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Abstract— Contrastive learning (CL) is a prominent tech-
nique for self-supervised representation learning, which aims
to contrast semantically similar (i.e., positive) and dissimilar
(i.e., negative) pairs of examples under different augmented
views. Recently, CL has provided unprecedented potential for
learning expressive graph representations without external super-
vision. In graph CL, the negative nodes are typically uniformly
sampled from augmented views to formulate the contrastive
objective. However, this uniform negative sampling strategy
limits the expressive power of contrastive models. To be specific,
not all the negative nodes can provide sufficiently meaningful
knowledge for effective contrastive representation learning. In
addition, the negative nodes that are semantically similar to the
anchor are undesirably repelled from it, leading to degraded
model performance. To address these limitations, in this article,
we devise an adaptive sampling strategy termed “AdaS.” The
proposed AdaS framework can be trained to adaptively encode
the importance of different negative nodes, so as to encourage
learning from the most informative graph nodes. Meanwhile,
an auxiliary polarization regularizer is proposed to suppress
the adverse impacts of the false negatives and enhance the
discrimination ability of AdaS. The experimental results on a
variety of real-world datasets firmly verify the effectiveness of
our AdaS in improving the performance of graph CL.
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NOMENCLATURE

G = ⟨V, E⟩ Graph G with the node set V and edge set E .

A Adjacency matrix of G.

xi Feature vector of the i th graph node.

X Feature matrix of G with the i th row
corresponding to xi .

(x′

i , x′′

i ) Two augmented versions of xi .
f GNN encoder.
h(xi ) Class label of xi .

I. INTRODUCTION

GRAPH representation learning is a fundamental task
in various applications, such as molecular properties’

prediction in drug discovery [1] and community analysis in
social networks [2]. Recently, graph neural networks (GNNs)
have received a surge of research attention and showed their
effectiveness in learning graph representations [3], [4]. How-
ever, most existing GNN models are trained in a supervised
fashion, and thus hinge on the availability of a large quantity
of label information that is usually expensive to collect [5]. To
address this challenge, self-supervised approaches [6], [7], [8]
are coupled with GNN models to enable graph representation
learning with unlabeled data. Among many others, contrastive
learning (CL) has emerged as a powerful tool and shown
its capabilities to learn generalizable, transferable, and robust
graph representations [9].

CL owes its success to the “alignment” of features from
positive pairs and the “uniformity” of representations on the
hypersphere [10]. Here, the “alignment” favors encoders that
assign similar features to positive pairs, while the “uniformity”
depends on the separation of negative pairs. Empirically, the
positive pairs are often acquired by taking two independently
randomly augmented versions of the same example, and steady
progress has been made in developing data augmentation
techniques [6], [11], [12], [13], [14], such as random cropping
and rotation of images [6]. However, these techniques are
unavailable for graph-structured data, which possess inher-
ent non-Euclidean properties. Fortunately, researchers have
explored diverse types of effective and efficient augmentation
techniques for graph-structured data [5], [9], [15], [15], [16],
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Fig. 1. Example illustrating the potential risk of edge perturbation to graph
CL. Two augmented graphs can be generated using different edge perturbation
operations, which have been shown in graph views 1 and 2, respectively.
For graph CL, the nodes (xk , xi ) in graph view 1 form a negative pair
naturally. However, it is noticeable that the neighborhood of xk and xi is
highly overlapped. Since the graph convolution operation aims to aggregate
information from the neighborhood, the representations of xk and xi tend to
be homogeneous with successive graph convolution, and (xk , xi ) could be a
false negative pair. Finally, repelling (xk , xi ) in the embedding space may not
provide meaningful information for contrastive representation learning.

such as edge perturbation and feature masking, to generate
faithful positive pairs.

To achieve the desirable “uniformity” characteristics in
contrastive representation learning, negative pairs should be
pushed apart in an embedding space [10]. However, most
existing graph CL methods assume that all the negative nodes
are equally important and they usually uniformly sample
negative nodes [5], [11], [17]. This could result in limited
representation power, since not all the negatives can provide
informative signals for CL. Specifically, the negatives that are
hard to discriminate from the anchor are the most beneficial
to the learning objectives, while the easy-to-discriminate neg-
atives provide less benefit [18], [19]. In addition, the uniform
sampling strategy might involve false negatives, which are
semantically similar to the anchor and should be considered
as positives instead [20]. This sampling error caused by false
negatives will damage the structure of the embedding space,
leading to degenerated model performance. Moreover, the
commonly used graph augmentation techniques might impair
graph structures or node features, inevitably resulting in more
false negatives. This can exacerbate the problem of sampling
error and further degrade the representation ability of the
contrastive models. Fig. 1 provides a detailed explanation
of the frequently used augmentation technique, i.e., edge
perturbation, with a toy example.

To boost the performance of graph CL, we focus on the
design of the sampling strategy for negative nodes, to facilitate
contrastive representation learning with the most informative
nodes. According to hard negative mining [21], the negatives
close to the anchor (also termed “hard negatives”) are most
useful and provide significant gradient information during
training. However, in practice, the hard negatives sampled in
this way [21] may not be truly informative for graph CL,
as some of them can be false negatives. Apart from this,
manually choosing the hard negatives may yield an objective
that no longer bounds mutual information (MI), and thereby
removing a theoretical connection that is critical to graph CL

and the downstream tasks. Considering the aforementioned
limitations, in this work, we design an adaptive sampling
strategy and develop a new framework dubbed “AdaS,” which
is applicable to most existing graph CL methods. To encourage
learning from the most informative nodes, our AdaS adaptively
reweights all the negatives for an anchor. Specifically, in AdaS,
a tunable sampling distribution is designed to emphasize the
importance of the negatives that are not too hard or too easy
to discriminate in the embedding space. Besides, an auxiliary
polarization regularizer is used to enhance the influence of the
informative nodes. As a consequence, the devised sampling
strategy can not only exploit the hard levels of embeddings
but also suppress the sampling error caused by false negatives.
To summarize, the main contributions of this article are as
follows.

