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Abstract—In open-world environments, classification models should be adept at identifying out-of-distribution (OOD) data whose
semantics differ from in-distribution (ID) data, leading to the emerging research in OOD detection. As a promising learning scheme,
outlier exposure (OE) enables the models to learn from auxiliary OOD data, enhancing model representations in discerning between
ID and OOD patterns. However, these auxiliary OOD data often do not fully represent real OOD scenarios, potentially biasing our
models in practical OOD detection. Hence, we propose a novel OE-based learning method termed Wasserstein Distribution-agnostic
Outlier Exposure (W-DOE), which is both theoretically sound and experimentally superior to previous works. The intuition is that by
expanding the coverage of training-time OOD data, the models will encounter fewer unseen OOD cases upon deployment. In W-DOE,
we achieve additional OOD data to enlarge the OOD coverage, based on a new data synthesis approach called implicit data synthesis
(IDS). It is driven by our new insight that perturbing model parameters can lead to implicit data transformation, which is simple to
implement yet effective to realize. Furthermore, we suggest a general learning framework to search for the synthesized OOD data that
can benefit the models most, ensuring the OOD performance for the enlarged OOD coverage measured by the Wasserstein metric.
Our approach comes with provable guarantees for open-world settings, demonstrating that broader OOD coverage ensures reduced
estimation errors and thereby improved generalization for real OOD cases. We conduct extensive experiments across a series of
representative OOD detection setups, further validating the superiority of W-DOE against state-of-the-art counterparts in the field.

Index Terms—Out-of-distribution Detection, Reliable Machine Learning, Open-set Learning

✦

1 INTRODUCTION

D EEP learning systems operating in open-world environments
frequently encounter out-of-distribution (OOD) data, which

differ in label space from the in-distribution (ID) samples. Since
these models cannot make valid predictions for semantic shifts
raised by OOD cases, it is necessary to refrain from making label
predictions. This issue has spurred recent attention in the area
of OOD detection, where the model should identify anomalies
raised by OOD data yet make accurate predictions for ID data [1].
Nowadays, OOD detection has attracted intensive attention in reli-
able machine learning, offering an anomaly-handling mechanism
for numerous safety-critical applications, such as auto-driving,
medical analysis, and financial security [2], [3], [4], [5].

OOD detection remains challenging as models can predict with
arbitrary-high confidence for unknown data, thereby hindering
the direct use of model confidence to identify OOD cases [6],
[7]. Consequently, considerable efforts have been dedicated to
pursuing improved OOD detection methods, primarily falling
into two main categories, namely, post-hoc and fine-tuning. Post-
hoc approaches utilize well-trained models with fixed parameters
and focus on designing various scoring functions to assess the
confidence of being ID [6], [8], [9], [10], [11], [12]. These methods
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presume that the original models are adequate for OOD detection,
but they require the proper extraction of informative representa-
tions through scoring functions to be effective. On the other hand,
fine-tuning approaches further allow for model training, which
directly enhances the model representation and thereby boosts its
capability to detect OOD data [2], [13], [14], [15], [16], [17], [18].
These methods benefit from explicit knowledge of unknowns,
thus typically revealing more reliable performance in real-world
scenarios over the post-hoc approaches [3].

Among fine-tuning methods, outlier exposure (OE) [13], [19],
[20], [21] represents an effective strategy, which enhances OOD
detection by incorporating auxiliary OOD data into training. It
directly trains the model to differentiate between ID and auxiliary
OOD data, refining model representations to boost OOD detection.
It is one of the most potent learning strategies nowadays, as the
model can benefit from explicit knowledge about OOD. However,
despite their effectiveness, OE-based methods still have their
limitations. One of the main challenges stems from data openness,
where one cannot know what types of OOD data we will encounter
in the open world. As a result, the auxiliary OOD data may differ
arbitrarily from the real ones, indicating an OOD distribution dis-
crepancy between training and test. This discrepancy generally has
detrimental effects on OOD performance in real-world scenarios
(cf., Section 3), while seldom has been made for such a common
yet important problem, motivating the main focus of this paper.

To overcome this issue, we introduce a novel OE-based
learning method named Wasserstein Distribution-agnostic Outlier
Exposure (W-DOE). Our method aims to broaden the coverage of
training OOD data by synthesizing new OOD examples that are
distinct from the (original) auxiliary ones. By training our model
to perform well upon such an expanded distribution, we shrink the
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Fig. 1: W-DOE Motivation. By enlarging the OOD coverage as in
(b), the distance between training and real OOD data is shrunk com-
pared with the original OE as in (a). Therefore, W-DOE can mitigate
OOD distribution discrepancy and thus improve OOD detection.

OOD distribution discrepancy and thereby mitigate its negative
impacts (cf., Fig. 1). To realize our W-DOE, (a) how to synthesize
OOD data and (b) how to guarantee overall performance on such
a data distribution are the key questions to be answered.

For the first question, we present a new approach for synthesiz-
ing OOD data, termed implicit data synthesis (IDS). This method
can effectively transform existing data into very different ones,
based on our novel insight that model perturbation implicitly leads
to data transformation. Accordingly, one can make the model learn
from such implicit (transformed) data by model updating after its
perturbation. IDS is simple to implement and flexible for synthetic
data that deviate from the original ones. In Section 6.1, we justify
two facets that can support our effectiveness: (a) the implicit data
follow a different distribution from that of the original ones (cf.,
Theorem 4), and (b) the discrepancy between the original and
transformed data distributions can be large (cf., Proposition 1).
Overall, our analysis verifies that IDS can implicitly synthesize
diverse data that are largely different from the original ones, thus
having the potential to benefit OOD detection.

For the second question, we propose an advanced learning
framework that guarantees performance on expanded OOD cov-
erage with synthesized data. Therein, we define OOD coverage
through a Wasserstein ball centered on the auxiliary OOD dis-
tribution, which can facilitate both our theoretical analysis (cf.,
Section 6.2) and the practical effectiveness (cf., Section 7). Then,
we introduce a worst-case learning scheme upon the OOD cov-
erage, training on data that exhibit poorest performance, thereby
upper bounding the worst-case performance. It leads to a neat
realization of W-DOE when combined with IDS in Algorithm 1,
which largely improves upon OE in practice. In theory, we
also demonstrate that W-DOE can mitigate the OOD distribution
discrepancy, where a broader OOD coverage results in improved
detection performance and a tighter generalization bound over OE.

We conduct a series of experiments in Section 7 on commonly
used benchmarks, verifying the superiority of our W-DOE over
competitive baselines when facing OOD distribution discrepancy.
For example, our W-DOE decreases the average FPR95 by 8.33%,
20.27%, and 24.55% compared with the original OE on the
CIFAR-10, the CIFAR-100, and ImageNet benchmarks, respec-
tively. We summarize the contributions of this paper as follows:

• Algorithm. In Section 4, we propose IDS to augment the
training-time OOD data in a simple yet effective way. In
Section 5, we also suggest W-DOE as a systematic way to
mitigate the impacts of OOD distribution discrepancy.

• Theory. In Section 6.1, we verify the validity of IDS in gener-
ating diverse data. In Section 6.2, we reveal the effectiveness
of W-DOE when facing the OOD distribution discrepancy.

• Experiment. In Section 7, we conduct extensive experiments
to verify the effectiveness of W-DOE under representative
OOD detection setups with OOD distribution discrepancy.

Difference from the conference version. Comparing with the
preliminary version published in ICLR 2023 [22], we have made
the substantial extensions, summarizing in the following:

• Further Formalization. Besides providing only the heuris-
tics as in our conference version, we further formalize the
impact of OOD distribution discrepancy on OE in Section 3.
Our results justify that larger distribution discrepancy truly
hinders the reliability of OE-based methods.

• Previous Drawback. We identify a key drawback for the
method in our conference version, where the training dy-
namic is relatively unstable due to the unconstrained worst-
case search. We analyze such a problem based on our theoret-
ical analysis from Section 6.2, which are further summarized
in Section 7.6 with empirical justification.

• Improved Methodology. To address the above drawback in
our conference version, we suggest a systematic framework
in Section 5 that incorporates the Wasserstein constraint
during the worst-case data search. It not only improves the
stability of our learning dynamics and also enhances the
overall performance in OOD detection.

