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Abstract

Machine learning in the context of noise is a challenging but
practical setting to plenty of real-world applications. Most of
the previous approaches in this area focus on the pairwise re-
lation (casual or correlational relationship) with noise, such as
learning with noisy labels. However, the group noise, which
is parasitic on the coarse-grained accurate relation with the
fine-grained uncertainty, is also universal and has not been
well investigated. The challenge under this setting is how to
discover true pairwise connections concealed by the group
relation with its fine-grained noise. To overcome this issue,
we propose a novel Max-Matching method for learning with
group noise. Specifically, it utilizes a matching mechanism
to evaluate the relation confidence of each object (cf. Fig-
ure 1) w.r.t. the target, meanwhile considering the Non-IID
characteristics among objects in the group. Only the most
confident object is considered to learn the model, so that the
fine-grained noise is mostly dropped. The performance on a
range of real-world datasets in the area of several learning
paradigms demonstrates the effectiveness of Max-Matching.

Introduction
The success of machine learning is closely related to the
availability of data with accurate relation descriptions. How-
ever, the data quality usually cannot be guaranteed in many
real-world applications, e.g., image classification (Li et al.
2017), machine translation (Belinkov and Bisk 2017), and
object recognition (Yang et al. 2020). To overcome this is-
sue, learning from cheap but noisy assignments has attracted
intensive attention. Especially, in the recent years, lots of
works have contributed to learning with label noise (Xia
et al. 2020; Han et al. 2020; Chen et al. 2020).

Nevertheless, most of the previous works focus on the
pairwise relation with noise as characterized in Figure 1(a).
For notion simplicity, we call it pairwise noise. Another
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Figure 1: Illustration of the supervised learning with pair-
wise noise (a) and three settings with group noise (b)-(d), in
which the objects are realized by instances, labels, and items
respectively. In the figure, black lines represent the correct
relations, while red lines mean the incorrect relations.

type of noise, which is implicitly parasitic on the weak rela-
tions as illustrated in Figure 1(b)-(d), is also general but has
not been well investigated. We specially term it group noise
based on the two following characteristics: 1) it occurs in the
group whose coarse-grained relation to the target is correct,
while the fine-grained relation of each object in the group to
the target might be inaccurate; 2) it is not proper to indepen-
dently consider fine-grained noisy relations like Figure 1(a),
since objects in one group exhibit strong Non-IID charac-
teristics. Correlation analysis for each group of objects can
help us discover better evidences to this type of noise. In the
following, we enumerate some examples about group noise.

• Figure 1(b): In region-proposal-based object localization,
each group is a set of regions of one image. Given the
image-level label, we aim to find its corresponding re-
gions and remove the irrelevant and background parts.
Here, a group of instances (or regions) are weakly super-
vised by a category label, while some instances are mis-
matched to this category. This is like the multiple-instance



learning problem in the case of the instance-level classi-
fication (Liu, Wu, and Zhou 2012), not the more popular
bag-level classification (Maron and Lozano-Pérez 1998).

• Figure 1(c): In face naming, characters’ faces may appear
simultaneously in a screenshot from the TV serials, and
each face is assigned with a set of candidate names in the
script or in dialogue. Under this setting, only one name
(or label) in the group is correct to the face and all the
candidates are correlated due to relationship among char-
acters. From these data, we are to determine the true name
of each face, which has also been viewed as a partial-label
learning problem (Gong et al. 2017).

• Figure 1(d): In recommender system, item-based collabo-
rative filtering (Sarwar et al. 2001) is a classical method.
It builds upon that the co-occurrence information of item
pairs is relatively reliable. However, due to the uncertainty
of user behavior in e-commerce, it exists that the histori-
cal items are irrelevant to the subsequent items. This in-
troduces the group noise when we consider the sequence
of each user as a group for the next-item, leading to the
deterioration of applying the NeuralCF model with the
fine-grained pairwise relations (He et al. 2017).

Although several works more or less explore this type of
scenarios, they are usually tailored to their ultimate goals
and may distort the characteristics of group noise. For ex-
ample, previous multiple-instance learning, which consid-
ers the instance-level modeling (Settles, Craven, and Ray
2008; Pao et al. 2008), may make the strong IID assump-
tion about the instances in the group. Partial-label learning
methods (Zhang, Zhou, and Liu 2016) suppose the equal
confidence of the candidate labels or model the ground-truth
as a latent variable, which might not be very effective. Be-
sides, all these works do not explicitly construct the denois-
ing mechanism to avoid the influence of group noise.