1) We design a general framework for unsupervised
contrastive graph representation learning, where the
importance of different graph nodes can be adaptively
encoded during model training.

2) We implicitly devise a novel sampling strategy, which
can be further enhanced by an auxiliary polarization reg-
ularizer. By this means, the proposed AdaS encourages
learning from the most informative negatives and sup-
presses the sampling error in graph CL, simultaneously.

3) Systematic studies have been performed on node classi-
fication tasks using various public benchmark datasets,
revealing the effectiveness of our proposed AdaS
framework.

II. RELATED WORK

In this section, we will review some representative works
on GNNs and contrastive representation learning, since they
are closely related to this article.

A. Graph Neural Networks

As one of the hottest topics, GNN extends the deep neural
networks by defining convolutions and readout operations
on irregular graph-structured data [3], [17], [22], [23]. The
concept of GNN was first proposed in [24]. Afterward, various
spectral-based GNNs were proposed to define filters from the
perspective of graph signal processing [25], [26]. Particularly,
GCN [27], which performed a localized first-order approxima-
tion of spectral graph convolution, has demonstrated its power
in node representation learning [28], [29], [30]. In follow-
up works, Chen et al. [31] designed an efficient GCN model
named FastGCN for inductive node classification, which can
be further enhanced via importance sampling. Wu et al. [32]
proposed the simple graph convolution to significantly reduce
the complexity of GCN, where the nonlinearities are replaced
with a single linear transformation.

In addition to the spectral GNNs, research efforts have
also been made in the spatial methods, which directly define
convolution for each node as a weighted average function over
its neighboring nodes [33]. For instance, GraphSAGE [34]
defined the weighting function as various aggregators over
neighboring nodes. In graph attention networks (GATs) [35],
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Fig. 2. Conceptual framework of our proposed algorithm. (a) Input graph. (b) Graph views generated by augmentation techniques. (c) GNN encoders, which
can be shared across different graph views. In (d), the representations are produced by the encoders. For each anchor xi , the importance of its negatives is
adaptively encoded to improve the performance of graph CL. Here, the linewidth of the orange arrows denotes the corresponding importance, and the green
arrow connects the positive node pair.

the weighting function was defined by the learnable self-
attention mechanism. To handle large-scale graphs and use
deep architectures simultaneously, Cluster-GCN [36] was
devised based on a graph clustering algorithm, which per-
formed graph convolution within the sampled subgraph
efficiently.

B. Contrastive Representation Learning

As a significant brunch of self-supervised learning [37],
[38], contrastive methods aim at learning discriminative rep-
resentations by contrasting the positive pairs against negative
pairs. In [39], Deep InfoMax was proposed to learn the
embeddings of images by maximizing the MI between a
local patch and its global context. Then the framework of
contrastive predictive coding was presented in [40], where a
probabilistic contrastive objective was used to capture infor-
mation for future sample prediction. Besides, MoCo [11]
used a momentum-updated encoder to update the network
parameters and generate contrastive embeddings. In addition,
other contrastive methods, such as SimCLR [6], BYOL [41],
and SimSiam [42], have also attracted increasing research
attention. It is noteworthy that conventional contrastive objec-
tive used in most existing CL methods is biased, since the
semantically similar data pairs (i.e., false negatives) could be
pushed apart during the repelling of all the negative pairs
[43]. To address this issue, Li et al. [44] applied the clus-
tering method to the generated embeddings to gather similar
instances, but the reliability of the clustering results depended
largely on the learned embeddings. In [20], positive-unlabeled
(PU) learning [45] was adopted to correct for the sampling of
same-label data points.

By adapting the idea of CL to graph domains, graph CL
has emerged with promising representation learning perfor-
mance [46], [47]. For example, DGI [9] married the power
of GNN and CL by maximizing the MI between the global
graph-level and local node-level embeddings. Inspired by DGI,
a multiview graph CL framework was proposed in [48],
where the graph diffusion [49] was adopted to augment the
original graph view. Different from DGI, Zhu et al. [15]
focused on maximizing the agreement of node embeddings,
rather than graph embeddings, across two randomly corrupted

graph views. To further enhance the expressive power of the
representations, the graph CL methods focus on developing
more flexible data augmentation techniques, such as [16], [50],
and [51]. Most existing graph CL methods focus on developing
graph augmentation techniques to produce reliable positive
node pairs, while neglecting the impacts of negative pairs.
Consequently, we propose a negative sampling strategy termed
“AdaS,” which can boost the performance of graph CL by
adaptively learning from the most informative negatives.

