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Multiscale Dynamic Graph Convolutional Network
for Hyperspectral Image Classification
Sheng Wan , Chen Gong , Member, IEEE, Ping Zhong , Senior Member, IEEE,

Bo Du , Senior Member, IEEE, Lefei Zhang , Member, IEEE, and Jian Yang , Member, IEEE

Abstract— Convolutional neural network (CNN) has demon-
strated impressive ability to represent hyperspectral images
and to achieve promising results in hyperspectral image clas-
sification. However, traditional CNN models can only operate
convolution on regular square image regions with fixed size and
weights, and thus, they cannot universally adapt to the distinct
local regions with various object distributions and geometric
appearances. Therefore, their classification performances are
still to be improved, especially in class boundaries. To alleviate
this shortcoming, we consider employing the recently proposed
graph convolutional network (GCN) for hyperspectral image
classification, as it can conduct the convolution on arbitrarily
structured non-Euclidean data and is applicable to the irregular
image regions represented by graph topological information.
Different from the commonly used GCN models that work on a
fixed graph, we enable the graph to be dynamically updated
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along with the graph convolution process so that these two
steps can be benefited from each other to gradually produce
the discriminative embedded features as well as a refined graph.
Moreover, to comprehensively deploy the multiscale information
inherited by hyperspectral images, we establish multiple input
graphs with different neighborhood scales to extensively exploit
the diversified spectral–spatial correlations at multiple scales.
Therefore, our method is termed multiscale dynamic GCN
(MDGCN). The experimental results on three typical benchmark
data sets firmly demonstrate the superiority of the proposed
MDGCN to other state-of-the-art methods in both qualitative
and quantitative aspects.

Index Terms— Dynamic graph, graph convolutional net-
work (GCN), hyperspectral image classification, multiscale
information.

I. INTRODUCTION

THE rapid development of optics and photonics has sig-
nificantly advanced hyperspectral techniques. As a result,

hyperspectral images, which consist of hundreds of contiguous
bands and contain large amounts of useful information, can be
easily acquired [1], [2]. Over the past few decades, hyperspec-
tral image classification has played an important role in various
fields, such as military target detection, vegetation monitoring,
and disaster prevention and control.

Up to now, diverse kinds of approaches have been pro-
posed for classifying the pixels of a hyperspectral image into
certain land-cover categories. The early-staged methods are
mainly based on conventional pattern recognition methods,
such as nearest neighbor classifier and linear classifier. Among
these conventional methods, K -nearest neighbor [3] has been
widely used due to its simplicity in both theory and practice.
Support vector machine (SVM) [4] also performs robustly
and satisfactorily with high-dimensional hyperspectral data.
In addition to these, graph-based methods [5], extreme learn-
ing machine [6], sparse representation-based classifier [7],
and many other methods have been further employed to
promote the performance of hyperspectral image classification.
Nevertheless, it is difficult to distinguish different land-cover
categories accurately by only using the spectral informa-
tion [8]. With the observation that spatially neighboring pixels
usually carry correlated information within a smooth spatial
domain, many researchers have resorted to spectral–spatial
classification methods and several models have been proposed
to exploit such local continuity [9], [10]. For example, Markov
random field (MRF)-based models [11] have been widely
used for deploying spatial information and have achieved
great popularity. In MRF-based models, spatial information
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is usually regarded as a priori before optimizing an energy
function via posteriori maximization. Meanwhile, morpholog-
ical profile-based methods [12], [13] have also been proposed
to effectively combine spatial and spectral information.

However, the aforementioned methods are all based on
the handcrafted spectral–spatial features [14], which heav-
ily depend on professional expertise and are quite empir-
ical. To address this defect, deep learning [15]–[19] has
been extensively employed for hyperspectral image classifi-
cation and has attracted increasing attention for its strong
representation ability. The main reason is that deep learn-
ing methods can automatically obtain abstract high-level
representations by gradually aggregating the low-level fea-
tures, by which the complicated feature engineering can be
avoided [20]–[22]. The first attempt to use deep learning
methods for hyperspectral image classification was made by
Chen et al. [23], where the stacked autoencoder was built for
high-level feature extraction. Subsequently, Mou et al. [18]
first employed recurrent neural network (RNN) for hyperspec-
tral image classification. Besides, Ma et al. [24] attempted
to learn the spectral–spatial features via a deep learning
architecture by fine-tuning the network via a supervised strat-
egy. Recently, the convolutional neural network (CNN) has
emerged as a powerful tool for hyperspectral image clas-
sification [25]–[27]. For instance, Jia et al. [28] employed
CNN to extract spectral features and achieved superior per-
formance to SVM. In addition, Hu et al. [29] proposed a
five-layer 1-D CNN to classify hyperspectral images directly
in the spectral domain. In these methods, the convolution
operation is mainly applied to spectral domain, while the
spatial details are largely neglected. Another set of deep learn-
ing approaches performs hyperspectral image classification
by incorporating spectral–spatial information. For example,
Makantasis et al. [30] encoded spectral–spatial information
with a CNN and conducted classification with a multilayer
perceptron. Besides, Zhang et al. [31] proposed a multidi-
mensional CNN to automatically extract hierarchical spectral
features and spatial features. Furthermore, Lee and Kwon [32]
designed a novel contextual deep CNN, which is able to
optimally explore contextual interactions by exploiting local
spectral–spatial relationship among spatially neighboring pix-
els. Specifically, the joint exploitation of spectral–spatial infor-
mation is obtained by a multiscale convolutional filter bank.
Although the existing CNN-based methods have achieved
good performance to some extent, they still suffer from some
drawbacks. To be specific, conventional CNN models only
conduct the convolution on the regular square regions, so they
cannot adaptively capture the geometric variations of different
object regions in a hyperspectral image. Besides, the weights
of each convolution kernel are identical when convolving all
image patches. As a result, the information of class bound-
aries may be lost during the feature abstraction process and
misclassifications will probably happen due to the inflexible
convolution kernel. In other words, the convolution kernels
with fixed shape, size, and weights are not adaptive to all the
regions in a hyperspectral image. Apart from that, CNN-based
methods often take a long training time because of the large
number of parameters.

