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Abstract—Recently, Graph Convolutional Network (GCN) has
progressed significantly and gained increasing attention in hyper-
spectral image (HSI) classification due to its impressive represen-
tation power. However, existing GCN-based methods do not give
full consideration to the multi-scale spatial information, since
the convolution operations are governed by fixed neighborhood.
As a result, their performances can be limited, particularly
in the regions with diverse land cover appearances. In this
paper, we develop a new Dual Interactive GCN (DIGCN) which
introduces the dual GCN branches to capture spatial information
at different scales. More significantly, the dual interactive module
is embedded across the GCN branches, so that the correlation
of multi-scale spatial information can be leveraged to refine
the graph information. To be concrete, the edge information
contained in one GCN branch can be refined by incorporating
the feature representations from the other branch. Analogously,
improved feature representations can be generated in one GCN
branch by fusing the edge information from the other branch.
As such, the refined graph information can help enhance the
representation power of the model. Furthermore, to avoid the
negative effects of the manually constructed graph, our proposed
model adaptively learns a discriminative region-induced graph,
which also accelerates the convolution operation. We comprehen-
sively evaluate the proposed method on four commonly used HSI
benchmark datasets, and state-of-the-art results can be achieved
when compared with several typical HSI classification methods.

Index Terms—Hyperspectral image classification, graph con-
volutional network (GCN), deep learning, graph refinement.
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YPERSPECTRAL remote sensors capture digital im-

ages from hundreds of consecutive geographic object
segments, thereby providing detailed spectral information and
revealing enhanced ability to distinguish geographic objects
[1]. Over the past few decades, hyperspectral image (HSI)
classification has been an active topic in various fields, such
as military target detection and vegetation monitoring [2], and
it aims to categorize each image pixel into a certain meaningful
class according to the image contents.

During the past few decades, diverse kinds of methods have
been proposed for HSI classification. Among them, spectral-
spatial methods have gained some success [2]. One kind of
these approaches extracts spectral-spatial information before
learning a classifier, such as the patch-based feature extraction
technique [3]. Another popular research trend incorporates
spatial information with Markov Random Field (MRF)-based
models to post-process the classification map. Other spatial-
based methods include morphological profiles [4], and mani-
fold learning methods [5].

Inspired by the success of deep learning models, HSI clas-
sification with deep networks, such as Convolutional Neural
Network (CNN), have been extensively investigated [6], [7].
For instance, Zhang et al. [6] developed a deep CNN model
based on diverse region types, where different local or global
region inputs are utilized to jointly learn the pixel representa-
tions. Following the recent developments of 3D CNN for video
analysis [8], Chen ef al. [9] introduced an [l regularized 3D
CNN for learning spectral-spatial features. While powerful,
the CNN-based methods still suffer from some limitations
when dealing with HSI. Specifically, CNN fails to precisely
perceive geometric variations between different object regions,
since it only conducts convolution on squared image grids and
cannot apply to arbitrarily shaped regions. Apart from this, the
convolution kernels constrained with fixed shapes and weights
cannot be well adaptive to the object regions with diverse sizes
or shapes.

To better handle the irregular class boundaries, the recently
proposed Graph Convolutional Network (GCN) [10] has been
adopted for HSI classification. Different from CNN, GCN
operates on graph structured data, such as social network data
[11], and is able to pass, transform, and aggregate feature
information across the graph [12]. In this way, GCN can
be naturally applied to non-Euclidean data based on the
predefined graph, which helps preserve the class boundaries
of different object regions flexibly. Most recently, a handful
of works on GCN-based HSI classification have emerged and
achieved promising performance [13], [14], [15], [16], [17].
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For instance, Qin et al. [13] devised a spectral-spatial GCN
which makes full use of spatial information via using adjacent
pixels to approximate convolution. However, the research on
GCN-based HSI classification is still in its primary stage,
especially on the way to characterize the spatial information.
To be concrete, the existing GCN models usually perform
graph convolution based on fixed single neighborhood, thereby
failing to exploit the multi-scale cues in HSI. As a conse-
quence, the representation power of these single-input style
GCN models become limited, especially in the regions with
various land cover appearances.

Most recently, in [15], the Multi-scale Dynamic GCN
(MDGCN) is proposed to incorporate the spatial information at
different scales. However, the graph convolution is performed
separately at different spatial scales, and thus is limited in the
fixed neighborhood. Different from MDGCN, we introduce a
new model called Dual Interactive GCN (DIGCN), where the
interaction of multi-scale spatial information can be leveraged
to refine the input graph and help guide the graph convolution
operation. To be specific, in our dual interactive module,
the edge information contained in one GCN branch can be
refined with the feature representations from the other branch.
Analogously, the representations produced by one GCN branch
can also be improved by fusing the edge information from the
other branch. Owing to the dual interaction between the GCN
branches, feature representations inheriting the advantages of
multi-scale spatial information can be obtained, which helps
better represent the regions with diverse appearances.

To perform the dual interactive graph convolution properly,
one crucial step is to construct an appropriate graph. Although
constructing a graph based on image pixels is an intuitive
solution, some issues may ensue with such approaches. Firstly,
the graph may not be optimal for the convolution operation,
as it is constructed independently from the graph convolution
step. Secondly, the manually constructed graphs are sensitive
to the noise contained in pixel features. Lastly, the huge
number of image pixels may introduce intractable computa-
tional problems, especially when performing multi-scale graph
convolution. In this paper, our proposed DIGCN adaptively
learns to project the original HSI into a region-induced graph,
by which the graph size gets significantly reduced and the
noise of individual pixels is also suppressed [18]. Moreover,
a discriminative loss function is embedded into the graph
learning process, which aims to enhance the representation
power of the projected features.

To sum up, the main contributions of our proposed DIGCN
are as follows: 1) the interaction of multi-scale spatial informa-
tion is leveraged to help refine the graph convolution operation,
by which the regions with diverse appearances can be better
represented; 2) by learning a discriminative region-induced
graph, the representation power of the generated region fea-
tures can be further enhanced and the computational cost
is significantly reduced. Extensive experiments on four real-
world datasets demonstrate the effectiveness of the proposed
DIGCN.

II. RELATED WORK

In this section, we review some typical works on HSI
classification and GCN, as they are related to this work.

A. Hyperspectral Image Classification

At the beginning, research efforts are only concentrated on
spectral-based HSI classification, which ignores the critical
spatial information and thereby results in poor classification
performance [19]. To mitigate this limitation, spatial context,
which has been observed to be arguably more effective than
spectral information, is introduced for HSI classification.

Structural filtering is one of the typical spectral-spatial-
based HSI classification methods, which has been widely
applied to generate spatial features for HSI preprocessing [20].
A simple and powerful practice is to extract spatial information
via moment criteria, such as the mean or standard deviation of
adjacent pixels in a window [21]. In structural filtering, local
harmonic analysis is also a research direction in addition to
moment criteria, which includes spatial translation-invariant
spectral-spatial wavelet features, spectral-spatial Gabor fea-
tures, and empirical mode decomposition-based features [22].

Mathematical morphology is an effective tool for analyzing
and processing geometrical structures in spatial domain. For
example, the Morphological Profile (MP) is introduced for
classifying images with very high spatial resolutions via using
a set of geodesic opening and closing operations [23]. Fur-
thermore, Extended MP (EMP) is developed by Benediktsson
et al. [4], where an MP is calculated on each component
after performing dimensionality reduction. To better exploit
the spectral information contained in HSI, Fauvel et al. [24]
proposed an approach to fuse the spectral and spatial informa-
tion based on EMP and the original data.

