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Abstract—Cardinality constraint, namely, constraining the
number of nonzero outputs of models, has been widely used in
structural learning. It can be used for modeling the dependencies
between multidimensional labels. In hashing, the final outputs
are also binary codes, which are similar to multidimensional
labels. It has been validated that estimating how many 1’s in a
multidimensional label vector is easier than directly predicting
which elements are 1 and estimating cardinality as a prior step
will improve the classification performance. Hence, in this arti-
cle, we incorporate cardinality constraint into the unsupervised
image hashing problem. The proposed model is divided into two
steps: 1) estimating the cardinalities of hashing codes and 2) then
estimating which bits are 1. Unlike multidimensional labels that
are known and fixed in the training phase, the hashing codes
are generally learned through an iterative method and, there-
fore, their cardinalities are unknown and not fixed during the
learning procedure. We use a neural network as a cardinality
predictor and its parameters are jointly learned with the hash-
ing code generator, which is an autoencoder in our model. The
experiments demonstrate the efficiency of our proposed method.

Index Terms—Approximate nearest neighbors searching,
binary embedding, cardinality, image hashing.

I. INTRODUCTION

IMAGE hashing maps the original images to binary hashing
codes to boost the efficiency of approximate nearest-

neighbor searching. With the dramatically increasing number
of images online, hashing methods have attracted lots of
research interest.
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Generally, there are two kinds of categorizations for image
hashing methods. They can be categorized to deep and shallow
methods based on whether deep neural networks are incor-
porated. Due to the effectiveness on feature extraction of
deep neural networks, the deep models are generally supe-
rior to shallows ones. On the other hand, based on whether
annotations or labels are available, they can be categorized
to supervised, unsupervised, and semisupervised methods.
Supervised methods benefit from the annotations and usually
achieve better performances. However, manual annotation is
too laborious especially for large-scale datasets.

In this article, we are interested in unsupervised deep image
hashing. We investigate image hashing in a different view.
We treat hashing codes as dynamic labels during the iterative
learning procedure and, hence, in each iteration, hashing codes
can be treated as a multilabel classification problem. Thanks to
the development in deep structured prediction, we can incorpo-
rate the advanced methods to our hashing method. Specifically,
we model cardinality [4] in hashing.

Cardinality refers to the number of nonzero elements of a
vector. Applying cardinality constraint in hashing is to con-
strain the number of 1’s of a binary hashing code. There are
two main advantages to model cardinality in hashing. First,
similar to cardinality constraints in multilabel classification,
predicting which elements are nonzero will be easier after
predicting how many nonzero elements there are [4]. Hence,
we can use a two-step scheme to generate hashing codes to
improve the performance, that is: 1) predicting the cardinality
of hashing codes of a sample and 2) then predict which bits
are 1. Second, imposing cardinality constraints on two hashing
codes is equivalent to imposing an upper and a lower bounds
on their Hamming distance. If two hashing codes are of sim-
ilar cardinalities, they are more likely true neighbors and the
possible Hamming distances between their hashing codes are
in a narrow interval. That is, cardinality constraints help filter
out some local optima of hashing’s object function. Let two
binary vectors bi and bj be of cardinalities zi and zj. It can be
proven that the Hamming distance between bi and bj varies
within the interval [|zi − zj|, min(zi + zj, 2l − zi − zj)], where
l is the length of bi and bj (Appendix A). From this view,
our two-step scheme can also be treated as a coarse-to-fine
scheme. Estimating the cardinality is an interval estimation
for hashing codes, which is a coarse estimation. The second
step is a point estimation, which generates hashing codes.

The overall flowchart of our method is shown in Fig. 1.
In the training phase, we train a convolutional autoencoder
to generate codes in real for images. The hashing codes are
generated by maximizing the covariance between real codes
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Fig. 1. Flowchart of our proposed method. In the training phase, the autoencoder generates the real codes for input images. The orthogonality, balance, and
cardinality constraints are used to generate hashing codes. In the testing phase, the cardinalities of queries are first predicted and then the hashing codes are
generated by an encoder with the cardinality constraint.