Consequently, in this article, we propose to utilize the
recently proposed graph convolutional network (GCN) [33],
[34] for hyperspectral image classification. GCN operates on
a graph and is able to aggregate and transform feature infor-
mation from the neighbors of every graph node. Consequently,
the convolution operation of GCN is adaptively governed by
the neighborhood structure of a graph, and thus, GCN can be
applicable to the non-Euclidean irregular data based on the
predefined graph. Besides, both node features and local graph
structure can be encoded by the learned hidden layers, so GCN
is able to exhaustively exploit the image features and flexibly
preserve the class boundaries.

Nevertheless, the direct use of traditional GCN for hyper-
spectral image classification is still inadequate. Since hyper-
spectral data are often contaminated by noise, the initial input
graph may not be accurate. Specifically, the edge weight of
pair-wise pixels may not represent their intrinsic similarities,
which makes the input graph less than optimal. Furthermore,
traditional GCN can only use the spectral features of image
pixels without incorporating the spatial context, which is
actually of great significance in hyperspectral images. Addi-
tionally, the computational complexity of traditional GCN will
be unacceptable when the number of pixels gets too large.
To tackle these difficulties in applying GCN to hyperspectral
image classification, we propose a new type of GCN called
multiscale dynamic GCN (MDGCN). Instead of utilizing a
predefined fixed graph for convolution, we design a dynamic
graph convolution operation, by which the similarity mea-
sures among pixels can be updated by fusing current fea-
ture embeddings. Consequently, the graph can be gradually
refined during the convolution process of GCN, which will,
in turn, make the feature embeddings more accurate. The
processes of graph updating and feature embedding alternate,
which work collaboratively to yield faithful graph structure
and promising classification results. To take the multiscale
cues into consideration, we construct multiple graphs with
different neighborhood scales so that the spatial information
at different scales can be fully exploited [35]. Different from
commonly used GCN models which utilize only one fixed
graph, the multiscale design enables MDGCN to extract
spectral–spatial features with varied receptive fields, by which
the comprehensive contextual information from different levels
can be incorporated. Moreover, due to the large number of
pixels brought by the high spatial resolution of hyperspectral
images, the computational complexity of network training can
be extremely high. To mitigate this problem, we group the raw
pixels into a certain amount of homogeneous superpixels and
treat each superpixel as a graph node. As a result, the num-
ber of nodes in each graph will be significantly reduced,
which also helps to accelerate the subsequent convolution
process.

Note that the graphs used in the proposed MDGCN are con-
structed based on spatial neighborhoods, and thus, the scarce
initially labeled seed pixels, together with the massive unla-
beled pixels for classification, have been involved in graph
convolution and the learning process. In this sense, our pro-
posed MDGCN falls into the scope of transductive semisuper-
vised learning [36], where unlabeled data are accessible during
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the training stage and the goal is to accurately classify these
unlabeled data rather than building a generalizable classifier.

To sum up, the main contributions of the proposed MDGCN
are as follows. First, we propose a novel dynamic graph
convolution operation, which can reduce the impact of a
bad predefined graph. Second, multiscale graph convolution
is utilized to extensively exploit the spatial information and
acquire better feature representation. Third, the superpixel
technique is involved in our proposed MDGCN framework,
which significantly reduces the complexity of model training.
Finally, the experimental results on three typical hyperspectral
image data sets show that MDGCN achieves the state-of-the-
art performance when compared with the existing methods.

II. RELATED WORKS

In this section, we review some representative works on
hyperspectral image classification and GCN, as they are related
to this article.

A. Hyperspectral Image Classification

As a traditional yet important remote sensing technique,
hyperspectral image classification has been intensively inves-
tigated and many related methods have been proposed, such
as Bayesian methods [37], random forest [38], and kernel
methods [39]. Particularly, SVM has shown impressive clas-
sification performance with limited labeled examples [40].
However, SVM independently treats every pixel (i.e., exam-
ple) and fails to exploit the correlations among different
image pixels. To address this limitation, spatial information
is introduced. For instance, by directly incorporating spatial
information into kernel design, Camps-Valls et al. [41] used
SVM with composite kernels for hyperspectral image clas-
sification. Besides, filtering-based methods have also been
applied to spectral–spatial classification. He and Chen [42]
designed a 3-D filtering with a Gaussian kernel and its deriv-
ative for spectral–spatial information extraction. After that,
they also proposed a discriminative low-rank Gabor filtering
for spectral–spatial information extraction [43]. Additionally,
MRF has been commonly used to exploit spatial context for
hyperspectral image classification with the assumption that
spatially neighboring pixels are more likely to take the same
label [44]. However, when the neighboring pixels are highly
correlated, the standard neighbor determination approaches
will degrade the MRF models due to the insufficiently con-
tained pixels [45]. Therefore, instead of modeling the joint
distribution of spatially neighboring pixels, conditional ran-
dom field directly models the class posterior probability given
the hyperspectral image and has achieved encouraging perfor-
mance [46], [47].

The aforementioned methods simply employ various manu-
ally extracted spectral–spatial features to represent the pixels,
which highly depends on experts’ experience and is not
general. In contrast, deep learning-based methods [24], [48],
[49], which can generate features automatically, have recently
attracted increasing attention in hyperspectral image classifi-
cation. The first attempt can be found in [23], where stacked
autoencoder was utilized for high-level feature extraction.