Furthermore, a handful of recently proposed studies [25],
[26] have also achieved promising results on HSI classi-
fication. For instance, Cao et al. [25] devised a powerful
semi-supervised wrapper method with the local smoothness
of HSI, which is also robust to label noise. Meanwhile, in
[26], an effective minority class oversampling technique is
devised using generative adversarial learning and aims to
handle the class imbalance problem of HSI classification.
Additionally, a series of image classification models have also
shown their potentials in HSI classification, such as the Gabor
convolutional networks [27] and the deep confidence network
[28].

B. Graph Convolutional Network

As one of the powerful techniques for data representation,
graph based methods [29], [30], [31], [32] have been exten-
sively investigated for HSI classification. In [33], Camps-Valls
et al. first proposed a semi-supervised graph-based method
for HSI classification, where the graphs are constructed based
on different spectral and spatial kernels. After that, Gao et
al. [34] devised a bilayer graph-based learning method for
HSI classification. Meanwhile, Cui et al. [35] employed an
extended random walker on a superpixel-induced graph to
optimize the classification map.
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In recent years, there has been a surge of research interest
in applying convolutions on graphs [36], [37], which can
be roughly divided into spatial and spectral methods. In
spatial methods, a weighted average function is utilized to
perform convolution over the neighbors of each graph node.
For example, the weighting function is built via using various
aggregators over the neighboring nodes in GraphSAGE [11].
Different from spatial methods, the spectral methods employ
spectral graph theories to define parameterized filters. Spectral
CNN, which is the pioneering work of spectral methods,
converts the signals defined in node domain into spectral
domain by leveraging graph Fourier transform. However, the
computational complexity gets extremely high on large-scale
graphs due to the eigendecomposition of Laplacian matrix.
Afterwards, in [38], the convolution kernel is considered
as a polynomial function of the diagonal matrix containing
the eigenvalues of Laplacian matrix. Subsequently, Kipf and
Welling proposed GCN via using a localized first-order ap-
proximation to ChebyNet [10], which contributes to more
efficient filtering operation than that in spectral CNN.

During the past few years, GCN has achieved remarkable
success in various fields, such as social network mining
[39] and natural language processing [40]. For instance, in
[41], GCN is integrated with MRF to solve the problem of
semi-supervised community detection in attributed networks.
Inspired by this great success, GCN has also been studied for
processing 2D images, such as HSI [13], [14], [15], [16]. For
example, Mou et al. [14] built a dense fully-connected graph
based on all image pixels for convolution, in order to obtain
a large receptive field. In addition, Hong et al. [16] proposed
a mini-batch GCN to allow the network training on large-
scale hyperspectral data in a mini-batch fashion. However,
there still exists a potential limitation in these early-staged
methods. To be specific, they cannot sufficiently exploit the
diverse types of spatial information at different scales. In
this paper, we introduce a novel dual interactive GCN model
that takes advantages of the interaction of multi-scale spatial
information. As such, the representation power of the GCN
model can be enhanced, especially in the regions with diverse
land cover appearances.

III. PROBLEM DEFINITION

We start by formally introducing the problem of HSI classi-
fication. Suppose that we have a HSI composed of n =p+ ¢
pixels Z = {z1,--- ,2p,2p41, - ,2n}, Where the labels (i.e.,
land-cover types) of the first p pixels are available and the
remaining ¢ pixels constitute the unlabeled set. Here z; is
characterized by a d-dimensional vector of features which
denote the measurement in spectral bands acquired by the
sensors. We also denote Y € R™*C as the label matrix with
its (i,7)™" element Y;; = 1 if z; belongs to the ;' class
and Y;; = 0 otherwise, where C is the number of land-
cover types. The purpose of HSI classification task is to infer
the class labels of the unlabeled pixels z,11,2p42, - ,2p
based on the feature values of all pixels and the labels of
Z1,Z2," - azp'

IV. THE PROPOSED METHOD

This section details our proposed DIGCN algorithm, of
which the architecture is illustrated in Fig. 1. When an input
HSI (Fig. 1(a)) is given, we first learn to project the original
2D grids into image regions (Fig. 1(b)). Afterwards, dual
interactive graph convolution (Fig. 1(c) and Fig. 1(d)) is per-
formed to acquire representative features through information
integration and propagation. Finally, the classification result
(Fig. 1(e)) is generated via interpolating the learned graph
feature back into 2D image grids based on the region-to-
pixel assignment. Next the critical steps will be detailed by
elaborating the graph projection operation (Section IV-A),
explaining the GCN formulation (Section IV-B), describing
the dual interactive architecture (Section IV-C), and presenting
the graph re-projection step (Section IV-D).

A. Discriminative Pixel-to-Region Assignment

For GCN, an accurate graph plays a critical role in ob-
taining expressive representations. In some applications such
as chemical molecules and social networks, one can directly
use the existing graph from domain knowledge as network
input. In many other applications where the graph structure is
not available, one popular way is to construct a graph (e.g.,
nearest-neighbor graph) in advance [43]. However, the graphs
obtained from domain knowledge or constructed in advance
may not be optimal for GCN, as they are generally independent
of the graph convolution process [44]. Besides, the manually
constructed graphs are sensitive to local noise and outliers. To
overcome these problems, [44] proposed to learn an optimal
graph that best serves the GCN, where both given labels and
the estimated labels are facilitated to refine the graph construc-
tion operation. Apart from this, in [45], the graph structure
and features are explored to help guide the robust graph
learning. Inspired by these techniques, we intend to adaptively
learn the graph information by the network. Nevertheless,
directly performing graph convolution on the huge number of
pixels will lead to extremely high computational complexity.
Fortunately, region-based GCN [15] has been demonstrated to
be effective in reducing the computational cost. Therefore, we
aim at learning a region-induced graph transformed from the
original HSI, which is termed graph projection.

First, a soft assignment matrix parameterized by V € R4*x¢
can be learned to assign each pixel z; € R? to its neighboring
regions, where d is the feature dimensionality of each pixel, ¢
denotes the number of image regions, and each column v; €
R? of V corresponds to the anchor point of a certain region.
Specifically, the soft assignment matrix P € R™*¢ (n denotes
the number of image pixels) can be computed as

e—’YHZi—Vjﬂz
Pii=1 4

where 7y is a temperature parameter and has been empirically
set to 0.2 throughout the paper, N(z;) represents the set
of neighboring regions that are connected to the pixel z;,
and Anc(N(z;)) indicates the anchor points of N(z;). More
concretely, not only the central region where z; resides, but

if v; € Anc(ﬁ(zi))
otherwise

QY
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Fig. 1. The framework of our algorithm. (a) is the original HSI. (b) shows the regions obtained via discriminative pixel-to-region assignment. (c) and (d)

denote the dual interactive graph convolutional layers, where the blue circles and orange lines represent the graph nodes and edges, respectively. Besides, the
blue and orange arrows indicate the interaction of graph nodes and edges, respectively. Specifically, the two GCN branches characterize spatial information
at different scales and are forced to perform dual interactive graph convolution. Here ReLU [42] is used as the activation function. In (e), the region features
are interpolated back into 2D image grids after dual interactive graph convolution, by which the classification results can be acquired.

also the regions adjacent to the central one are included in
N(z;), and then the region feature x; can be encoded as

TPy
This assignment is soft and likely to group pixels with similar
features to the same region, and thus improved region features
can be adaptively learned by the network.