• In-depth Analysis. From the statistic learning theories, we
prove that our method can properly mitigate the impacts
of distribution discrepancy and lead to better open-world
performance for unseen OOD data in Section 6.2. It com-
plements our conference version, where we only verify the
convergence with respect to the auxiliary OOD distribution.

We offer new insights to comprehend the distribution discrepancy
issue, introducing new algorithms and new theories. We also go
beyond our evaluation setups in our conference version, eval-
uating more challenging datasets (e.g., Oxford-Pets) and more
realistic setups (e.g., wild OOD and medical OOD) to reveal
our effectiveness. Our work represents substantial enhancements
over the conference version, thereby fulfilling the criteria of IEEE
Transactions on Pattern Analysis and Machine Intelligence.

2 PRELIMINARY

Let X be the feature space and Y = {1, . . . , c} be the ID label
space. We consider the ID distribution DXIYI

, a joint distribution
defined over X ×Y , where XI and YI are random variables whose
outputs are from X and Y , respectively. We also have an OOD
joint distribution DXOYO

, where XO is a random variable from
X and YO is an unknown variable whose values do not belong to
Y , i.e., YO /∈ Y [23]. Furthermore, we consider the classification
model f(·;w) : X → Rc with logit outputs, parameterized by w
from the parameter spaceW . The key notions are in Table 1.

2.1 OOD Scoring
Building upon f(·;w), our goal is to use a scoring function
s(·;w) : X → R to discern test-time inputs drawn from DXI

and DXO . Typically, if the score value s(x;w) is larger than a
threshold τ ∈ R, the associated input x ∈ X is taken as ID,
otherwise an OOD case. Here, we present two typical examples.
Maximum Softmax Prediction (MSP). As a well-known base-
line, [6] uses the maximal dimension of the softmax predictions to
indicate OOD and the scoring function is of the form:

sMSP(x;w) = max
j

softmaxj f(x;w), (1)
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TABLE 1: Notations and associated descriptions.

Notation Description

Variable and Space
X and Y feature and ID label spaces
F and W hypothesis and parameter spaces

XI, XA, and XO ID, auxiliary OOD, and real OOD variables
YI and YO ID and OOD labels

Distribution and Measurement
DXIYI

and DXI
ID joint and ID margin distributions

DXOYO
and DXO

OOD joint and OOD margin distributions
DXA

and DXS
auxiliary and synthesized margin distribution

KL(·||·) and WD(·, ·) KL divergence and Wasserstein distance
Data and Model

n, m, and c numbers of ID, auxiliary OOD, and classes
i, j, and k indices of data, labels, and layers
x, y, and z instances, labels, and embeddings
w and W vector and matrix forms of parameters

f(·;w) and ϕ(·;w) model outputs and embedding outputs
Rn(F) and CF Rademacher complexity and the estimation

Loss and Risk
α trade-off parameter

ℓID(·, ·) and ℓOOD(·) ID and OOD loss functions
RI(·), RA(·), and RO(·) ID, auxiliary OOD, and real OOD risks

RS(·;DXS
) expected synthesized OOD risk

ROE(·) and RW(·; ρ) expected OE and W-DOE risks
LID and LOOD Lipschitz constants for ID and OOD risks
AID and AOOD bounding constants for ID and OOD risks

ϵ(C,L,A) generalization error for PAC
W-DOE

p and g perturbation parameters and its gradients
A and P two matrix forms of perturbations
λ and β perturbation strength and sliding parameter

t(·;w, λp) implicit transform function
Bρ

A auxiliary OOD coverage
ρ and γ radius and regularization strength

OR(·;DXS
) and WOR(·; ρ) OOD regret and worst-case OOD regret

κ(·;w) gradient norm-based OR estimation

where softmaxj(·) indicates the j-th softmax output. Ideally,
the labels of OOD data do not align with any dimension of
model predictions, and thus softmax outputs should be low across
all dimensions. However, due to the well-known over-confidence
issues [6], [10], MSP often makes mistakes in practice.
MaxLogit Prediction (MLP). [24] suggests a simple solution
that can improve MSP, using maximal logits instead of softmax
predictions to construct the scoring function, namely,

sMLP(x;w) = max
j

f j(x;w), (2)

where f j(x;w) denotes the j-th element of model outputs. The
MLP score works better than MSP, especially when facing large
ID label space, and thus widely adopted in practice.

2.2 Outlier Exposure

Due to calibration failures [25], normal-trained models often
exhibit a lot of mistakes, even when combined with those ad-
vanced scoring strategies. To this end, OE [19] suggests that
models should be further trained, directly learning to differentiate
between ID and OOD patterns by engaging so-called auxiliary
OOD distribution DXA

. We formalize the problem as follows.

Definition 1 (OE Setup). Let DXIYI , DXO , and DXA be the
ID joint, the real OOD margin, and the auxiliary OOD margin
distributions. Then, based on the ID data {(xi

I, y
i
I)}ni=1 and the

auxiliary OOD data {xi
A}mi=1 i.i.d. drawn from DXIYI and DXA

respectively, the goal of OE is to learn from such data, so that the
model f(·;w) is good at OOD detection, i.e., for any input x,

• if x is an observation from DXI
, the model f(·;w) can

classify x into its correct ID label;
• if x is an observation from DXO , the model f(·;w) can

detect x as an OOD case.

Remark 1. OE considers the open-world setting, where the
auxiliary distribution DXA

may differ arbitrarily from the real
distribution DXO

. It reflects our limited knowledge about real
OOD data during training since we cannot anticipate and enu-
merate all OOD cases that we will encounter in the future. It is a
standard setting widely adopted in practice [19], [21].

Learning Strategy. Generally speaking, OE takes OOD detection
as a binary classification problem, learning to discern ID and OOD
patterns. Overall, the empirical OE risk can be written as

R̂OE(w) = R̂I(w) + αR̂A(w), (3)

with α the trade-off parameter. The first term R̂I(w) handles
the ID cases, making scores for ID data higher; the second term
R̂A(w) handles the OOD cases, making scores for auxiliary OOD
data lower. We also define the expected counterpart of Eq. (3) as

ROE(w) = RI(w) + αRA(w).

Loss Functions. The expansion forms of RI(w) and RA(w) are

RI(w) = E(x,y)∼DXIYI
ℓID

(
f(x;w), y

)
and

RA(w) = Ex∼DXA
ℓOOD

(
f(x;w)

)
,

respectively, where ℓID and ℓOOD denote associated loss func-
tions. Similarly, the expansions for the empirical risks are

R̂I(w) =
1

n

n∑
i=1

ℓID(f
(
xi
I;w), yiI

)
and

R̂A(w) =
1

m

m∑
i=1

ℓOOD

(
f(xi

A;w)
)
.

We can define the empirical OE risk R̂OE accordingly. Follow-
ing [19], we employ the cross entropy loss for ID cases, i.e.,

ℓID
(
f
(
x;w), y

)
= − log softmaxy f(x;w),

and the KL-divergence between the uniform distribution and the
softmax prediction for the OOD cases, namely,

ℓOOD

(
f(x;w)

)
= KL

(
1/c || softmax f(x;w)

)
,

where KL(· || ·) denotes the KL-divergence. It directly makes
high / low MSP scores for ID / OOD data and works empirically
well for many other scoring strategies, including MLP scoring.

3 DISTRIBUTION DISCREPANCY

As aforementioned, OE considers an open-world setting, where
the auxiliary OOD margin DXA differs from the real OOD margin
DXO [19]. This discrepancy leads to the discrepancy between
training (i.e., DXA ) and test (i.e., DXO ) OOD distributions,
named as the OOD distribution discrepancy in our following.
Distributional Metric. To understand the impacts of OOD dis-
tribution discrepancy, it is essential to have an appropriate metric
that can quantify the distance or divergence between data. In this
paper, we suggest the use of the Wasserstein distance [26], which
has been widely adopted in the field of statistical learning.
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Definition 2 (Wasserstein Measurement). The Wasserstein dis-
tance between two distributions D and D′ is given by:

WD(D,D′) = inf
π∈Π(D,D′)

E(x,x′)∼π||x− x′||,

where Π(D,D′) is the coupling space and ||·|| is the L2 norm.