Subsequently, Li et al. [50] used restricted Boltzmann machine
and deep belief network for hyperspectral image feature
extraction and pixel classification, by which the information
contained in the original data can be well retained. Meanwhile,
the RNN model has been applied to hyperspectral image
classification [51]. Shi and Pun [51] exploited multiscale
spectral–spatial features via hierarchical RNN, which can learn
the spatial dependence of nonadjacent image patches in a
2-D spatial domain. Among these deep learning methods,
CNN, which needs fewer parameters than fully connected
networks with the same number of hidden layers, has drawn
great attention for its breakthrough in hyperspectral image
classification. For example, in [29] and [52], CNN was used
to extract the spectral features, which performs better than
SVM. Nonetheless, excavating spatial information is of great
importance in hyperspectral image classification and many
CNN-based methods have done explorations on this aspect.
For instance, Yang et al. [53] proposed a two-channel deep
CNN to jointly learn spectral–spatial features from hyperspec-
tral images, where the channels are used for learning spectral
and spatial features, respectively. Besides, Yue et al. [54]
projected hyperspectral data to several principal components
before adopting CNN to extract spectral–spatial features. In the
recent work of Li et al. [55], deep CNN is used to learn
pixel-pair features, and the classification results of pixels
in different pairs from the neighborhood are then fused.
Additionally, Zhang et al. [14] proposed a deep CNN model
based on diverse regions, which employs different local or
global regions inputs to learn joint representation of each
pixel. Although CNN-based hyperspectral image classification
methods can extract spectral-spatial features automatically,
the effectiveness of the obtained features is still restricted by
some issues. For example, they simply apply the fixed con-
volution kernels to different regions in a hyperspectral image,
which does not consider the geometric appearance of various
local regions and may result in undesirable misclassifications.

B. Graph Convolutional Network

The concept of neural network for graph data was first
proposed by Gori et al. [56], of which the advantage over
CNN and RNN is that it can work on the graph-structured non-
Euclidean data. Specifically, the graph neural network (GNN)
can collectively aggregate the node features in a graph and
properly embed the entire graph in a new discriminative space.
Subsequently, Scarselli et al. [57] made GNN trainable by
a supervised learning algorithm for practical data. However,
their algorithm is computationally expensive and runs inef-
ficiently on large-scale graphs. Therefore, Bruna et al. [58]
developed the operation of “graph convolution” based on
spectral property, which convolves on the neighborhood of
every graph node and produces a node-level output. After
that, many extensions of graph convolution have been investi-
gated and achieved advanced results [59], [60]. For instance,
Hamilton et al. [61] presented an inductive framework called
“GraphSAGE,” which leverages node features to effectively
generate node embeddings for previously unseen data. Apart
from this, Defferrard et al. [33] proposed a formulation of
CNNs in the context of spectral graph theory. Based on their
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Fig. 1. Framework of our algorithm. (a) Original hyperspectral image. (b) Superpixels segmented by the SLIC algorithm [65], where a local region of the
hyperspectral image is exhibited, which contains eight superpixels x1, x2, · · · , x8. In (c), the circles and green lines represent the graph nodes and edges,
respectively, where different colors of the nodes represent different land-cover types. Specifically, at each scale, the edge weight is updated gradually along
with the convolution on graph nodes so that the graph can be dynamically refined. Here, two dynamic graph convolutional layers are employed for each scale,
where softplus [66] is utilized as the activation function. In (d), the classification result is acquired by integrating the multiscale outputs, and the cross-entropy
loss is used to penalize the label difference between the output and the seed superpixels.

work, Kipf and Welling [34] proposed a fast approximation
localized convolution, which makes the GCN model able to
encode both graph structure and node features. In their work,
GCN was simplified by a first-order approximation of graph
spectral convolution, which leads to more efficient filtering
operations.

With the rapid development of graph convolution theories,
GCN has been widely applied to various applications, such as
recommender systems [62] and semantic segmentation [63].
Besides, to the best of our knowledge, GCN has been
deployed for hyperspectral image classification in only one
prior work [64]. However, [64] only utilizes a fixed graph
during the node convolution process, and thus, the intrinsic
relationship among the pixels cannot be precisely reflected.
Moreover, the neighborhood size in their method is also fixed,
and thus, the spectral–spatial information in different local
regions cannot be flexibly captured. To cope with these issues,
we propose a novel dynamic multiscale GCN that dynami-
cally updates the graphs and fuses multiscale spectral–spatial
information for hyperspectral image classification. As a result,
the accurate node embeddings can be acquired, which ensures
satisfactory classification performance.

III. PROPOSED METHOD

This section details our proposed MDGCN model (see
Fig. 1). When an input hyperspectral image is given, it is

preprocessed by the simple linear iterative clustering (SLIC)
algorithm [65] to be segmented into several homogeneous
superpixels. Then, graphs are constructed over these super-
pixels at different spatial scales. After that, the convolutions
are conducted on these graphs, which simultaneously aggre-
gates multiscale spectral–spatial features and also gradually
refine the input graphs. The superpixels potentially belonging
to the same class will be ideally clustered together in the
embedding space. Finally, the classification result is produced
by the well-trained network. Next, we detail the critical
steps of our MDGCN by explaining the superpixel segmen-
tation (see Section III-A), presenting the GCN backbone (see
Section III-B), elaborating the dynamic graph evolution (see
Section III-C), and describing the multiscale manipulation (see
Section III-D).

A. Superpixel Segmentation

A hyperspectral image usually contains hundreds of thou-
sands of pixels, which may result in unacceptable computa-
tional complexity for the subsequent graph convolution and
classification. To address this problem, we adopt a segmen-
tation algorithm named SLIC [65] to segment the entire
image into a small amount of compact superpixels, and each
superpixel represents a homogeneous image region with strong
spectral–spatial similarity. Concretely, the SLIC algorithm
starts from an initial grid on the image and then creates
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segmentation through iteratively growing the local clusters
using a k-means algorithm. When the segmentation is finished,
each superpixel is treated as a graph node instead of the
pixel in the input image; therefore, the amount of graph
nodes can be significantly reduced, and the computational
efficiency can be improved. Here, the feature of each node
(i.e., superpixel) is the average spectral signatures of the pixels
involved in the corresponding superpixel. Another advantage
for implementing the superpixel segmentation is that the
generated superpixels also help to preserve the local structural
information of a hyperspectral image, as nearby pixels with
high spatial consistency have a large probability to belong to
the same land-cover type (i.e., label).