and hashing codes. Besides, the classical balance and orthog-
onality constraints [35] are used to regularize the code matrix.
To model cardinality, we train a separate convolutional neural
network (CNN) to predict the cardinality of the corresponding
hashing code of an input image. Note that the labels for train-
ing the cardinality predictor, that is, cardinalities of hashing
codes, are varying during the training process. The cardinality
predictor maps images to cardinalities of their hashing codes.
On the other hand, the outputs of the cardinality predictor
are used to “supervise” the learning of hashing codes. Since
similar images should have similar hashing codes and hence,
similar cardinalities, the outputs of the cardinality predictor
should be similar for similar images. In the case that hashing
codes of two similar images are too dissimilar, outputs of the
cardinality predictor will try to make their hashing codes have
similar cardinalities and hence, constrain the bounds of their
Hamming distances. In the testing phase, the cardinality of a
query image’ hashing code is first predicted. Then, the real
codes are generated by the convolutional autoencoder. Finally,
the hashing code is generated based on the real codes and
cardinality.

The remainder of this article is organized as follows. In
Section II, related works are briefly reviewed. The preliminar-
ies are given in Section III. The formulation of our models is
shown in Section IV. In Section VI, we report the experimen-
tal results of our method. The conclusive remarks are given in
Section VII.

II. RELATED WORKS

Based on whether label information is available, hash-
ing methods can be categorized into supervised [23], unsu-
pervised, and semisupervised ones [33]. The unsupervised
methods can be further divided into data-dependent and
data-independent categories.

The locality-sensitive hashing (LSH) [2] method is one
of the most popular data-independent hashing methods. To
improve the performance of LSH, cosine similarity [5] and

kernel similarity [16] can be adopted. Due to the lack of
data information, these methods are generally inferior to
data-dependent ones.

Data-dependent methods learn hashing functions on training
data. It aims to maximize the correlation between structures of
training data and hashing codes. Most data-dependent hashing
methods relax the binary constraints on hashing codes to avoid
an NP-hard problem. The intermediate is a code matrix in real
and hashing codes are generated by thresholding it. Spectral
hashing (SH) [35], one of the earliest data-dependent meth-
ods, models the hashing problem as minimizing the average
Hamming distance between similar neighbors. SH generates
hashing codes by solving the relaxing mathematical problem
to circumvent the computation of pairwise distances in the
entire dataset, that is, the affinity matrix, which is required to
compute the average Hamming distance.

Anchor graph hashing (AGH) [20] approximates the true
affinity matrix by a highly sparse affinity matrix using anchor
points. Discrete graph hashing (DGH) [19] follows this idea
and incorporates the orthogonality constraint of a code matrix
in the training procedure.

Iterative quantization (ITQ) [38] rotates the principal com-
ponents to minimize the quantization errors. There are
some variants of ITQ based on principal component anal-
ysis (PCA) [13], [14] and linear discriminant analysis [30].
Unlike ITQ that precomputes the principal components, which
are projections of original data on principal component
coefficients, neighborhood discriminant hashing (NDH) [31]
computes the projections during the optimization procedure.

In general, linear dimension reduction methods, such as
PCA, are inferior to nonlinear embeddings. Inductive man-
ifold hashing (IMH) [26], [27] learns a nonlinear manifold
on a small subset and inductively inserts the remaining
data. Since the orthogonality and balance constraints were
proposed in [35], they have never been simultaneously ful-
filled. Theoretically, DGH can generate an orthogonal and
balanced code matrix by setting a parameter to infinity.
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However, it is impractical to optimize an object function with
infinite parameters, so the authors preset the parameter to
a positive constant. Most methods focus on the orthogonal-
ity of the real intermediates and hope that quantizing the
intermediates will not break the orthogonality. Nevertheless,
Tian et al. [32] demonstrated that quantization will only pre-
serve the orthogonality of intermediates in some extremely
ideal cases.

Matrix factorization is another promising technique for
hashing. Ding et al. [9] used collective matrix factorization for
multimodal hashing. Lu et al. [22] used matrix decomposition
to extract latent semantic features for generating discrimina-
tive binary codes. Zhu et al. [41] proposed a topic hypergraph
hashing method by exploiting auxiliary texts around images.
Liu et al. [18] noticed the sparsity of data structure and
proposed an adaptively sparse matrix factorization for hashing.
Most methods try to solve a continuous optimization problem
by relaxing the binary constraint. Wang et al. [34] trans-
formed the discrete optimization problem to a continuous one
to circumvent quantization errors. He et al. [10] proposed
a bidirectional discrete matrix factorization hashing method,
which simultaneously learns codes from data and recovers data
from codes.

