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Learning Student Network Under
Universal Label Noise
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Abstract— Data-free knowledge distillation aims to learn a
small student network from a large pre-trained teacher network
without the aid of original training data. Recent works propose
to gather alternative data from the Internet for training student
network. In a more realistic scenario, the data on the Internet
contains two types of label noise, namely: 1) closed-set label noise,
where some examples belong to the known categories but are
mislabeled; and 2) open-set label noise, where the true labels
of some mislabeled examples are outside the known categories.
However, the latter is largely ignored by existing works, leading
to limited student network performance. Therefore, this paper
proposes a novel data-free knowledge distillation paradigm by
utilizing a webly-collected dataset under universal label noise,
which means both closed-set and open-set label noise should be
tackled. Specifically, we first split the collected noisy dataset into
clean set, closed noisy set, and open noisy set based on the pre-
diction uncertainty of various data types. For the closed-set noisy
examples, their labels are refined by teacher network. Meanwhile,
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a noise-robust hybrid contrastive learning is performed on the
clean set and refined closed noisy set to encourage student
network to learn the categorical and instance knowledge inherited
by teacher network. For the open-set noisy examples unexplored
by previous work, we regard them as unlabeled and conduct
self-supervised learning on them to enrich the supervision signal
for student network. Intensive experimental results on image
classification tasks demonstrate that our approach can achieve
superior performance to state-of-the-art data-free knowledge
distillation methods.

Index Terms— Data-free knowledge distillation, universal label
noise, self-supervised learning, model compression.

I. INTRODUCTION

DEEP Neural Networks (DNNs) have shown very impres-
sive performance in various computer vision tasks [18],

[48]. However, the capacity of DNNs is usually quite large,
which seriously hinders their deployment on some embedded
devices such as smartphones and security cameras. To enable
the application of DNNs on these practical resource-limited
devices, numerous works [11], [19], [33] have been done
to compress pre-trained large DNNs to small ones. Among
these methods, knowledge distillation [19] has shown very
encouraging results, which transfers information from the
original large network (a.k.a. teacher network) to a small
portable network (a.k.a. student network) to achieve model
compression.

Existing model compression algorithms based on knowledge
distillation can usually achieve a large compression ratio
without dramatic performance loss when the original training
data for teacher network is available. However, the original
data might usually be untouchable due to various practical lim-
itations, such as data management considerations and privacy
issues. For instance, the large-scale image classification dataset
ImageNet [10] contains 14,197,122 images and requires about
155GB of memory space to store, which is too “heavy” to
share among different machines. Besides, some types of data,
like people’s daily photos and clinical records, are private, and
distributing these data may incur legal problems. Therefore,
some recent distillation works focus on data-free methods,
which aim to reconstruct images to compress large pre-trained
networks without the aid of original training data. For exam-
ple, Lopes et al. [34] leverage the “meta-data” provided by a
pre-trained model to approximate the original data. Data-Free
Learning (DFL) [6] introduces a generator to compose images
under the supervision of teacher network. DeepInversion [56]
utilizes the statistics stored in the middle layers of the teacher
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Fig. 1. The illustration of collected noisy dataset D̃ with |D̃| image examples,
where we assume that the original dataset contains two categories including
“cat” and “dog”. “A” and “T” represent the annotated label in the dataset
and true label of the corresponding image, respectively. The noisy dataset
can be divided into clean set Dc , closed noisy set D̃cn , and open noisy set
D̃on . The clean examples in Dc are all annotated correctly. For the closed-set
noisy examples in D̃cn , the images of “dog” (“cat”) are mislabeled as “cat”
(“dog”). For the open-set noisy examples in D̃on , these images are incorrectly
annotated as “cat” or “dog” but do not belong to any of the two categories.

to synthesize data. Even though these approaches can produce
fake data and perform model compression, due to the intrinsic
discrepancy between the generated image and real image, the
capability of compressed models is still limited to some extent.

Therefore, instead of generating fake data, there are also
some methods targeting to leverage massive yet noisy data on
the Internet. For example, Chen et al. [5] propose Data-Free
Noisy Distillation (DFND) to utilize data in the wild to com-
press a student network from the pre-trained teacher network.
However, they only consider the closed-set label noise, which
means that the ground-truth label of noisy image examples
still falls into the known classes-of-interests. Unfortunately,
in a more realistic scenario, since we do not know the real
labels of collected images, it is quite possible that some of
the images possess true class labels that are not present in
the original training data (see Fig. 1). Therefore, such open-
set label noise is also ubiquitous in the wild and should be
taken into consideration during the distillation process. For
example, when we are interested in classifying different fruits
and type “apple” into an image search engine, it is possible
to get the images of fruit as well as the iPhone with “apple”
brand. Apparently, the obtained iPhone images are unexpected
out-of-distribution examples, which constitute open-set noisy
data. In this sense, we claim that the realistic situations usually
contain universal label noise, which includes both traditional
closed-set label noise and unexplored open-set label noise,
while the latter is largely ignored by the current distillation
approaches.