To enhance the discriminative power of the learned region
features, we regularize the graph learning process with a label
consistency loss. The intuition behind is that data from the
same class often have similar features and those from different
classes usually have different features. To achieve this, we first
design an ideal discriminative adjacency matrix Q in advance,
namely

X

2

Qi = 1 if x; and x; share the same label 3)
771 0 otherwise '
Then the discriminative loss function can be defined as

Las =[S (@- A0, “

where ® means element-wise multiplication, S is a 0-1 sparse
matrix with the element S;; equaling 1 if the supervised
information of x; and x; is available during training, and AWM
is the adjacency matrix calculated based on the region features
X. Here x; is the i*" row of X, and the calculation of AWM
will be introduced in Eq. (5). Besides, the majority voting rule
[46] is adopted to determine the region labels. Specifically,
the most frequent pixel class within a region is considered
as the corresponding region label. With Eqgs. (3) and (4), the
scarce but valuable label information contained in Q can help
regularize the learning of region features and further enhance
the discriminative power of the adjacency matrix A1),
However, the graph projection step still faces an optimiza-
tion challenge that most or even all of the image pixels might

Fig. 2. Illustration of the soft pixel-to-region assignment used in our DIGCN
algorithm. Each of the initialized image regions is surrounded by black lines,
and the orange arrows denote the assignment regarding the pixel z; to its
neighboring regions.

be assigned to a single region in some extreme circumstances.
This is probably due to the improper initialization of the
anchor point matrix V, which will subsequently result in
an ill-posed assignment matrix P. Moreover, the imbalanced
assignment will lead to unfavorable graph structure, thereby
weakening the expressive power of the generated representa-
tions. To avoid this problem, we take advantage of the spatial
information by initializing V via a segmentation technique,
instead of resorting to random initialization. Here the Simple
Linear Iterative Clustering (SLIC) algorithm [47] is employed
to obtain the initial anchor point matrix V. Specifically,
the average spectral signatures of the pixels involved in the
corresponding region will be utilized to initialize each v;. Note
that the matrix 'V comprising anchor points of the regions
can be further updated via using gradient descent. Afterwards,
the soft assignment matrix P can be calculated via Eq. (1),
and then the region features can be naturally obtained with
Eq. (2). This segmentation-based initialization technique can
yield more stable training performance and produce more
meaningful graph representations than random initialization
[48]. Fig. 2 exhibits the pixel-to-region assignment regarding a
pixel z;. By learning the discriminative region-induced graph,
the negative impact of inaccurate pre-computed region features
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can be reduced and expressive region features can be flexibly
obtained.

B. Formulation of Graph Convolutional Network

GCN [10] is a multi-layer neural network inspired by CNN,
which can operate on graph-structured data and extract high-
level features via aggregating feature information from the
neighborhood of each node. Formally, an undirected graph can
be defined as G = (V,€) with V and £ denoting the sets of
nodes and edges, respectively. The notation A represents the
adjacency matrix of the graph G and indicates the existence of
an edge between each pair of nodes, which can be calculated
as

A — e lxi=x1* if x; € N(x;) or x; € N(x;)
Y 0 otherwise

)

(&)
where «y is a temperature parameter and has been empirically
set to 0.2 throughout the paper, x; and x; are two graph nodes
(i.e., image regions in this paper), ||x; —x;|| calculates the
Euclidean distance between each pair of neighboring regions,
and N(x;) is the set of neighbors of x;. In our proposed
DIGCN, N(x;) is composed of the spatial neighbors of x;,
which will be illustrated in Section IV-C.

First, to conduct node embedding for G, spectral filtering
on the graph, which can be expressed as the multiplication of
a signal x with a filter g9 = diag(0) in the Fourier domain,
can be defined as

go »x = UgU 'x, (6)

where U denotes the matrix of eigenvectors of normalized
graph Laplacian L = T — D 2AD 2 = UAUT. Here the
diagonal matrix A is composed of the eigenvalues of L, D is
the degree matrix with each diagonal element D;; = > j Aj,
and I is the identity matrix with proper size throughout
this paper. Then gg can be understood as a function of the
eigenvalues of L, i.e., go(A). To reduce the computational
complexity of eigen-decomposition in Eq. (6), Hammond et
al. [49] approximated gg(A) via using a truncated expansion
in terms of Chebyshev polynomials T} (x) up to K*"-order,
namely

K
gor(A) = Y 0, Ti(A), (7)
k=0

where 6’ denotes a vector of Chebyshev coefficients; A=
%axA — I with Ay« being the largest eigenvalue of L.
According to [49], the Chebyshev polynomials can be defined
as Ti(x) = 2xTj—1(x) — Tp—2(x), where Tp(x) = 1 and
Ty (x) = x. Afterwards, the convolution of a signal x can be
defined as

K
Jor * X Z 0, T;.(L)x, (8)
k=0

where L = 5o—L — I is the scaled Laplacian matrix.
Eq. (8) can be easily verified by considering the fact that
(UAUT)F UA*UT. This expression is a K'M-order
polynomial with respect to the Laplacian (i.e., K-localized).
In our proposed DIGCN, only the first-order neighborhood is

/]

Fig. 3. The illustration of neighborhood sizes utilized in our method. The
green nodes denote the 1-hop neighbors of the region x;, and the orange
nodes together with the green nodes represent x;’s 2-hop neighbors.

considered, i.e., K = 1, and thus Eq. (8) turns to a linear
function on the graph Laplacian spectrum with respect to L.

Afterwards, a neural network based on graph convolution
can be constructed by stacking multiple convolutional layers
in the form of Eq. (8), where each layer is followed by an
element-wise non-linear operation (i.e., ReLU(-) [42]). By
this way, diverse classes of convolutional filter functions can
be derived through stacking multiple layers with the same
configuration. With the linear formulation, Kipf and Welling
[10] further approximated An.x ~ 2, considering that the
network parameters can adapt to this change in scale during
training. Consequently, Eq. (8) is simplified to

gor *x ~ 0px + 0 (L —I)x = 0px — 0/1D_%AD_%X7 9)

where 0) and 0} are two free parameters. Since reducing
the number of parameters helps avoid overfitting, Eq. (9) is
further converted to gg xx ~ 0(I + D_%AD_%)X by letting
0 =6, =—-0,. AsI+D 2AD 2 has the eigenvalues in
the range [0, 2], repeatedly applying this operator will result
in numerical instabilities and exploding/vanishing gradients in
a deep network. To solve this deficiency, Kipf and Welling
[10] performed the re-normalization trick T + D:%AD_% —
D 3AD" % with A = A +Tand D;; = Y, A;;.Hence the
convolution operation can be expressed as

HO = o(AH-DWO), (10)

where H() denotes the output of the I*" layer with H(®) =
X, o(-) represents an activation function, such as the ReLU
function [42] used in our proposed DIGCN, and W) is the
trainable weight matrix involved in the I'" layer.

C. Dual Interactive Architecture

As mentioned in the introduction, there often exist various
object appearances in HSI, where the object regions from the
same class even have diverse sizes and shapes. Conventional
GCN models cannot well adapt to this difficult situation, since
they fail to extract the contextual information within different
spatial scales. Concretely, the convolution operation of GCN
models is usually governed by fixed neighborhood. Although
stacking more layers can incorporate contextual information
from larger spatial scales, a deep GCN model is very likely
to cause over-smoothing problem [50].

In this paper, we develop a dual interactive graph convo-
Iution module, where the interaction of multi-scale spatial
information can be leveraged to help better represent the
regions with diverse appearances. Considering that GCN is
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able to aggregate information within the corresponding neigh-
borhood, graphs constructed with different neighborhood sizes
are adopted in the two GCN branches, in order to charac-
terize spatial information at different scales. Here, the s-hop
neighbors of each region are considered to construct the graph
with neighborhood size s. To better describe the definition of
neighborhood size, Fig. 3 is used to exhibit the 1-hop and
2-hop neighbors of a central region x;. Note that an over-
sized neighborhood size is likely to incorporate ineffective
spatial information and result in heavy computational cost,
and thus it is essential to choose the reasonable neighborhood
sizes for graph construction, which will be further discussed in
the experiments. By aggregating the spatial information based
on different neighborhood sizes, feature representations Hgl)
and Hgl) can be generated. Here Hgl) and Hgl) denote the
outputs of the I*" graph convolutional layer in two branches,
respectively.