It is worth noting that a previous work HBNM [18] also
develops a sampling strategy to select informative negative
examples. However, there are two primary differences between
our work and HBNM. First, the sampling strategy in HBNM
simply upweights the negatives that are close to the anchor,
while our proposed AdaS adaptively encodes the importance
of all the negatives. As a result, our AdaS encourages learning
from the most informative negatives. Second, HBNM takes
the viewpoint of PU learning [45] to address the issue of false
negatives. Specifically, HBNM decomposes the true negative
distribution and assumes a close-to-uniform class distribution,
which may not always hold in practice. Consequently, the false
negatives may possess relatively large importance weights in
CL. Unlike HBNM, the proposed AdaS devises an auxiliary
polarization regularizer to explicitly suppress the importance
weights of false negatives, which is independent of the class-
balance assumption.

III. METHODOLOGY

This section details our proposed AdaS framework, of which
the schematic is exhibited in Fig. 2. In the following, the
critical steps will be detailed by introducing the graph CL
setup (Section III-B), explaining the adaptive sampling tech-
nique (Section III-C), elaborating the polarization regularizer
(Section III-D), and describing the ultimate contrastive objec-
tive (Section III-E).

A. Preliminaries

Let G = ⟨V, E⟩ denote a graph, where V is the node
set containing all the nodes/examples and E is the edge set
modeling the similarity among the nodes. We denote X ∈ Rn×d

as the feature matrix with the i th row formed by the feature
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vector of the i th node (i.e., xi ). The adjacency matrix of G
is denoted as A ∈ Rn×n , where Ai j = 1 if there exists
an edge between xi and x j and Ai j = 0 otherwise. In our
method, class information of the nodes in G is unavailable. The
objective is to learn a GNN encoder f (X, A) which receives
the feature and adjacency matrices of the graph as input and
produces embeddings for each graph node. The learned node
representations can be further used in downstream tasks, such
as node classification and community detection [16]. Some
important notations used in this article are summarized in
Nomenclature.

B. Graph CL Setup

To ensure the compatibility of our proposed AdaS frame-
work, we follow the paradigm that is widely adopted by the
existing contrastive GNN models. Concretely, two different
graph views G ′ and G ′′ are first generated via graph augmen-
tation techniques, wherein (x′

i , x′′

i ) can be obtained from xi

correspondingly. Then representations can be obtained from
the two graph views after successive graph convolution. Here,
a pairwise contrastive objective Lpw(x′

i , x′′

i ) [5], [15], [16] can
be used to enforce maximizing the consistency between the
representations of a node in the two views, namely,

− log
e f (x′

i )
⊤ f (x′′

i )/σ

e f (x′

i )
⊤ f (x′′

i )/σ +
∑

j ̸=i e f (x′

i )
⊤ f (x′

j )/σ +
∑

j ̸=i e f (x′

i )
⊤ f (x′′

j )/σ

(1)

where f (x′

i ) denotes the embeddings of x′

i , and σ > 0 is
the temperature parameter. In (1), the negative examples are
composed of all the nodes in the two graph views except
for x′

i and x′′

i . Note that the objective of graph CL can be
characterized more analytically based on (1), so that our
proposed AdaS algorithm can be derived naturally.

Following the setup of [18], [20], [52], we can reasonably
assume that C is an underlying set of discrete latent classes
representing semantic content and the pair of nodes (x′

i , x′′

i )

belong to the same latent class. Denoting the distribution over
the latent class by ρ(c) for c ∈ C, the joint distribution can
be defined as px′

i ,c(x
′

i , c) = p(x′

i |c)ρ(c). Let h(x′

i ) represent
the class label of x′

i , and then the probability of observing x′

j
as a positive example for x′

i can be expressed as p+

x′

i
(x′

j ) =

p(x′

j |h(x′

j ) = h(x′

i )) and the probability of a negative example
can be expressed as p−

x′

i
(x′

j ) = p(x′

j |h(x′

j ) ̸= h(x′

i )). For
simplicity, let x′

i ∼ p denote a node sampled from p. Then the
ideal pairwise contrastive loss L̃pw(x′

i , x′

i
+
) can be obtained as

E x′
i ∼p,x′

i
+

∼p+

x′
i

x′
j
−

∼q

[
− log

e f (x′

i )
⊤ f (x′

i
+
)/σ

e f (x′

i )
⊤ f (x′

i
+
)/σ +

Q
N

∑N
j=1 e f (x′

i )
⊤ f (x′

j
−
)/σ

]
(2)

where the positive example x′

i
+ has the same label as x′

i ,
the N negative examples {x′

j
−
}

N
i=1 sampled from the neg-

ative sampling distribution q have different labels with the
anchor x′

i , p is the marginal distribution p(x′

i ) of px′

i ,c(x
′

i , c),
the number of negative examples N = 2n − 2, and Q is
the weighting parameter introduced for the analysis. When

the number of negative examples N is finite, we set Q = N ,
in agreement with the standard contrastive objective. In prac-
tice, the negative sampling distribution q is not accessible,
and a direct solution is to sample the negative examples x′

j
−

uniformly from the marginal distribution p instead. However,
as illustrated in the introduction, not all the node represen-
tations can provide meaningful information for contrastive
model learning. As a consequence, the improvement of model
performance will be limited if all the negative examples are
equally pushed away from the anchor during training.