Based on the above consideration, in this paper, we propose
a new method named “MOdel Distillation with Universal
Label noise” (MODUL) to distill a teacher network to a
student network on the data with universal label noise in the
wild to resolve the data-free knowledge distillation problem.
More specifically, we first divide the collected image set into
clean set (i.e., Dc), closed noisy set (i.e., D̃cn), and open noisy
set (i.e., D̃on) based on the output loss values incurred by
the contained image examples. Then, for the images within

clean set Dc, we directly retain their original annotated labels
for training. For the images within closed noisy set D̃cn ,
they are re-annotated by the pre-trained teacher network. For
the images within open noisy set D̃on , one simple way is
to directly discard them as they seem to be irrelevant to
the core task at first glance. However, we argue that they
also contain meaningful information and are still helpful if
they are appropriately utilized. Since their labels are noisy,
we may treat them as unlabeled and utilize self-supervised
learning to explore their precious feature information. Specif-
ically, we may introduce rotation recognition task, which
is a popular self-supervised learning strategy, to promote
student network to learn rotation-invariant representation for
each image, thereby enhancing the representation ability and
learning performance of student network. Similarly, we also
conduct the hybrid contrastive learning on the images in clean
set and refined closed noisy set to transfer categorical and
instance knowledge from teacher network to student network
to further boost the representation ability of student network.
Thanks to the proper usage of the above three types of image
sets, an effective and portable student model can be learned,
as shown in Fig. 2. Intensive experimental results show that our
MODUL can train a superior student network when compared
with state-of-the-art methods, including [5], [6], [12], [37],
and [56]. The accuracy of the small student network is also
comparable to that of the large teacher network.

The contributions of our MODUL are summarized as
follows:

1) We propose a new data-free knowledge distillation
method termed MODUL to compress pre-trained teacher
networks through the noisy data with universal label
noise collected from the Internet. Our MODUL can
effectively process closed-set and open-set label noise,
leading to high-performance compact student networks.

2) We develop a hybrid contrastive learning loss to trans-
fer category-level and instance-level knowledge from
teacher network to student network, which significantly
improves the performance of student network.

3) We properly tackle the universal label noise and obtain
a noise-robust student network. In particular, we innova-
tively regard the open-set noisy examples as unlabeled
and explore them by self-supervised learning.

The overall structure of this paper is presented below.
Section II reviews the related works. Section III describes
the traditional knowledge distillation. Furthermore, Section IV
details the implementation of our designed method, and
Section V shows the experimental results. Finally, Section VI
concludes the entire paper.

II. RELATED WORKS

In this section, we review the related works of this paper,
including model compression, learning with noisy labels, and
contrastive learning.

A. Model Compression

Network compression aims to convert a large-size deep
neural network to a small one. So far, various strategies [11],
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Fig. 2. The diagram of our MODUL method. The collected noisy dataset D̃ is composed of two categories of “dog” and “cat”, and we define the annotated
label, true label, and refined label of the corresponding image as “A”, “T”, and “R”, respectively. The D̃ is first divided into clean set Dc , closed noisy
set Dcn , and open noisy set D̃on by teacher network NT and Gaussian Mixture Model (GMM). Then, a hybrid contrastive learning loss (i.e., Lhybrid )
is conducted on Dc and Dcn to transfer categorical and instance knowledge from teacher network to student network NS . Moreover, rotation recognition
(i.e., Lrr ) is implemented on D̃on to further enhance student’s representation ability. Besides, Dc and Dcn are jointly used to train student network through
standard back-propagation (i.e., Lce) and conduct knowledge distillation (i.e., Lkd ).

[33], [41], [45] have been developed for achieving network
compression, such as network pruning, network quantization,
and knowledge distillation. Since this paper cares about knowl-
edge distillation, we will review the representative works in
this area in the following.

In knowledge distillation, a shallow and narrow student
network is usually learned by receiving the knowledge of
a deep and wide pre-trained teacher network. Based on
the types of transferred knowledge, existing methods can
generally be classified into three categories, namely response-
based methods [2], [19], feature-based methods [41], [58],
and relation-based methods [39], [55]. Response-based dis-
tillation approaches directly utilize the outputs of the last
classification layer of teacher network for teaching the student
network and encourage the student to simulate the predictions
of the teacher. For example, Ba et al. [2] require a shallow
student network to mimic the outputs before the softmax of
a deep teacher network by minimizing a ℓ2 loss. In contrast,
Hinton et al. [19] propose to input the predictions of teacher
network into the softmax with a temperature parameter to
calculate the soft labels, which helps to reserve the cate-
gory correlations computed by the teacher model. Recently,
Zhao et al. [61] decouple the soft label as target knowledge
(i.e., the prediction for target class) and non-target knowledge
(i.e., relationship between other categories), which effectively
improves the performance of response-based distillation.

Feature-based methods extract the output features from the
bottom or middle layers of teacher network for teaching the
student network, with a consideration that the feature maps
of DNNs are informative and beneficial for knowledge trans-
fer. Therefore, Romero et al. [41] introduce the intermediate
features of teacher network as hints, and student network
simply mimics the hints by minimizing the mean-square error

loss. Subsequently, various methods [4], [58] are developed
to explore how to extract and transfer features efficiently. For
instance, Zagoruyko and Komodakis [58] find that directly
using the feature maps of teacher is inefficient and refine the
features from the middle layers of teacher network by atten-
tion mechanism. Recently, Chen et al. [4] propose to collect
features from multiple layers of teacher network to learn each
layer of student network.

Relation-based approaches incline to exploit the
teacher-student relationships between different layers and
examples during teaching, which deviate from the previous
works that enforce the student network to learn the outputs
(e.g., soft labels or important features) of teacher network.
To explore the relationship between layers, Yim et al. [55]
calculate the inner product of the features from two layers
of the teacher network. To deploy the connections between
examples, relational knowledge distillation [39] calculates the
Euclidean distance between every two images and the angle
of every three images for distillation. Besides, [54] explores
pixel-to-pixel and pixel-to-region relations over images to
help learn a student network for semantic segmentation tasks.