To leverage the interaction of multi-scale spatial informa-
tion, the dual interactive architecture is applied across the GCN
branches, as illustrated in Fig. 4. Here, the graph information
in each GCN branch can be helpful to refine the convolution
operation of the other branch. For example, in branch 1, the
adjacency matrix of the [*® graph convolutional layer Agl)
receives the information from branch 2 as follows:

a0 s,

- + Ble i, gyt

ij
where Hél_l) denotes the representations generated from the
(- 1)th layer in branch 2, 3, is the weight assigned to the
information from branch 2 and can be learned via gradient
descent. Similar to Eq. (11), the adjacency matrix Ag) in
branch 2 can be updated by

&

With Egs. (11) and (12), the similarities among graph nodes
serve as the supplement to the edge information and help refine
the graph structure. In the meanwhile, the node representations
can also get updated by adopting information from a different
spatial scale, namely

[Hgl)]i | + concat ([Hgl)]i ; MaxPool ([Ag)}i )) ;

(13)
[Hél)] ~ < concat ([Hgl)] ~, MaxPool <[Agl)} 4 >) ,

’ ’ las
where concat(-, -) is the concatenation of two vectors,
MaxPool(-) represents the max-pooling operation, and Hgl)
denotes the representations generated from the I*" layer in
branch 1. In Fig. 4, the blue arrows correspond to the inter-
action in Eqs. (11)-(12), and the orange arrows correspond to
the interaction in Eqgs. (13)-(14), respectively. With this dual
interactive module, spatial information at different scales can
be sufficiently exploited to help guide the graph convolution

operation and enhance the representation power of the GCN
model.

eﬂMﬂ A

]

_'YH [ng—l)] - [H(ll_l)]j‘: 2

i,

Pmue . (12)

]

+ e
J

3

fyin

Fig. 4. The interactive graph convolution layers used in our method. The
graphs in different branches are constructed based on different neighborhood
sizes. The blue and orange arrows denote the spatial information transferred
through graph nodes and edges, respectively.

D. Region-to-Pixel Assignment

By performing dual interactive graph convolution, we can
acquire improved region features from each GCN branch, i.e.,
HlL) and HgL), where L is the number of graph convolutional
layers. The region-level output can then be calculated by

o0=u®"+a®", (15)

in order to fuse the feature information at different spatial
scales. To obtain the class predictions of image pixels, we need
to re-project the region-level output O back into the 2D image
with grids of pixels, which is termed ‘graph re-projection’.
This region-to-pixel assignment is accomplished by

O = PO, (16)

where P has also been used for graph projection in Eq. (2).
Through graph re-projection, all the re-projected pixels will
have diverse features, even if some of them were assigned
to identical regions, and the contextual details can be well
preserved as a result.

In addition to the discriminative loss function L4;; men-
tioned above, we also employ the widely-used cross-entropy
loss function to penalize the differences between the network
output and the labels of labeled pixels, i.e.,

c
Loo=—Y_ Y Y0y,

i€yg j=1

A7)

where y¢ is the set of indices corresponding to the labeled
pixels, C' is the number of classes, and Y represents the
label matrix. As a result, we have the following overall loss
function:

L= [’cr() + O‘Edisa (18)

where « is the coefficient assigned to the discriminative loss
function and can be learned via gradient descent. Note that
our DIGCN algorithm is trained in an end-to-end way, where
full-batch gradient descent is used to update the network
parameters [10]. The implementation details of our DIGCN
are shown in Algorithm 1.

Finally, we will summarize the computational complexity
of our proposed method. To be concrete, the graph projection
step has a complexity of O(ndc), where n is the number of
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Algorithm 1 The Proposed DIGCN for HSI Classification

Input: Input image; number of iterations 7 ; learning rate 1; number
of graph convolutional layers L;

1: Initialize the anchor point matrix V with SLIC algorithm;

2: // Train the DIGCN model

3:fort=1to 7 do

4: Learn the region features X through Eq. (1) and Eq. (2);

5: Perform dual interactive graph convolution based on
Egs. (11)-(14);

6: Interpolate the region features back into the original 2D grids
by Eq. (16);

7: Calculate the error terms according to Eq. (18), and update

the network parameters using full-batch gradient descent;
8: end for
9: Conduct label prediction based on the trained network;
Output: Predicted label for each pixel.

image pixels, d is the dimensionality of pixel features, and c is
the number of projected graph nodes. Similarly, the graph pro-
jection step takes O(Cnc) with C representing the number of
classes. Besides, the computational complexity of performing
the dual interactive graph convolution is O(|€|u?dC’), where
|€| is the number of edges in the region-induced graph and
u 1s the number of hidden units. As a consequence, the total
computational complexity of our method is acceptable.

V. EXPERIMENTAL RESULTS

In this section, extensive experiments will be conducted to
test the effectiveness of the proposed DIGCN method, and
the corresponding algorithm analyses will also be provided.
Specifically, we first compare DIGCN with other state-of-the-
art approaches on four public HSI datasets, where four metrics
including per-class accuracy, Overall Accuracy (OA), Average
Accuracy (AA), and Kappa coefficient are utilized for the
evaluation of model performance. After that, we investigate
the impact of the number of labeled pixels on classification
accuracy. Then we analyze the convergence of the overall loss
empirically. Afterwards, we demonstrate that both the inter-
action manipulation and discriminative regularization in our
DIGCN are beneficial to obtaining the promising performance.

A. Experimental Settings

In our experiments, the performance of the proposed
DIGCN is evaluated on four real-world benchmark datasets,
i.e., the Indian Pines, University of Pavia, Salinas, and Houston
University, which will be introduced in the appendix part.
The DIGCN algorithm is implemented via TensorFlow with
Adam optimizer. For all the utilized four real-world datasets,
we randomly selected 30 labeled pixels (i.e., examples) per
class for network training, and 15 labeled examples will
be randomly chosen if the corresponding class contains less
than 30 pixels. During training, 90% of the labeled examples
are used to learn the network parameters and the remaining
10% are used as validation set to tune the hyperparameters.
Meanwhile, all the unlabeled examples are used as the test
set to evaluate the classification performance. As GCN-based
methods usually do not require deep structure to achieve
satisfactory performance [13], [51], we fix the number of graph

TABLE I
THE HYPERPARAMETER SETTINGS OF OUR METHOD ON DIFFERENT
DATASETS
Dataset T n u S1 S92
Indian Pines 1500 0.001 60 1 2
University of Pavia 500 0.001 80 1 5
Salinas 2000  0.0001 100 1 4
Houston University 500 0.001 240 1 2

convolutional layers to two for all the datasets. The selection
of other hyperparameters used in our DIGCN, including the
number of iterations 7, the learning rate 7, the number of
hidden units u, and the neighborhood sizes s; and ss have
been shown in Table I. Meanwhile, we will investigate the
parametric sensitivity of these hyperparameters in the appendix
part.

To evaluate the Cclassification ability of our proposed
DIGCN, several recent state-of-the-art HSI classification meth-
ods are employed for comparison. To be concrete, we employ
two CNN-based methods, namely Diverse Region-based deep
CNN (DR-CNN) [6] and CNN-Pixel-Pair Features (CNN-
PPF) [7], together with three GCN-based methods, i.e., Graph
Convolutional Network (GCN) [10], Spectral-Spatial Graph
Convolutional Network (S2GCN) [13], and miniGCN [16].
Besides, the classification performance of DIGCN is also
compared with three traditional machine learning methods,
i.e., Multiple Feature Learning (MFL) [52], Joint collaborative
representation and SVM with Decision Fusion (JSDF) [53],
and Edge-Preserving Filtering (EPF) [54]. Note that the hy-
perparameters of these baseline methods have been carefully
tuned, which is presented in the appendix part. Meanwhile,
all the methods are implemented ten times, and the mean
accuracies and standard deviations over these ten independent
implementations are reported. Moreover, to statistically vali-
date the superiority of our proposed DIGCN to the remaining
baselines, the paired t-test with significance level 0.05 is
adopted in our experiments.