C. Adaptive Sampling for Graph CL

To mitigate the problems raised by the negative sampling
strategy in the conventional CL, we propose a new sampling
distribution to make the learning of contrastive objective
benefit from the most informative graph nodes. Since class
information is unavailable, the devised distribution mainly
depends on node representations. Motivated by [18] and [20],
in our proposed AdaS, the negatives can be sampled from the
distribution q−

α , which is defined as

q−

α

(
x′

j
−
)

: = qα

(
x′

j
−
∣∣h(

x′

i

)
̸= h

(
x′

j
−
))

, where

qα

(
x′

j
−
)

∝ e−(D(x′

i ,x
′

j
−
)−α)2

· p
(
x′

j
−
)
. (3)

Here, x′

i is the anchor, D(x′

i , x′

j
−
) = f (x′

i ) · f (x′

j
−
)/σ ,

and α is a hyperparameter. Intuitively, the sampling strategy
obtained from (3) can upweight the negatives that are not too
close or too far to the anchor by choosing a reasonable value
for α. As a result, our proposed method is able to emphasize
the importance of the true hard negatives without becoming
vulnerable to the false negatives.

To better understand the merits of the distribution q−
α , Fig. 3

visualizes the differences among three negative sampling
strategies, namely, the uniform sampling [6], [15], the hard
sampling [18], and the devised AdaS sampling strategies. As
revealed by Fig. 3(a), the uniform sampling strategy treats
all the negatives equally, and thereby failing to capture the
important information for contrastive model learning. In the
hard sampling strategy [see Fig. 3(b)], the negatives closest
to the anchor are regarded as the most informative examples,
which could magnify the importance of the false negatives
unexpectedly. Different from these two strategies, our pro-
posed sampling strategy [see Fig. 3(c)] encourages learning
from the negatives with moderate distance to the anchor,
wherein the hyperparameter α helps determine which are the
most informative ones. Note that when α ≥ 1, our proposed
AdaS sampling can be considered as an approximation of hard
sampling [18]. Empirically, we find that a relatively large α

can often yield strong contrastive representations, which will
be discussed in the experiments.

D. Polarization of Sampling Weights

As introduced in Section III-C, the contrastive model could
be encouraged to learn from the informative negatives with
the negative sampling distribution q−

α , while there still exist
some potential flaws in this strategy. Specifically, as the false
negatives are often semantically similar to the anchor, their
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Fig. 3. Visual illustration of different sampling strategies, where W denotes the importance weights of negative examples, and D indicates the pairwise
cosine similarity between the anchor and a negative example. (a) Uniform sampling, (b) hard sampling, and (c) AdaS sampling.

corresponding importance weights should be set to small
values in CL. However, the weights assigned to the false
negatives could occasionally be even larger than those of the
true negatives, which is revealed in Fig. 4(a). Assume that
the pairwise cosine similarity covers the range of [0, 1]. In
Fig. 4(a), we find that when choosing a relatively large value
for α (larger than 0), the false negatives tend to be more
dominant than some true negatives [i.e., the suppressed true
negatives in Fig. 4(a)] in graph CL. Consequently, directly
adopting the sampling distribution q−

α might bring obstacles to
estimating the importance of different negative examples, and
thus could be harmful to contrastive representation learning.

Beyond the adaptive sampling strategy mentioned above,
we would like to upweight the true negatives, especially the
suppressed ones in Fig. 4(a), and decrease the importance
of the false negatives in contrastive objective, simultaneously.
Following this criterion, we propose an auxiliary polarization
regularizer to impose a constraint on the pairwise similarity,
which can help adequately distinguish different negative exam-
ples. Concretely, the polarization regularizer of the anchor
node x′

i can be given as

Lpr(x′

i ) = log

∑N
j=1 eReLU(α− f (x′

i )
⊤ f (x′

j
−
)/σ )∑N

j=1 eReLU( f (x′

i )
⊤ f (x′

j
−
)/σ−α)

(4)

where the hyperparameter α is also used in (3) to control
the importance of different negative examples. Minimizing the
polarization regularizer in (4) can make the pairwise similarity
f (x′

i )
⊤ f (x′

j
−
)/σ close to α if f (x′

i )
⊤ f (x′

j
−
)/σ < α and make

f (x′

i )
⊤ f (x′

j
−
)/σ as large as possible if f (x′

i )
⊤ f (x′

j
−
)/σ > α,

simultaneously. Coupling the sampling distribution (3) with
this polarization regularizer, the impact of the negatives that
are too close to the anchor, which could be false negatives,
will be weakened; meanwhile, the true negatives can be more
dominant in graph CL. Here, choosing a reasonable value for
α is critical for accurate example reweighting. For example,
the informative negatives will not guide the contrastive model
learning as expected when α gets too small, which will be
analyzed in experiments. Fig. 4(b) visualizes the function
of (4) for better understanding. Ideally, the importance weights
of the true negatives can be larger than those of the false
negatives by an explicit margin, which is denoted by the gray
shading in Fig. 4(b).

E. Optimization of Ultimate Objective

Without loss of generality, for most existing graph CL mod-
els, our AdaS framework can build the following contrastive
objective based on (2) and (4):

Lcon =
1

2n

2n∑
i=1

[
L̃pw

(
x′

i , x′

i
+
)

+ λLpr
(
x′

i

)]
(5)

where λ is the weight assigned to Lpr. In L̃pw(x′

i , x′

i
+
), it is

not clear how to sample efficiently from the distribution q−
α .