For two distributions denoted by D and D′, a large
WD(D,D′) indicates their discrepancy is also large. Therefore,
WD(DXO

, DXA
) > 0 holds due to the OOD distribution discrep-

ancy in the open-world setting. Moreover, to ease our discussion,
we define the OOD risk w.r.t. the real OOD distribution DXO

, i.e.,

RO(w) = Ex∼DXO
ℓOOD

(
f(x;w)

)
.

Then, by the following theorem, we quantify the negative impacts
of OOD distribution discrepancy for OE-based methods.

Theorem 1. We adhere to Assumption 1, which posits bounded
Rademacher complexity, bounded loss functions, and continuity—
conditions commonly satisfied by deep models. We define ŵ =
argminw R̂OE(w). With probability at least 1− δ, we have

RI(ŵ) + αRO(ŵ)− min
w∈W

ROE(w)

≤αL WD(DXO
, DXA

) + (1 + α)
2ϵ(CF , L,A)√
min{m,n}

,

where L = max{LID, LOOD}, A = max{AID, AOOD}, and
CF relates to the Rademacher complexity of the model space F .
Moreover, the term ϵ(CF , L,A) serves as the key part for the
upper bound of the generalization error, as defined in Eq. (14).

To keep clarity throughout our main discussion, we defer the
proof to the later text within Section 6.2.

Remark 2. The expression RI(w) + αRA(w) quantifies the
expected performance on real data for models trained on auxiliary
OOD data; the term ϵ(CF , L,A)/

√
min{m,n} relates to the

Rademacher complexity of the hypothesis space as well as the
sample sizes of m and n. Due to this upper bound, the impacts of
the OOD distribution discrepancy are reflected by the Wasserstein
distance between the auxiliary and the real OOD data, i.e.,
WD(DXO

, DXA
). Consequently, the detection performance on

unseen data degrades linearly with respect to the Wasserstein
distance between the auxiliary and the real OOD distributions.

Overall, although OE-based methods can largely enhance
OOD detection, the OOD distribution discrepancy limits its re-
liability in the open world. It underscores the possibility to further
improve OE, motivating the primary focus of this paper.

4 OOD DATA SYNTHESIS

The OOD distribution discrepancy stems from our limited aware-
ness of real OOD cases. A natural solution is to expose the
model to a broad range of OOD data beyond the auxiliary ones,
thereby expanding the OOD coverage for OE and bridging the gap
between training and test. However, manually gathering such data
is hard, often requiring impractical amounts of time and labor.
Consequently, we recommend synthesizing such data, freeing
from cumbersome data crawling and tedious human efforts.
Implicit Data Synthesis. Previous works have demonstrated that
data synthesis is hard, requiring meticulous human design [20],
resource-demanding generative models [27], and unstable feature
optimization [28]. In response to these challenges, we suggest

a novel strategy named Implicit Data Synthesis (IDS), which is
simple to implement yet powerful to synthesize.

The key motivation is that perturbing model parameters has
the same impact as transforming input data, where specific model
perturbations indicate particular input transformation. Formally
speaking, given p the perturbation parameters and λ > 0 the
perturbation strength, the following two events are equivalent:

• Model Perturbation: perturbing model parameters from w
to w + λp, given the input data x;

• Data Transformation: transforming input data from x to
t(x;w, λp), given the model with parameters w,

where t(·;w, λp) is an implicit transform function, depending on
w and λp. Thus, when updating the model after its parameter
perturbation, we can implicitly make the model learn from its
transformed forms, named implicit data in the following. The
transformed data can arbitrarily differ from the original ones, thus
enlarging the coverage of OOD cases during OE training. Please
refer to Section 6.1 for a formal discussion.
Informal Justification. The underlying insight is quite simple.
As an illustration, we consider only the k-th layer of the model,
denoting z(k) the inputs, W(k) the matrix form of parameters,
P(k) the matrix form of perturbation, σ(·) the activation function,
and f

(k)

W(k)(z
(k)) = σ(W(k)z(k)) the outputs. To ease our

discussion, we consider the equivalent form of W(k) + λP(k):

W(k)(I+ λA(k)),

where A(k) is the perturbation matrix with P(k) = A(k)W(k).
Then, we observe that perturbation in the parameter space corre-
sponds to perturbation in the feature space, following

f
(k)

W(k)(I+λA(k))
(z(k)) =σ

(
[W(k)(I+ λA(k))]z(k)

)
=σ

(
W(k)[(I+ λA(k))z(k)]

)
=f

(k)

W(k)

(
(I+ λA(k))z(k)

)
.

(4)

The above equation connects model perturbation, namely,
W(k)(I + λA(k)), to feature transformation, namely, (I +
λA(k))z(k). Overall, we can implicitly make the model learn from
transformed data, where we just need to perturb model parameters
yet keep the original inputs fixed. Such a novel data synthesis
scheme is flexible across various model structures and requires less
computational efforts over generation-based methods [27], [28],
which depend on the tedious training of explicit data generators.
It also provides greater extensibility than manual designs [20],
[29], which rely on meticulously crafted assumptions about data
distributions. We provide a rigorous discussion in Section 6.1.
Specifically, in Theorem 4, we extend Eq. (4) to encompass
perturbations for the whole model. In Proposition 1, we argue
that IDS can benefit from layer-wise non-linearity, suggesting that
deeper models can lead to more complex transformations.

5 DISTRIBUTION-AGNOSTIC OOD LEARNING

IDS allows the model to implicitly learn from additional OOD
data; however, not all implicit data can benefit the current model.
For example, when the model already performs well on certain
synthesized data, further learning from them could be redundant.
How to ensure that synthesized / implicit data are beneficial
remains to be answered, which will be discussed as follows.
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5.1 Worst-case Data Search
We propose Wasserstein Distribution-agnostic Outlier Exposure
(W-DOE), cf., Algorithm 1, an effective OE-based learning ap-
proach powered by IDS to mitigate the OOD distribution dis-
crepancy. During training, we enlarge the coverage of OOD data
beyond the auxiliary ones, defined by the distribution coverage.

Definition 3 (Distribution Coverage). A distribution coverage
B

ρ
D centered on the distribution D is given by

B
ρ
D = {D′ : WD(D,D′) ≤ ρ},

where ρ is the maximal-allowed distance between distributions.

Remark 3. The distribution coverage encompasses a set of distri-
butions rather than a single one, as making the model work well
across distributions is more likely to guarantee its performance
in unknown cases. Furthermore, we consider the distribution
coverage centered on the auxiliary OOD distribution, named the
OOD distribution coverage, denoted by B

ρ
A in the following.

W-DOE aims to guarantee the performance in the expanded
OOD distribution coverage, such that the model can learn from
all those data following various distributions within the coverage.
Fig. 1 illustrates our heuristics in mitigating the OOD distribution
discrepancy—learning from the enlarged OOD coverage shrinks
the distance between the auxiliary and the real OOD distribution,
thus mitigating their discrepancy. Such a motivation is inspired by
Theorem 1, with further justifications in Section 6.2.
Performance Measurement. To ensure the overall OOD perfor-
mance within the OOD distribution coverage, we should upper
bound the worst-case detection performance therein. In W-DOE,
the worst-case performance is measured by the worst-case OOD
regret (WOR), which is formalized in the following.

Definition 4 (Worst-case OOD Regret). Given the model fw and
the OOD distribution coverage B

ρ
A, the worst-case OOD regret is

WOR(w; ρ) = sup
DXS

∈B
ρ
A

[
RS(w;DXS

)− inf
w

RS(w;DXS
)
]
,

where RS(w;DXS) = Ex∼DXS
ℓOOD

(
f(x;w)

)
is the OOD

performance for the synthesized OOD distribution DXS .

Remark 4. In the place of the OOD regret, one may measure the
performance directly by the risk, i.e., supDXS

∈B
ρ
A
RS(w;DXS

).
However, we emphasize that our regret-based measurement is bet-
ter due to the limited fitting power of the model. In particular, there
exist some OOD data with high risk values that the model cannot
adequately fit. In this case, OOD regret can better reflect the most
beneficial data that the model can improve upon. Therefore, using
WOR is better than that of the risk counterpart.