B. Classification Results

To reveal the effectiveness of the proposed DIGCN, we
perform comparison evaluation of DIGCN against the afore-
mentioned baseline methods.

1) Results on the Indian Pines Dataset: The quantitative
results obtained by different methods on the Indian Pines
dataset are tabulated in Table II, where the highest value
in each row is marked in bold. We can observe that the
proposed DIGCN outperforms all the other compared methods
by a substantial margin in terms of OA, AA, and Kappa
coefficient, and the standard deviations are relatively small as
well. Meanwhile, one can also find that the improvement of
our DIGCN is statistically significant revealed by the t-test. We
can reasonably infer that the interaction of multi-scale spatial
information can help guide the graph convolution operation,
which further produces powerful representations.

A visual comparison of the classification results produced
by various methods on the Indian Pines dataset is presented in
Fig. 5, where the ground-truth map is exhibited in Fig. 5(b). As
can be observed, some of the pixels belonging to ‘Soybean-
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TABLE II
PER-CLASS ACCURACY, OA, AA (%), AND KAPPA COEFFICIENT ACHIEVED BY DIFFERENT METHODS ON INDIAN PINES DATASET. THE ‘v’ DENOTES
THAT OUR DIGCN APPROACH IS SIGNIFICANTLY BETTER THAN THE CORRESPONDING METHODS REVEALED BY THE PAIRED T-TEST WITH
SIGNIFICANCE LEVEL 0.05

1D GCN [10] S2GCN [13] miniGCN [16] DR-CNN [6] CNN-PPF [7] MFL [52] JSDF [53] EPF [54] DIGCN
1 95.0042.80 100.00+0.00 100.00+0.00 100.00£0.00 95.00+2.64 98.0610.58 100.00+0.00 90.12+15.01 99.15+1.90
2 56.71+4.42 84.43£2.50 56.66+8.14 80.38£1.50 73.53+5.61 74.7240.66 90.75£3.19 82.34+5.83 90.92+4.27
3 51.5042.56 82.87+5.53 61.97+5.92 82.21+£3.53 81.34+3.76 82.14+0.70 77.84+3.81 84.25+9.75 94.87+3.92
4 84.64+3.16 93.084+1.95 87.52+3.79 99.19+0.74 91.8443.53 93.6040.55 99.861-0.33 46.93+12.40 98.32+1.93
5 83.71£3.20 97.13+1.34 90.1241.87 96.47+£1.10 93.69+0.84 92.544:0.43 87.204+2.73 96.4413.26 95.29+3.44
6 94.03+2.11 97.294+1.27 96.66+1.68 98.62+1.90 97.46+1.01 98.4040.27 98.54+0.28 96.46+3.53 95.95+1.85
7 92.3140.00 92.314-0.00 98.75+3.95 100.00£0.00 75.38+8.73 97.2840.45 100.00+0.00 96.31+8.13 96.36+4.03
8 96.61+1.86 99.0310.93 94.671+4.22 99.78+0.22 98.0140.69 99.8240.05 99.8040.31 99.8240.48 99.8410.37
9 100.00+-0.00 100.00+0.00 100.00+0.00 100.00£0.00 100.00-£0.00 100.00+0.00 100.00+0.00 59.50+18.05 100.00-£0.00
10 77.47+1.24 93.77+3.72 70.92+4.63 90.41£1.95 82.30+£1.55 84.59+0.53 89.99+4.24 69.01+£7.22 89.58+4.95
11 56.56+1.53 84.9842.82 65.06+7.19 74.4610.37 62.6443.32 83.73+£0.39 76.75+5.12 91.01%5.15 91.75+3.52
12 58.2946.58 80.05£5.17 66.97+7.89 91.00+3.14 88.92+2.50 83.68+0.72 87.10+2.82 61.11+7.55 93.81+3.73
13 100.00+0.00 99.434-0.00 99.55+0.35 100.001-0.00 98.8040.57 99.204-0.06 99.89+0.36 100.00£0.00 99.65+0.68
14 80.03+£3.93 96.73£0.92 86.2615.23 91.85+3.40 86.49+2.23 96.8010.40 97.214+2.78 97.71+1.75 98.94+1.73
15 69.554-6.66 86.80+3.42 70.45+5.13 99.4440.28 86.71+£4.36 97.8610.20 99.581-0.68 77.34+7.74 98.58+1.60
16 98.4140.00 100.00+0.00 100.00£0.00 100.00-£0.00 92.70+3.45 98.7240.35 100.00+0.00 82.28+10.11 99.48+0.72
OA 69.24+1.56 v/ 89.4911.08 v/ 73.45+1.34 v 86.65+0.59 v/ 80.09+1.56 v/ 87.38+0.12 v 88.34+1.39 v 82.83£1.55v 94.16+1.07
AA 80.93£1.71v 92.994+1.04 v 84.1040.90 v/ 93.994+0.25 v 87.80£1.53 v 92.574+0.10 v 94.03+0.55 v/ 83.17£0.89 v/ 96.41+0.54
Kappa 65.27+1.80 v 88.00+1.23 v/ 69.92+1.51 v 84.88+0.67 v/ 77.52+1.74 v 85.6410.14 v 86.80+1.55 v 80.57+1.74 v 93.34+1.21
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Fig. 5. Classification maps obtained by different methods on Indian Pines dataset. (a) False color image; (b) Ground-truth map; (c) GCN; (d) S2GCN; (e)
miniGCN; (f) DR-CNN; (g) CNN-PPF; (h) MFL; (i) JSDF; (j) EPF; (k) DIGCN.

TABLE IIT
PER-CLASS ACCURACY, OA, AA (%), AND KAPPA COEFFICIENT ACHIEVED BY DIFFERENT METHODS ON UNIVERSITY OF PAVIA DATASET. THE ‘v’
DENOTES THAT OUR DIGCN APPROACH IS SIGNIFICANTLY BETTER THAN THE CORRESPONDING METHODS REVEALED BY THE PAIRED T-TEST WITH
SIGNIFICANCE LEVEL 0.05