In this paper, we investigate the problem of learning with
group noise, and introduce a novel Max-Matching approach.
Specifically, it consists of two parts, a matching mechanism
and a selection procedure. The matching mechanism lever-
ages the pair matching to evaluate the confidence of rela-
tion between the object and the target, meanwhile adopts the
group weighting to further consider the Non-IID property of
objects in the group. The final matching scores are achieved
by combining the pair matching and the group weighting,
of which the results evaluate both each fine-grained relation
pair and the object importance in the group. Then, the se-
lection procedure chooses the most confident relation pair
to train the model, which at utmost avoids the influence of
the irrelevant and mismatched relations. The whole model
is end-to-end trained and Figure 2 illustrates the structure of
Max-Matching. We conduct a range of experiments, and the
results indicate that the proposed method can achieve supe-
rior performance over baselines from three different learning
paradigms with group noise in Figure 1.

Related Works
Learning with Pairwise Noise
For learning with pairwise noise, researchers mainly focus
on instances with error-prone labels (Frénay and Verleysen

2014; Algan and Ulusoy 2019), where the noise occurs in
pairwise relations between individual instances to their as-
signed labels. By making assumptions on label assignment,
robust loss functions (Manwani and Sastry 2013; Ghosh,
Kumar, and Sastry 2017; Han et al. 2018b; Yao et al. 2019a)
and various consistent learning algorithms are proposed (Liu
and Tao 2016; Han et al. 2018a; Xia et al. 2019; Yao et al.
2019b; Yao et al. 2020b).

Learning with Group Noise
For learning with group noise, we have a group of objects
collectively connected to the target with the coarse-grained
guarantees but the fine-grained uncertainty. Several previ-
ous methods, in Multiple-Instance Learning (MIL), Partial-
Label Learning (PLL), and Recommender System (RS),
have mediately investigated this problem.

MIL probably is one of the most illustrative paradigms
about group noise, of which the supervision is provided for
a bag of instances. In MIL, prediction can either be made for
bags or individuals, respectively termed as the bag-level pre-
diction and instance-level prediction. For bag-level predic-
tion, many works estimate instance labels as an intermediate
step (Ray and Craven 2005; Settles, Craven, and Ray 2008;
Wang et al. 2018). However, as suggested by (Vanwinckelen
et al. 2016), the MIL methods designed for bag classification
are not optimal for the instance-level tasks. The methods for
instance-level prediction are only studied in the minority but
close to the problem of our paper. Existing methods are de-
vised based on key instance detection (Liu, Wu, and Zhou
2012), label propagation (Kotzias et al. 2015), or unbiased
estimation (Peng and Zhang 2019) with IID assumptions.

PLL also relates to the problem of learning with group
noise, where each instance is assigned with a group of
noisy labels, and only one of them is correct. To avoid the
influence of the group noise, two general methodologies,
namely, the average-based strategy and the detection-based
approach, are proposed. The average-based strategy usually
treats candidate labels equally, and then adapts PLL to the
general supervision techniques (Hüllermeier and Beringer
2006; Cour, Sapp, and Taskar 2011; Wu and Zhang 2018).
The detection-based methods aim at revealing the true la-
bel among the candidates, mainly through label confidence
learning (Zhang, Zhou, and Liu 2016), maximum mar-
gin (Yu and Zhang 2016), or alternating optimization (Zhang
and Yu 2015; Feng and An 2019; Yao et al. 2020a). Above
methods do not explicitly build the denoising mechanism,
which might not be effective in learning with group noise.