5.2 Learning Objective
We emphasize that minimizing the WOR ensures the upper bound
on the overall model performance within the enlarged OOD
coverage. Therefore, implicit OOD data that lead to WOR are
of interest, and learning from them can benefit the model most. To
mitigate the OOD distribution discrepancy, W-DOE enhances the
classical OE with the refined learning objective as

RW(w; ρ) = RI(w)

+α sup
DXS

∈B
ρ
A

[
RS(w;DXS

)− inf
w

RS(w;DXS
)︸ ︷︷ ︸

OR(w;DXS
)

]
. (5)

Directly solving Eq. (5) is non-trivial in practice, due to the regret
estimation and the constraint optimization for WOR(w; ρ). There-
fore, we propose a series of modifications to ease its computation.
Regret Estimation. The computation of the exact regret,
OR(w;DXS

), is hard due to the necessity to enumerate the
optimal risk for an infinite number of distributions DS within
an infinite distribution space. Instead, following [30], [31], we
suggest its effective estimation, involving the computations of the
gradient norms w.r.t. the risk RS(w;DXS

), as outlined below:

OR(w;DXS) ≈ ||∇t|t=1.0Ex∼DXS
ℓOOD

(
t · f(x;w)

)
||2. (6)

Intuitively, a larger gradient norm indicates that the current model
is far from its optimal, and thus the corresponding regret is large.
It leads to an efficient estimation of the regret values.
Constraint Optimization. WOR(w; ρ) in Eq. (5) subjects to the
distribution constraint meanwhile requires infinite-dimensional
search. Generally, it is intractable to directly solve WOR(w; ρ),
and thus we introduce the dual theorem as follows.

Theorem 2 (Dual Theorem [32]). Consider the loss ℓ(·) with the
distribution coverage constraint Bρ

D = {D′ : WD(D,D′) ≤ ρ}:

sup
DXS

∈B
ρ
D

Ex∼DXS
ℓ
(
f(x;w)

)
,

it equals the dual problem

inf
γ≥0

{
γρ+ Ex∼D sup

x′∈X

[
ℓ
(
f(x′;w)

)
− γ||x,x′||2

]}
, (7)

for the associated ρ > 0.

Remark 5. Theorem 2 changes the infinite-dimensional searching
to a finite-dimensional space, which can ease computation. Eq. (7)
can be simplified when assuming pre-defined γ [33], thus

R(w; ρ) = Ex∼D sup
x′∈X

{
ℓ
(
f(x′;w)

)
− γ||x,x′||2

}
. (8)

W-DOE Objective. Theorem 2 cannot be applied to the regret
estimation in Eq. (6) directly, while it is feasible for its upper
bound, i.e., Ex∼DXS

||∇t|t=1.0ℓOOD

(
t · f(x;w)

)
||2. Substituting

ℓ
(
f(x;w)

)
= ||∇t|t=1.0ℓOOD

(
t · f(x;w)

)
||2 to Eq. (8), we

propose the final W-DOE learning objective, which is given by

RI(w) + αEx∼DXA
sup
x′∈X

{
κ(x;w)− γ||x,x′||2

}
, (9)

where we define κ(x;w) = ||∇t|t=1.0ℓOOD

(
t · f(x;w)

)
||2.

5.3 Realization

In W-DOE, data searching is realized by IDS, and model updating
is conducted in a stochastic manner. The overall realization of
our method is summarized in Algorithm 1, where we emphasize
several important points in the following.
Data Synthesis. IDS is used in Eq. (9) for the worst-case data
search, leading to the following W-DOE objective with IDS:

RI(w)+αEx∼DXA
sup
p∈W

{
κ(x;w+λp)−γ||x, t(x;w, λp)||2

}
,

where W denotes the search space of model perturbation and
t(x;w, λp) is the implicit transformed data. However, deriving
the exact t(·;w, λp) is hard, thus we approximate its behaviors
in the embedding space of the model: Considering embedding
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features in the penultimate layer as ϕ(x;w), one can mea-
sure the difference between original data and implicit data as
||ϕ(x;w),ϕ(x;w + λp)||2. Thereby, we have

RI(w) + αEx∼DXA
sup
p∈W

{
κ(x;w + λp)

− γ||ϕ(x;w),ϕ(x;w + λp)||2
}
,

where OOD data are implicitly synthesized in the input space
while explicitly measured in the embedding space.
Perturbation Estimation. Gradient-based optimization is adopted
to find the proper p. Given the data x, each updating step of p is

p← p+∇p

[
κ(x;w + αp)− γ||ϕ(x;w),ϕ(x;w + λp)||2

]
,

Determining the appropriate p for each x results in prohibitively
high computing costs, requiring at least m times more compu-
tation over OE. Instead, we propose using a unified p that is
searched to induce the overall worst OOD performance across
the original data. Accordingly, we have the updating rule of

p← p+
(
∇pEx∼DXA

κ(x;w + λp)

−∇pEx∼DXA
γ||ϕ(x;w),ϕ(x;w + λp)||2

)
.

(10)
Stochastic Learning. We consider a stochastic realization for
model updating, where random batches BXIYI and BXA are sam-
pled i.i.d. from DXIYI and DXA respectively, in each training step.
Perturbation estimation and model updating are then conducted
on a batch-wise basis subsequently. However, determining the
optimal p may necessitate multiple rounds of forward / backward
propagation as per Eq. (10), which is computationally expensive.
Instead, we employ the sliding moving average to approximate
the optimal p. It requires only a single round of forward /
backward propagation per step for Eq. (10) while allowing for
the accumulation of more gradient information over time from
previous estimations. The key modifications to implement the
sliding moving average are articulated as follows:

• p should be initialized by its current moving average;
• the gradient g w.r.t. p is calculated with one step of forward

/ backward propagation;
• the moving average of p can be updated via

p← (1− β)p+ βg,

where β is the sliding hyper-parameter.
After finding the appropriate p, the second term within the WOR
formulation, namely, infw RS(w;DXS

), becomes a constant that
can be omitted. Consequently, the learning objective for updating
model parameters is established as follows:

R̂I(w) + αR̂A(w + λp),

which can be optimized by mini-batch gradient descent.
Scoring Strategy. We adopt the MaxLogit scoring [24], i.e.,

sMLP(x;w) = max
j

f j(x;w), (11)

to conduct OOD detection, which is more effective than MSP for
many complex detection setups. We further test W-DOE with more
advanced scoring strategies in the appendix.

6 THEORETICAL ANALYSIS

We provide theoretical justifications for our W-DOE, certifying
the validity of IDS in generating diverse data and the effectiveness
of W-DOE under the OOD distribution discrepancy.

Algorithm 1 Wasserstein Distribution-agnostic Outlier Exposure.

Input: ID and OOD samples from DXIYI
and DXA

, resp;
p initialized by 0;
for ns = 1 to num_step do

Sampling BXIYI
and BXA

from DXIYI
and DXA

;
if ns > num_warm then

gOR = ∇p

∑
x∈BXA

κ(x;w + λp);
gWA = ∇p

∑
x∈BXA

||ϕ(x;w)− ϕ(x;w + λp)||2;
g = gOR − γgWA;
p← (1− β)p+ βg;

end if
w← w − lr∇w

[
R̂I(w) + αR̂A(w + λp)

]
;

end for
Output: model parameters w.

6.1 Implicit Data Synthesis

We reveal that model perturbation can implicitly lead to data
transformation in the input space, where the implicit data follow
a new data distribution compared with the original ones. To begin
with, we consider the recursive definition of a K-layer network

z(k+1) = σ(W(k)z(k)) for k = 1, . . . ,K,

with W(k) the k-th layer weights, σ(z) the activation function,
and z(k) the k-th layer outputs. We have z(1) = x the inputs and
z(K) = f(x;w) the outputs. Moreover, we consider the multiply
forms of perturbation as in Eq. (4), which is more convenient than
the additive form, i.e., w + λp, in theoretical analysis.

Definition 5 (Multiply Perturbation). For model f(·;w), its k-th
layer is multiply perturbed if W(k) is changed into

W(k)(I+ λA(k)),

where α > 0 is the perturbation strength and A(k) is the pertur-
bation matrix. Moreover, the whole model is multiply perturbed if
all its layers undergo multiple perturbations.

Layer-level Perturbation. We first consider the layer-level per-
turbation as in Section 4, connecting multiply perturbation to data
transformation in any layer of the model, summarized as follows.