Besides the above-mentioned shallow hashing methods,
deep neural networks have been used in hashing models.
Deep transfer hashing (DTH) [39] substitutes the principal
coefficients and orthogonal rotation matrix in ITQ with a
deep neural network. Deep binary descriptors (DeepBit) [17]
uses VGGNet [29] to extract the features of images and
learns the hashing codes with a combined object function of
quantization loss, balanced regularization, and rotation invari-
ant objective. Stochastic generative hashing (SGH) [7] learns
hashing codes by the minimum description length principle
so as to maximally compress the dataset as well as regener-
ate outputs from the codes. Liu et al. generated pseudolabels
for a self-taught hashing algorithm. Semantic structure-based
unsupervised hashing (SSDH) [36] uses two half Gaussian dis-
tributions to estimate pairwise cosine distances of data points
and assign any two data points with obviously smaller dis-
tance as semantically similar pair. A pairwise loss function
to preserve this semantic structure is used to train the neural
network. DistillHash [37] learns confidence similarity signals
first to supervise the subsequent hashing code generating.
Lu et al. [21] integrated the quantization process and rank-
ing process into a unified architecture. Shen et al. [28] found
that graphs built from original data introduce biased prior
knowledge of data relevance and therefore, they proposed a
twin-bottleneck autoencoder to trace the code-driven similarity
graph. Graph convolutional network hashing [40] introduces
an intuitive asymmetric graph convolutional layer to avoid
using affinity graph as the only learning guidance.

III. PRELIMINARIES

We consider the setting of embedding the data matrix X ∈
R

n×d to a hashing code matrix B ∈ {0, 1}n×l, where n is the
number of data points, d is the dimension of data, and l is
the code length. We use the lower case xi and bi to represent

the ith row of X and B, that is, the ith data point and its
corresponding hashing code, respectively.

Our model can be formulated as minimization of an energy
function

B = arg min
B

E(X, B)

s.t. B ∈ {0, 1}. (1)

We decompose (1) into three components

E(X, B) = h(X, B) + p(B) +
n∑

i=1

cg(xi)(bi) (2)

where h(X, B) is the hashing function that embeds an input
data matrix X to the binary hashing code matrix B, p(B) is a
function modeling the prior knowledge for B, z = g(xi) is the
cardinality for the ith data point, and cg(xi)(bi) is the cardinal-
ity potential, which constrains bi to be of cardinality g(xi).

Although our formulation is inspired by that proposed in [4]
and somewhat similar to its formulation, they are completely
different in meanings and hence, their optimization procedures
are also different. In [4], the formulation is given by

ŷi = arg max
y

s(xi, yi) (3)

where yi is the label vector for xi and s(xi, yi) is a score
function. Then, the authors decompose s(xi, yi) as follows:

s(xi, yi) =
∑

j

si
(
xi, yij

) + sp(yi) + sz(yi) (4)

where yij is the jth element of label vector yi, si aims to mea-
sure the score of assigning yi to xi, sg is a global potential,
which is modeled by a simple neural network, and sz is similar
to our modeling of cardinality constraints except that their con-
straints are applied on labels while our constraints are applied
on hashing codes.

The key difference of label yi and bi is in the training phase.
yi is known and hence, it is a supervised learning, while bi

is unknown and hence, our method is unsupervised. As yi is
known in the training phase, the global potential sp can be
learned. sp act as a prior knowledge on the distribution of yi.
However, we must manually design the prior knowledge p(B)

in our model. The cardinality of hashing code bi is varying
during the optimization procedure in the training phase while
the cardinality of label yi is a fixed number in the training
phase.

IV. FORMULATION

In this section, we will explain our models in detail. There
are three main components of our models. The hashing com-
ponent is modeled by a deep convolutional autoencoder. The
bottleneck of the autoencoder is used as real codes for images.
For an unsupervised hashing model, we incorporate some prior
knowledge on hashing codes as another component of our
model, that is, the famous orthogonality and balance con-
straints [35]. Finally, we model cardinality as a component
in our model.
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TABLE I
STRUCTURE OF THE AUTOENCODER

Fig. 2. Drawback of directly quantizing bottleneck outputs. The data of the
same class are quantized into two different hashing codes. ITQ rotates the
data to make data of the same class locate in the same quadrant.