The above methods can compress various DNNs on dif-
ferent datasets. However, these methods cannot deal with
the data-free knowledge distillation as mentioned in the
introduction. Therefore, some researchers attempt to recon-
struct data from the pre-trained models to compress DNNs
for achieving data-free knowledge distillation. For instance,
Lopes et al. [34] propose to reproduce the data from the
“meta-data” in teacher network to train student network. Data-
Free Learning (DFL) [6] introduces a generator and utilizes
teacher network to supervise it to build the fake data that
conform to the distribution of the teacher’s original training
data. DeepInversion [56] inverts the means and variances of the
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features of teacher network to synthesize images from random
noise. Although these methods can successfully imitate data
and compress deep models, the performance of the compressed
models is still suboptimal due to the essential gap between the
generated data and actual data.

Therefore, instead of approximating the original data,
Chen et al. [5] propose to use the plentiful but noisy data
from the wild to train the student network and effectively
improve the model performance when lacking the original
data. Unfortunately, they only consider the closed-set noisy
examples and neglect more common open-set noisy examples
contained by the collected data, which will deteriorate the
performance of student network. In contrast, in this work,
we will consider different types of label noise in the wild to
train an improved student network when the original training
data is not available.

B. Learning With Noisy Labels

Recently, there has been increasing attention on designing
robust classifiers for dealing with noisy labels, which are
mainly based on the following four categories, including loss
correction [40], [46], [53], robust loss design [14], [15], sample
selection [16], [22], [57], and optimal transport [9], [13].

Loss correction methods eliminate the adverse influence
of noisy labels by deploying a noise transition matrix. For
example, Sukhbaatar et al. [46] learn a noise transition matrix
by inserting a learnable noise layer at the top of the network to
match the noisy label distribution. Patrini et al. [40] employ a
small set of clean data to estimate the noise transition matrix
for training a robust model. Moreover, Xia et al. [53] develop
a way for estimating the noise transition matrix without the
aid of clean data.

Some approaches aim to design an inherently robust loss
function to combat noisy labels. For example, Ghosh et al. [15]
propose to learn a model by Mean-Absolute Error (MAE)
loss on noisy data and prove that MAE is more robust to
noisy labels than Cross Entropy (CE) loss. Feng et al. [14]
reveal the correlations between MAE and CE and propose
the Taylor CE loss, which can adjust the fitting degree for
the training labels based on the order of Taylor series.

Sample selection methods devote to picking up possibly
clean data for training in each iteration. Jiang et al. [22]
develop a dynamic curriculum for the neural network, where
“simple” examples are firstly chosen for network training.
Inspired by [22], Co-teaching [16] and Co-teaching+ [57]
train two deep networks alternately to avoid error accumu-
lation during the process of clean data selection. Similarly,
Wei et al. [51] solve the problem by training two different
networks to compute the joint loss to select clean examples
with small loss values.

Besides, optimal transport methods are also powerful in
addressing label noise. Among them, Classification Loss with
Entropic Optimal Transport (CLEOT) [9] regularizes the
classification model by entropic regularization since it suc-
cessfully trains a reliable model on noisy datasets. Wasserstein
Adversarial Regularization (WAR) [13] utilizes the similarity
between classes to regularize the model predictions, which are
evaluated by the Wasserstein distance.

Above-mentioned works mainly focus on processing the
closed-set noisy labels, which assume that the true label of an
image is among the known classes of the training data. To deal
with open-set label noise, Wang et al. [49] apply a Siamese
network to iteratively identify the open-set noisy labels and
explore the deep discriminative features to impel noisy data
away from clean data. Sachdeva et al. [42] propose a general
framework to learn with combined closed-set and open-set
noisy labels, which first trains a network NetS to divide the
noisy data and then another network NetD for learning on
the separated data. To the best of our knowledge, we are the
first to implement data-free knowledge distillation under the
universal label noise with both closed-set and open-set noisy
labels.

C. Contrastive Learning
Contrastive Learning (CL) [8], [29], [36] is a mainstream

approach in self-supervised learning [1] to learn robust
representations for practical downstream tasks. In general,
CL can be unsupervised or supervised. Unsupervised CL
algorithms [17], [52] divide data as positive and negative
pairs and maximize (minimize) similarities between positive
(negative) pairs in the representation space. In unsupervised
CL, there is usually only one positive pair composed of two
transformations of the same instance, and different instances
are used to construct a set of negative pairs. Here, the number
of negative examples usually surpasses that of positive exam-
ples, which has been demonstrated to benefit DNNs in learning
strong representations [8], [17]. Recent works [24], [28] have
extended CL to the fully-supervised setting to leverage the
label information of the dataset. Unlike unsupervised CL [17]
which uses one positive pair and many negative pairs among
data points, supervised CL [24], [28] considers a series of
positive and negative pairs, among which positive pairs are
formed by the images within the same class and negative
pairs are selected from the images of different classes. In this
study, to improve the representation ability of student network,
we train student network on collected noisy data via the
well-designed contrastive learning algorithms.

III. CONVENTIONAL KNOWLEDGE DISTILLATION

Conventional knowledge distillation methods [19], [41]
learn a compact student network NS from a large pre-trained
teacher network NT . Given X ∈ Rd (d means the dimen-
sionality) as the input feature space, and Y ∈ {1, . . . , K } (K
represents the total number of known classes) as the label
space of classes-of-interests, the student network is trained on
the original training data D = {(xi , yi )}

|D|

i=1 ∈ X × Y with
size |D| ( “| · |” represents the cardinality of correspond-
ing set throughout this paper), where all labels {yi }

|D|

i=1 of
images {xi }

|D|

i=1 are correctly provided. For a batch of data
{(xi , yi )}

b
i=1 ∈ D (b denotes the batchsize of corresponding

data throughout this paper), the loss function for knowledge
distillation is formulated as:

Lkd =
1
b

b∑
i=1

λHce (NS(xi ), yi )+ (1 − λ)Hkt

(
fS
i , fT

i

)
, (1)
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where the variables with superscripts “T ” and “S” denote
that they are output by teacher network and student network,
respectively; Hce indicates the cross entropy loss that encour-
ages the student network to learn from the data; Hkt is the
knowledge transfer function (e.g., Kullback-Leibler divergence
or Euclidean distance) that promotes the student to mimic
the teacher’s output fT

i (e.g., soft label or feature map); and
λ > 0 is the trade-off parameter to balance the two terms.

