency regularization to improve the model
generalization performance.
Open-World Semi-Supervised Learning: Traditional SSL relies on the assumption that
the labeled and unlabeled data are drawn from the same distribution. However, in open-
world scenarios, the class distribution mismatch and feature distribution mismatch problems
are common, which may lead to serious performance degradation in traditional SSL meth-
ods [31]. The major techniques to deal with the class distribution mismatch problem are
example re-weighting [7, 14, 16, 35, 44] and open-set detection scoring [7, 14, 16, 35, 44].
The feature distribution mismatch problem is another more challenging problem in OSSL,
but it has not been thoroughly studied. CAFA [15] adopts an adversarial feature adaptation
strategy to align the distribution of unlabeled data to that of labeled data. BDA [17] designs a
weighted pseudo-labeling method to solve the problem. However, CAFA [15] and BDA [17]
only consider a single domain in unlabeled data, leading to significant performance decline
when faced with unlabeled data from multiple unknown domains. Glocal [26] proposes
to enhance the traditional pseudo-labeling mechanism by leveraging the cluster structure of
unlabeled data to solve SSL under compound distribution shifts. However, it assigns pseudo-
labels without accounting for variations across multiple domains within the unlabeled data,
resulting in a failure to guarantee global robustness.

3 Methodology

3.1 Problem Description

In our semi-supervised learning under the setting of compound feature distribution shifts, we
use DL = {(xi,yi)}l

i=1 to denote a labeled set containing l labeled examples, where xi ∈Rv (v
represents the feature dimension) is the i-th training example and yi ∈ {1, ...,c} indicates the
corresponding one-hot label. Let DU = {DU

m}K
m=1 =

{
x j
}u

j=1 be an unlabeled set composed
of multiple unknown sub-domains, where DU

m contains the unlabeled examples from the m-th
domain. Here u denotes the number of unlabeled examples, and the number of sub-domains
K is unknown. The labeled set and unlabeled set share the same label space containing c
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classes. Like traditional SSL setting, here we assume l ≪ u. The feature distributions of
labeled data and unlabeled data are denoted as pL(x) and pU (x) = {pU

m(x)}K
m=1, respec-

tively. Compound feature distribution shifts indicates that pL(x) = pU
m(x),∃m ∈ [1, . . . ,K]

and pU
m(x) ̸= pU

n (x),∀m,n ∈ [1, . . . ,K],m ̸= n. Then our target is to train a reliable classifier
f : Rv →{1, ...,c} in classifying the test data under compound distribution shifts.

Figure 2: The overall framework of our proposed method, which assigns pseudo domain
labels by clustering class token features extracted from the pre-trained DINO-ViT, and trains
the domain-invariant feature extractor via feature disentanglement.

3.2 Overall Framework
The overall framework of our AMID approach is shown in Figure 2, in which Ecls(·), Ccls(·),
Edom(·), Cdom(·), and DiNO-ViT denote the domain-invariant feature extractor, class clas-
sifier, domain-specific feature extractor, domain classifier, and pre-trained DiNO-ViT. Our
AMID includes three key components: Style-based cluster, adversarial confusion strategy,
and mutual information minimization. The general framework of AMID is formulated as:

min
θEcls ,θEdom ,θCcls ,θCdom

Lce(xl ;θEcls ,θCcls)+Lssl(xu;θEcls ,θCcls)+Ldom(xu;θEdom ,θCdom)

+Ladvc(xu;θEcls ,θ
∗
Cdom

)+Ladvd (xu;θEdom ,θ
∗
Ccls

)+Lmi(xu;θEcls ,θEdom),
(1)

in which θEcls ,θEdom ,θCcls ,θCdom are the parameters of Ecls, Edom, Ccls and Cdom, respectively.
Here θ ∗ represents the parameter that does not update during gradient feedback, xl means
labeled examples, and xu means unlabeled examples. We will detail each component below.

3.3 Style-based Clustering for Compound Unlabeled Data
When unlabeled data are drawn from compound domains, directly aligning the feature dis-
tributions of labeled and unlabeled data will result in negative transfer as the intrinsic inter-
domain relationships are not considered. Inspired by works [5, 28] in domain adaption and
generalization, we propose to cluster the compound unlabeled data using style information
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to uncover latent domains. Specifically, we discover that the class tokens of the pre-trained
DiNO-ViT [4] hold essential cues reflecting the styles of unlabeled data, as they capture
global information through stretching, deforming, or flipping the objects in images. Hence,
the class tokens are explored to assign unlabeled data pseudo domain labels.