A. Hashing Function

We use a convolutional autoencoder to embed the images
into real vectors. The structure of the autoencoder is given in
Table I. Quantizing the output of the bottleneck of the autoen-
coder is an intuitive and widely used way to generate binary
codes. As illustrated in Fig. 2, such quantization may greatly
break the structure of learned codes.

There are several ways to solve this problem. For exam-
ple, ITQ [38] reduces the dimension of the zero-centered data
matrix by PCA and rotates the principal components using an
orthogonal matrix.

In this article, we try to directly maximize the covariance
between vi and bi, where vi is the output of the bottleneck
of the autoencoder for xi. Mathematically, our hashing model
can be formulated as

arg max
B

tr
((

V − V̄
)(

B − B̄
)�)

s.t. B ∈ {0, 1}n×c (5)

where V̄ and B̄ are the column means of V and B, respectively.
vi is the ith row of V. The object function of the autoencoder is

arg min
�

‖X − f (X;�)‖2
F (6)

where f (X;�) is the function of the autoencoder and � is
the set of its weights and biases. We subtract (6) by (5) to

formulate h

h(X, B) = ‖X − f (X;�)‖2
F − λ1tr

((
V − V̄

)(
B − B̄

)�)
(7)

where λ1 is a positive constant tuned in the experiments. The
binary constraints on B will be also applied on the optimization
problem (2). In Section V, we will show how to minimize (2).

B. Prior Knowledge on Hashing Codes

For unsupervised image hashing, orthogonality and balance
constraints [35] are widely used as prior knowledge on hash-
ing codes. The orthogonality constrains the code matrix to be
orthogonal, that is

B′�B′ = nI (8)

where I is a d × d identity matrix and B′ = (B − 0.5) × 2.
The balance constraints require each column of B′ to have the
same number of −1 and 1, or equivalently the same number
of 0 and 1 in B, that is,

11×nB′ = 01×l (9)

or equivalently

11×nB = n

2
× 11×l. (10)

For simplicity, when the dimensions of 1, 0, and I can be
determined by the context, we use them without explicitly
declaring their dimensions. For example, given X is an n × p
matrix, in 1�X, 1 is a column vector of length n. Vectors are
defaulted to be column vectors in this article.

Due to binary constraints on B, these two constraints
are generally intractable. Inspired by [19], we define a set
� = {Y ∈ R

n×l|1�Y = 0, Y�Y = nI}. Let �� denotes an
approximate projection operator, which computes an approx-
imation of a Euclidean projection onto � in a differentiable
way. ��(B′) approximately solve the following problem:

min
Y

∥∥B′ − Y
∥∥2

F

s.t. Y ∈ � (11)

or equivalently

min
Y

∥∥B′ − Y
∥∥2

F

s.t. 1�Y = 0, Y�Y = nI. (12)

The formulation of p(B) in (2) is p(B) = ‖2(B − 0.5) − Y‖2
F

and the constraint Y ∈ � should be applied on (2).

C. Learning With Cardinality Potentials

The cardinality potential consists of two steps. First, we
learn a cardinality predictor z = g(xi) to estimate the cardi-
nality of bi corresponding to an input xi. Second, we learn the
hashing codes satisfying the cardinality constraint.

The cardinality predictor z = g(xi) is modeled as a CNN
(Table II). The fully connected neural network is used on the
top of convolutional layers to generate l-D outputs. One-hot
vector is used to represent the cardinality, that is, the kth ele-
ment is 1 and other elements are 0 when the cardinality is k.
The cardinality prediction is equivalent to classify the input
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TABLE II
STRUCTURE OF CARDINALITY PREDICTOR

images into l categories according to their hashing codes’
cardinalities. Hence, cross-entropy can be used as the object
function.