RS targets to recommend the points of interest for users
given their historical behaviors. In e-commerce, item-based
collaborative filtering (Sarwar et al. 2001; Linden, Smith,
and York 2003) has been used as a popular technique, which
discovers new items based on the similar ones. It builds
upon that the item relation is relatively reliable, so that the
unseen true correlations between items can be learned via
matrix factorization (Mnih and Salakhutdinov 2008), auto-
decoders (Sedhain et al. 2015), or deep models (Huang et al.
2013; Xue et al. 2017; He et al. 2017; Cui et al. 2018).
Unfortunately, in practice, it is not very easy to accurately
construct the such pairwise relation for training, especially



in the interest-varying user click sequences. Although more
advanced studies mine the multiple interests of users and
sequential behavior analysis (Hidasi and Karatzoglou 2018;
Wu et al. 2019) to acquire benefits, the effect of group noise
has not been well studied yet. Our experiments reveal that
eliminating the group noise from the user click sequences
for the next-item can effectively improve the performance.

Learning with Group Noise
Preliminary
Assume that we have a source set X and a target set Y . For
example, in classification tasks, X and Y can be considered
as the sample set and the label set respectively. Ideally, we
have the collection S = {(xi, yi)}ni=1 (n is the sample size)
for training, where the source object xi ∈ X connects to
the target yi ∈ Y via the true pairwise relation. For gener-
ality, we use f : X → R

d and g : Y → R
d to map both

the objects in X and Y into the embedding space. Then, the
solution is formulated as the following problem:

f∗, g∗ ← arg min
f,g

n∑
i=1

`(f(xi), g(yi)), (1)

where ` : Rd × Rd → R
+ is a proper loss function. After

training, the optimal mapping functions are used to make
various prediction tasks, such as classification or retrieval.

However, in many real-world situations, group-level data
acquisition is cheaper, in which a group of source objects are
collectively connected to a target. Unfortunately, as shown in
Figure 1, some objects in the group can be irrelevant to the
target regarding the pairwise relations. This forms the prob-
lem of learning with group noise, where we have to handle
the noise that is parasitic on Sgroup =

{
(X̄i, yi)

}n
i=1

. Here,
X̄i = {x̄i1, . . . , x̄iK} ∈ XK contains a set of source ob-
jects collectively related to a target object yi ∈ Y . Note that
x̄ik is different from xik regarding the notation, indicating
there may exist x̄ik ∈ X̄i, such that (x̄ik, yi) /∈ S, i.e., x̄ik is
mismatched to the target yi in terms of the pairwise relation.
In this setting, we aim at devising a novel objective function
`group : Rd×K ×Rd → R+ such that

f∗, g∗ ← arg min
f,g

n∑
i=1

`group(F (X̄i), g(yi)) (2)

can find the same optimal mapping functions f∗, g∗ as in
Eq. (1), where F (X̄i) = {f(x̄i1), . . . , f(x̄iK)} denotes the
set of embedding features. After training, the evaluation is
still implemented on the individual pairwise connections be-
tween the source object and the target object.

Max-Matching
In this section, we introduce a novel method, namely, Max-
Matching, for learning with group noise. It consists of two
parts, a matching mechanism and a selection procedure. The
matching mechanism jointly considers the following two as-
pects of relation: 1) the pairwise relation of the source ob-
jects to the target; 2) the relation among the source objects in

the group. Accordingly, the correctness of the pairwise rela-
tions as well as object correlations in the group are revealed
by each matching score. Subsequently, based on the results
given by the matching mechanism, the selection procedure
chooses the best matched object to optimize the model. The
group noise can mostly be removed, since the selected object
is at utmost guaranteed to be correct regarding its pairwise
relation to the target object, and other less confident objects
in the group are not considered. Formally, the objective func-
tion `group of Max-Matching is,

− max
x̄ik∈X̄i

{log P̂ (yi|x̄ik; f, g)︸ ︷︷ ︸
Pair Matching

+ log P̂
(
x̄ik|X̄i; f, g

)︸ ︷︷ ︸
Group Weighting

}, (3)

where P̂ (·) denotes the estimated probability. Note that, the
two terms in Eq. (3) are equally combined1 and they are in-
terdependent in the training phase. The second term helps
the reliable pairwise relation to be identified, and the first
term also boosts the weighting measure to be learned.