Unlike methods [8, 48] that assume the number of latent domains is either known or
predefined, we introduce an adaptive clustering method to predict the optimal number of
latent domains using silhouette coefficient [34]. Assume the unlabeled samples are clustered
into K categories {DU

m}K
m=1. For each unlabeled data x j, we use a(x j) to represent the

average distance between x j and all other samples in the cluster, and b(x j) to denote the
minimum average distance between x j and all other samples in clusters it does not belong
to. Suppose x j belongs to {DU

m}, a(x j) and b(x j) can be formalized as:

a(x j) =
∑xi∈{DU

m},xi ̸=x j
dist(s(xi),s(x j))

|DU
m|−1

,

b(x j) = min
1≤t≤k,t ̸=m

∑xi∈DU
t

dist(s(xi),s(x j))

|DU
t |

,

(2)

where dist(·, ·) denotes the Euclidean distance, s(·) represents the global class token feature
capturing style information, and | · | represents the number of samples in the cluster. The
silhouette coefficient for a cluster can be formalized as follows:

S(K) = ∑
x j∈DU

b(x j)−a(x j)

max{a(x j),b(x j)}
. (3)

Given that a larger silhouette coefficient indicates better clustering effectiveness, we can
determine the optimal number of clusters as: K∗ = argmaxK S(K).

After automatically dividing the unlabeled data into K∗ clusters, we assign a domain
label d j to the unlabeled data x j based on the clustering result. Consequently, the unlabeled
dataset can be represented as DU =

{
(x j,d j)

}u
j=1.

3.4 Feature Disentanglement
We first train Ecls(·) and Ccls(·) based on the classical semi-supervised learning algorithm
FixMatch [36] with the following classification losses:

Lce =
1
l ∑

xi∈DL

H(yi,Ccls(Ecls(xi))),

Lssl =
1
u ∑

x j∈DU

1(max(q j)≥ τ)H(ŷ j,Ccls(Ecls(A(x j)))),
(4)

where H(·, ·) is the cross-entropy loss, q j = Ccls(Ecls(α(x j)), and ŷ j = argmax(q j). Nota-
tion α(·) and A(·) represent the weak and strong augmentation respectively, τ is the con-
fidence threshold. Here Ecls(·) primarily captures the class-discriminative features ( fdi) of
the input. Because of the feature distribution mismatch between labeled and unlabeled data,
these features are inevitably interfered by multiple domains information, resulting in nega-
tive transfer. Thus, we propose to recognize and exclude domain-specific features, making
fdi only contain domain-invariant features. We try to extract domain-specific features ( fds)
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by the domain classifier Cdom(·) using the unlabeled data and their assigned domain labels.
The domain classification loss Ldom is expressed as follows:

Ldom =
1
u ∑

x j∈DU

H(d j,Cdom(Edom(x j))). (5)

Domain-invariant Feature Learning via Adversarial Confusion strategy: Motivated by
the adversarial learning technique in domain adaptation [10, 11, 27, 39, 42, 47], we design an
adversarial class confusion loss function to reduce the domain-specific information present
in fdi, so that fdi can be transformed into domain-invariant features. The class confusion loss
is expressed as follows:

Ladvc =−1
u ∑

x j∈DU

H(d j,Cdom(Ecls(x j))), (6)

where Ladvc is only used to optimize Ecls(·), which tries to confuse Cdom(·) but enables Ccls(·)
to classify correctly.

In addition, to make Edom(·) only focus on extracting the domain-specific features, we
introduce a domain confusion loss to optimize Edom(·), defined as follows:

Ladvd = ∑
x j∈DU

Ccls(Edom(x j)) logCcls(Edom(x j)). (7)

Likewise, the domain confusion loss aims to confuse Ccls(·) while enabling Cdom(·) to make
accurate classifications.
Disentangling via Mutual Information Minimization: To make the domain-invariant fea-
ture fdi more robust, we further exclude domain-specific information from fdi by minimizing
the mutual information between fdi and fds. However, it is challenging to estimate the mutual
information of high-dimensional vectors. Therefore, we leverage variational approximation
of the mutual information to estimate the upper bound of mutual information, and minimize
it to further enhance feature disentanglement.