In the second step, we learn the hashing codes based on the
cardinality. First, we define the potential sz as

sz(bi) =
{

0, if b�
i 1 = z

+∞, otherwise.
(13)

Let us define the differetiable approximate Euclidean projec-
tion of bi on a set Z = {ui|∀i, uij ∈ [0, 1],

∑
j uij = z} as

�Z (bi). �Z approximately solves the following problem:

min
ui,�

‖bi − ui‖2
F

s.t.
∑

j

uij = z, 0 ≤ uij ≤ 1 ∀j ∈ 1, . . . , l (14)

where � is the parameter set of the cardinality predictor. The
formulation of cg(xi)(bi) in (2) is cg(xi)(bi) = ‖bi − ui‖2

F and
the constraint ui ∈ Z should be applied on (2).

D. Overall Formulation

The overall formulation of our model can be written as

arg min
B,�,�,Y,{ui}

E = ‖X − f (X;�)‖2
F

− λ1tr
((

V − V̄
)(

B − B̄
)�)

+ λ2‖2(B − 0.5) − Y‖2
F + λ3

n∑

i=1

‖bi − ui‖2
F

s.t. B ∈ {0, 1}n×l, 1�Y = 0, Y�Y = nI∑

j

uij = z, 0 ≤ uij ≤ 1 ∀j ∈ 1, . . . , l (15)

where λ1, λ2, and λ3 are all positive constants empirically
tuned in the experiments. V is the output of the bottleneck of
the autoencoder. It is not an independent variable in (15). It
can be completely determined by the network parameters �.
� is the parameter set of cardinality predictor.

V. OPTIMIZATION

In this section, we are going to show our algorithm to min-
imize the constrained problem (15). We use an alternative
minimization procedure to minimize (15). To handle the con-
straints, we project the code matrix onto the boundaries of the
constraints.

A. Update � and �

The gradient of E in (15) with respect to � can be easily
computed by the deep learning library, such as PyTorch [24]
used in our implementation. ∂E/∂� is only related to the first
two terms in (15). The updating of � is also implemented by
PyTorch.

The initialization of B is important in our method. We tried
random initialization for B. It is difficult to converge to a
good result. For updating �, B acts like labels. A random B
brings too much erroneous information, which misleads the
autoencoder. We found that when the autoencoder is trained
in advance, X is somewhat well represented by V and in the
later iterations, V will instruct B to a good position. This trick
is easy to implement. Train the autoencoder for several epochs
in advance without considering B and then quantize the output
of bottleneck to initialize B.

B. Update Y

Updating Y is to solve the following problem:

arg min
Y

∥∥B′ − Y
∥∥2

F

s.t. Y�Y = I, 1�Y = 0. (16)

Note that B′ = 2(B−0.5). We solve (16) by two subproblems.
First, we project B′ on set �1 = {Y|1�Y = 0}. Then, we
project the resulting projection in the first step on set �2 =
{Y|Y�Y = I}.

It can be proven that ��1(B
′) = B′ − 1(1�/n)B′ is the

solution of the first subproblem (Appendix B). The projec-
tion on �2 is equivalent to the orthogonal Procrustes problem,
which has a analytic solution [25]. Using singular value
decomposition (SVD), we obtain

��2

(
B′) = LR� (17)

where the columns of L and R are the left and right singular
vectors of B′. The solution of projecting B′ on the intersection
of � = �1 ∩ �2 can be calculated by Dykstra’s algorithm [3]
(Appendix C).

C. Update ui

Updating ui is to solve the following problem:

arg min
ui

‖bi − ui‖2
F

s.t.
∑

j

uij = z, 0 ≤ uij ≤ 1 ∀j ∈ 1, . . . , l. (18)

Following [4], we represent Z as an intersection of Z1 =
{ui|∀i, uij ≤ 1} and Z2 = {ui|∀i, uij ≥ 0,

∑
j uij = z}, that is,

Z = Z1 ∩ Z2.
The projection on Z1 can be obtained by �Z1(bi) =

min(bi, 1). The projection on Z2 can be obtained by
Algorithm 1. Again, Dykstra’s algorithm is used to calculate
the projection on the intersection Z = Z1 ∩ Z2.

The gradients of the cardinality prediction CNN are cal-
culated by the deep learning library, that is, PyTorch in our
implementation.
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Algorithm 1 Algorithm for Projection on Z1

Input: vector bi ∈ R
l, cardinality z.