1ID GCN [10] S2GCN [13] miniGCN [16]  DR-CNN [6]  CNN-PPF [7] MFL [52] JSDF [53] EPF [54] DIGCN
1 69.78+4.71 92.87+3.79 79.43£2.13 92.10+£3.34 95.734£0.80 94.45+0.25 82.401+4.07 97.78+1.27 84.59+3.64
2 54.10£10.54 87.06+4.47 90.70+1.94 96.39+3.20 84.01£1.99 90.17£0.65 90.76+3.74 97.30+2.03 94.75£2.79
3 69.69+4.48 87.97+4.77 81.07+2.33 84.231+0.71 86.45+1.94 85.051+0.54 86.71+4.14 87.69+7.20 95.10+£3.31
4 91.23+£7.02 90.85+0.94 96.84+0.74 95.26£0.67 91.70+£2.06 93.31+£0.28 92.88+2.16 73.83+£15.63 84.89+4.02
5 98.74+0.11 100.001-0.00 99.74+0.18 97.77£0.00 99.93+0.04 99.38+0.02 100.001-0.00 95.314£2.90 99.1740.61
6 65.34£10.53 88.6912.64 84.15+2.57 90.44+£2.27 93.57£1.28 93.31£0.20 94.30+4.55 73.19£10.16 99.97+0.05
7 86.641+4.68 98.88+£1.08 87.47+2.35 89.05+1.76 93.53+0.72 99.39£0.04 96.62+1.37 84.66£12.04 98.23£1.77
8 72.26+2.63 89.97+3.28 75.16£3.89 78.49+1.53 83.83£1.60 85.30+0.53 94.69+3.74 88.17+5.58 93.9442.67
9 99.93£0.06 98.89+0.53 99.98-£0.05 96.34+0.22 99.47+0.34 99.76£0.02 99.56£0.36 98.67+0.90 93.21+£5.05
OA 66.19+3.43 v 89.74+£1.70 v 87.17£1.05v"  92.62%1.15 88.72£0.95v"  91.54+0.30v"  90.82£1.30 v 89.08+£3.70 v\ 93.24+1.24
AA 78.63£1.23 v 92.80+£0.47 v/ 88.26+0.57v"  91.12+0.12v"  92.02+£0.37v"  93.35+£0.10v"  93.1040.65 v/ 88.51+2.87v  93.76:+0.90
Kappa  58.39+3.28 v 86.65+2.06 v/ 83.21£1.33v"  90.27+1.44 85.43£1.18v"  88.984+0.38 v 88.02+1.62 v 85.96+4.50 v 91.14+1.58

mintill’ are misclassified into ‘Corn-notill’ in all the classi-
fication maps, from which it can be inferred that these two
land-cover types have similar spectral signatures and are diffi-
cult to distinguish. Besides, the GCN-based methods, namely
S2GCN and DIGCN, achieve better performance than other
methods, demonstrating the power of graph convolution in HSI
classification. However, GCN suffers from pepper-noise-like
mistakes in several regions, which is because that traditional
GCN does not incorporate any spatial context. Comparatively,

the result of the proposed DIGCN yields smoother visual effect
and shows fewer misclassifications than all the other methods.

2) Results on the University of Pavia Dataset: Table III
reports the quantitative results of different methods on the
University of Pavia dataset. Similar to the observations on
the Indian Pines dataset, the results in Table III indicate
that the proposed DIGCN is still in the first place, which
again validates the strength of our proposed dual interactive
graph convolution. Moreover, it is worthwhile to note that
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Fig. 6. Classification maps obtained by different methods on University of Pavia dataset. (a) False color image; (b) Ground-truth map; (c) GCN; (d) S2GCN;
(e) miniGCN; (f) DR-CNN; (g) CNN-PPF; (h) MFL; (i) JSDF; (j) EPF; (k) DIGCN.

DR-CNN achieves relatively high OA when compared with
other baseline methods. The main reason is that DR-CNN can
flexibly capture the variations of object appearances around
objects by exploiting the diverse pre-defined convolutional
kernels, which contributes to the effectiveness of DR-CNN
in perceiving and handling the irregular class boundaries.
Therefore, the advantage of DR-CNN becomes prominent on
the datasets containing various irregular class boundaries, such
as the University of Pavia dataset. Owing to the exploration of
multi-scale spatial information, our DIGCN is able to precisely
perceive the diverse types of image regions. As a consequence,
the classification map of DIGCN exhibited in Fig. 6 reveals
stronger spatial correlations and fewer mistakes than other
competitors.

3) Results on the Salinas Dataset: Experimental results of
different methods on the Salinas dataset are listed in Table IV.
Compared with the best baseline method (i.e., JSDF), DIGCN
exhibits improvement of approximately 3% in terms of OA
and Kappa coefficient. Although DIGCN cannot reach the
best result in terms of AA, it yields more stable performance
than the competitors. Especially, in the classes ‘Grapes un-
trained” (ID = 8) and ‘Vineyard untrained” (ID = 15), the
class-specific accuracies of the proposed DIGCN are even
approximately 10% and 17% higher than those of the baseline
methods. As a consequence, we can see that DIGCN is able to
achieve promising results in different scenarios. Additionally,
different from the CNN-based model (namely DR-CNN and
CNN-PPF), our proposed DIGCN is able to achieve promising
results with very few labeled pixels. For example, by using
30 labeled pixels per class for training, the proposed DIGCN
outperforms CNN-PPF with 200 labeled pixels per class
for training [7]. Fig. 7 visualizes the classification results
generated by different methods, where the classification map
obtained by the proposed DIGCN is noticeably closer to
the ground-truth map (see Fig. 7(b)), compared with other
methods.

4) Results on the Houston University Dataset: Table V
gives the classification results obtained by different methods
on the Houston University dataset. Note that the classification
accuracies of the comparison methods are relatively low in
some land-cover classes, such as ‘Residential’ (ID = 7)
and ‘Road’” (ID = 9), which might be explained by the
existence of a few noisy pixels in these two classes. One can
observe that miniGCN is generally superior to GCN, owing
to the incorporation of local spatial context. Remarkably, our
proposed DIGCN achieves stable performance improvements
when compared with other methods, which is in consistent
with the observations on the above three datasets. The classi-
fication results produced by different methods are visualized in
Fig. 8. Generally, the pixel-wise classification model, namely
GCN, results in much salt and pepper noise in the classification
map. As expected, the proposed DIGCN method obtains
smoother and more compact map when compared with the
competitors.

C. Impact of the Number of Labeled Examples

In this experiment, classification accuracies of the proposed
DIGCN and the baseline methods under different numbers
of initially labeled examples are shown in Fig. 9. Here we
vary the number of labeled examples per class from 5 to 30
with an interval of 5 and report the OA gained by all the
methods on four datasets, i.e., the Indian Pines, University
of Pavia, Salinas, and Houston University. As observed in
Fig. 9, the classification performance of all the methods can
be generally improved by increasing the number of labeled
examples. However, on the Salinas dataset, the performance
of the CNN-based methods significantly declines when the
label information is very limited. It can be inferred that
the scarce supervision information might lead to overfitting
problem. Unlike CNN, GCN is able to utilize the unlabeled
data for model training, and thus the performance of GCN-
based methods is relatively stable when faced with insufficient
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TABLE IV
PER-CLASS ACCURACY, OA, AA (%), AND KAPPA COEFFICIENT ACHIEVED BY DIFFERENT METHODS ON SALINAS DATASET. THE ‘v’ DENOTES THAT
OUR DIGCN APPROACH IS SIGNIFICANTLY BETTER THAN THE CORRESPONDING METHODS REVEALED BY THE PAIRED T-TEST WITH SIGNIFICANCE