In the following, we explain the intuition behind Eq. (3).
In learning with group noise, we have no explicitly clean
pairwise relations that can be directly used for training.
Therefore, we inevitably build a weighting schema to mea-
sure the importance of the data in the group, which we
assume is P̂ (x̄ik|X̄i; f, g). Then, following the law of
the total probability, it might be possible to decompose
P̂ (yi|X̄i; f, g) into a probabilistic term w.r.t. the target for
each object x̄ik ∈ X̄i combined with P̂ (x̄ik|X̄i; f, g). How-
ever, the optimization obstacle caused by the integral will
prohibit this choice. In this case, Eq. (3) is an alternative
approximation to this goal, which we use the following the-
orem to formulate.
Theorem 1. Assume X̄i = {x̄i1, . . . , x̄iK} ∈ XK collec-
tively connects to the target yi, where there is at least one
true pairwise relation (x̄ik, yi) and some possible pairwise
relation noise. Then, optimizing Eq. (3) is approximately op-
timizing all pairwise relations with weights to learn the op-
timal mapping functions f∗ and g∗.

Proof. According to the law of total probability, the log-
likelihood on the coarse-grained relation (X̄i, yi) has a fol-
lowing decomposition and the lower-bound approximation,

log
∑

x̄ik∈X̄i

P̂ (yi|x̄ik; f, g)P̂ (x̄ik|X̄i; f, g)

≥ log max
x̄ik∈X̄i

{
P̂ (yi|x̄ik; f, g)P̂ (x̄ik|X̄i; f, g)

}
(4)

= max
x̄ik∈X̄i

{
log P̂ (yi|x̄ik; f, g) + log P̂ (x̄ik|X̄i; f, g)

}
The first line in the above deduction can be considered as
a weighted counterpart of Eq (1) in the setting of group
noise. The last line, i.e., Eq. (3), is its lower bound, which
alleviates the optimization obstacle caused by integral. Op-
timizing such a lower bound yields the optimization of the
first line, and progressively makes the learning procedure
approach the optimal mapping functions f∗ and g∗.

1Non-equal combination with proper tradeoff may lead to better
performance, which is left for future exploration in our work.
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Figure 2: Max-Matching. The pair matching evaluates the
confidence of individual connections between source objects
and the target. The group weighting captures the object cor-
relations in the group by measuring their importance. They
are combined to form the final matching scores, followed by
a max-pooling selection to choose the trustworthy object re-
garding the target. Group weighting and pair matching are
interdependent and benefit from each other during training.

Due to the adverse impact of group noise, P̂ (yi|x̄ik; f, g)
may still memorize some pairwise relation noise. In this
case, the second term P̂ (x̄ik|X̄i; f, g) can leverage the non-
IID characteristics of the objects in the group to sufficiently
capture their correlation, and distinguish the irregular noise
by measuring their importance regarding the group. Besides,
the max-pooling operation in Eq. (3) guarantees that only
the most confident object is used, reducing the risk of group
noise as much as possible.

Implementation
In this section, we give our implementation of Eq. (3) in
detail. First, the term P̂ (yj |x̄ik; f, g) is named as the pair
matching, as it is the probability of matching between the
source object x̄ik and the target object yi. It is estimated by
the Softmax on the inner product of their embedding vectors,
constructed as follows:

P̂ (yi|x̄ik; f, g) =
exp{f(x̄ik)>g(yi)}∑
y∈Y exp{f(x̄ik)>g(y)}

. (5)

The second term P̂ (x̄ik|X̄i; f, g) aims to capture the object
correlation by measuring the importance of x̄ik regarding
the group. It is termed as a group weighting mechanism,
as it assigns different weights for pair matching regarding
the group. Accordingly, the Non-IID property in the group
is considered, since the group weighting is essentially de-
signed as a cluster-aware weighting method. Note that, the
weights can either be calculated based on the embedding
features f(x̄) or the probabilistic features P̂ (y|x̄; f, g). To
unify these two operations together, we denote the mapping
function h(·) for the input features of the group weight-
ing with the similarity measurement S(·, ·). Then, the group

Table 1: The Specification of Max-Matching on three types
of learning settings with group noise.