Output: max(bi − θ, 0).
1: Sort bi into μ : μ1 ≥ · · · ≥ μl.
2: Compute μ̄ the cumulative sum of μ.
3: Let α be a vector of indices 1, . . . , l.
4: δ = Softsign(μ ◦ α − (μ̄ − z)).
5: ρ = Softmax(δ ◦ α).
6: θ = 1

α�ρ
(μ̄�ρ − z).

Algorithm 2 Algorithm to Minimize (15)
Input: X, c, λ1, λ2 and λ3.
Output: B.
1: Train the autoencoder (Table I) for several epochs in

advance.
2: repeat
3: Update � and �.
4: Project B′ on �1 by B′ − 11�

n B′.
5: Project B′ on �2 by Eq. (17)
6: Calculate the projection of B on �1 ∩ �2 by Dykstra’s

algorithm.
7: Project B on Z1 by min(bi, 1).
8: Project B on Z2 by Algorithm 1.
9: Calcualte the projection of B on Z1 ∩Z2 by Dykstra’s

algorithm.
10: Update B by Eq. (20).
11: until Convergence

D. Update B

We update B by two steps. First, relax the binary constraint
and update B. Then, threshold B at 0.5 and calculate binary
B. B can be updated by setting the partial derivative of (15)
with respect to B to 0, that is

∂E

∂B
= −λ1

(
V − V̄

)(
I − 1

n
11�

)

+ 2λ2(2(B − 0.5) − Y) + λ3(B − U) = 0 (19)

where the ith row of U is ui. From (19), we can derive that

B = 1

4λ2 + λ3(
λ1

(
V − V̄

)(
I − 1

n
11�

)
+ 2λ2(1 + Y) + λ3U

)
. (20)

E. Overall Optimization Procedure

The overall optimization procedure to minimize (15) is
shown in Algorithm 2. The parameter setting and implemen-
tation details are given in Section VI-D. In Algorithm 2, the
autoencoder is trained in advance for five epochs. The termi-
nation criterion is the maximum iteration, which is set as 20
epochs.

F. Handling Queries

For a new query, the hashing code is generated by solving
problem (18). In this case, bi is the output of the bottleneck

layer of the autoencoder for the ith query. z is the output of
cardinality predictors. From (18), we can obtain ui in real.
Then, we thresholds ui at 0.5 to generate hashing codes for
the new query.

VI. EXPERIMENTAL RESULTS

We evaluate our method on three widely used bench-
mark datasets: 1) CIFAR10 [15]; 2) MIRFlickr [11]; and
3) NUSWIDE [6]. Two kinds of experiments: 1) hashing
lookup and 2) Hamming ranking, were conducted. Mean
average precision (mAP) and F-measure are used as metrics.

A. Datasets

CIFAR10 consists of 60 000 images in ten classes. In each
class, we randomly select 1000 images as queries and the
remaining 5000 images as the retrieval set. Five hundred
images are randomly selected from the retrieval set as the
training set. That is, we train models with 500 × 10 = 5000
images and use 1000 × 10 = 10 000 images to query images
in the retrieval set of (6000 − 1000) × 10 = 50 000 images.
The ground-truth neighbors for a query are defined as those
in the same category.

MIRFlickr contains 25 000 images. Each image is annotated
with at least one of the 24 unique labels. Two thousand images
are randomly selected as queries. The remaining 23 000 images
are used as retrieval set from which 5000 images are randomly
selected as the training set. Ground-truth neighbors for a query
are defined as those sharing at least one label.

NUS-WISE contains 269 648 images. The ground truth of 81
concepts is provided for the entire dataset. Ten most common
concepts are selected for labels and hence, 186 577 images are
left. Five thousand images are randomly selected as queries
and the remaining 181 577 images are used as a retrieval set
from which 10 500 images are randomly selected as the train-
ing set. Ground-truth neighbors for a query are defined as those
sharing at least one label.

B. Baselines

The proposed method is compared with three shallow
unsupervised hashing models: 1) LSH [2]; 2) ITQ [38];
and 3) SH [35], and four deep unsupervised hashing mod-
els: 1) DeepBit [17]; 2) SGH [7]; 3) SSDH [36]; and
4) DistillHash [37]. All the shallow compared models are
implemented with MATLAB. We directly use the codes of
DeepBit provided by the authors,1 which is implemented in
Caffe [12]. The source codes in TensorFlow [1] of SGH,2

SSDH,3 and DistillHash4 are also provided by the authors.
We implement our method with PyTorch.