LEVEL 0.05

D GCN [10] S2GCN [13] miniGCN [16] DR-CNN [6] CNN-PPF [7] MFL [52] JSDF [53] EPF [54] DIGCN
1 98.6240.86 99.0140.44 99.404-0.85 99.4041.54 99.7740.21 99.634-0.07 100.004-0.00 100.000.00 100.00--0.00
2 99.0741.21 99.1840.59 99.904-0.06 99.4640.16 98.6940.89 99.344-0.06 100.00-£0.00 100.00--0.01 98.10+1.89
3 97.03%1.10 97.154£2.76 95.9843.19 98.5841.69 99.5040.49 99.7740.03 100.00-£0.00 95.1942.15 99.9140.25
4 99.284-0.49 99.1140.55 99.7640.25 99.7040.45 99.8140.04 98.884-0.07 99.934-0.09 97.7140.40 94.284+4.99
5 98.584-0.79 97.5542.35 98.3740.88 98.904-0.74 96.6441.26 98.724-0.04 99.7740.31 99.924-0.12 94.864-2.00
6 99.584-0.30 99.3240.35 99.854-0.23 99.574+0.78 99.3240.86 99.184-0.11 100.00-£0.00 99.9840.05 96.48+2.24
7 99.134:0.25 99.0640.27 99.7440.21 99.504-0.66 99.5940.13 98.6140.12 99.994-0.01 99.57+0.81 99.99+0.03
8 67.9448.33 70.6845.20 64.4247.73 75.59+8.19 74.7744.01 76.5740.71 87.7944.89 86.9146.12 97.65+1.81
9 98.504-0.85 98.3241.79 99.374-0.39 99.754-0.41 98.994-0.18 99.014-0.05 99.6740.33 99.484-0.16 99.58+1.15
10 89.6441.57 90.9742.59 93.404:2.06 94.2942.24 89.324:3.04 93.104:0.30 96.5312.55 88.664-4.11 95.4243.46
11 94.804:2.98 98.00%1.65 96.6612.75 97.5742.19 97.65+1.49 96.814:0.30 99.76+0.21 94.6343.60 96.26+3.55
12 99.714:0.08 99.5640.59 100.00-:0.00 99.994-0.05 99.8240.30 98.844-0.20 100.00-:0.00 99.7940.32 91.86+3.74
13 97.9940.61 97.8340.72 99.934-0.17 99.954-0.09 97.704:0.50 99.384-0.08 100.004-0.00 99.3441.19 92.1944.26
14 93.5842.60 95.75+1.65 96.75+1.46 98.57+1.13 94.14+1.22 96.204-0.32 98.714+0.72 98.11+1.33 95.95+2.76
15 66.1849.08 70.3643.62 68.9047.99 72.184+9.28 79.1241.99 78.8540.56 81.8645.26 71.824+11.68 98.44+1.58
16 97.24+1.21 96.90+1.97 97.354-0.60 98.4540.57 98.65+0.31 99.694-0.06 98.994-0.63 99.4342.06 100.00-£0.00
OA 87.16+0.85v  88.39+1.01 v 87.3841.34 v 90.35+1.14 v/ 90.524£0.77v  91.20£0.13v  94.6740.77 v 91.354£2.53 v 97.61+0.69
AA 93.5540.39 v 94.3040.47 v 94.3640.58 v/ 95.7240.39 95.2240.34 95.7940.04 97.69+0.34 95.6640.90 96.9440.66
Kappa 85.7440.92v  87.10£1.12v 85.99+1.48 v 89.264+1.26 v 89.464+0.85v  90.21£0.14v  94.064-0.85 v 90.3942.78 v/ 97.3440.76

Il Broccoli green weeds 1

Corn senesced green weeds

Il Broccoli green weeds 2

Lettuce romaines, 4 wk

(b)

I Fallow M Fallow rough plow [ Fallow smooth

Lettuce romaines, 5 wk

[ L ettuce romaines, 6 wk

)

Stubble

I L ettuce romaines, 7 wk

Celery Grapes untrained

Soil vineyard develop

Il Vineyard untrained M Vineyard vertical trellis

Fig. 7. Classification maps obtained by different methods on Salinas dataset. (a) False color image; (b) Ground-truth map; (c) GCN; (d) S2GCN; (e) miniGCN;
(f) DR-CNN; (g) CNN-PPF; (h) MFL; (i) JSDF; (j) EPF; (k) DIGCN.

TABLE V
PER-CLASS ACCURACY, OA, AA (%), AND KAPPA COEFFICIENT ACHIEVED BY DIFFERENT METHODS ON HOUSTON UNIVERSITY DATASET. THE ‘v’
DENOTES THAT OUR DIGCN APPROACH IS SIGNIFICANTLY BETTER THAN THE CORRESPONDING METHODS REVEALED BY THE PAIRED T-TEST WITH

SIGNIFICANCE LEVEL 0.05

ID GCN [10] S2GCN [13] miniGCN [16] DR-CNN [6] CNN-PPF [7] MFL [52] JSDF [53] EPF [54] DIGCN
1 88.16+1.90 96.3043.07 94.85+£3.58 95.62+5.41 98.6240.71 91.000.90 97.41+1.21 94.96+3.10 93.074+2.73
2 97.2040.48 98.57+1.47 98.35+1.71 96.784+3.92 98.15+0.53 94.97+0.62 99.48+0.25 95.30+4.43 94.17+£2.93
3 97.91£0.13 98.88+0.43 98.09£1.74 96.75+1.83 99.01£0.33 99.74+0.01 99.88+0.22 98.87£5.50 95.00£1.68
4 96.554+0.41 97.68+2.89 95.60+2.13 93.414+3.23 93.214+0.48 93.144+0.45 98.2242.80 96.014+6.45 90.4744.09
5 89.79+0.71 97.66+1.12 98.64£0.72 99.15+0.78 99.13£0.73 98.36+0.15 100.00-£0.00 96.19£6.36  100.00+0.00
6 98.21£1.15 96.84+1.17 96.58+1.80 93.831+2.22 91.2645.25 97.244+0.40 99.324+1.09 97.8446.21 94.1043.86
7 73.67+1.94 83.48+5.89 76.05+1.53 80.71£6.26 81.54+5.84 88.02+0.52 91.934+4.91 88.65+5.51 96.06+-2.80
8 65.71+4.64 76.15+4.37 77.28+3.75 78.32+5.43 68.15+£3.97 64.28+0.71 68.82+6.16 88.86+11.31  73.36+5.63
9 70.2743.03 82.17£1.78 78.98+£2.24 76.9015.62 77.17£1.65 67.914+0.57 69.4748.56 85.37£12.00  94.33+3.33
10 74.714+2.32 86.85+8.32 82.924+3.80 81.99+7.04 92.12+1.76 87.64+0.95 85.63+£9.32 91.01£12.99  88.76+7.63
11 75.36£2.37 88.57+£5.06 70.07£3.69 84.04+4.86 81.05+3.31 89.20+£0.47 94.51+3.82 89.52+£12.87  90.68+4.32
12 79.294+4.80 78.64+4.79 85.87£3.99 81.92+8.31 78.1045.07 77.6510.46 84.33£5.33 85.40£12.79  87.08+4.25
13 12.0942.68 75.624+6.93 80.93+2.57 86.54+2.58 72.554+4.36 80.76£0.40 98.10+1.28 63.43£12.60  92.79+4.34
14 86.03+£3.31 99.45+0.44 97.73£1.87 99.31£1.18 99.85+0.16 98.01£0.29 100.00-£0.00 95.22+4.55 100.00-£0.00
15 95.29+1.67 98.03+1.07 99.04+0.76 99.6010.50 98.6040.34 98.4740.11 99.8640.36 99.794+4.20 97.90+1.62
OA 80.35+£0.61 v 89.31+1.00v 87.00£0.71 v/ 88.08+£1.09 v/ 87.54£1.03 v 86.66£0.13 v 90.51£0.95 v/ 90.88+1.59 91.72+0.64
AA 80.02+£0.46 v 90.33£1.06 v 88.73+0.58 v/ 89.66+0.95 v/ 88.57£0.77 v/ 88.43+0.11v"  92.4640.75 91.09+1.63 92.524+0.16
Kappa  78.72+£0.66 v 88.44+1.08 v 85.94+0.77 v 87.10£1.18 v/ 86.53£1.12v 85.56+0.14 v/ 89.74£1.03 v 90.13+1.65 91.03+0.69
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Fig. 9. Overall accuracies of various methods under different numbers of labeled examples per class. (a) Indian Pines dataset; (b) University of Pavia dataset;

(c) Salinas dataset; (d) Houston University dataset.

labels. Moreover, it is noteworthy that the proposed DIGCN
can generally achieve superior classification results than the
competitors, even when the label rate is extremely low (namely
five labels per class). This is mainly due to the utilization of
the large number of unlabeled pixels during graph convolution.
Meanwhile, by leveraging the interaction of multi-scale spatial
information, the graph information can be refined, which helps
enhance the expressive power of the generated representations.