Inspired by PU learning [20], we have

q−

α

(
x′

j
−
)

=
(
qα

(
x′

j
−
)
− τ+q+

α

(
x′

j
−
))/

τ− (6)

with q+
α (x′

j
−
) := qα(x′

j
−
|h(x′

i ) = h(x′

j
−
)). Here, τ−

= 1−τ+,
where τ+ is the class prior and can be estimated from data
or treated as a hyperparameter [53]. Afterward, with reference
to the importance sampling approach in [18], we can rewrite
L̃pw(x′

i , x′

i
+
) in (2) to

E x′
i ∼p,

x′
i
+

∼p+

x′
i

−log
e f (x′

i )
⊤ f (x′

i
+
)/σ

e f (x′

i )
⊤ f (x′

i
+
)/σ +QEx′

j
−
∼q [e

f (x′

i )
⊤ f (x′

j
−
)/σ

]

 (7)

by fixing Q and taking the limit N → ∞. Then
QEx′

j
−
∼q [e

f (x′

i )
⊤ f (x′

j
−
)/σ

] equals to

Q
τ−

(
Ex′

j
−
∼qα

[
e f (x′

i )
⊤ f (x′

j
−
)/σ

]
− τ+Ev∼q+

α

[
e f (x′

i )
⊤ f (v)/σ

])
(8)

by letting q = q−
α . As a result, we only need to

approximate the expectations Ex′

j
−
∼qα

[e f (x′

i )
⊤ f (x′

j
−
)/σ

] and

Ev∼q+
α
[e f (x′

i )
⊤ f (v)/σ

], which can be accessible with classical
Monte Carlo importance sampling techniques according to
[18]. Finally, the overall contrastive objective (5) can be
optimized with gradient descent. The detailed description of
our proposed AdaS framework is provided in Algorithm 1.

F. Discussion

Here, we intend to discuss the connections between our
proposed contrastive loss Lcon and MI maximization of node
features and the embeddings. MI quantifies the amount of
information acquired from one random variable by observing
the other random variable.

For simplicity, we assume that U and V are two ran-
dom variables denoting the embeddings obtained from
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Fig. 4. Visual illustration of the importance weights assigned to different negative examples. (a) Without the polarization regularizer. The green/violet/red
lines denote the pairwise cosine similarity between the anchor and the true negatives/suppressed true negatives/false negatives, respectively. (b) With the
polarization regularizer. The green/red lines denote the pairwise cosine similarity between the anchor and the true negatives/false negatives, respectively. The
gray shading indicates the gap of the importance weights between true and false negatives.

Algorithm 1 Proposed AdaSA Framework
Input: Feature matrix X; adjacency matrix A; maximum

number of iterations T ; hyperparameters α and λ.
Output: Node embeddings generated by the GNN encoder f .

1: Randomly initialize the network parameters of the GNN
encoder;

2: // Training phase
3: for t = 1 to T do
4: Obtain node embeddings from two augmented graph

views, respectively;
5: Compute the overall objective function Lcon based

on (5);
6: Update the network parameters using stochastic gra-

dient descent;
7: end for
8: // Inference phase
9: Calculate the node embeddings for all the graph nodes

with the trained GNN encoder;

two graph views. Meanwhile, we also define L̃pw =

(1/2n)
∑2n

i=1 L̃pw(x′

i , x′

i
+
) and Lpr = (1/2n)

∑2n
i=1 Lpr(x′

i ).
Then the InfoNCE objective can be defined as [54]

INCE(U; V) := E∏
i p̃(ui ,vi )

[
1
n

n∑
i=1

log
eui

⊤vi

1
n

∑n
j=1 eui

⊤v j

]
(9)

where ui and vi represent the embeddings of the i th node
in U and V, respectively, p̃(ui , vi ) is the joint distribution
of ui and vi . Similar to [15] and [16], we have −2L̃pw ≤

INCE(U, V) + INCE(V, U). In addition, the InfoNCE estima-
tor has been proven to be a lower bound of the true MI,
i.e., INCE(U; V) ≤ I (U; V). Hence, we can derive that

−L̃pw ≤ I (U; V). (10)

According to the data processing inequality, we have
I (U; V) ≤ I (U; X) and I (X; U) ≤ I (X; U, V). On this basis,
we arrive at the inequality

I (U; V) ≤ I (X; U, V). (11)

Following (10) and (11), we can obtain the inequality:

−Lcon = −L̃pw − λLpr ≤ I (X; U, V) (12)

TABLE I
DATASET STATISTICS

since λLpr > 0. This demonstrates that the objective −Lcon to
be maximized is a lower bound of the MI between the input
feature X and the embeddings in two graph views. That is,
minimizing the ultimate loss Lcon is equivalent to explicitly
maximizing a lower bound of the MI, which is able to power
unsupervised representation learning [54], [55], [56].

IV. EXPERIMENTS

In this section, we conduct extensive experiments to reveal
the effectiveness of our proposed AdaS framework. First,
we introduce the datasets used for the validation and the exper-
imental settings. Then the results including the comparison
of performance, ablation study, and parametric sensitivity are
demonstrated.

A. Datasets

We evaluate the proposed AdaS framework on six widely
used benchmark datasets for node classification, including
three widely used citation networks (i.e., Cora, CiteSeer,
and PubMed) [57], [58], two Amazon product co-purchase
networks (i.e., Amazon Computers and Amazon Photo) [59],
and one coauthor network subjected to computer science
(i.e., Coauthor CS) [59]. The datasets used here are collected
from real-world networks from different fields, and their
statistics have been demonstrated in Table I.