C. Evaluation

Hamming ranking and hash lookup are widely used exper-
iments for evaluating the retrieval performance of hashing

1https://github.com/kevinlin311tw/cvpr16-deepbit
2https://github.com/doubling/Stochastic_Generative_Hashing
3https://github.com/yangerkun/IJCAI2018_SSDH
4https://tongliang-liu.github.io/code.html
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TABLE III
MAP RESULTS ON WIKI, MIRFLICKR, AND NUS-WIDE DATASETS

Fig. 3. Results of hash lookup experiments.

TABLE IV
MAP RESULTS OF THREE VERSIONS OF THE PROPOSED METHOD

methods. The Hamming ranking is evaluated by mAP. The
average precision (AP) is defined as

AP = 1

n

R∑

r=1

P(r)δ(r) (21)

where n is the number of retrieved items, R is the radius of the
Hamming distance, P(r) is the precision of the top r retrieved
images, and δ(r) = 1 if the rth retrieved image is true neigh-
bor, otherwise, δ(r) = 0. mAP is the mean of APs for all
queries. The larger the mAP, the better the performance.

Hash lookup is evaluated by F-measure. The Hamming
radius is set to 2, that is, the hashing codes whose distances to
the query are less than 2 are retrieved to calculate F-measure.
F-measure is defined as

2 · precision · recall

precision + recall
. (22)

D. Implementation Details

We empirically set λ1 = 1, λ2 = 0.1, and λ3 = 1 for all our
experiments. The maximal iteration of Dykstra’s algorithm is
set to 2. We use stochastic gradient descent with momentum
0.9 to update the parameters of the autoencoder and the car-
dinality prediction network. The learning rate is set to 0.0001.
The minibatch size is set to 32 for our model.

For a fair comparison, 4096-dimensional features are
extracted by the last fully connected layer of VGG16 [29]
network for all shallow methods. The weights of VGG16
are pretrained on ImageNet [8]. All images are resized to
244×244 for VGG16 and 64×64 for the two neural networks
used in our model.

E. Results and Discussion

The mAP results are given in Table III. The experiments
were done with code length 16, 32, 64, and 128 bits. With fea-
tures extracted by deep neural networks, the shallow hashing
methods are comparable to some deep ones, such as DeepBit
and SGH. The shallow methods benefit from the pretrained
weights of VGG16 on ImageNet, which is a considerably large
compared to datasets used in our experiments. These deep
hashing methods learn weights directly from these relatively
small datasets, making them difficult to extract better features.

From Table III, we can see that the proposed method
achieves the best performance in hash ranking experiments.
Furthermore, due to the incorporation of an orthogonality
constraint, our method does not have reduced performance
on 128-bit experiments compared to 64-bit ones. However,
DistillHash, SSDH, and DeepBit experience a performance
reduce on 128-bit experiments, because they do not consider
any decorrelation among bits.
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The hash lookup results measured by F-measure are illus-
trated in Fig. 3. Our method achieved better performance on
most experiments, except for the 8-bit experiments on the
MIRFlickr dataset. A possible reason is that cardinality or
orthogonality constraints have too large impact on the final
codes and hence, the precision is low in this case. Lower λ1,
λ2, and λ3 may lead to better results. However, we aim at
a robust hashing methods, so we hope there are little efforts
on parameter tuning. Because the precision does not increase
much for all methods as the code length increases, it is safe
to conclude that the higher F-measure of our method is due
to the high recall on long-bit experiments.

As the Hamming radius is fixed at 2, generally, the longer
the code length, the less the retrived images. With few retrived
images, both of precision and recall may approximate 0 for
the compared methods. The proposed method handles this
problem by incorporating cardinality and orthogonality con-
traints. The efficiency of orthogonality constraints on long-bit
experiments has been well studied, while the effects of car-
dinality constraint have not been revealed yet. The benefits
of cardinality constraint on long-bit experiments are intuitive.
Cardinality narrows the interval of Hamming distances of
hashing codes of similar data points, which can improve the
recall values.

F. Ablation Studies

To examine the effect of cardinality in hashing, we imple-
ment two variants of our proposed method.