D. Convergence Analysis

To evaluate the convergence performance of the proposed
DIGCN, in Fig. 10, we exhibit the loss curves on different
datasets. The number of labeled pixels per class is kept
identical to the above experiments in Section V-B. From the
plots in Fig. 10, we can observe that our DIGCN converges
very quickly within 500 epochs on the Indian Pines, University
of Pavia dataset, and Houston University datasets. Since the

learning rate adopted on the Salinas dataset is relatively small,
the corresponding convergence speed can be slower than
those on other datasets. However, the convergence can still
be achieved within 1500 epochs. Owing to the satisfactory
convergence performance, DIGCN is effective and efficient
for HSI classification.

E. Ablation Study

As is mentioned in the introduction, the proposed DIGCN
algorithm comprises two parts that are critical for boosting
the classification performance, i.e., the dual interactive graph
convolution and the discriminative loss function. Here we use
the Indian Pines dataset to investigate the contributions of
these two operations, where the number of labeled pixels per
class is kept identical to the above experiments in Section V-B.
Every time we report the OA obtained by DIGCN without one
of the aforementioned operations. For simplicity, ‘DIGCN-v;’
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Fig. 10. Training losses of DIGCN on different datasets. (a) Indian Pines dataset; (b) University of Pavia dataset; (c) Salinas dataset; (d) Houston University

dataset.

TABLE VI
PER-CLASS ACCURACY, OA, AA (%), AND KAPPA COEFFICIENT
ACHIEVED BY DIFFERENT MODEL SETTINGS ON INDIAN PINES DATASET

D DIGCN-v; DIGCN-v2 DIGCN-s DIGCN-s2 DIGCN
1 100.00+0.00  100.00£0.00  100.00£0.00  100.00+0.00  99.15+1.90
2 86.39+4.81 82.68+5.79 82.94+£5.81 82.23+£6.95 90.92+4.27
3 94.74+3.06 93.8542.86 94.63+3.73 88.84+4.72 94.87+3.92
4 97.88+1.80 99.461+1.07 96.76+3.11 98.77+£2.79 98.32+1.93
5 92.55+4.36 92.944+4.09 83.30+8.13 84.69+0.75 95.29+3.44
6 94.54+3.37 94.81£5.25 94.1443.73 85.90+£2.91 95.95+1.85
7 97.854+2.78 97.46+3.82 98.254+4.74  100.00+0.00  96.361+4.03
8 99.91+0.21 100.00+£0.00  100.00+0.00  100.00+0.00  99.8440.37
9 100.00+0.00  100.00+0.00  100.00+0.00  100.00+0.00  100.00+0.00
10 85.24+2.95 91.76+3.36 81.58+7.17 82.47+5.69 89.58+£4.95
11 85.67+4.98 91.13+2.78 86.73£3.98 92.18+4.28 91.75£3.52
12 93.48+3.34 94.15+2.27 88.10£6.69 85.55+3.02 93.81+£3.73
13 99.23+1.91 99.93+0.20 99.8940.23 98.88+1.94 99.65+0.68
14 98.71+1.81 99.9440.08 97.77£2.52 99.95+0.08 98.94+1.73
15 99.19+0.52 98.47+3.12 95.57+3.52 98.06+3.99 98.58+1.60
16 99.24+1.29 99.43+1.61 100.00+0.00  100.00+0.00  99.48+0.72
OA 91.33+1.33 92.954+0.91 89.72+1.31 90.30+1.27 94.16+1.07
AA 95.2940.61 96.00+0.43 93.73+0.79 93.60+0.55 96.41+0.54
Kappa ~ 90.13£1.50 91.974+1.03 88.32+1.47 88.95+£1.43 93.34+1.21

TABLE VII

RUNNING TIME COMPARISON (IN SECONDS) OF DIFFERENT METHODS.
‘TP’ DENOTES INDIAN PINES DATASET, ‘PAVIAU’ DENOTES UNIVERSITY
OF PAVIA DATASET, AND ‘UH’ DENOTES HOUSTON UNIVERSITY
DATASET. THE BEST RECORD IS HIGHLITED IN BOLD ON EACH DATASET

Dataset GCN [10] S2GCN [13] miniGCN [16] DR-CNN [6] CNN-PPF [7] DIGCN
P 58 71 65 2753 1495 53

PaviaU 1783 1803 240 3251 1545 187

Salinas 3497 3528 594 3477 1769 616
UH 901 971 179 2969 1223 124

and ‘DIGCN-vy’ are utilized to indicate the reduced models
that remove the interaction operation and the discriminative
loss function, respectively. Table VI exhibits the comparative
results on the Indian Pines dataset. We observe that DIGCN
achieves higher OA over DIGCN-v; and DIGCN-v, by mar-
gins of 2.83% and 1.21%, respectively, which validates the
contributions of the dual interactive graph convolution and
the discriminative loss function to performance improvement.
In addition, we also investigate the importance of using dif-
ferent neighborhood sizes for graph convolution. Concretely,
Table VI exhibits the classification results of adopting only a
single neighborhood size, where ‘DIGCN-s;’ and ‘DIGCN-s5’
indicate the reduced models using the neighborhood size s;
and s, for graph convolution, respectively. We can observe that
even DIGCN-v; which removes the interaction operation from
DIGCN yields better results than DIGCN-s; and DIGCN-ss.
Hence it is critical to utilize the contextual information from
different spatial scales.

F. Running Time

Table VII reports the running time of different deep models
including GCN, S2GCN, miniGCN, DR-CNN, CNN-PPF, and
our DIGCN on the four datasets adopted above, where the
number of labeled pixels per class is kept identical to the

above experiments in Section V-B. The codes for all methods
are written in Python, and the running time is reported on a
server with a 3.60-GHz Intel Xeon CPU with 264 GB of RAM
and a Tesla P40 GPU. Although introducing the interaction of
contextual information needs additional computation, it can be
observed that DIGCN still shows high efficiency, especially
on the University of Pavia and the Salinas datasets, which is
owing much to the utilization of graph projection operation.
Since graph size gets significantly reduced, the corresponding
graph convolution step can be accelerated greatly. Meanwhile,
the computational complexity of the dual interactive graph
convolution is also acceptable. It is also notable that miniGCN
shows higher efficiency than our DIGCN on the Salinas
dataset. This is mainly due to that miniGCN adopts the mini-
batch strategy for network training, which is more efficient
than the full-batch fashion used by DIGCN. As a consequence,
when coping with large-scale datasets, the time consuming
of miniGCN can even be lower than DIGCN. Nevertheless,
the time cost of our DIGCN is still comparable to that
of miniGCN. All the comparison results indicate that the
proposed DIGCN is highly effective and efficient for HSI
classification.

VI. CONCLUSION

In this paper, we propose a novel Dual Interactive Graph
Convolutional Network (DIGCN) for HSI classification. In
our DIGCN model, the dual GCN branches are employed to
explore the contextual information at different spatial scales
and work interactively to refine the graph information. As
such, the expressive power of the generated feature represen-
tations can be gradually enhanced with the interactive graph
convolution. This dual interactive graph convolution offers
a new way to effectively incorporate the multi-scale spatial
information of HSI and the time complexity is acceptable.
Experimental results on four real-world HSI datasets validate
the effectiveness of our proposed DIGCN.

Since our proposed method is a bit sensitive to the selection
of neighborhood sizes, we plan to adaptively determine them
by resorting to the self-attention mechanism. Apart from this, it
is also worthwhile to exploit the supervision signals contained
in the hyperspectral data itself by utilizing some recent self-
supervised learning techniques.
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