However, as stated in Section I, traditional knowledge
distillation cannot work well if the original training set D is
absent. Therefore, a series of works have been done to study
data-free knowledge distillation [5], [6], [34], which is also
the target of this paper.

IV. OUR APPROACH

In our problem, there is only a pre-trained teacher network
NT and its original training data D is inaccessible. Therefore,
by following [5], we may collect massive noisy data D̃ =

{(xi , ỹi )}
|D̃|

i=1 ∈ X ×Y from the Internet to help train the small
student network NS , where the notations with superscript “∼”
indicates that they are noisy. Since D̃ is directly acquired from
the Internet, the image xi ∈ D̃ may be mislabeled to label ỹi ∈

Y that deviates from its ground-truth label yi . Consequently,
our target is to obtain a small NS that can predict label for
any unseen x that with a true label y ∈ Y based on NT and D̃.
For the label noise within D̃, we simultaneously consider both
closed-set noise and open-set noise, which we call “universal
noise” in this paper and are ubiquitous in practice. For closed-
set noise, it means that an image x has ground-truth label
y ∈ Y but is mislabeled as ỹ ∈ Y . Such noise will introduce
erroneous gradients in training the student network. For open-
set noise, it means that an image x is incorrectly labeled
as ỹ ∈ Y but its actual label y /∈ Y . Such noise will
bring useless information to student network during standard
back-propagation and knowledge transfer.

Formally, we define two noise ratios as ρ1, ρ2 ∈ [0, 1].
More specifically, ρ1 =

#{(x,ỹ)|ỹ ̸=y}

|D̃|
denotes the proportion of

noisily-labeled examples in the noisy dataset D̃ and ρ2 =
#{(x,ỹ)|ỹ ̸=y,y /∈Y}

#{(x,ỹ)|ỹ ̸=y}
represents the ratio of the examples with

open-set noisy labels in all noisily-labeled examples, where
# denotes the number of elements in the corresponding set
that satisfy the given condition. Therefore, there are |Dc| =

|D̃| × (1 − ρ1) images belonging to clean set Dc with correct
label ỹ = y. For the remaining |D̃| × ρ1 images with noisy
labels, there are |D̃on| = |D̃| × ρ1 × ρ2 images in open noisy
set D̃on , and |D̃cn| = |D̃| × ρ1 × (1 − ρ2) images are in
closed noisy set D̃cn . That is to say, D̃ = Dc ∪ D̃cn ∪ D̃on and
|D̃| = |Dc| + |D̃cn| + |D̃on|. Note that Dc, D̃cn , and D̃on are
unknown before distillation and they should be identified by
our designed algorithm.

To solve the above-mentioned problem and train a com-
pact student on the noisy dataset D̃, here we propose an
effective data-free knowledge distillation framework termed
MODUL. As shown in Fig. 2, our MODUL contains three key
steps, namely: 1) noisy data division, which explores the loss
characteristics for different types of data to divide the noisy
dataset D̃ to Dc, D̃cn , and D̃on ; 2) knowledge distillation,

Fig. 3. Distribution of SL loss values of examples in the noisy dataset D̃ with
noise ratios ρ1 = 0.50 and ρ2 = 0.50. The clean examples and closed-set
noisy examples are extracted from CIFAR-10 or CIFAR-100 [25] dataset, and
the open-set noisy examples are sampled from the ImageNet [10] dataset.

which utilizes the in-distribution images in Dc and D̃cn to
transfer categorical and instance knowledge from teacher to
student; 3) noisy data handling, which effectively handles the
noisy examples in Dc, D̃cn , and D̃on , leading to a robust and
powerful student network. Next, we detail these key steps in
Sections IV-A, IV-B, and IV-C, respectively. The designed loss
function and algorithm implementation will be introduced in
Section IV-D.

A. Noisy Data Division

The available noisy dataset D̃ collected from the Internet
potentially contains three types of image sets, namely clean set
Dc, closed noisy set D̃cn , and open noisy set D̃on . Therefore,
it is crucial to identify images in D̃ into corresponding sets
to prevent them from hurting the student network training.
To solve these problems, we explore the loss value distribution
of different data types. Fig. 3 shows the distribution of
per-example subjective logic (SL) loss [43] (will be detailed
later) on CIFAR-10 (CIFAR-100) [25] and ImageNet [10]
datasets. We can see that the classifications of the teacher
network on the images with clean labels in Dc tend to be
“confident”, therefore producing small loss values. In contrast,
closed-set noisy examples can be classified into a certain
category with high probability by the teacher network. Nev-
ertheless, since they are mislabeled, they will incur large loss
values. Meanwhile, open-set noisy examples do not belong
to any of the classes-of-interests, and the teacher network
usually makes “blurry” predictions for them. Therefore, the
loss values of open-set noisy examples are larger than those
of clean examples and lower than those of closed-set noisy
examples.