1) We remove the cardinality component in the testing
phase (Version 1). That is, the cardinality predictor is
still learned jointly with the autoencoder. However, in
the testing phase, we directly quantize the outputs of
bottleneck of the autoencoder to generate hashing codes.

2) The cardinality component are removed completely
(Version 2). The mAP results are given in Table IV,
where “Version 0” denotes the original version of our
proposed method.

Without cardinality, “Version 2” achieves the worst results.
“Version 1” is a little superior to Version 2, because the cardi-
nality is used in the training phase. Although the cardinality of
new queries is not predicted in Version 1, the cardinality con-
straint affects the parameters of neural networks during the
learning procedure, and the hashing codes for training data
are generated under it. Hence, the generated codes are a little
better than those of Version 2.

VII. CONCLUSION

In this article, we proposed an unsupervised image hashing
model by incorporating cardinality. The proposed model con-
sists of three components. The hashing component is modeled
by a deep convolutional autoencoder. The outputs of the bot-
tleneck of the autoencoder are used as the real codes. Another
component focusing on prior knowledge of hashing codes is
comprised of orthogonality and balance constraints. The car-
dinality component is modeled by a deep CNN to predict
the cardinalities of hashing codes. In the training phase, the

cardinality predictor forces similar images to have similar car-
dinalities, which limits the bounds of the Hamming distances
among the corresponding hashing codes of images. In the test-
ing phase, the cardinality of a query is first estimated, then real
code of the query is generated by the encoder, and finally, the
hashing code is generated by real codes with the cardinality
constraint. The experiments on three widely used benchmarks,
that is: 1) CIFAR10; 2) MIRFlickr; and 3) NUSWIDE, val-
idate the superiority of our method against the compared
state-of-the-art unsupervised hashing methods.

APPENDIX A
CARDINALITY AND THE BOUNDS OF HAMMING DISTANCE

Let the cardinality of binary vectors bi and bj be zi and zj,
respectively. The code length of bi and bj is l. Without losing
generality, we assume zi ≤ zj.

1) zi + zj ≤ l: The maximal Hamming distance between bi

and bj is zi + zj. That is, all the bits of 1 of bi and bj

are not overlapping. The minimal Hamming distance is
zj − zi,

∑
l bi&bj = zi, where & is the bitwise logical

AND, and logical FALSE and TRUE are quantized as 0
and 1, respectively.

2) zi + zj ≥ l: The maximal Hamming distance is l − zi +
l − zj = 2l − zi − zj. In this case, there are always some
bits of 1 that are overlapping. Since l − zi + l − zj ≤ l,
we use bits of 0 to calculate the Hamming distance. The
minimal Hamming distance is (l− zi)− (l− zj) = zj − zi.

Putting these two cases together, we obtain the interval for
Hamming distance of bi and bj is [|zi − zj|, min(zi + zj, 2l −
zi − zj)].

APPENDIX B
PROOF OF PROJECTING B ON �1

To prove ��1(B
′) = B′ − (1/n)11�B′, we calculate the

minimizer of the following problem:

arg min
Y

∥∥B′ − Y
∥∥2

F

s.t. 1�Y = 0. (23)

Equation (23) is equivalent to the following problem:

arg min
Y

E = 1

2

∥∥B′ − Y
∥∥2

F + 1�Yλ. (24)

Taking the partial derivative of E with respect to Y, we obtain

∂E

∂Y
= (

Y − B′) + 1λ. (25)

By setting (∂E/∂Y) = 0, we obtain

Y = B − 1λ�. (26)

According to 1�Y = 0, we can deduce that λ� = (1�/n)B.
Hence, ��1(B

′) = B′ − (1/n)11�B′.

APPENDIX C
DYKSTRA’S ALGORITHM

Dykstra’s algorithm converges to the Euclidean projection
onto the intersection of convex sets A and B. For each step r ∈
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[R] where R is the maximal iteration, the following sequence
is computed:

ỹ(r) = �A
(

y(r) + p(r)
)

p(r+1) = y(r) + p(r) − ỹ(r)

y(r+1) = �B
(

ỹ(r) + q(r)
)

q(r+1) = ỹ(r) + q(r) − y(r+1)

, where p(0) = q(0) = 0.
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