B. GCN

GCN [34] is a multilayer neural network, which oper-
ates directly on a graph and generates node embeddings by
gradually fusing the features in the neighborhood. Different
from traditional CNN that only applies to data represented by
regular grids, GCN is able to operate on the data with arbitrary
non-Euclidean structure. Formally, an undirected graph is
defined as G = (V, E), where V and E are the sets of nodes
and edges, respectively. The notation A denotes the adjacency
matrix of G, which indicates whether each pair of nodes is
connected and can be calculated as

Ai j =
{

e−γ ‖xi−x j‖2 , if xi ∈ Nei(x j ) or x j ∈ Nei(xi )

0, otherwise
(1)

where the parameter γ is empirically set to 0.2 in the exper-
iments, xi represents a superpixel and Nei(x j ) is the set of
neighbors of the example x j .

To conduct node embeddings for G, spectral filtering on
graphs is defined, which can be expressed as a signal x filtered
by gθ = diag(θ) in the Fourier domain, namely

gθ � x = UgθU�x (2)

where U is the matrix composed of the eigenvectors of the
normalized graph Laplacian L = I−D−1/2AD−1/2 = U�U�.
Here, � is a diagonal matrix containing the eigenvalues of
L, D is the degree matrix Dii = ∑

j Ai j , and I denotes
the identity matrix with proper size throughout this article.
Then, we can understand gθ as a function of the eigenvalues
of L, i.e., gθ (�). To reduce the computational consumption
of eigenvector decomposition in (2), Hammond et al. [67]
approximated gθ(�) by a truncated expansion in terms of
Chebyshev polynomials Tk(x) up to K th order, which is

gθ ′(�) ≈
K∑

k=0

θ ′k Tk(�̃) (3)

where θ ′ is a vector of Chebyshev coefficients; �̃ =
2/(λmax)� − I with λmax being the largest eigenvalue of L.
According to [67], the Chebyshev polynomials are defined as
Tk(x) = 2xTk−1(x)− Tk−2(x) with T0(x) = 1 and T1(x) = x.
Therefore, the convolution of a signal x by the filter gθ ′ can
be written as

gθ ′ � x ≈
K∑

k=0

θ ′k Tk(L̃)x (4)

where L̃ = 2/(λmax)L − I denotes the scaled Laplacian
matrix. Equation (4) can be easily verified by using the fact
(U�U�)k = U�kU�. It can be observed that this expression
is a K th-order polynomial regarding the Laplacian (i.e., K -
localized), that is to say, the filtering only depends on the nodes
that are at most K steps away from the central node. In this
article, we consider the first-order neighborhood, i.e., K = 1,
and thus, (4) becomes a linear function on the graph Laplacian
spectrum with respect to L.

After that, we can build a neural network based on graph
convolutions by stacking multiple convolutional layers in the
form of (4), and each layer is followed by an element-wise
nonlinear operation softplus(·) [66]. In this way, we can
acquire a diverse class of convolutional filter functions by
stacking multiple layers with the same configuration. With the
linear formulation, Kipf and Welling [34] further approximated
λmax ≈ 2, as the neural network parameters can adapt to this
change in scale during the training process. Therefore, (4) can
be simplified to

gθ ′ � x ≈ θ ′0x + θ ′1(L− I)x = θ ′0x − θ ′1D−
1
2 AD−

1
2 x (5)

where θ ′0 and θ ′1 are two free parameters. Since reducing the
number of parameters is beneficial to address overfitting, (5)
is converted to

gθ � x ≈ θ(I+ D−
1
2 AD−

1
2 )x (6)

by letting θ = θ ′0 = −θ ′1. Since I + D−1/2AD−1/2 has the
eigenvalues in the range [0, 2], repeatedly applying this opera-
tor will lead to numerical instabilities and exploding/vanishing
gradients in a deep neural network. To cope with this problem,
Kipf and Welling [34] performed the renormalization trick
I + D−1/2AD−1/2 → D̃−1/2ÃD̃−1/2 with Ã = A + I and
D̃ii =∑

j Ãi j . As a result, the convolution operation of GCN
model can be expressed as

H(l) = σ(ÃH(l−1)W(l)) (7)

where H(l) is the output (namely, embedding result) of the
lth layer; σ(·) represents an activation function, such as the
softplus function [66] used in this article; and W(l) denotes
the trainable weight matrix included by the lth layer.

C. Dynamic Graph Evolution

As mentioned in Section I, one major disadvantage of
conventional GCN is that the graph is fixed throughout the
convolution process, which will degrade the final classification
performance if the input graph is not accurate. To remedy this
defect, in this article, we propose a dynamic GCN in which the
graph can be gradually refined during the convolution process.
The main idea is to find an improved graph by fusing the
information of current data embeddings and the graph in the
previous layer.

In the lth layer, we define an n-dimensional random variable
x(l) ∈ R

n corresponding to the data x(l) ∈ R
d , where d is the

number of spectral bands. Specifically, the elements of x(l)

represent the similarities between x(l) and all the n examples
[i.e., the row of A(l) corresponding to x(l)]. Here, A(l) ∈
R

n×n is the adjacency matrix in the lth layer that carries
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full pair-wise similarities among all the n examples. Then,
according to [68] and [69], we may assume that the random
variable x(l) ∈ R

n satisfies Gaussian distribution, namely,
p(x(l)) = N (x(l)|μ(l),A(l)), where μ(l) is the unknown
mean. Similarly, we can also assume that the random variable
h

(l)
corresponding to the embedding result h(l) is Gaussian

distributed with the embedding kernel KE = H(l)H(l)� being
the covariance, where KE ∈ R

n×n encodes the full pair-wise
similarities among the embeddings generated by the lth layer.
Based on the definitions mentioned earlier, the fused kernel
can be obtained by linearly combining A(l) and KE , namely

F(l) = A(l) + αKE (8)

where α is the weight assigned to the embedding kernel
KE . The operation in (8) actually corresponds to the addition
operator: z(l) = x(l) + √αh

(l)
, where z(l) is the fused result.