1) Citation Networks: Cora, CiteSeer, and PubMed are
three publicly available datasets composed of scientific
publications. In these networks, published papers are
denoted by the graph nodes and the citation relationships
between papers are represented by the graph edges. Each
node is associated with a bag-of-words feature vector
and a ground-truth label.
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TABLE II
CLASSIFICATION ACCURACIES (%) OF DIFFERENT METHODS ON THE CORA, CITESEER, PUBMED, AMAZON COMPUTERS, AMAZON PHOTO, AND

COAUTHOR CS DATASETS. IN THE SECOND COLUMN, WE HIGHLIGHT THE KIND OF DATA AVAILABLE TO EACH METHOD DURING TRAINING
(X: FEATURES, A: ADJACENCY MATRIX, Y: LABELS). ADAS-GR, ADAS-MV, ADAS-ER, AND ADAS-FD INDICATE THE MODEL VARIANTS

THAT INCORPORATE THE PROPOSED SAMPLING STRATEGY TO GRACE, MVGRL,
CONEDGEREM, AND CONFEADROP, RESPECTIVELY

2) Co-Purchase Networks: Amazon Computers and Ama-
zon Photo are two networks of co-purchase relationships
constructed from Amazon, where the nodes repre-
sent goods and the links indicate that two goods are
frequently bought together. The node features are bag-
of-words encoded product reviews, and class labels
correspond to the product categories.

3) Coauthor Network: Coauthor CS is a coauthorship graph
based on the Microsoft Academic Graph from the KDD
Cup 2016 challenge, where the nodes are authors and are
connected by an edge if they coauthor a paper. The node
features represent keywords for each author’s papers and
the class labels denote the most active fields of study for
each author.

B. Experimental Settings

Here, we will introduce the settings of our experiments,
including the baseline methods used for comparison and
the evaluation protocol. As our AdaS aims to improve the
performance of graph CL models, we apply it as a mod-
ification to the state-of-the-art contrastive methods. To be
specific, the recently proposed GRACE [15] and MVGRL
[48] have been adopted as baseline methods, and our proposed
AdaS is implemented under these two graph CL frameworks.
Meanwhile, to further demonstrate the generalization ability
of our proposed method under different augmentation tech-
niques, we apply AdaS to graph CL frameworks with edge
removing (ConEdgeRem) and feature dropout (ConFeaDrop)
[60], respectively. Besides, to compare our framework with
supervised counterparts, the two representative models GCN
[27] and GAT [35] are adopted here and are trained in an end-
to-end fashion. Finally, two additional state-of-the-art graph
CL methods, including DGI [9] and GMI [61], are also used
for comparison here.

In the experiments, we follow the linear evaluation scheme
introduced by [9]. Specifically, the graph encoder is first
trained in an unsupervised manner, and then the node embed-
dings generated by the trained encoder, together with the given

node labels, are used to train and test a classifier, such as the
logistic regression classifier. Following [59], in all the cases,
we use 20 labeled nodes per class as the training set, 30 nodes
per class as the validation set, and the rest as the test set.
All the experiments have been repeated for ten times, and
we report the average performance on each dataset for fair
evaluation.

C. Performance of Node Classification

The empirical results of node-level representation learning
obtained by different methods are presented in Table II,
where the highest performance of all the methods is high-
lighted in boldface on each dataset. Meanwhile, the visual
comparison between the graph CL methods (i.e., GRACE,
MVGRL, ConEdgeRem, and ConFeaDrop) and their corre-
sponding model variants are exhibited in Fig. 5. From Table II,
we clearly observe that our proposed AdaS could improve
the performance of four graph CL methods (i.e., GRACE,
MVGRL, ConEdgeRem, and ConFeaDrop) on all the six
datasets, which reveals the good compatibility of AdaS with
different types of graph CL models. We infer that this strong
performance benefits from the adaptive sampling strategy for
the negative node pairs. In particular, the improvements of
about 5% can be observed over GRACE and MVGRL on
the Amazon Photo dataset, and improvements of about 3%
can be found over GRACE, ConEdgeRem, and ConFeaDrop,
respectively, on the Cora dataset. These statistical results
demonstrate the power of our AdaS framework in boosting
the representation ability of graph CL models.

Comparing the performance of supervised and unsupervised
baseline methods, we find that GAT can achieve better classi-
fication results than the contrastive models without using the
proposed adaptive sampling strategy on the Cora dataset. We
consider this can be attributed to the naive selection of negative
node pairs, which might prevent these contrastive models
from learning sufficient useful information during training. In
contrast to most current graph CL models, the proposed AdaS-
GR and AdaS-MV encourage learning from the informative
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Fig. 5. Comparison of classification accuracies (%) between the graph
CL models and their variants using AdaS. (a) GRACE, (b) MVGRL,
(c) ConEdgeRem, and (d) ConFeaDrop.

negative examples, which can help the encoders learn strong
representations. As a consequence, they can outperform GAT
even without using label information. Similar observations can
be found in other datasets, such as CiteSeer and PubMed.
It is also notable that the performance of ConEdgeRem and
ConFeaDrop seems relatively poor on the Amazon Computers
dataset compared with GRACE, which could be due to that
using edge removing or feature dropout alone is not able to
produce sufficient meaningful contrastive pairs. Nevertheless,

TABLE III
CLASSIFICATION ACCURACIES (%) OBTAINED BY APPLYING DIFFERENT

NEGATIVE SAMPLING STRATEGIES TO GRACE ON THE CORA,
CITESEER, AND PUBMED DATASETS.

“GR” IS SHORT FOR GRACE

TABLE IV
CLASSIFICATION ACCURACIES (%) OBTAINED BY APPLYING DIFFERENT

NEGATIVE SAMPLING STRATEGIES TO MVGRL ON THE CORA,
CITESEER, AND PUBMED DATASETS.