Because techniques for estimating the mutual information between data and features
have become relatively mature [1], we introduce input x, from which both fdi and fds are
extracted. Moreover, similar to IIB [23], we leverage variational approximation r( fdi) to
be the approximation of the true marginal p( fdi), and variational distribution q( fdi|x) to
be the approximation of the conditional distribution p( fdi|x). Meanwhile, p( fdi|x) can be
expressed by the class feature extractor Ecls(·). Likewise, r( fds) is the approximation to
the true marginal p( fds), and q( fds|x) approximates to p( fds|x). p( fds|x) is expressed by
the domain feature extractor Edom(·). Now the upper bound of mutual information can be
written as (we present the detailed derivation in the appendices):

I( fdi; fds)≤ Ep(x)[KL(q( fdi|x)||r( fdi))+KL(q( fds|x)||r( fds))] (8a)

+Ep(x)[Eq( fdi|x)q( fds|x)[logp(x| fdi, fds)]], (8b)

where Equation (8b) represents the reconstruction loss incurred in reconstructing input x
using fdi and fds. So the mutual information loss can be expressed as:

Lmi = Ep(x)[KL(q( fdi|x)||r( fdi))+KL(q( fds|x)||r( fds))]

+ ||Decoder( fdi, fds),x||2.
(9)
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4 Experiments

4.1 Experimental Setup

Dataset. To evaluate our proposed method, we perform experiments on three public multi-
domain datasets. PACS [24] consists of four domains (i.e., Photo, Art Painting, Cartoon,
and Sketch). The four domains have the same label set of 7 classes. DIGITS is built upon
four classic digits datasets (SVHN [30], MNIST [21], MNIST-M [10], SYNNUM [10]) of
10 classes. CIFAR-STL [49] is created by combining low-resolution images from CIFAR-
10 [19] with high-resolution images from STL-10 [9] of 9 classes.

To evaluate the effectiveness and generalizability of our method in handling OSSL tasks
under compound distribution shifts, we consider the classification accuracy across multiple
testing sets (i.e. in-domain testing set where testing samples are collected from the same do-
main as the labeled data, out-of-domain testing set where testing samples are drawn from the
domain(s) different from the labeled data, and overall testing set where testing set contains
all in-domain and out-of-domain samples) following Glocal [26]. In the testing phase, we
compute the classification accuracy of the model that exhibits the best performance in the
testing sets.
Compared Methods. We compare our method with the following traditional SSL methods:
FixMatch [36], FlexMatch [46], AdaMatch [33], and SoftMatch [6], and the following OSSL
under feature distribution mismatch methods: CAFA [15], BDA [17], and Glocal [26].
Implementation Details. Our experiments are conducted under the uniform codebase USB [40]
for fair comparison, with experimental setups mirroring those utilized in Glocal [26]. The
selected backbone network is the Wide ResNet-37-2 [45]. We employ an SGD optimizer
with a learning rate of 0.03 and a weight decay of 5e-4. The optimizer operates over 200
training epochs, each comprising 1024 iterations. The batch size is set to 64.

4.2 Performance Comparison

For PACS dataset, we randomly choose 5 or 10 samples per class from the training set of
each domain as labeled data and use the rest as unlabeled data. Table 1 shows in-domain,
out-of-domain, and overall classification accuracies of different methods on PACS. It can
be observed that CAFA [15] and BDA [17] perform worse than traditional SSL methods,
while our method achieves the best performance, which certifies that by learning domain-
invariant features, our feature disentanglement overcomes negative transfer and is benefi-
cial for boosting the learning performance of SSL. Moreover, compared to Glocal [26], our
method explicitly extracts domain-specific features and focuses on domain-invariant features
to guarantee global robustness. For instance, when the labeled domain draws from Photo,
our method outperforms the previous SOTA method by 10.6% and 8.12% in overall accuracy
for the 5 and 10 labels per class, respectively.

Meanwhile, we conduct extensive experiments on DIGITS and CIFAR-STL to demon-
strate the effectiveness and generalizability of our approach. The experimental results are
reported in Table 2 and Table 3, respectively, showing the same trend as those for PACS.
It is observed that our method consistently achieves the best performance. On DIGITS, the
superiority of our method is relatively less pronounced compared to the other two datasets.
This could be attributed to the simpler and more recognizable texture of digital numbers.
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Number of Labels 35 (5 labels per class)
Labeled Domain Photo Art Cartoon Sketch

Test Data In Out All In Out All In Out All In Out All
FixMatch [36] 70.58 15.24 23.86 32.69 19.95 21.49 58.65 25.49 32.57 70.63 21.63 37.33
FlexMatch [46] 75.88 19.76 27.33 57.69 26.81 30.99 71.72 30.01 38.61 56.96 29.27 34.95
AdaMatch [33] 62.94 23.33 29.11 54.32 29.18 34.06 61.60 27.04 33.17 68.86 30.08 43.66
SoftMatch [6] 70.00 23.69 30.00 33.65 21.07 23.56 72.15 32.21 40.10 62.53 28.62 41.19