Referring to the kernel fusion technique in [68], we obtain
p(z(l)) = N (z(l)|μ(l),A(l)+αH(l)H(l)�) = N (z(l)|μ(l), F(l)),
where μ(l) is the unknown mean.

From (8), we can see that this fusion technique utilizes the
information of the embedding results encoded in KE and also
the previous adjacency matrix A(l) to refine the graph. The
advantages of such strategy are twofold. First, the introduction
of embedding information helps to find a more accurate graph.
Second, the improved graph will in turn make the embeddings
more discriminative. However, there are still some problems
regarding the fused kernel F(l). The fusion in (8) will lead to
performance degradation if the embeddings are not sufficiently
accurate to characterize the intrinsic similarities of the input
data. As a result, according to [69], we need to reemphasize the
inherent structure among the input data carried by the initial
adjacency matrix. Therefore, we do the following projection
on the fused result z(l) by using the initial adjacency matrix
A, which leads to:

x(l+1) = Az(l) + β(l)ε (9)

where ε denotes white noise, i.e., p(ε) = N (ε|0, 1); the
parameter β(l) is used to control the relative importance of
ε. With this projection, we have

p(x(l+1)|z(l)) = N (x(l+1)|Az(l), β(l)I) (10)

where I is an identity matrix. Therefore, the marginal distrib-
ution of x(l+1) is

p(x(l+1)) =
∫

N (z(l)|μ(l), F(l))N (x(l+1)|Az(l), β(l)I)dz(l)

= N (x(l+1)|Aμ(l), AF(l)A� + β(l)I). (11)

Since x(l+1) is Gaussian distributed with the covariance
A(l+1), the adjacency matrix A(l+1) can be dynamically
updated as

A(l+1)← A(A(l) + αH(l)H(l)�)A� + β(l)I. (12)

To start the iteration depicted by (12), A(1) can be calculated
as A(1)

i j = e−γ ‖xi−x j‖2 with γ being the tuning parame-
ter. Here, in order to reduce the disturbance of noise and
improve the quality of graph convolution, we only consider
the correlations among the neighboring examples. Therefore,

Fig. 2. Illustration of multiple scales considered by our method. The green
nodes denote the one-hop neighbors of xi , and the orange nodes together with
the green nodes represent xi ’s two-hop neighbors.

the adjacency matrix used in the lth graph convolutional layer
can be computed as

A(l)
i j =

{
A(l)

i j , if xi ∈ Nei(x j ) or x j ∈ Nei(xi )

0, otherwise.
(13)

D. Multiscale Manipulation

Multiscale information has been widely demonstrated to be
useful for hyperspectral image classification problems [70],
[71]. This is because the objects in a hyperspectral image usu-
ally have different geometric appearances, and the contextual
information revealed by different scales helps to exploit the
abundant local property of image regions from diverse levels.
In our method, the multiscale spectral–spatial information is
captured by constructing graphs at different neighborhood
scales. Specifically, at the scale s, every superpixel xi is
connected to its s-hop neighbors. Fig. 2 exhibits the one- and
two-hop neighbors of a central example xi to illustrate the
multiscale design. Then, the receptive field of xi at the scale
s is formed as

Rs(xi) = Rs−1(xi ) ∪ R1(Rs−1(xi )) (14)

where R0(xi ) = xi and R1(xi ) is the set of one-hop neigh-
bors of xi . By considering both the effectiveness and the
efficiency, in our method, we construct the graphs at scales
1–3. Therefore, the formulation of the graph convolutional
layer is expressed as

H(l)
s = σ

(
A(l)

s H(l−1)
s W(l)

s

)
(15)

where A(l)
s , H(l)

s , and W(l)
s denote the adjacency matrix,

the output matrix, and the trainable weight matrix of the lth
graph convolutional layer at the scale s, respectively. Note that
the input matrix H(0) is shared by all scales. Based on (15),
the output of MDGCN can be obtained by

O =
∑

s
H(L)

s (16)

where L is the number of graph convolutional layers shared by
all scales and O is the output of MDGCN. The convolution
process of MDGCN is summarized in Algorithm 1. In our
model, the cross-entropy error is adopted to penalize the
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Algorithm 1 Multiscale Dynamic Convolution Process of
MDGCN
Input: Input matrix H(0); number of scales S; number of

graph convolutional layers L; initial adjacency matrices
A(1)

s (1 ≤ s ≤ S);
1: for l = 1 to L do
2: Calculate the outputs of the l th layer H(l)

s (1 ≤ s ≤ S)
according to Eq. (15);

3: Update the graphs A(l+1)
s (1 ≤ s ≤ S) according to

Eq. (12) and Eq. (13);
4: end for
5: Calculate the network output according to Eq. (16);

Output: Network output O.

Algorithm 2 Proposed MDGCN for Hyperspectral Image
Classification
Input: Input image; number of iterations T = 5000; learning

rate η = 0.0005; number of scales S = 3; number of graph
convolutional layers L = 2;

1: Segment the whole image into superpixels via SLIC algo-
rithm;

2: Construct the initial adjacency matrices A(1)
s (1 ≤ s ≤ S)

according to Eq. (1);
3: // Train the MDGCN model
4: for t = 1 to T do
5: Conduct multi-scale dynamic convolution by Algo-

rithm 1;
6: Calculate the error term according to Eq. (17), and

update the weight matrices W(l)
s (1 ≤ l ≤ L, 1 ≤

s ≤ S) using full-batch gradient descent;
7: end for
8: Conduct label prediction by Algorithm 1;

Output: Predicted label for each superpixel.

difference between the network output and the labels of the
original labeled examples, which is

L = −
∑
g∈yG

C∑
f=1

Yg f ln Og f (17)

where yG is the set of indices corresponding to the labeled
examples, C denotes the number of classes, and Y denotes
the label matrix. Similar to [34], the network parameters here
are learned by using full-batch gradient descent, where all
superpixels are utilized to perform gradient descent in each
iteration. The implementation details of our MDGCN are
shown in Algorithm 2.