Theorem 3. Assuming the multiply perturbation W(k)(I +
λA(k)) in the k-th layer. Then, measuring in the k-th layer
feature space, the multiply perturbation transforms the original
distribution D to a new distribution D′. If the eigenvalues of A(k)

are all greater than 0, we further have KL(D,D′) > 0.

Proof. Based on Eq. (4), we know that the multiply perturbation
W(k)(I+λA(k)) transforms the features z(k) by an affine trans-
formation (I + λA(k))z(k). Define the k-th layer feature space
as Z(k), we assume that original data are i.i.d. drawn from the
distribution with the associated density function of fZ(k)(z(k)).
Then, the transformed data z′(k) are i.i.d. drawn from a new
distribution with the probability density function of

fZ(k)(z′(k)) = fZ(k)(z(k))
∣∣I+ λA(k)

∣∣−1
.

Moreover, when measuring by the KL divergence, we have

KL(fZ(k)(z(k))||fZ(k)(z′(k))) = log|I+ λA(k)|.
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By the Jordan matrix decomposition, we have A(k) =
T(k),−1J(k)T(k), where J(k) is upper triangular. Assuming Γ
different eigenvalues υ(r) for the matrix A(k), then we have

|I+ λA(k)| =|T(k),−1(I+ λJ(k))T(k)|

=|I+ λJ(k)| =
Γ∏

r=1

(1 + λυ(r))nr .

where nr is the number of eigenvectors with the eigenvalue υ(r).
Thus, if the eigenvalues of A(k) are all greater than 0, we have
|I + λA(k)| > 1 and thus KL(fZ(k)(z(k))||fZ(k)(z′(k))) > 0.
Therefore, the proof is completed.

Model-level Perturbation. The above theorem can be generalized
to multiply perturbation for the whole model, which leads to data
transformation in the input space, illustrated as follows.

Theorem 4. Assuming the multiply perturbations
{
W(k)(I +

λA(k))
}K
k=1

for the ReLU model. Then, measuring in the input
space X , the multiply perturbation transforms the original distri-
bution D to a new distribution D′. If the eigenvalues of A(k) are
greater than 0 and |W(k)| ≠ 0 for all k, then KL(D,D′) > 0.

Proof. We consider an induction proof, justifying that: the multi-
ply perturbation with A(k) can be transformed into an equivalent
multiply perturbation Ā(k−1) in the (k − 1)-th layer for all k.
Moreover, if |A(k)| > 0 indicates |Ā(k−1)| > 0, the determinant
of the equivalent perturbation is greater than 0. Then, based on
Theorem 3, we will complete the proof by induction. To find the
equivalent perturbation matrix Ā(k−1) in the (k − 1)-th layer for
A(k) in the l-th layer, we should solve:

W(k)(I+ λA(k))σ(W(k−1)z(k−1))

=W(k)σ
(
W(k−1)(I+ λĀ(k−1))z(k−1)

)
.

It can be further rewritten as

A(k)σ(W(k−1)z(k−1))

=σ′(W(k−1)z(k−1))W(k−1)Ā(k−1)z(k−1),

where we apply the Taylor Theorem for the right-hand side,
with the usual adjustments that the equations only hold almost
everywhere in parameter space. Then, since the ReLU activation
is applied, we can approximate the above formulation as

A(k)W(k−1) = W(k−1)Ā(k−1),

holding almost sure when outputs are not sparse. Furthermore,

|I+ λA(k)||W(k−1)| =|W(k−1) + λA(k)W(k−1)|
=|W(k−1) + λW(k−1)Ā(k−1)|
=|W(k−1)||I+ λĀ(k−1)|.

Since |I + λA(k)| > 1 and |W(k−1)| ̸= 0, we can easily know
that |I + λĀ(k−1)| > 1 holds. We have shown that multiply
perturbation in the k-th layer can be transformed to the (k− 1)-th
layer. Then, the equivalent perturbation Ā(k−1) and the original
perturbation in the (k − 1)-th layer, i.e., A(k−1) can formulate a
joint perturbation ¯̄A(k−1), namely, I+ λ ¯̄A(k−1), with

¯̄A(k−1) = Ā(k−1) +A(k−1) + λA(k−1)Ā(k−1). (12)

Then, the joint perturbation ¯̄A(k−1) satisfies:

|I+ λ ¯̄A(k−1)| =|(I+ λA(k−1))(I+ λĀ(k−1))|
=|I+ λA(k−1)||I+ λĀ(k−1)|
>|I+ λA(k−1)| > 1.

(13)

Thus we complete our proof.

Remark 6. Using KL divergence to justify that transformed data
follow a new distribution may lead to a small theoretical gap for
W-DOE. The reason is that W-DOE searches OOD distributions
w.r.t. the Wasserstein distance. However, the Wasserstein distance
cannot be simply lower-bounded by the KL divergence, thus
WD(D,D′) > 0 does not hold in general. On the other side,
KL divergence-based constraints are not as effective as that of the
Wasserstein distance in many applications [34]. Therefore, as a
trade-off, we use the KL divergence to facilitate our derivation and
the Wasserstein measurement to pursue practical effectiveness.
Moreover, these two metrics are intricately linked by Talagrand’s
inequality [35], asserting that the square of the Wasserstein
distance is upper bounded by the corresponding KL divergence.
Hence, we have the necessary conditions for assessing changes in
distribution as measured by the Wasserstein distance.

Theorem 4 further leads to the proposition below, indicating
that our IDS can benefit from layer-wise architectures of models.

Proposition 1. Consider a K-layer ReLU network with multiply
perturbation {A(k)

K }Kk=1 and transformed distribution D′
K . Then,

there exists a K + 1-layer ReLU network with multiply perturba-
tion {A(k)

K+1}
K+1
k=1 and transformed distribution D′

K+1, such that
KL(D,D′

K+1) ≥ KL(D,D′
K), measured in the input space.

Proof. For the (K+1)-layer ReLU network, we assume its model
parameters and the model perturbation are the same as that of the
corresponding layers for the K-layer ReLU network (except for
the K + 1-th layer). Then, by inspecting (13), the perturbation
from the K + 1-th layer can make the perturbation matrices for
the K + 1-layer network no smaller than that of the K-layer
network regarding each layer (including the input space) of the
joint multiplicative perturbation. Thus, we complete our proof.

We summarize the above derivations as follows: In Theorem 4,
we conclude that model perturbation can implicitly transform
data that follow new distributions. In Proposition 1, we find that
the transform function is complex enough with layer-wise non-
linearity, where deeper models induce stronger transformations.

6.2 Distribution Robustness
We begin with standard assumptions that ease our discussions.

Assumption 1. Denote the model space by F , we assume
its Rademacher Complexity Rn(F) is large enough yet upper
bounded, i.e., there is a CF such that Rn(F) ≤ CF/

√
n.

Moreover, we assume the ID loss is bounded by AID and is LID

Lipschitz continuous; the OOD loss is bounded by AOOD and is
LOOD Lipschitz continuous.

Remark 7. The bounded Rademacher complexity is a standard
assumption that holds for many deep models [36], [37]. We can
justify that the cross entropy loss and the KL divergence can be
bounded and Lipschitz with respect to w in practice if they satisfy

• the activation functions are Lipschitz (holding for ReLU);
• the input space X is bounded (holding for images);
• the parameter space is bounded (holding for regularization).

Specifically, when parameters are constrained by the F-norm,
the softmax outputs remain continuous and are prevented from
reaching infinity. Further assuming the bounded feature space, the
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model then becomes a continuous function therein. It implies that
the function f(·;w) is both upper and lower bounded.

We further introduce an useful lemma in the following.

Lemma 1. Given Assumption 1, then for any δ ≥ 0,

sup
DX∈B

ρ+δ
A

Ex∼DX
ℓOOD

(
f(x;w)

)
≤ sup

DX∈B
ρ
A

Ex∼DX
ℓOOD

(
f(x;w)

)
+ LOODδ.

Proof. For any ϵ > 0, we set Dδ,ϵ
X satisfies that

sup
DX∈B

ρ+δ
A

Ex∼DX′ ℓOOD(x; fw) ≤ Ex∼Dδ,ϵ
X
ℓOOD(x; fw) + ϵ,

and
WD(Dδ,ϵ

X , DXA
) ≤ ρ+ δ.