Object Function Weighting
X Y f(·) g(·) h(·) S(·, ·)

MIL ins lab ide emb Eq. (5) neg-KL
PLL lab ins emb lin f(·) dot
RS item item emb emb f(·) dot

weighting P̂ (x̄ik|X̄i; f, g) is calculated by following steps:
• a) Measuring the similarity of the object x̄ik with all other

objects in the group (denoted by x̄′i1, . . . , x̄
′
i,K−1):

sx̄ik
=
[
S(h(x̄ik), h(x̄′i1)), . . . ,S(h(x̄ik), h(x̄′i,K−1))

]>
,

and normalizing by Softmax s̃x̄ik
= Softmax(sx̄ik

);
• b) Calculating the final weight of the object x̄ik in the

group with Sigmoid:

P̂ (x̄ik|X̄i; f) = Sigmoid (S(cx̄ik
, h(x̄ik))) , (6)

where cx̄ik
is the context vector w.r.t. the object x̄ik, cal-

culated by cx̄ik
=
∑K−1

l=1 s̃x̄ik,lh(x̄′il).
The context vector cx̄ik

is constructed by the weighted sum
of all the other objects in the group, in which the weights
s̃x̄ik

assign the higher values for those objects similar to x̄ik.
Intuitively, the context vector resembles the original x̄ik if
there exists plenty of objects in the group that are similar to
the object x̄ik. A large value of group weighting (or a large
S(cx̄ik

, h(x̄ik))) indicates that the object x̄ik deserves more
attention regarding its owning group X̄i.

By mixing the pair matching and the group weighting, we
have the final matching score that evaluates the object confi-
dence regarding the target as well as the group. A large value
of the matching score generally indicates the corresponding
object is trustworthy in its fine-grained relation to the target.
The selection procedure is then deployed upon the matching
mechanism via a simple max-pooling operation. It selects
the object that is the most confident in terms of the pairwise
relationship, and the irrelevant objects can be dropped. The
model structure is summarized in Figure 2.

Experiments
Experimental Settings
To demonstrate the effectiveness of Max-Matching, we con-
duct extensive experiments in three representative learning
settings with group noise, including MIL, PLL, and RS. Ta-
ble 1 summarizes their specifications regarding sample sets
(i.e.,X ,Y), mapping functions (i.e., f, g), and group weight-
ing (i.e., S, h). Therein, “ins”, “lab”, and “item” respectively
denotes the instance with features, the label, and the item
ID. Moreover, “emb” represents the embedding function that
maps discrete category labels or item IDs to the embedding
space; “lin” is a linear function for the instances with nor-
malized features; and “ide” is the identity function.

Our specification in MIL degenerates Eq. (5) into a lin-
ear function with Softmax, and its outputs are the inputs of
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Figure 3: The test accuracy curves on SIVAL for learning with group noise. Colored curves show the mean accuracy of 5 trials
and shaded bars denote standard deviation.

group weighting with negative KL-divergence (neg-KL) as
the similarity metric. By contrast, in PLL, instances and la-
bels are both mapped, where Max-Matching can explore the
non-IID characteristics of labels in the embedding space,
and dot product (dot) is adopted as a proper metric. Sim-
ilar deliberation holds for RS to measure the confidence
of matching in the embedding space. Moreover, we imple-
ment Max-Matching using PyTorch, the Adam (Kingma and
Ba 2015) is adopted with the learning rate selected from
{10−1, · · · , 10−4}, and the methods are run for 50 epochs.

Application to Multiple-Instance Learning
In this section, we focus on the MIL setting, where we aim
to learn an instance classifier given instances with only bag
labels. Here, instances in the bag that may deviate from their
bag labels introduce group noise.

The experiments are conducted on an object localization
dataset SIVAL (Rahmani et al. 2005) in the literature of MIL,
as it provides instance-level annotations for evaluation. We
compare Max-Matching with two state-of-the-arts that focus
on the instance classification, IMIL (Peng and Zhang 2019)
and GICF (Kotzias et al. 2015); two strong baselines that
estimate instance labels in an intermediate step for bag clas-
sification, MILR (Ray and Craven 2005) and miNET (Wang
et al. 2018). Since the baselines only focus on binary classi-
fication, we use the data of each adjacent classes to construct
the binary classification datasets. Each dataset is then parti-
tioned into 8:1:1 for training, validation, and test.

The experimental curves in terms of the test accuracy are
illustrated in Figure 3 with 5 individual trials. From them, we
find Max-Matching achieves superior performance over the
baselines in most cases. For two bag-level prediction meth-

Table 2: Average test accuracy and standard deviation in
learning with group noise on SIVAL.