IV. EXPERIMENTAL RESULTS

In this section, we conduct exhaustive experiments to val-
idate the effectiveness of the proposed MDGCN method and
also provide the corresponding algorithm analyses. To be
specific, we first compare MDGCN with other state-of-the-
art approaches on three publicly available hyperspectral image
data sets, where four metrics, including per-class accuracy,
overall accuracy (OA), average accuracy (AA), and kappa

Fig. 3. Indian Pines. (a) False-color image. (b) Ground-truth map.

coefficient, are adopted. Then, we demonstrate that both the
multiscale manipulation and the dynamic graph design in our
MDGCN are beneficial to obtaining the promising perfor-
mance. After that, we validate the effectiveness of our method
in dealing with the boundary regions. Finally, we compare the
computational time of various methods to show the efficiency
of our algorithm.

A. Data Sets

The performance of the proposed MDGCN is evaluated on
three data sets, i.e., the Indian Pines, the University of Pavia,
and the Kennedy Space Center, which will be introduced next.

1) Indian Pines: The Indian Pines data set was collected
by the Airborne Visible/Infrared Imaging Spectrometer sensor
in 1992, which records northwestern India. It consists of
145 × 145 pixels with a spatial resolution of 20 m × 20 m
and has 220 spectral channels covering the range from 0.4 to
2.5 μm. As a usual step, 20 water absorption and noisy
bands are removed, and 200 bands are reserved. The original
ground truth includes 16 land-cover classes, such as “Alfalfa,”
“Corn-notill,” and “Corn-mintill.” Fig. 3 shows the false-color
image and ground-truth map of the Indian Pines data set. The
amounts of labeled and unlabeled pixels of various classes are
listed in Table I.

2) University of Pavia: The University of Pavia data set
captured the Pavia University in Italy with the ROSIS sensor
in 2001. It consists of 610 × 340 pixels with a spatial
resolution of 1.3 m × 1.3 m and has 103 spectral channels
in the wavelength range from 0.43 to 0.86 μm after removing
noisy bands. This data set includes nine land-cover classes,
such as “Asphalt,” “Meadows,” and “Gravel,” which are shown
in Fig. 4. Table II lists the amounts of labeled and unlabeled
pixels of each class.

3) Kennedy Space Center: The Kennedy Space Center data
set was taken by the AVIRIS sensor over Florida with a
spectral coverage ranging from 0.4 to 2.5 μm. This data set
contains 224 bands and 614 × 512 pixels with a spatial
resolution of 18 m. After removing water absorption and
noisy bands, the remaining 176 bands of the image have
been preserved. The Kennedy Space Center data set includes
13 land-cover classes, such as “Srub,” “Willow swamp,” and
“CP hammock.” Fig. 5 shows the false-color image and
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TABLE I

NUMBERS OF LABELED AND UNLABELED PIXELS OF ALL
CLASSES IN THE INDIAN PINES DATA SET

Fig. 4. University of Pavia. (a) False-color image. (b) Ground-truth map.

TABLE II

NUMBERS OF LABELED AND UNLABELED PIXELS OF ALL

CLASSES IN THE UNIVERSITY OF PAVIA DATA SET

ground-truth map of the Kennedy Space Center data set. The
numbers of labeled and unlabeled pixels of different classes
are listed in Table III.

B. Experimental Settings

In our experiments, the proposed algorithm is implemented
via TensorFlow with Adam optimizer. For all the adopted

Fig. 5. Kennedy Space Center. (a) False-color image. (b) Ground-truth map.

TABLE III

NUMBERS OF LABELED AND UNLABELED PIXELS OF ALL

CLASSES IN THE KENNEDY SPACE CENTER DATA SET

three data sets introduced in Section IV-A, usually, 30 labeled
pixels (i.e., examples) are randomly selected in each class for
training, and only 15 labeled examples are chosen if the cor-
responding class has less than 30 examples. During training,
90% of the labeled examples are used to learn the network
parameters and 10% are used as validation set to tune the
hyperparameters. Meanwhile, all the unlabeled examples are
used as the test set to evaluate the classification performance.
The network architecture of our proposed MDGCN is kept
identical for all the data sets. Specifically, three neighborhood
scales, namely, s = 1, s = 2, and s = 3, are employed for
graph construction to incorporate multiscale spectral–spatial
information into our model. For each scale, we employ two
graph convolutional layers with 20 hidden units, as GCN-
based methods usually do not require deep structure to achieve
satisfactory performance [64], [72]. Besides, the learning rate
and the number of training epochs are set to 0.0005 and 5000,
respectively.

To evaluate the classification ability of our proposed
method, other recent state-of-the-art hyperspectral image clas-
sification methods are also used for comparison. Specif-
ically, we employ two CNN-based methods, i.e., diverse
region-based deep CNN (DR-CNN) [14] and recurrent
2-D-CNN (R-2D-CNN) [20], together with two GCN-based
methods, i.e., GCN [34] and spectral–spatial graph convo-
lutional network (S2GCN) [64]. Meanwhile, we compare
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TABLE IV

PER-CLASS ACCURACY, OA, AA (%), AND KAPPA COEFFICIENT ACHIEVED BY DIFFERENT METHODS ON THE INDIAN PINES DATA SET

the proposed MDGCN with three traditional hyperspectral
image classification methods, namely, matrix-based discrimi-
nant analysis (MDA) [8], hierarchical guidance filtering-based
ensemble classification (HiFi) [73], and joint collaborative
representation and SVM with decision fusion (JSDF) [74],
respectively. All these methods are implemented ten times
on each data set, and the mean accuracies and standard
deviations over these ten independent implementations are
reported.