Based on the above observations, in our framework,
we employ the powerful pre-trained teacher network to cal-
culate the SL loss [43] for every image example to depict the
loss characteristics of different types of data. More specifically,
for a possible noisy example (xi , ỹi ) input into the teacher
network, the SL loss ℓT (xi , ỹi ) is calculated as:

ℓT (xi , ỹi ) =

K∑
k=1

(ỹi (k)− αik/Si )
2
+
αik (Si − αik)

S2
i (Si + 1)

, (2)

where αik = eik + 1 denotes the Dirichlet parameter
with e representing the evidence which is the output of
the teacher network processed by ReLU activation function,
Si =

∑K
k=1 αik means the Dirichlet strength. For the images
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with noisy labels, their ground-truth labels are unknown,
which introduces classification uncertainty during the neu-
ral network training. According to [43], SL loss places a
Dirichlet distribution on the model’s class probabilities based
on Dempster-Shafer Theory of Evidence [3], which enables
the model to express the opinion of “I do not know” and
overcomes the uncertainty caused by the unknown. Therefore,
SL loss can describe the uncertainty caused by noisy labels and
capture the discrepancies between the examples of different
data types.

To utilize the obtained SL loss values ℓT (x, ỹ) for data
division, we use a Gaussian mixture model (GMM) G with ψ
components {g j }

ψ

j=1 (we set ψ = 20) to fit them. Concretely,
for ℓT (x, ỹ), G is represented as:

G(ℓT (x, ỹ) | w,µ, σ 2) =

ψ∑
j=1

w j g j

(
ℓT (x, ỹ) | µ j , σ

2
j

)
,

(3)

wherew j > 0 denotes the weight for the j-th component g j ,1

that is formulated as:

g j

(
ℓT (x, ỹ) | µ j , σ

2
j

)
=

1√
2πσ 2

j

exp

(
−
(ℓT (x, ỹ)− µ j )

2

2σ 2
j

)
,

(4)

where µ j and σ 2
j denote the mean and variance of g j . The

weights
{
w j
}ψ

j=1 satisfy the constraint
∑ψ

j=1w j = 1. The
parameters w = {w1, w2, · · · , wψ }, µ = {µ1, µ2, · · · , µψ },
σ 2

= {σ 2
1 , σ

2
2 , · · · , σ

2
ψ } are estimated by Expectation-

Maximization algorithm.
Based on the above analysis, we assume that if a com-

ponent in GMM is with a small mean, it inclines to
capture the possible clean examples. Consequently, we set
a minimum threshold τmin = 0.3 to determine the clean
examples, and the probability of xi belonging to Dc is pc

i =∑ψ

j=1,g j ∈Gc
w j g j

(
ℓT (xi , ỹi ) | µ j , σ

2
j

)
, where Gc denotes a

set of Gaussian components and each component g j ∈ Gc
satisfies µ j ≤ τmin. Similarly, we set a maximum threshold
τmax = 0.9 and the probability of xi belonging to D̃cn is pcn

i =∑ψ

j=1,g j ∈Gcn
w j g j

(
ℓT (xi , ỹi ) | µ j , σ

2
j

)
, where g j ∈ Gcn is

with mean µ j ≥ τmax. Besides, the probability of xi belonging
to D̃on is pon

i =
∑ψ

j=1,g j ∈Gon
w j g j

(
ℓT (xi , ỹi ) | µ j , σ

2
j

)
,

where g j ∈ Gon is with µ j ∈ (τmin, τmax). Finally, the
probabilities of any (xi , ỹi ) ∈ D̃ belonging to Dc, D̃cn , and
D̃on can be obtained, which are denoted as pc

i , pcn
i , and

pon
i , respectively. Based on

{
pc

i
}|D̃|

i=1,
{

pcn
i
}|D̃|

i=1, and
{

pon
i
}|D̃|

i=1,
we can divide examples in D̃ into correct sets. For instance,
given an image xi , its division function f (pc

i , pcn
i , pon

i ) can
be described as:

f (pc
i , pcn

i , pon
i ) =


xi ∈ Dc, (pc

i > pcn
i )&(p

c
i > pon

i ),

xi ∈ D̃cn, (pcn
i > pc

i )&(p
cn
i > pon

i ),

xi ∈ D̃on, (pon
i > pc

i )&(p
on
i > pcn

i ).

(5)

1In this paper, g j is the shorthand for g j

(
ℓT (x, ỹ) | µ j , σ

2
j

)
.

To acquire a small student network, for an image xi ∈ Dc,
we retain its label ỹi ∈ Y as the target yi for distillation as
the label is deemed as correct. For an image xi ∈ D̃cn with
closed-set noisy label ỹi ∈ Y , the pre-trained NT can produce
confident outputs of them. Therefore, we use the class label
with the largest probability predicted by NT as the target yi ,
namely:

yi = arg max j (NT (xi )) j . (6)

The images in refined D̃cn (denoted as Dcn) and Dc with
accurate labels are utilized for transferring knowledge from
teacher network to student network, which will be detailed
in Section IV-B. For the image xi ∈ D̃on with unknown true
label yi /∈ Y , we discard its annotated noisy label ỹi ∈ Y
and treat them as unlabeled, and depict how to tackle them in
Section IV-C.

B. Knowledge Distillation
The key task of knowledge distillation is to transfer the

knowledge from teacher network to student network. In the
setup of our problem, the teacher network is available. Besides,
the clean set Dc and refined closed noisy set Dcn built in
Section IV-A are also at hand for training student network.
Therefore, we encourage the student network to learn the
knowledge of teacher network in representation space via two
aspects: the first is categorical knowledge of images inherited
by teacher, and the other is the instance-level representation
of teacher. Such learning process is fulfilled by conducting
contrastive learning on Dc and Dcn , and the hybrid loss
function Lhybrid for transferring knowledge from teacher to
student is established as:

Lhybrid = Lcategory + Linstance, (7)

where Lcategory denotes the loss function for promoting
student network to learn the categorical knowledge from
teacher network, and Linstance represents the loss function
for improving the consistency between student network and
teacher network in instance level. Next, we will describe the
formations of Lcategory and Linstance in detail.