CAFA [15] 17.65 20.24 19.50 18.75 23.32 22.18 33.76 18.24 20.79 21.27 18.21 19.01
BDA [17] 32.35 14.05 16.44 21.63 19.95 20.20 43.04 21.21 25.84 47.09 14.96 26.93

Glocal [26] 82.94 32.02 39.80 56.73 29.30 30.40 79.75 32.60 42.97 75.44 43.09 54.65
Ours 85.88 45.00 50.40 69.23 43.02 49.21 82.70 42.95 52.77 86.33 36.26 55.25

Number of Labels 70 (10 labels per class)
Labeled Domain Photo Art Cartoon Sketch

Test Data In Out All In Out All In Out All In Out All
FixMatch [36] 74.70 11.19 21.78 64.90 28.55 33.37 88.18 32.47 44.95 86.58 27.97 49.50
FlexMatch [46] 77.65 21.90 30.69 55.76 31.55 32.28 83.96 32.60 44.46 78.73 42.76 55.84
AdaMatch [33] 79.41 28.69 36.14 55.77 24.69 28.91 88.18 35.96 46.63 83.04 28.46 48.61
SoftMatch [6] 82.35 26.19 35.05 54.80 31.42 32.57 85.64 35.71 45.15 79.75 28.13 47.52

CAFA [15] 33.53 21.07 22.97 22.59 22.44 22.28 48.95 28.98 33.27 38.48 20.16 24.75
BDA [17] 54.12 15.48 21.98 26.44 11.10 13.76 45.15 25.87 29.80 51.14 15.12 29.21

Glocal [26] 88.24 39.05 46.93 75.48 52.37 56.44 88.19 44.37 53.56 84.05 38.05 54.75
Ours 88.24 46.79 55.05 78.36 45.76 51.09 89.45 55.24 62.18 90.13 52.68 63.17

Table 1: Classification accuracies(%) on PACS. The best results are highlighted in bold,
while the second best result is highlighted with an underline. The notations "In", "Out", and
"All" denote that the test data are from the in-domain, out-of-domain and overall domain.

Number of Labels 50 (5 labels per class)
Labeled Domain SVHN MNIST MNIST-M SYNNUM

Test Data In Out All In Out All In Out All In Out All
FixMatch [36] 32.40 10.07 15.65 94.20 11.40 32.10 96.50 10.03 31.65 96.70 10.03 31.70
FlexMatch [46] 35.60 10.03 16.43 96.80 10.03 31.72 78.30 76.43 76.90 78.00 16.53 31.90
AdaMatch [33] 32.20 13.17 17.92 95.80 53.33 63.95 72.60 73.57 73.32 95.30 56.83 66.45
SoftMatch [6] 35.20 10.13 16.40 95.70 45.50 58.05 95.70 42.77 45.20 96.80 59.70 69.43

CAFA [15] 12.60 14.30 12.60 44.00 16.60 23.13 14.50 16.27 14.50 12.50 16.53 15.32
BDA [17] 11.10 10.80 10.65 57.20 11.17 21.85 14.20 13.90 13.98 11.90 11.07 11.15

Glocal [26] 40.70 39.13 39.52 94.80 77.23 81.63 66.00 46.30 51.22 94.70 59.07 67.97
Ours 78.06 49.65 52.92 96.20 44.70 57.57 94.20 79.90 83.25 98.20 54.63 64.42

Number of Labels 100 (10 labels per class)
Labeled Domain SVHN MNIST MNIST-M SYNNUM

Test Data In Out All In Out All In Out All In Out All
FixMatch [36] 90.00 37.10 49.73 97.37 12.93 33.22 97.50 39.70 53.97 98.00 43.97 57.33
FlexMatch [46] 87.70 59.43 65.50 97.10 39.43 53.77 96.90 39.37 53.85 98.40 60.80 70.20
AdaMatch [33] 89.00 62.63 69.17 96.90 57.37 67.00 90.60 89.57 89.82 98.20 59.77 69.37
SoftMatch [6] 89.20 64.10 70.15 96.40 51.77 62.55 96.50 89.87 91.70 98.20 39.00 53.80

CAFA [15] 13.00 12.87 12.58 60.90 19.00 29.48 15.50 14.93 14.78 18.40 15.83 16.25
BDA [17] 12.80 13.07 12.78 68.12 12.76 26.53 11.60 12.83 12.38 14.20 12.73 12.93