If WD(Dδ,ϵ
X , DXA

) ≤ ρ, then

sup
DX∈B

ρ+δ
A

Ex∼DX
ℓOOD

(
f(x;w)

)
≤ sup

DX∈B
ρ
A

Ex∼DX
ℓOOD

(
f(x;w)

)
+ ϵ.

If WD(Dδ,ϵ
X , DXA

) > ρ, we introduce the distribution D′
X =

(1− u)Dδ,ϵ
X + uDXA

for u ∈ [0, 1]. Then, we have

WD(D′
X , DXA

) ≤ (1− u)WD(Dδ,ϵ
X , DXA

) ≤ (1− u)(ρ+ δ).

If u = δ/(ρ + δ), then WD(D′
X , DXA

) ≤ ρ holds. By Kan-
torovich–Rubinstein duality [38], we have

WD(D′
X , Dδ,ϵ

X )

= sup
∥f∥Lip≤1

∫
X
f(x)dD′

X(x)−
∫
X
f(x)dDδ,ϵ

X (x)

=u sup
∥f∥Lip≤1

∫
X
f(x)dDXA

(x)−
∫
X
f(x)dDδ,ϵ

X (x)

=uWD(DXA
, Dδ,ϵ

X ) = δ.

We also obtain that

sup
DX∈B

ρ+δ
A

Ex∼DX
ℓOOD

(
f(x;w)

)
− sup

DX∈B
ρ
A

Ex∼DX
ℓOOD

(
f(x;w)

)
≤Ex∼Dδ,ϵ

X
ℓOOD

(
f(x;w)

)
− Ex∼D′

X
ℓOOD

(
f(x;w)

)
+ ϵ

≤LOODδ + ϵ,

which implies that

sup
DX∈B

ρ+δ
A

Ex∼DX
ℓOOD

(
f(x;w)

)
≤ sup

DX∈B
ρ
A

Ex∼DX
ℓOOD

(
f(x;w)

)
+ LOODδ.

Combing the cases with WD(Dδ,ϵ
X′ , DXA) ≤ ρ and

WD(Dδ,ϵ
X′ , DXA

) > ρ, we complete the proof.

OOD Distribution Discrepancy for OE. As a direct application
of Lemma 1, we can prove Theorem 1. Assuming

ϵ(C,L,A) = 2CL+A
√
0.5log 1/δ, (14)

we have the following derivation.

Proof. By the Rademacher Bound, with the probability at least
1− δ, we can prove that

|RI(w)− R̂I(w)| ≤ ϵ(CF , LID, AID)/
√
n,

and

|RA(w)− R̂A(w)| ≤ ϵ(CF , LOOD, AOOD)/
√
m,

for all w. Denote w∗ = infw RI(w) and ŵ = infw R̂I(w), then,
for any ϵ > 0, there exists wϵ such that RI(w

ϵ) ≤ RI(w
∗) + ϵ.

Thus, using the fact that R̂I(ŵ) ≤ R̂I(w
ϵ), we have

RI(ŵ)−RI(w
∗)

=RI(ŵ)−RI(w
ϵ) +RI(w

ϵ)−RI(w
∗)

≤RI(ŵ)−RI(w
ϵ) + ϵ

=RI(ŵ)− R̂I(ŵ) + R̂I(ŵ)−RI(w
ϵ) + ϵ

≤RI(ŵ)− R̂I(ŵ) + R̂I(w
ϵ)−RI(w

ϵ) + ϵ

≤2 sup
w
|RI(w)− R̂I(w)|+ ϵ,

(15)

holding for any w and ϵ > 0. Accordingly, we have,

RI(ŵ) ≤ RI(w
∗) + 2ϵ(CF , LID, AID)/

√
n. (16)

Similarly, we can derive

RA(ŵ) ≤ RA(w
∗) + 2ϵ(CF , LOOD, AOOD)/

√
m.

and thus,

ROE(ŵ)− min
w∈W

ROE(w) ≤ (1 + α)
2ϵ(CF , L,A)√
min{m,n}

, (17)

where L = max{LID, LOOD} and A = max{AID, AOOD}.
Moreover, based on Lemma 1, we know that

RA(ŵ)−RO(ŵ)

≤ sup
DXS

∈Bδ
A

Ex∼DXS
ℓOOD

(
f(x;w)

)
−RO(ŵ) ≤ Lδ. (18)

where δ = WD(DXO
, DXA

) Substituting Eq. (18) into Eq. (17),
we complete the proof.

OOD Distribution Discrepancy for W-DOE. Now, we study the
effectiveness of our W-DOE in mitigating the OOD distribution
discrepancy, summarized by the following theorem.

Theorem 5. Given Assumption 1 and ŵ = argminw R̂W(w; ρ),
then with the probability at least 1− δ, we have

RI(ŵ)+αRO(ŵ)− min
w∈W

RW(w; ρ)

≤αL max
{
WD(DXO , DXA)− ρ, 0

}
+(2 + 4α)

ϵ(CF , L,A)√
min{m,n}

+ inf
w

RO(w),

(19)

where L = max{LID, LOOD}, A = max{AID, AOOD}, and
ϵ(CF , L,A) is defined as in Eq. (14).
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Proof. For any w, with the probability at least 1− δ,

WOR(ŵ; ρ)

= sup
DXS

∈B
ρ
A

RS(ŵ;DXS)−RS(w
∗;DXS)

≤ sup
DXS

∈B
ρ
A

R̂S(ŵ;DXS)− R̂S(w
∗;DXS) +

2ϵ(CF , L,A)√
m

≤ sup
DXS

∈B
ρ
A

R̂S(w;DXS
)− R̂S(w

∗;DXS
) +

2ϵ(CF , L,A)√
m

≤ sup
DXS

∈B
ρ
A

RS(w;DXS
)−RS(w

∗;DXS
) +

4ϵ(CF , L,A)√
m

≤WOR(w; ρ) +
4ϵ(CF , L,A)√

m

where w∗ = infw RS(w;DXS). Further combining with
Eq. (16), one can easily derive

RW(ŵ; ρ) ≤ min
w∈W

RW(w; ρ)+ (2+ 4α)
ϵ(CF , L,A)√
min{m,n}

. (20)

Then, if ρ ≥ WD(DXO
, DXA

), we have

RO(ŵ)−RO(w
∗)− WOR(ŵ; ρ) ≤ 0.

Otherwise, by Lemma 1, we have

RO(ŵ)− inf
w

RO(w)−WOR(ŵ; ρ)

≤L
(
WD(DXO

, DXA
)− ρ

)
.

Thus, we have

RO(ŵ)−WOR(ŵ; ρ)

≤Lmax
{
WD(DXO

, DXA
)− ρ, 0

}
+ inf

w
RO(w).

Combining with Eq. (20), we complete the proof.

Remark 8. In Eq. (19), the first term in the right-hand-side plays
the key role, in that larger ρ leads to tighter bounds in the open
world. Thus, it verifies that our W-DOE can lead to improved
performance when facing OOD distribution discrepancy. More-
over, infw RO(w) is typically a negligible constant, especially for
deep models with relatively large capacities. Then, we can easily
observe that our bound is much tighter than that of OE in Eq. (1),
demonstrating the superiority of our W-DOE over previous works.

7 EXPERIMENTS

Besides theoretical analysis, we provide empirical evaluations
under a series of representative OOD detection setups.

• Simulated OOD Detection. We begin with illustrative ex-
periments, visualizing the impacts of the OOD distribution
discrepancy and the worst-case learning, respectively.

• Common OOD Detection. We present our main experiments
on the CIFAR benchmarks [39], revealing the superiority of
W-DOE over its many advanced counterparts.

• Challenging OOD Detection. We then test W-DOE for more
challenging setups with wild [40] and hard [12] OOD data.
We also test on ImageNet-1K [41], aligning with real-world
cases with large label spaces and complex feature patterns.

• Medical OOD Detection. To substantiate the real-world
applicability of our method, we test on the CheXpert X-ray
Lung Pathology dataset [42] for medical OOD detection,

In our supplementary materials, we further conduct ablation stud-
ies and present hyper-parameter analysis, aiming to study the
respective powers of our algorithmic designs.