1) Formation of Lcategory : To encourage student network to
learn the categorical knowledge from teacher network, we first
calculate the class prototypes by teacher network to reflect its
inherited class information. Concretely, we input the images
from the same category among the totally K known classes
into teacher network to calculate their image embeddings. For
class k ∈ {1, 2, · · · , K }, we suppose there are Nk images
belonging to this class judged by teacher network. An image
xi is input into teacher network to obtain the hidden feature
hT

i = NT (xi ), where hT
i is the output after the last average

pooling layer of teacher network. Furthermore, we use a
projection head that is instantiated as a linear layer with a
ℓ2 normalization to calculate the embedding zT

i (i.e., a column
vector, see Fig. 2 for image xi , which is:

zT
i = Normalization

(
WT

p hT
i + bT

p

)
, (8)

where WT
p and bT

p denote the weights and biases of teacher’s
projection head. Based on a set of embeddings {zT

i }
Nk
i=1, the
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class prototype ẑk of class k can be calculated as:

zk
=

1
Nk

Nk∑
i=1

zT
i , ẑk

=
zk∥∥zk
∥∥

2

. (9)

Subsequently, we employ these calculated class prototypes
{ẑk

}
K
k=1 to promote student network to learn expressive

category-level representation from teacher network.
In a nutshell, we expect that the image embeddings com-

puted by the student network are comparable with those
of teacher network. It means that the images in a certain
category should have an embedding close to the corresponding
class prototype and far away from the prototypes of other
classes. Therefore, we use contrastive learning [17], [52] to
achieve our target. Contrastive learning devotes to minimizing
(maximizing) the distances between positive (negative) pairs.
In our case, the images of the same class can be positively
paired with their corresponding class prototype and negatively
paired with other class prototypes. Therefore, we perform the
prototypical contrastive learning to promote the student net-
work to learn the desired representation from teacher network.
For an image xi , similar to the embedding zT

i from teacher
network mentioned above, we also input it to student network
NS and its projection head with weights WS

p and biases bS
p to

obtain the embedding zS
i (see Fig. 2) from student network,

namely:

zS
i = Normalization

(
WS

phS
i + bS

p

)
, (10)

where the hS
i denotes the hidden feature for xi that is produced

by student network. Taking zS
i as an example, the prototypical

contrastive learning loss of student network is calculated as:

Lpcl

(
zS

i , yi

)
= − log

exp
(
zS

i · (ẑyi )⊤/t
)∑K

k=1 exp
(
zS

i · (ẑk)⊤/t
) , (11)

where t > 0 is a temperature parameter, ẑyi is the class
prototype of class yi that xi belongs to, and the superscript
“⊤” denotes the transpose operation.

Here, Lpcl
(
zS

i , yi
)

depicts the relationship between stu-
dent’s embedding zS

i and its corresponding class prototype ẑyi .
Meanwhile, we compute the prototypical contrastive learning
loss of teacher network as Lpcl

(
zT

i , yi
)
, which represents

the relationship between teacher’s embedding zT
i and its

corresponding class prototype ẑyi . Some recent studies [39],
[54], [55] have indicated that transferring the relationships
between representations is more effective than actual represen-
tations themselves. Therefore, by following [62], we assemble
Lpcl

(
zT

i , yi
)

and Lpcl
(
zS

i , yi
)

to transfer the representa-
tion relationships from teacher network to student network,
and thus boosting student network to learn the categorical
knowledge from teacher network. For a batch of image data
{(xi , yi )}

b
i=1 ∈ (Dc ∪ Dcn), the loss function Lcategory for

transferring categorical knowledge is defined as:

Lcategory =
1
b

b∑
i=1

Lpcl

(
zT

i , yi

)
+ Lpcl

(
zS

i , yi

)
. (12)

Note that both Lpcl
(
zT

i , yi
)

and Lpcl
(
zS

i , yi
)

use the class
prototypes

{
ẑk}K

k=1 rendered by teacher network. During the

training, by minimizing Lpcl
(
zT

i , yi
)

and Lpcl
(
zS

i , yi
)
, we can

update the parameters in teacher’s projection head, student’s
projection head, and student model NS . Note that, the param-
eters in teacher model NT are fixed.

2) Formation of Linstance: Apart from promoting student
network to learn categorical knowledge from teacher network,
we also encourage student network to learn knowledge from
teacher network by considering instance-level consistency.
This is also achieved by contrastive learning by following [44],
so that the representation capability of student network can
be further improved. That is to say, for the same image,
we expect student network can produce consistent embedding
with teacher network and vice versa. Specifically, for a batch
of images {(xi , yi )}

b
i=1, we input them into student network

followed by a projection head to obtain the embeddings
{zS

i }
b
i=1 as Eq. (10), and also input them into teacher network

with a projection head to calculate the embeddings {zT
i }

b
i=1 as

Eq. (8). Formally, for each embedding zS
i output by student

network, it will form only one positive pair {zS
i , zT

i } and
b − 1 negative pairs {zS

i , zT
j }

b
j=1,i ̸= j . We aim to promote zS

i

closer to zT
i while away from {zT

j }
b
j=1,i ̸= j . To achieve it, the

instance-level contrastive loss Linstance is designed to improve
the instance consistency between student network and teacher
network, which is:

Linstance =
1
b

b∑
i=1

log1 +

b∑
j=1

1(i ̸= j) exp
(

zS
i · (zT

j )
⊤

− zS
i · (zT

i )
⊤
) ,
(13)

where 1(i ̸= j) ∈ {0, 1} is an indicator function, and its value
is 1 if i ̸= j and 0 otherwise.