Accuracy Selection non-IID
Pairwise 0.302±0.005 × ×
Matching 0.324±0.002 × X

Maximizing 0.315±0.006 X ×
Max-Matching 0.368±0.005 X X

ods, the test accuracy is not very competitive since they im-
plicitly consider the instance labels in the bag. As suggested
by (Carbonneau et al. 2018), the instance-level performance
cannot be guaranteed for MIL methods that only focus on
the coarse-grained bag labels. For two instance-level meth-
ods, although they generally show better performance than
MILR and miNET, they are still inferior to Max-Matching,
since they fail to sufficiently leverage the correlation among
objects in the group. The results demonstrate the effective-
ness of our method in learning with group noise.

Furthermore, we conduct multi-class classification exper-
iments on SIVAL, since our method is not restricted to the bi-
nary classification. To show the advantages of the matching
mechanism and the selection procedure in Max-Matching,
we leverage following three baselines for the ablation study:

• Pairwise: Taking the group label yi as the label for each
instance x̄ik in the group X̄i, the objective can be written
as
∑n

i=1

∑K
k=1− log P̂ (yi|x̄ik; f, g).

• Matching: Taking the matching scores of individuals
in the group as the objective directly, which means∑n

i=1

∑K
k=1− log P̂ (yi|x̄ik; f, g)− log P̂ (x̄ik|X̄i; f).
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Figure 4: Test accuracy curves on PLL datasets for learning with group noise. Colored curves show the mean accuracy of 5
trials and error bars denote standard deviation. Therein, ε denotes the proportion of instances that are partially labeled, and τ is
the maximum numbers of partial labels.

Table 3: The average test accuracy and its standard deviation
on the PLL datasets in learning with group noise.

FG-
NET

MSRC
v2

Bird
Song

Yahoo!
News

Lost

PLKNN
0.059±
0.005

0.446±
0.007

0.613±
0.004

0.426±
0.004

0.428±
0.003

PLSVM
0.064±
0.013

0.475±
0.008

0.625±
0.019

0.629±
0.012

0.801±
0.025

CLPL
0.065±
0.029

0.480±
0.015

0.628±
0.012

0.537±
0.017

0.793±
0.022

PALOC
0.054±
0.005

0.463±
0.011

0.598±
0.020

0.434±
0.0013

0.546±
0.007

Max-
Matching

0.110±
0.021

0.517±
0.007

0.642±
0.010

0.647±
0.005

0.823±
0.025

• Maximizing: Selecting the most confident instance x̄ik
only in terms of the pairwise relation to the target, namely,∑n

i=1−maxx̄ik∈X̄i
log P̂ (yi|x̄ik; f, g).

The test accuracy with 5 individual trials for Max-Matching
and three baselines are summarized in Table 2. Accordingly,
“Pairwise” achieves the worst test accuracy, sine the model
directly fits the group noise and the Non-IID property of the
group is simply ignored. Plugging the selection mechanism
(“Maximizing”) can generally perform better, and the sim-
ilar result occurs in “Matching” that explores the non-IID
property in the group. In comparison, Max-Matching, which
both considers the object correlation and the pairwise rela-
tion, can significantly outperform all these baselines. Actu-
ally, we also find that tuning the trade-off between Maximiz-
ing and Matching can achieve further improvement. There-
fore, it is possible to acquire a better performance to select a
proper weight for two terms in Max-Matching.

Application to Partial Label Learning
In this section, we validate Max-Matching in the setting of
PLL, in which each instance is assigned with a set of candi-
date labels and only one of them is correct.

The experiments are conducted on five PLL datasets from
various domains: FG-NET (Panis and Lanitis 2014) aims at
facial age estimation; MSRCv2 (Liu and Dietterich 2012)
and Bird Song (Briggs, Fern, and Raich 2012) focus on ob-

ject classification; Yahoo! News (Guillaumin, Verbeek, and
Schmid 2010) and Lost (Cour, Sapp, and Taskar 2011) deal
with face naming tasks. Each dataset is partitioned randomly
into 8:1:1 for training, validation, and test. We compare
Max-Matching with four popular PLL methods, including
a non-parametric learning approach PLKNN (Hüllermeier
and Beringer 2006); a maximum margin based method
PLSVM (Nguyen and Caruana 2008); a statistical consistent
method CLPL (Cour, Sapp, and Taskar 2011); and a decom-
position based approach PALOC (Wu and Zhang 2018).