C. Classification Results

To show the effectiveness of our proposed MDGCN, here
we quantitatively and qualitatively evaluate the classification
performance by comparing MDGCN with the aforementioned
baseline methods.

1) Results on the Indian Pines Data Set: The quanti-
tative results obtained by different methods on the Indian
Pines data set are summarized in Table IV, where the high-
est value in each row is highlighted in bold. We observe
that the proposed MDGCN achieves the top-level perfor-
mance among all the methods in terms of OA, AA, and
Kappa coefficient, and the standard deviations are also very
small. Therefore, it is reasonable to infer that the proposed
MDGCN is more stable and effective than the compared
methods.

Fig. 6 shows a visual comparison of the classification results
generated by different methods on the Indian Pines data set,
and the ground-truth map is provided in Fig. 6(b). Compared
with the ground-truth map, it can be seen that some pixels
of “Soybean-mintill” are misclassified into “Corn-notill” in
all the classification maps because these two land-cover types
have similar spectral signatures. Meanwhile, due to the lack of
spatial context, the classification map obtained by GCN suffers
from pepper-noise-like mistakes within certain regions. Com-
paratively, the result of the proposed MDGCN method yields
a smoother visual effect and shows fewer misclassifications
than other compared methods.

2) Results on the University of Pavia Data Set: Table V
presents the quantitative results of different methods on the
University of Pavia data set. Similar to the results on the
Indian Pines data set, the results in Table V indicate that
the proposed MDGCN is in the first place and outperforms
the compared methods by a substantial margin, which again
validates the strength of our proposed multiscale dynamic
graph convolution. Besides, it is also notable that DR-CNN
performs better than HiFi, which is different from the results
on the Indian Pines data set. The main reason is that DR-CNN
exploits diverse predefined convolutional kernels, which can
flexibly capture the variations of contextual distribution around
objects. Therefore, it can effectively perceive and handle
the irregular class boundaries, and thus, the advantage of
DR-CNN will become prominent on the data sets that contain
many irregular class boundaries, such as the University of
Pavia data set. Furthermore, from the classification results
in Fig. 7, stronger spatial correlation and fewer misclassi-
fications can be observed in the classification map of the
proposed MDGCN when compared with DR-CNN and other
competitors.

3) Results on the Kennedy Space Center Data Set: Table VI
presents the experimental results of different methods on
the Kennedy Space Center data set. It is apparent that the
performance of all methods is better than that on the Indian
Pines and University of Pavia data sets. This could be due
to that the Kennedy Space Center data set has higher spatial
resolution and contains less noise than the Indian Pines and
the University of Pavia data sets and thus is more suitable
for classification. Note that slight gaps can still be observed
between HiFi and our MDGCN in terms of OA. For the
proposed MDGCN, it is also worth noting that misclassifi-
cations only occur in the sixth class (“Hardwood”), which
further demonstrates the advantage of our proposed MDGCN.
Fig. 8 shows the classification results of the eight different
methods, where some critical regions of each classification
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Fig. 6. Classification maps obtained by different methods on the Indian Pines data set. (a) False-color image. (b) Ground-truth map. (c) GCN. (d) S2GCN.
(e) R-2D-CNN. (f) DR-CNN. (g) MDA. (h) HiFi. (i) JSDF. (j) MDGCN.

TABLE V

PER-CLASS ACCURACY, OA, AA (%), AND KAPPA COEFFICIENT ACHIEVED BY DIFFERENT METHODS ON THE UNIVERSITY OF PAVIA DATA SET

TABLE VI

PER-CLASS ACCURACY, OA, AA (%), AND KAPPA COEFFICIENT ACHIEVED BY DIFFERENT METHODS ON THE KENNEDY SPACE CENTER DATA SET

map are enlarged for better performance comparison. From
Fig. 8, we can see that our MDGCN is able to produce
precise classification results on these small and difficult
regions.

D. Impact of the Number of Labeled Examples
In this experiment, we investigate the classification accura-

cies of the proposed MDGCN and the other competitors under
different numbers of labeled examples. To this end, we vary
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Fig. 7. Classification maps obtained by different methods on the University of Pavia data set. (a) False-color image. (b) Ground-truth map. (c) GCN.
(d) S2GCN. (e) R-2D-CNN. (f) DR-CNN. (g) MDA. (h) HiFi. (i) JSDF. (j) MDGCN.

Fig. 8. Classification maps obtained by different methods on the Kennedy Space Center data set. (a) False-color image. (b) Ground-truth map. (c) GCN.
(d) S2GCN. (e) R-2D-CNN. (f) DR-CNN. (g) MDA. (h) HiFi. (i) JSDF. (j) MDGCN. In (b)–(j), zoomed-in views of the regions enclosed in black and green
boxes are shown at the left side of each map.

the number of labeled examples per class from 5 to 30 and
report the OA gained by all the methods on three data sets,
i.e., the Indian Pines, the University of Pavia, and the Kennedy
Space Center (see Fig. 9). We can make the observation from
Fig. 9 that the performance of all methods can be improved
by increasing the number of labeled examples. It is also note-
worthy that the proposed MDGCN consistently yields higher
OA than all the baseline methods with different numbers of
labeled examples. Besides, the performance of MDGCN is

more stable than the compared methods with the changed
number of labeled examples. All these observations indicate
the effectiveness and stability of our MDGCN method.

E. Ablation Study

As mentioned in Section I, our proposed MDGCN contains
two critical parts for boosting the classification performance,
i.e., multiscale operation and dynamic graph convolution.
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Fig. 9. Overall accuracies of various methods under different numbers of labeled examples per class. (a) Indian Pines data set. (b) University of Pavia data
set. (c) Kennedy Space Center data set.