C. Noisy Data Handling

As mentioned in introduction, the main difficulty for our
data-free knowledge distillation is to tackle the universal label
noise within D̃ collected from the Internet. In general, after
dividing D̃ into Dc, Dcn , and D̃on as in Section IV-A, two
sources of label noise may appear. The first is that Dc and
Dcn might still contain some label noise due to the imperfect
teacher, which will mislead the above categorical knowledge
transfer process and lead to undesirable representation learned
by student. The second is that there are massive open-set
noisy examples in D̃on . Next, we will detail the strategies
for processing the above noise during the training of student
network.

1) Tackling Label Noise in Dc and Dcn : For a small number
of possible noisy examples in Dc and Dcn , they cannot be
completely filtered out as the teacher network may still make
incorrect label predictions. Therefore, we use Mixup [59],
which has been demonstrated to be noise-robust to deal with
label noise. For a batch of images {(xi , yi )}

b
i=1, an image xi

is linearly interpolated with another randomly selected image
x j (i ̸= j) to produce a virtual training image x̄i as:

x̄i = λxi + (1 − λ)x j , (14)
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where λ ∈ (0, 1) is generated by beta distribution Beta(δ, δ)
with δ being a positive parameter. Then, the noise-resistant
Mixup on prototypical contrastive learning loss of student
network is expressed as:

Lmixup

(
z̄S

i , yi , y j

)
= λLpcl

(
z̄S

i , yi

)
+ (1 − λ)Lpcl

(
z̄S

i , y j

)
,

(15)

where z̄S
i denotes the embedding for x̄i that is generated

by student network, and Lpcl is presented in Eq. (11). The
Lmixup can promote the linearity between the embeddings
of the interpolated inputs, therefore enhancing the robustness
of the model. Subsequently, the loss function for transferring
categorical knowledge from teacher to student in Eq. (12) is
rewritten as:

Lcategory =
1
b

b∑
i=1

Lmixup

(
z̄T

i , yi , y j

)
+ Lmixup

(
z̄S

i , yi , y j

)
.

(16)

2) Tackling Open-set Noisy Examples in D̃on : Open-set
noisy examples do not belong to any classes of the original
dataset and are useless for DNN training at a glance. However,
there are abundant examples in D̃on , which contain plentiful
information for DNN training. Recent studies [23], [38] in
self-supervised learning propose to explore the unlabeled
examples to learn a DNN with powerful representational
capability, which is useful for downstream tasks. Therefore,
we reasonably treat the open-set noisy examples as unlabeled
and use them to enhance the representation capability of
student network as much as possible.

Concretely, we employ self-supervised learning on rotation
recognition to explore the information contained by images in
D̃on . For a batch of unlabeled open-set noisy data {xi }

b
i=1 ∈

D̃on , each image xi is first rotated by ( j − 1) × 90◦ to
obtain four counterparts xi, j ( j ∈ {1, 2, 3, 4}). Then, these
counterparts are subsequently input into student network NS
and a rotation prediction head with a linear layer to get the
rotation prediction q S

i, j (see Fig. 2) as:

q S
i, j = Wr hS

i, j + br , (17)

where Wr and br denote the weights and biases of the rotation
prediction head, and hS

i, j denotes the hidden feature for xi, j
that is produced by student network. Based on the rotation
prediction q S

i, j of image xi, j , the rotation recognition loss Lrr
to exploit massive open-set noisy examples for student model
is calculated as:

Lrr =
1

4b

b∑
i=1

4∑
j=1

Hce

(
q S

i, j , j
)
, (18)

whereHce is the cross entropy loss to compute the discrepancy
between the rotation prediction q S

i, j and its rotated angle
( j − 1)× 90◦.

Moreover, like our method, some prior works [20], [21],
[27], [47] on label noise learning and open-set semi-supervised
learning also propose different ways to utilize noisy or open-
set data. For example, Dividemix [27] and ProMix [47] treat

the noisy examples as unlabeled and utilize them to improve
the model training by semi-supervised learning. Trash to
Treasure [20] and Transferable OOD Data Recycling [21]
extract additional supervisory signals from open-set examples
via contrastive learning or adversarial domain adaptation. That
is to say, our approach is well grounded given previous similar
works. The main difference lies in that we utilize plentiful
open-set noisy examples via self-learning task on rotation
recognition to further improve the representation ability of our
student network.

D. Overall Loss Function & Algorithm Implementation

This section introduces the complete loss function employed
by our MODUL and also provides the details for implementing
our algorithm. To enable student network to make accurate
classification, for a batch of data {(xi , yi )}

b
i=1 ∈ (Dc ∪ Dcn),

we follow [18] and use cross entropy loss to penalize the
difference between the output of student and the label y in
Dc and Dcn , namely:

Lce =
1
b

b∑
i=1

Hce (NS(xi ), yi ) . (19)

To promote the student network to learn the knowledge from
teacher network, we also use Dc and Dcn to transfer the
meaningful information of teacher to student by the widely
used knowledge distillation loss [41], which is:

Lkd =
1
b

b∑
i=1

Hmse

(
fS
i , fT

i

)
, (20)

where Hmse denotes the mean-square error loss, fT
i and fS

i
represent the penultimate layer’s features of teacher network
and student network, respectively. Then, the complete objec-
tive loss function of our MODUL can be formulated as:

Lobjective = αLce + (1 − α)Lkd + βLhybrid + γLrr , (21)

where α, β, and γ are non-negative trade-off parameters.
The training algorithm of our MODUL is summarized in

Alg. 1, which contains two stages. In Stage 1, all examples
in D̃ are attributed into Dc, Dcn , and D̃on . In Stage 2, all
examples in Dc, Dcn , and D̃on are effectively explored, and
the trained student network not only possesses informative
knowledge but also is robust to universal label noise. Here the
cross entropy loss Lce in the overall loss function Lobjective
can be substituted by some specialized loss functions [9],
[13], [60] tailored for handling noisy labels to further mit-
igate the potential noisy labels. However, here we simply
employ the common cross entropy loss because our method
has already achieved good noise-correction performance due
to the well-trained teacher network and the robust Mixup
operation. Therefore, for the sake of simplicity in algorithm
implementation, we choose to use conventional cross entropy
loss in our method.