The test accuracy of 5 individual trials for our method and
baselines are reported in Table 3. According to the results,
PALOC shows extremely poor performance on datasets
like Bird Song and Lost. This is because it has no ex-
plicit denoising mechanism to avoid the influence of group
noise. PLKNN also achieves relatively inferior results due
to its strong assumption on the data distribution. Although
PLSVM and CLPL can generally perform better, they still
fail to explore the non-IID characteristics of candidate la-
bels. In comparison, Max-Matching have the best perfor-
mance among all these methods, as it further considers
the correlations among the candidate labels. Notably, on
FG-NET, a challenging PLL dataset with a great many of
strongly correlated candidate labels (7.48 partial labels per
instance on average), Max-Matching is 4.37% better than
the second best method CLPL on average.

To study the robustness of these methods in learning with
different levels of group noise, we further conduct experi-
ments on Lost and Bird Song with controlled proportion ε
of partial labeled instances and controlled maximum num-
bers τ of partial labels. The test accuracy for varying ε
and τ is summarized in Figure 4. Similar to the above re-
sults, PLKNN is unstable across these two datasets due to
its assumption on data distribution. PALOC is also vulnera-
ble to the group noise, and its accuracy drops quickly with
the growth of ε and τ . Although the performances are rel-
atively stable for CLPL and PLSVM, their test accuracy is
consistently inferior to Max-Matching. These results further
demonstrate the effectiveness of Max-Matching in PLL.

Application to Recommender System
Finally, we conduct experiments of recommendation, which
aims at recommending points of interest to the users, e.g.,



item recommendation in e-commerce. The classical item-
based collaborative filtering (Sarwar et al. 2001) critically
depends on the trustworthy pairwise relationship, which is
not practical on e-commercial websites. Generally, due to
the varying interests of the user, his/her historically visited
items are not always relevant to the subsequent items. Then,
taking the user click sequence as a group and the next item
as the target, we have the coarse relation as Figure 1(d). As
a result, we face the problem of learning with group noise
when applying the item-based collaborative filtering.

The offline experiments are implemented on a range of
datasets from Amazon: Video, Beauty, and Game. In each
dataset, the visited items of each user are segmented into
subsets with at most 6 items, where the last item of each
subset is taken as the target, and the others are taken as the
group with noise. For each user, we randomly take two sub-
sets for validation and test, and the remaining data are used
for training. In the experiments, we consider several classi-
cal and advanced baselines, including a simple method that
ranks items according to their popularity and recommends
new items regarding the co-occurrence, PopRec; a popu-
lar collaborative filtering method, ItemCF (Linden, Smith,
and York 2003); and two deep model based approaches that
exploit the sequential behavior in the group, Caser (Tang
and Wang 2018) and AttRec (Zhang et al. 2019). For Max-
Matching, we recommend new items by ranking the proba-
bilities P̂ (y|x; f, g), where x can be the second last visited
item (MM), or any item in the considered group (MM+)2.
Following (Zhang et al. 2019), we report the performance
on two widely used metrics, HIT@10 and NDCG@10.
HIT@10 counts the fraction of times that the true next item
is in the top-10 items, while NDCG@10 further assigns
weights to the rank.

The average results of 5 individual trials in terms of the
HIT@10 and NDCG@10 are summarized in Table 4. First,
we compare MM with PopRec and ItemCF, which all recom-
mend new items according to the last visited ones of users.
PopRec always shows extremely poor performance, as it is
based on the popularity and cannot learn the correlations be-
tween items. While ItemCF performs much better, it relies
on the reliable pairwise relations without considering the
group noise. By contrast, MM is robust to the fine-grained
uncertain relations, which achieves the significant improve-
ments. Second, we compare MM+ with Caser and AttRec,
which are two recommendation approaches that can implic-
itly model the group relation. However, they mainly focus on
the temporal behavior of users, making them fail to explic-
itly distinguish true relations from the irrelevant noise. By
contrast, MM+ considers both the group relation and the de-
noising mechanism, and the experimental results on average
demonstrate its effectiveness and rationality.