“MV” IS SHORT FOR MVGRL

TABLE V
CLASSIFICATION ACCURACIES (%) OBTAINED BY APPLYING

DIFFERENT NEGATIVE SAMPLING STRATEGIES TO CONEDGEREM
ON THE CORA, CITESEER, AND PUBMED DATASETS.

“CER” IS SHORT FOR CONEDGEREM

TABLE VI
CLASSIFICATION ACCURACIES (%) OBTAINED BY APPLYING DIFFERENT

NEGATIVE SAMPLING STRATEGIES TO CONFEADROP ON
THE CORA, CITESEER, AND PUBMED DATASETS.

“CFD” IS SHORT FOR CONFEADROP

our AdaS can mitigate the undesirable effect caused by
graph augmentation via appropriately adjusting the importance
weights of different pairs.

D. Comparison of Different Sampling Strategies

To demonstrate the effectiveness of the proposed adaptive
sampling strategy, we use two additional sampling strategies,
namely, HBNM [18] and DCL [20], as baseline methods. Here,
HBNM proposes to upweight the hard negatives and DCL
develops debiasing terms to select true negatives in contrastive
model learning. We implement different sampling strategies on
four graph CL frameworks, i.e., GRACE [15], MVGRL [48],
ConEdgeRem [60], and ConFeaDrop [60], and the results are
exhibited in Tables III–VI, respectively. We observe that both
HBNM and our AdaS can enhance the performance of these
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Fig. 6. Visualization of t-SNE embeddings from (a) raw features, (b) MVGRL, (c) AdaS-MV (w/o PoR), and (d) AdaS-MV, on the Cora dataset.

Fig. 7. Visualization of t-SNE embeddings from (a) raw features, (b) MVGRL, (c) AdaS-MV (w/o PoR), and (d) AdaS-MV, on the CiteSeer dataset.

Fig. 8. Visualization of t-SNE embeddings from (a) raw features, (b) MVGRL, (c) AdaS-MV (w/o PoR), and (d) AdaS-MV, on the PubMed dataset.

contrastive models, indicating the benefits of hard negative
sampling to contrastive model learning. Meanwhile, it is
worth noting that our proposed AdaS consistently outperforms
HBNM on all the three datasets, possibly due to the adaptive
sampling strategy that is able to suppress the adverse impacts
of false negatives. Although DCL attempts to address the false
negative problem, there remains performance gap between
DCL and our AdaS, revealing the superiority of AdaS in
correcting the sampling error of false negatives.

E. Ablation Study

As described in the introduction, our AdaS framework
ameliorates the conventional graph contrastive objective by
adaptively reweighting the negative examples, where an aux-
iliary polarization regularizer is also used to enhance the
discrimination ability of AdaS. To shed light on the contri-
butions of these two components, we report the classification
results of the AdaS models when each of the two components
is removed on three widely used datasets, namely, Cora,
CiteSeer, and PubMed. The data splits are kept identical
to those in Section IV-C. For simplicity, we adopt “AdaS-
GR (w/o PoR)” and “AdaS-MV (w/o PoR)” to represent
the reduced model variants by removing the polarization
regularizer. The comparative results have been exhibited in
Tables VII and VIII. It is apparent that our AdaS is an effective
framework to improve the performance of graph CL models.
Meanwhile, improvements over the original graph CL models
(i.e., GRACE and MVGRL) can still be achieved by only using

Fig. 9. Convergence analysis of MVRGL on (a) Cora, (c) CiteSeer, and
(e) PubMed datasets, and AdaS-MV on (b) Cora, (d) CiteSeer, and (f) PubMed
datasets, respectively.

the adaptive sampling strategy, which verifies the effectiveness
of this module. Besides, the performance margin between
our AdaS and its reduced models without the polarization
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Fig. 10. Sensitivity analysis of α in different model variants. (a) Cora dataset, (b) CiteSeer dataset, and (c) PubMed dataset.

Fig. 11. Sensitivity analysis of λ in different model variants. (a) Cora dataset, (b) CiteSeer dataset, and (c) PubMed dataset.

TABLE VII
ABLATION STUDY OF THE ADAPTIVE SAMPLING MODULE AND

POLARIZATION REGULARIZER FOR ADAS-GR METHOD

TABLE VIII
ABLATION STUDY OF THE ADAPTIVE SAMPLING MODULE AND

POLARIZATION REGULARIZER FOR ADAS-MV METHOD

regularizer demonstrates that the polarization regularizer is
able to further enhance the discrimination ability of our pro-
posed sampling strategy. To illustrate the critical roles of these
two components intuitively, Figs. 6–8 display t-SNE [62] plots
of the node embeddings on the Cora, CiteSeer, and PubMed
datasets, respectively. We can observe that the proposed AdaS
can obtain more distinguishable clusters. In particular, on the
Cora dataset, it is worth noting that the embeddings generated
by AdaS-MV exhibit more discernible clusters than those
generated by MVGRL and AdaS-MV (w/o PoR).

Here, we also present the convergence curves of AdaS-MV
and MVGRL throughout training in Fig. 9. Observe the curves,
it is apparent that AdaS-MV takes fewer iterations to converge
on the Cora and PubMed datasets, compared with MVGRL.
On the CiteSeer dataset, although the loss curve of MVGRL is

fluctuating during training, it can be noted that our AdaS-MV
is still able to converge within 1500 iterations. In Fig. 9(e),
we find that MVGRL takes more than 10 000 iterations to
converge, while our AdaS-MV requires less than 200 iterations
for convergence. Moreover, the convergence curve of MVGRL
appears jagged fluctuations during training. Comparatively, the
proposed AdaS-MV achieves a more stable convergent curve
than MVGRL, as shown in Fig. 9(f). Consequently, we spec-
ulate that the informative node pairs provide nonnegligible
gradient information during contrastive model learning, which
can accelerate the convergence of representation learning in
the training phase.