7.1 Evaluation Setups
We first present the default setups used in empirical evaluations.
Baseline Methods. We compare our W-DOE with advanced fine-
tuning methods, including OE [19], ATOM [43], POEM [21],
DAL [44], and WOOD [40]. In the supplementary materials, we
further consider a set of post-hoc and representation-based meth-
ods [14]. We adopt their default setups while unifying backbone
models and auxiliary OOD datasets (if used) for fairness.
Pre-training Setups. On CIFAR benchmarks, we employ Wide
ResNet-40-2 [45] trained for 200 epochs based on empirical risk
minimization, with batch size 64, momentum 0.9, and learning
rate 0.1. The learning rate is divided by 10 after 100 and 150
epochs. On the ImageNet-1K, we employ ResNet-50 [46] with the
pre-trained parameters released by the PyTorch official.
OOD Datasets. On CIFAR benchmarks, we adopt Tiny-
ImageNet-200 [47] as the auxiliary OOD dataset; Tex-
tures [48], SVHN [49], Places365 [50], LSUN-Crop [51], LSUN-
Resize [51], and iSUN [52] as the common OOD datasets; Oxford-
Pets [53], ImageNet-Fix [41], and ImageNet-Resize [41] as the
hard OOD datasets. On the ImageNet-1K benchmark, we adopt
ImageNet-21K-P [54] as the auxiliary OOD dataset; iNatural-
ist [55], SUN [52], Places365 [50], and Texture [48] as the test
OOD datasets. Data that coincide with ID semantics are removed.
Evaluation Metrics. The detection performance is measured by
two threshold-independent metrics: The false positive rate of OOD
data when the true positive rate is 95% (FPR95); the area under the
receiver operating characteristic curve (AUROC). Higher AUROC
and lower FPR95 are preferred in OOD detection.
W-DOE Default Setups. Hyper-parameters in W-DOE are tuned
by grid search concerning validation data, which are separated
from ID and auxiliary OOD data. Such a tuning setup is a common
practice [19], [43]. For CIFAR benchmarks, W-DOE is run for 15
epochs with an initial learning rate of 0.005 and cosine decay [56].
The batch size is 128 for ID and 256 for OOD. num warm = 10,
β = 0.6, γ = 4. For the ImageNet-1K, W-DOE is run for 6
epochs with the learning rate 0.0001. The batch sizes are 64 for
both ID and OOD. num warm = 6, β = 0.1, and γ = 5. For both
CIFAR and ImageNet-1K benchmarks, λ is uniformly sampled
from {0.1, 0.01, 0.001, 0.0001} in each training step, allowing us
to cover wider OOD cases meanwhile easing its tuning procedures.

7.2 Simulated OOD Detection
We commence by visualizing the impact of OOD discrepancies on
model performance through simulated experiments. Specifically,
we consider Gaussian features with the mean of −2.5 for the ID
distribution and another set of Gaussian features with the mean
of 0.5 as the real OOD distribution. Additionally, we assume
various Gaussian distributions for the auxiliary OOD distributions,
with means of 1.5, 2.5, and 3.5 as examples, to assess their
different impacts. All their standard deviations are fixed at 0.5.
Data are sampled within the 99.7% confidence intervals of their
respective Gaussian distributions to ensure separability. The 0-1
loss is employed as the objective to identify the optimal boundary
that can separate between ID and OOD cases.

It is simple to derive that when two Gaussian distributions
have the same variances, their Wasserstein distance is the distance
between their mean values. We can also calculate the optimal
boundary between the ID and the auxiliary OOD data as the
average of their means. The 0-1 loss for real OOD data can
be calculated using the cumulative distribution function of the
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Fig. 2: The simulated experiments with one-dimensional Gaussian features. ID, R-OOD, and A-OOD represent the ID, real OOD, and auxiliary
OOD distributions; the boundary is the decision boundary in discerning ID and OOD patterns; the WD denotes the Wasserstein distance between
real and auxiliary OOD distributions; the error represents the 0-1 loss with respect to the unseen real OOD distribution.

Gaussian distribution representing the real OOD data. The results
are summarized in Fig. 2(a)-(c). As observed, as the OOD distri-
bution discrepancy increases, the identified boundaries for OOD
detection make more mistakes and have larger errors.

We further illustrate decision boundaries searched with worst-
case learning in Fig. 2(d)-(f), where we fix the mean of auxiliary
OOD distribution to be 3.5 with the Wasserstein distance of 3.
The intensity of worst-case learning is controlled by the radius
of the Wasserstein ball, ρ, as prescribed by Eq. (5). Since the
task is separable, infw RS(w;DXS

) tends to be close to 0 when
WD(DXS

, DXI
) is reasonably large. Then, we can explore varying

ρ with its values being 0.3, 0.6, and 0.9, and deduce that the
robust boundaries will adjust towards the ID distribution with a
magnitude of ρ. As we can see, through worst-case data search,
we ensure the detection performance of the model on unseen OOD
cases, with larger ρ typically indicating stronger guarantees.

To echo our theoretical analysis for the learning guarantees of
OE and W-DOE, additional simulated experiments are conducted
across varying values of WD(DXO

, DXA
) and ρ. The results,

which highlight how these variables influence the overall detection
performance as measured by the 0-1 loss, are detailed in Fig. 3.
We also plot the crafted linear bounds for both cases, supporting
our theoretical observations in Theorem 1 and Theorem 5 for the
positive linear upper bound of OE with respect to WD(DXO

, DXA
)

and the negative linear upper bound of W-DOE for ρ.

7.3 Common OOD Detection
We provide the average results across various test-time OOD
datasets on the CIFAR benchmarks, alongside some representa-
tive baseline methods, in Fig. 4. We summarize the detection
performance across test OOD datasets, which have distribution
discrepancies over auxiliary data. Please refer to Appendix A for
detailed detection results with more baseline methods.

The OOD distribution discrepancy naturally exists, making
OE-based methods remain vulnerable. Fortunately, our W-DOE,

(a) OE across varying Wasserstein distances

(b) W-DOE cross varying radius ρ

Fig. 3: The simulated experiments for OE and W-DOE with respect
to different setups of WD(DXO , DXA) and ρ. For (b), we fix the value
of WD(DXO , DXA) to be 3 yet testing varying radius ρ.

which enlarges the OOD coverage during training, can largely
improve the OOD performance. Compared with conventional OE,
our method reveals 8.33-20.27 average FPR95 improvements. For
other works that similarly include OOD sampling, e.g., POEM,
W-DOE also achieves better performance. The primary reason for
the limited effectiveness of these methods is that they mainly focus
on cases where model capacity is insufficient. It deviates from
our considered situations for the discrepancy between training-
and test-time OOD distributions. Finally, compared with existing
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(a) CIFAR-10 (b) CIFAR-100

Fig. 4: Comparison between W-DOE and advanced methods on the
CIFAR benchmarks. Please refer to Appendix A for more results.

(a) CIFAR-10 (b) CIFAR-100

Fig. 5: Comparison between W-DOE and advanced methods on hard
OOD detection. Please refer to Appendix A for more results.

TABLE 2: Comparison between W-DOE and related methods on wild OOD detection. ↓ (or ↑) indicates smaller (or larger) values are preferred,
and a bold font indicates the best result in a column.

Method 0.1 0.2 0.3 0.4 0.5
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

CIFAR-10

OE 40.51 90.60 43.22 89.92 47.58 87.46 50.71 86.81 56.51 84.50
WOOD 36.57 91.95 36.54 92.17 37.65 92.48 43.10 91.51 47.85 90.01
W-DOE 30.82 93.22 34.82 92.29 42.16 90.10 51.81 86.48 60.87 84.32

CIFAR-100

OE 9.13 97.20 9.52 97.19 9.48 97.32 11.35 97.16 14.73 96.74
WOOD 6.74 98.44 6.87 98.35 7.43 98.36 7.91 98.26 8.31 97.97
W-DOE 6.03 98.62 6.56 98.55 9.17 98.17 10.23 98.03 14.00 97.03

methods that employ similar schemes of min-max learning, e.g.,
DAL, our W-DOE still exhibits superior performance, demonstrat-
ing our superiority in tackling the OOD distribution discrepancy.