We also conduct online experiments by deploying Max-
Matching to the recommender system on one e-commerce
platform. Like many large-scale recommenders, it consists
of two stages, the recall stage and the ranking stage. The re-
call stage generates the most relevant candidate items that

2Note that, MM+ is to compare the sequence-based recommen-
dation methods Caser and AttRec which use all items in the group.

Table 4: Average HIT@10 (HIT for short) and NDCG@10
(NDCG for short) with standard deviation on Amazon.

Video Beauty Game

metric HIT NDCG HIT NDCG HIT NDCG

PopRec
0.515±
0.000

0.397±
0.000

0.401±
0.000

0.258±
0.000

0.402±
0.000

0.252±
0.000

ItemCF
0.622±
0.004

0.420±
0.005

0.429±
0.002

0.285±
0.002

0.405±
0.005

0.298±
0.003

MM
0.692±
0.002

0.471±
0.004

0.543±
0.005

0.381±
0.002

0.495±
0.004

0.332±
0.002

Caser
0.643±
0.005

0.425±
0.001

0.523±
0.008

0.345±
0.002

0.493±
0.004

0.311±
0.001

AttRec
0.624±
0.002

0.429±
0.002

0.445±
0.005

0.335±
0.004

0.427±
0.002

0.292±
0.001

MM+
0.694±
0.004

0.473±
0.001

0.561±
0.002

0.389±
0.001

0.518±
0.003

0.345±
0.002

Figure 5: The top-5 recall examples from NeuralCF and
Max-Matching given the user clicked dress items. The 5 can-
didates in the first row are recalled by NeuralCF and the 5
candidates in the second row are recalled by Max-Matching.

are related to the visited items of users in the middle-scale.
The ranking stage scores the candidates in a fine-grained
granularity for the top-k recommendation. We deploy Max-
Matching to the recall stage and compare our method with
the online item-based NeuralCF (He et al. 2017). Here, Neu-
ralCF is supervised by the pairwise relations manually ex-
tracted from the user-click sequence. After one-week ex-
periments, we achieved about 10% improvement on click-
through rate (CTR). Figure 5 illustrates one example of the
top-5 recommendation from NeuralCF and Max-Matching.
According to the results, we can find the dress recommenda-
tion from NeuralCF is mixed with the shorts, which in fact,
origins from the training with non-ideal pairwise relations.

Conclusion
In this paper, we focus on the learning paradigm with group
noise, where a group of correlated objects are collectively
related to the target with fine-grained uncertainty. To handle
the group noise, we propose a novel Max-Matching mech-
anism in selecting the most confident objects in the group
for training, which considers both the correlation among the
group as well as the pairwise matching to the target. The ex-
perimental results in three different learning settings demon-
strate its effectiveness. In the future, we will generalize Max-
Matching to handle the independent pairwise relations, e.g.,
learning with label noise, and explore a better trade-off be-
tween two terms in our objective.
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Hüllermeier, E.; and Beringer, J. 2006. Learning from am-
biguously labeled examples. IDA .

Kingma, D. P.; and Ba, J. 2015. Adam: A method for
stochastic optimization. ICLR .

Kotzias, D.; Denil, M.; De Freitas, N.; and Smyth, P. 2015.
From group to individual labels using deep features. In
KDD.

Li, W.; Wang, L.; Li, W.; Agustsson, E.; and Van Gool, L.
2017. Webvision database: Visual learning and understand-
ing from web data. arXiv preprint arXiv:1708.02862 .

Linden, G.; Smith, B.; and York, J. 2003. Amazon.com Rec-
ommendations: Item-to-Item Collaborative Filtering. IEEE
Internet Comput. .

Liu, G.; Wu, J.; and Zhou, Z. 2012. Key Instance Detection
in Multi-Instance Learning. In ACML.

Liu, L.; and Dietterich, T. G. 2012. A conditional multino-
mial mixture model for superset label learning. In NIPS.

Liu, T.; and Tao, D. 2016. Classification with Noisy La-
bels by Importance Reweighting. IEEE Trans. Pattern Anal.
Mach. Intell. .

Manwani, N.; and Sastry, P. S. 2013. Noise Tolerance Under
Risk Minimization. IEEE Trans. Cybern. .
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