F. Parametric Sensitivity

In our proposed AdaS framework, there exist two critical
hyperparameters to be pretuned manually, namely, α which is
used in the sampling distribution (3) and λ which is the weight
assigned to Lpr in (5). Therefore, in this section, we will
evaluate in detail the sensitivity of the performance to different
hyperparameter settings. To be specific, we examine the test
accuracy of AdaS-GR, AdaS-MV, AdaS-ER, and AdaS-FD by
varying α or λ, and meanwhile fixing the other hyperparameter
to a constant value.

The results on the Cora, CiteSeer, and PubMed datasets
are shown in Figs. 10 and 11, respectively. By setting the
temperature parameter σ to 0.5 throughout the experiment, the
dot product between normalized node embeddings is mapped
to the range of [−2, 2]. Hence, we vary the value of α from
−2 to 2 with an interval of 0.1 to comprehensively reveal
the role of our proposed sampling distribution. From Fig. 10,
we observe that the classification accuracy is relatively low
when α is small. It can be inferred that adopting the sampling
distribution with a small value of α can restrict the capacity
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of AdaS to learn from the informative negatives. Similarly,
when α gets too large, the sampling error [20] raised by false
negatives may deteriorate the representations and thus limiting
the performance of downstream tasks. Interestingly, we find
that choosing a relatively large value for α often leads to high
accuracy on all the three datasets. This is mainly due to that the
sampling error can be eliminated to some extent as illustrated
in Section III, and meanwhile the model is encouraged to learn
from the informative negatives.

The results of λ are shown in Fig. 11. We note that the
performance is relatively stable when λ is not too large on the
three datasets, which demonstrates that our AdaS framework
is insensitive to λ. However, when λ gets large, the accuracy
could seriously decline. For example, when λ > 0.8 on the
CiteSeer dataset, the classification accuracy of AdaS-GR can
be even lower than 50%. We speculate that overemphasizing
the role of the polarization regularizer may eliminate the
meaningful information in negative pairs, thereby making the
sampling strategy invalid for graph CL.

V. CONCLUSION

In this article, we propose a new graph CL framework
termed “AdaS” via using an adaptive sampling strategy. The
advantages of AdaS are threefold.

1) Adaptability: By designing a novel negative sampling
distribution, constrained with an auxiliary polarization
regularizer, our AdaS framework is able to adaptively
learn from the most informative negative examples,
offering better utilization of the embedding space than
the conventional graph CL objectives.

2) Stability: The stability of contrastive model training
can be enhanced by incorporating our AdaS, as the
informative negative examples could provide meaningful
gradient information for model learning.

3) Generality: The proposed AdaS framework can accom-
modate to different types of graph CL models, such as
GRACE and MVGRL. This is due to that AdaS mainly
focuses on optimizing the sampling strategy of nega-
tive examples without changing the typical contrastive
objective.

Based on the above merits, our AdaS has revealed superior
performance to various state-of-the-art contrastive GNN mod-
els on multiple real-world datasets. Nevertheless, the potential
risk of false positives has not been investigated in this article,
which could deteriorate the model performance. In addition,
the hyperparameter α should be manually tuned in practical
use.

Our future work will focus on extending the proposed AdaS
to semi-supervised learning. To be specific, in semi-supervised
learning, the scarce but valuable label information can “teach”
the model to identify the false negatives. As a result, there is
no need to tune the hyperparameter relating to our sampling
strategy manually, by which the efficiency and flexibility could
be improved.

REFERENCES

[1] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proc. Int. Conf.
Mach. Learn. (ICML), 2017, pp. 1263–1272.

[2] H. Huang, Y. Song, Y. Wu, J. Shi, X. Xie, and H. Jin, “Multitask
representation learning with multiview graph convolutional networks,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 3, pp. 983–995,
Mar. 2022.

[3] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A compre-
hensive survey on graph neural networks,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 32, no. 1, pp. 4–24, Jan. 2021.

[4] S. Ji, S. Pan, E. Cambria, P. Marttinen, and P. S. Yu, “A survey on
knowledge graphs: Representation, acquisition, and applications,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 33, no. 2, pp. 494–514, Feb. 2022.

[5] S. Wan, S. Pan, J. Yang, and C. Gong, “Contrastive and generative graph
convolutional networks for graph-based semi-supervised learning,” in
Proc. AAAI Conf. Artif. Intell., vol. 35, no. 11, 2021, pp. 10049–10057.

[6] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in Proc. Int. Conf.
Mach. Learn. (ICML), 2020, pp. 1597–1607.

[7] A. Abbas, M. M. Abdelsamea, and M. M. Gaber, “4S-DT: Self-
supervised super sample decomposition for transfer learning with
application to COVID-19 detection,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 32, no. 7, pp. 2798–2808, Jul. 2021.

[8] Y. Liu, Z. Li, S. Pan, C. Gong, C. Zhou, and G. Karypis, “Anomaly
detection on attributed networks via contrastive self-supervised learn-
ing,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 6,
pp. 2378–2392, Jun. 2022.
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