Fig. 10. Classification maps obtained by different methods regarding a boundary region in the Indian Pines data set. (a) Studied boundary region.
(b) Ground-truth map. (c) GCN. (d) S2GCN. (e) R-2D-CNN. (f) DR-CNN. (g) MDA. (h) HiFi. (i) JSDF. (j) MDGCN.

TABLE VII

PER-CLASS ACCURACY, OA, AA (%), AND KAPPA COEFFICIENT

ACHIEVED BY DIFFERENT GRAPH CONVOLUTION

APPROACHES ON THE INDIAN PINES DATA SET

Here, we use the three data sets, i.e., the Indian Pines, the Uni-
versity of Pavia, and Kennedy Space Center, to demonstrate
the usefulness of these two operations, where the number of
labeled pixels per class is kept identical to the abovemen-

TABLE VIII

PER-CLASS ACCURACY, OA, AA (%), AND KAPPA COEFFICIENT

ACHIEVED BY DIFFERENT GRAPH CONVOLUTION APPROACHES

ON THE UNIVERSITY OF PAVIA DATA SET

tioned experiments in Section IV-C. To show the importance
of multiscale technique, we exhibit the classification results
in Tables VII–IX, by using the dynamic graphs with three
different neighborhood scales, i.e., s = 1, s = 2, and
s = 3. It can be observed that higher neighborhood scale
does not necessarily result in better performance, since the
spectral–spatial information cannot be sufficiently exploited
with only a single-scale graph, especially in complex image
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TABLE IX

PER-CLASS ACCURACY, OA, AA (%), AND KAPPA COEFFICIENT
ACHIEVED BY DIFFERENT GRAPH CONVOLUTION APPROACHES

ON THE KENNEDY SPACE CENTER DATA SET

scenes. Comparatively, we find that MDGCN consistently
performs better than the settings of s = 1, s = 2, and s = 3
in terms of OA, AA, and Kappa coefficient, which indicates
the usefulness of incorporating the multiscale spectral–spatial
information into the graphs.

To show the effectiveness of dynamic graphs,
Tables VII–IX also list the results acquired by only
using multiscale graph convolution network (MGCN),
where the graphs are fixed throughout the classification
procedure. Compared with the results of MDGCN, there is
a noticeable performance drop in the OA, AA, and Kappa
coefficient of MGCN, which indicates that utilizing fixed
graph convolution is not ideal for accurate classification.
Therefore, the dynamically updated graph in our method is
critical to rendering good classification results.

F. Classification Performance in the Boundary Region

One of the defects in traditional CNN-based methods is
that the weights of each convolution kernel are identical when
convolving all image patches, which may produce misclas-
sifications in boundary regions. Different from the coarse
convolution of traditional CNN-based methods with fixed size
and weights, the graph convolution of the proposed MDGCN
can be flexibly applied to irregular image patches and thus
will not significantly “erase” the boundaries of objects during
the convolution process. Therefore, the boundary information
will be preserved and our MDGCN will perform better than
the CNN-based methods in boundary regions. To reveal this
advantage, in Fig. 10, we show the classification maps of
a boundary region in the Indian Pines data set obtained by
different methods, where the number of labeled pixels per
class is kept identical to the abovementioned experiments in
Section IV-C. The investigated boundary region is indicated
by a black box in Fig. 10(a). Note that the results near
the class boundaries are quite confusing and inaccurate in
the classification maps of GCN, S2GCN, R-2D-CNN, DR-
CNN, MDA, HiFi, and JSDF, since the spatial information is
very limited to distinguish the pixels around class boundaries.
In contrast, the classification map of the proposed MDGCN

TABLE X

RUNNING TIME COMPARISON (IN SECONDS) OF DIFFERENT METHODS.
“IP” DENOTES THE INDIAN PINES DATA SET, “PAVIAU” DENOTES

UNIVERSITY OF PAVIA DATA SET, AND “KSC” DENOTES THE

KENNEDY SPACE CENTER DATA SET

[see Fig. 10(j)] is more compact and accurate than those of
other methods.

G. Running Time

Table X reports the running time of deep models, includ-
ing GCN, S2GCN, R-2D-CNN, DR-CNN, and the proposed
MDGCN on the three data sets adopted earlier, where the
number of labeled pixels per class is kept identical to the
abovementioned experiments in Section IV-C. The codes for
all methods are written in Python, and the running time is
reported on a server with a 3.60-GHz Intel Xeon CPU with
264 GB of RAM and a Tesla P40 GPU. Although the time
consumption of our proposed MDGCN is higher than GCN
and S2GCN on the Indian Pines and the Kennedy Space
Center data sets, the classification performance of MDGCN
is obviously better than those two methods. Moreover, on the
large-scale data set (namely, the University of Pavia), our
MDGCN requires much less time than GCN and S2GCN to
achieve satisfactory results. Due to the utilization of superpixel
technique, the size of the graphs used in MDGCN can be
significantly reduced. Consequently, the time consumption
of the proposed MDGCN becomes quite low on large-scale
data sets, even though MDGCN employs multiple graphs at
different neighborhood scales.

V. CONCLUSION

In this article, we propose a novel MDGCN for hyper-
spectral image classification. Different from prior works that
depend on a fixed input graph for convolution, the proposed
MDGCN critically employs dynamic graphs that are gradually
refined during the convolution process. Therefore, the graphs
can faithfully encode the intrinsic similarities among the image
regions and help to find accurate region representations. Mean-
while, multiple graphs with different neighborhood scales are
constructed to fully exploit the multiscale information, which
comprehensively discover the hidden spatial context carried by
different scales. The experimental results on three widely used
hyperspectral image data sets demonstrate that the proposed
MDGCN is able to yield better performance when compared
with the state-of-the-art methods.
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