7.4 Challenging OOD Detection

We consider two more challenging detection tasks on CIFAR
benchmarks, evaluating W-DOE beyond the common setups.
Hard OOD detection. We consider a set of challenging test OOD
datasets that possess different semantics yet similar styles over ID
data. It reflects the reliability of models under very hard scenarios,
thus drawing more practical interest. We present the results in
Fig. 5. As we can see, W-DOE can overall beat previous methods,
especially powerful in the CIFAR-100 case. The reason for the
superiority of W-DOE stems from our worst-case learning scheme,
which can cover some hard OOD data during training. Please refer
to Appendix A for detailed results.
Wild OOD detection. Another interesting setup is wild OOD
detection, where auxiliary OOD data consist of a portion of ID
data. It is a practical setup since one cannot guarantee that the
collected OOD data do not contain any ID semantic. As demon-
strated in previous works [40], such wild OOD data may mislead
our models in discerning ID and OOD patterns, thus detrimental
to effective OOD detection. Here, we consider different portions
of ID data that are mixed with auxiliary OOD data, varying from
0.1 to 0.5, and summarize the experimental results in Table 2.
Here, we compare W-DOE with the original OE and the seminal
work WOOD [40] that specifically tackles wild OOD detection,
and scoring strategies are unified as MaxLogit for fairness. As
revealed, the inherent noise in wild OOD data affects detection.
However, W-DOE can mitigate their negative impacts when ID
portions are relatively small (0.1 and 0.2), even better than WOOD
that are specifically designed for wild OOD detection. Moreover,
our W-DOE can still beat OE when ID portions further grow,

since model updating with parameter noise, as in IDS, is a general
strategy that can improve model robustness [57].
Real-world OOD detection. Nevertheless, we consider the ex-
perimental evaluations on the ImageNet-1K benchmark, which is
not fully covered in previous OE-based methods while critical for
real-world evaluations. It has a large semantic space of 1, 000 ID
classes and the image patterns therein are complex and diverse,
making it a challenging yet attractive OOD detection task. We
summarize the experimental results in Fig. 6. As we can see,
our W-DOE also reveals the best performance over the baselines,
aligning with the CIFAR cases. It demonstrates that our W-DOE
works still well in realistic detection setups. Please also refer to
Appendix A for the detailed results and more baselines.

7.5 Medical OOD detection

Following [58], we utilize subsets from the X-ray Lung Pathology
dataset to facilitate our evaluations of medical OOD detection. Our
experiments consider two settings in the following:

• Setting 1. Cardiomegaly and Pneumothorax are the ID
classes and Fracture is related to the OOD class.

• Setting 2. Lung Opacity and Pleural Effusion are the ID
classes, and Fracture and Pneumonia are the OOD classes.

For both of the above settings, we integrate data from other classes
in the full dataset to construct the auxiliary OOD data. We choose
ResNet-50 as our backbone model and use the hyper-parameter
configurations as for the CIFAR benchmarks. We summarize our
results in Fig. 7. Notably, even though the number of ID classes is
relatively small, we observe the overall performance for most of
the adopted methods is relatively low. It indicates that the setup
is quite challenging. However, we still observe the superiority of
W-DOE, revealing its reliability and real-world utility.
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(a) ImageNet

Fig. 6: Comparison between W-DOE and ad-
vanced methods on the ImageNet benchmarks.

(a) Setting 1 (b) Setting 2

Fig. 7: Comparison between W-DOE and several advanced methods, focusing on the
medical applications within the X-ray Lung Pathology dataset.

TABLE 3: OE, DOE, and W-DOE with 5 individual trails, MaxLogit
scoring is used for all methods.

# OE-MaxLogit DOE W-DOE
FPR95 AUROC FPR95 AUROC FPR95 AUROC

CIFAR-10

1 5.81 98.47 5.63 98.71 4.56 98.83
2 6.14 98.49 5.87 98.54 4.50 98.83
3 6.05 98.50 5.36 98.79 4.86 98.95
4 6.11 98.47 5.88 98.58 4.67 98.80
5 5.97 98.53 5.28 98.78 5.17 98.71

mean
±std

6.02
±0.13

98.49
±0.03

5.60
±0.28

98.68
±0.12

4.77
±0.24

98.82
±0.09

CIFAR-100

1 35.34 93.12 26.53 93.50 24.86 94.24
2 34.95 93.18 25.97 93.71 23.31 94.51
3 35.41 93.12 27.55 93.75 22.55 94.13
4 34.86 93.16 25.11 94.20 22.90 94.60
5 35.28 93.11 27.23 93.56 24.11 94.39

mean
±std

35.17
±0.25

93.14
±0.03

26.48
±0.98

93.74
±0.28

23.55
±0.94

94.37
±0.19

7.6 Performance Stability

Compared with our conference version of the algorithm design,
named DOE, we further introduce the Wasserstein constraint to
restrict the IDS searching region. It facilitates our theoretical
analysis in Section 6, and we further claim that it can make
the training procedure more stable and effective. Generally, W-
DOE will degenerate to DOE when we assume ρ is very large in
Theorem 5. At first glance, it seems that the first term in Eq. (19)
will approach 0 and the upper bound will be tighter than that with
small ρ. However, we notice that larger ρ also indicates larger
minw∈W RW(w; ρ), mainly due to the limited fitting power of
fw. Thus, the learning bound of W-DOE will be tighter than DOE,
thus indicating better performance of our W-DOE.

As empirical justifications, we conduct five individual trials
for OE, DOE, and W-DOE with random seeds of {1, 2, 3, 4, 5},
summarizing the results in Table 3. Note that, for a fair compari-
son, we use the MaxLogit scoring after OE training, aligning with
the cases of DOE and W-DOE. As we can see, DOE and W-DOE
improve OOD performance over OE, while they are both less sta-
ble. However, with our newly introduced Wasserstein constraint,
the training dynamics of W-DOE can be largely improved, with
improved stability and further improved performance. We further
consider various backbone models, including Wide ResNet-40-2
(WRN-40-2), ResNet-50 (RN-50), and DenseNet-101 [59] (DN-
101), comparing the associated performance for OE, DOE, and W-

TABLE 4: OE, DOE, and W-DOE with different backbone architec-
tures, MaxLogit scoring is used for all methods.

backbone OE-MaxLogit DOE W-DOE
FPR95 AUROC FPR95 AUROC FPR95 AUROC

CIFAR-10

WRN-40-2 5.81 98.47 5.63 98.71 4.56 98.83
RN-50 6.28 98.33 5.60 98.74 4.78 98.85

DN-101 5.60 98.44 6.37 98.57 4.20 99.00

CIFAR-100

WRN-40-2 35.34 93.12 26.53 93.50 24.86 94.24
RN-50 38.68 92.51 29.60 93.17 25.60 93.70

DN-101 30.58 93.51 25.72 93.88 25.13 94.20

DOE. The results in Table 4 also reveal the stable improvement of
our W-DOE method over OE and DOE, demonstrating the general
applicability of our enhanced learning framework.

8 CONCLUSION

OE-based methods are powerful for OOD detection, while the
issue of OOD distribution discrepancy hinders its open-world
reliability. We study its negative impacts by modeling the OOD
distribution discrepancy via the Wasserstein distance and propose
a general learning framework, named W-DOE, that can mitigate its
effects. Overall, the power of W-DOE in OOD detection is mainly
attributed to two factors. First, we propose IDS for OOD synthesis,
based on the connection between model perturbation and input
transformation. Synthetic data follow a diverse distribution com-
pared to original ones, rendering models to learn from unseen data.
Second, we suggest a min-max optimization scheme in searching
for the worst-case regret, which can demonstrate better results than
the risk-based counterpart. Our suggested learning scheme leads to
certifiable OOD performance in the open world. We provide both
theoretical justifications and empirical supports, demonstrating the
reliability of W-DOE towards effective OOD detection. However,
as in the supplementary materials, the optimal performance of our
method depends on the proper selection of hyper-parameters, and
we will explore AutoML and meta-learning methods in the future
to ease the computation. Moreover, the proposed techniques in W-
DOE, e.g., WOR and IDS, may contribute beyond OOD detection,
and we will explore their usage scenarios in OOD generalization,
adversarial training, and robust optimization.
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