Glocal [26] 88.90 64.57 70.47 96.40 89.07 90.62 96.70 82.37 85.75 98.10 63.20 71.90
Ours 89.30 67.43 72.40 97.90 91.80 92.95 97.70 89.93 90.60 98.60 63.90 72.00

Table 2: Classification accuracies(%) on DIGITS

4.3 Ablation Study

To investigate the effectiveness of different key components in our AMID, we conduct the
following ablative experiments, including: 1) we remove the adversarial confusion strategy
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Number of Labels 45 (5 labels per class) 90 (10 labels per class)
Labeled Domain CIFAR STL CIFAR STL

Test Data In Out All In Out All In Out All In Out All
FixMatch [36] 52.73 11.11 31.92 59.82 11.12 35.47 67.16 15.60 41.38 73.37 11.11 42.24
FlexMatch [46] 47.49 11.11 29.30 53.42 18.64 36.03 61.47 30.53 46.00 68.02 19.18 43.60
Adamatch [33] 56.84 20.16 38.50 63.80 20.46 42.13 67.00 30.44 48.72 70.64 17.68 44.16
SoftMatch [6] 55.96 12.40 34.18 63.18 20.60 41.89 67.56 16.10 41.83 70.26 19.94 45.17

CAFA [15] 24.31 22.15 23.23 26.87 22.71 24.79 26.94 24.60 25.77 28.73 22.15 25.44
BDA [17] 23.42 20.18 21.80 23.96 19.12 21.54 26.85 27.23 27.04 29.18 23.42 26.30

Glocal [26] 55.89 46.87 51.38 69.49 47.15 58.32 66.06 60.54 63.30 71.96 61.42 66.69
Ours 68.71 56.75 62.73 69.67 56.31 62.99 72.18 53.96 63.07 73.55 60.55 67.05

Table 3: Classification accuracies on CIFAR-STL
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Figure 3: The ablation study on the number
of clusters K on CIFAR-STL.

Cluster 0
Cluster 1

Figure 4: The t-SNE visualization of clus-
tering result on CIFAR-STL with K = 2.

Number of Labels 35 (5 labels per class)

Labeled Domain Art

Test Data In Out All

ours w/o adv 67.79 29.93 36.53
ours w/o mi 61.53 40.52 41.45

Ours 69.23 43.02 49.21

Table 4: Classification accuracies(%) of ablation
experiments on the art domain of the PACS.

while keeping others fixed, denoted as
"w/o adv"; 2) we remove the mutual
information minimization term while
keeping others fixed, denoted as "w/o
mi". Table 4 shows the ablative re-
sults on the art domain of the PACS
dataset. When either the adversarial
confusion strategy or the mutual infor-
mation minimization term is removed,
we observe that AMID suffers considerable performance degradation in both in-domain and
out-of-domain accuracy. Particularly, the absence of the adversarial confusion strategy can
lead to a significant drop in out-of-domain accuracy. This indicates the adversarial confusion
strategy helps capture the domain-invariant features shared in different domains to improve
performance. The mutual information minimization term helps enlarge the gap between
domain-invariant features and domain-specific features to improve in-domain accuracy.

Moreover, we conduct ablation study on the number of clusters K in the adaptive cluster-
ing method on the CIFAR-STL dataset, which is varied from 1 to 7. The result is shown in
Figure 3. The optimal number of clusters selected by silhouette coefficien is 2, which is con-
sistent with the actual potential domains of the CIFAR-STL dataset. Moreover, both too less
and too many number of clusters would hurt the result. This is because a small cluster num-
ber is unable to learn the diversity of styles in potential domains, and a large cluster number
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would increase the difficulty of domain classification, further making it hard to achieve the
feature disentanglement. In Figure 4, we show the t-SNE visualization of clustering results
using the class tokens on the CIFAR-STL dataset. It can be clearly seen that class tokens do
indeed capture the style information of different domains.

5 Conclusion
In this paper, we propose a novel AMID method to tackle OSSL under compound distri-
bution shifts. Specifically, we conduct style-based clustering to divide unlabeled data into
different latent domains and assign pseudo domain labels, which helps to extract domain-
specific features. Then, feature disentanglement is conducted using the adversarial confusion
strategy and the mutual information minimization, which excludes domain-specific features
and captures domain-invariant features, so that the domain-invariant features can represent
the semantic information regardless of their domains. Comprehensive experiments show the
effectiveness and robustness of our AMID framework in solving OSSL under compound
distribution shifts problems.
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