V. EXPERIMENTS

This section describes the noisy dataset construction
(Section V-A), verifies the effectiveness of our MODUL under
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Algorithm 1 MOdel Distillation With Universal Label Noise

different noise levels (Section V-B), compares the proposed
MODUL with other data-free knowledge distillation methods
(Section V-C), justifies the usefulness of key operations in
MODUL (Section V-E), and analyzes the parametric sensitiv-
ity of the pre-tuned parameters (Section V-F).

A. Noisy Dataset Construction

In this section, we introduce the way for building noisy
datasets under universal label noise for our empirical study.
By following prior works [42] on label noise learning, we uti-
lize CIFAR-10 and CIFAR-100 [25] datasets as in-distribution
data, and extract out-of-distribution data from large-scale
ImageNet [10] to mimic the massive examples collected from
Internet. CIFAR-10 (CIFAR-100) consists of 60,000 32 × 32
RGB images of 10 (100) categories, among which 50,000
images are for training, and 10,000 images are for testing. Ima-
geNet contains up to 1,000 categories and about 1.2 million
images, far exceeding those of CIFAR-10 and CIFAR-100.

Here, we construct two noisy datasets, namely
“CIFAR-10 + ImageNet” and “CIFAR-100 + ImageNet”.
Specifically, the constructed noisy datasets are governed by
two noise ratios ρ1 and ρ2 introduced in Section IV-A, where
ρ1 denotes the ratio of noisy examples in the entire dataset,
and ρ2 means the proportion of open-set noisy examples

Fig. 4. Visualization of examples in TinyImageNet and WebVision datasets.
(a) shows the examples in TinyImageNet, which are used to train teacher
network. For the training images of student network in the realistic WebVision,
(b) shows the clean examples that are annotated with correct true labels;
(c) exhibits the closed-set noisy examples that are incorrectly labeled as other
known classes-of-interests; and (d) displays the open-set noisy examples with
unknown true labels.

in all noisy examples. For the noisy dataset CIFAR-10
(CIFAR-100) + ImageNet contains 50,000 training examples,
which can be divided into clean set, closed noisy set,
and open noisy set. For clean set, we randomly select
(1 − ρ1)× 50, 000 images from CIFAR-10 (CIFAR-100) and
retain their original labels. For closed noisy set, we randomly
choose ρ1 × (1 − ρ2) × 50, 000 images from CIFAR-10
(CIFAR-100) and flip their labels to another class that
belongs to CIFAR-10 (CIFAR-100). For open noisy set,
we randomly extract ρ1 ×ρ2 ×50, 000 images from ImageNet
and assign a class label within CIFAR-10 (CIFAR-100)
to them. Same as [18], we perform random flip, random
crop, and zero padding on all selected images for data
augmentation. To make the image size consistent, we down-
sampled the images in ImageNet to the size of 32 × 32.
The CIFAR and ImageNet datasets contain some overlapped
categories. Therefore, we removed the images in ImageNet
belonging to these overlapped categories to avoid selecting
them as out-of-distribution data.

Additionally, we follow recent studies [7], [27] in
semi-supervised learning to train student network on a realistic
noisy dataset composed of the images in the wild. That is
to say, we use TinyImageNet [26] as the original data for
teacher network, and train student network on the corre-
sponding images in WebVision [30], which belongs to the
200 categories in TinyImageNet and is acquired according
to the data provided by the official website of WebVision.2

TinyImageNet is a popular subset of ImageNet dataset, which
contains 64 × 64 RGB images of 200 categories. Each class
has 500 training images, 50 validation images, and 50 test
images. WebVision composed of over 2.4 million unlabeled
images crawled from the Internet using the 1000 categories
in ImageNet as indices. As shown in Fig. 4, in the images
of WebVision, there are many closed-set and open-set noisy
examples. Therefore, training student network on WebVision

2https://data.vision.ee.ethz.ch/cvl/webvision/dataset2017.html
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TABLE I
CLASSIFICATION RESULTS OF THE EXPERIMENTS ON CIFAR-10 + IMAGENET AND CIFAR-100 + IMAGENET,

WHERE THE NOISE RATIOS ρ1, ρ2 ∈ {0.25, 0.50, 0.75}

can faithfully evaluate the effectiveness of our method in
solving universal label noise.

B. Experiments on Various Noisy Datasets

In this section, we conduct extensive experiments on the
constructed noisy datasets “CIFAR-10 + ImageNet” and
“CIFAR-100 + ImageNet” under various noise ratios ρ1, ρ2 ∈

{0.25, 0.50, 0.75}, and the realistic noisy dataset WebVision
to evaluate the effectiveness of our MODUL. To our best
knowledge, Data-Free Noisy Distillation (DFND) [5] is the
only existing data-free model compression method that can
utilize noisy data, which processes the closed-set label noise
by a noise adaption matrix. Therefore, we compare our
MODUL with DFND to demonstrate the capability of our
MODUL in handling noisy data. Meanwhile, we train a
student network on the noisy datasets by Vanilla Knowledge
Distillation (VKD) [19] to show the necessity of label noise
processing, where the label noise in dataset is ignored.

To achieve fair competition, all the compared methods
share the same backbone networks. We utilize two popular
teacher-student pairs ResNet34-ResNet18 and VGGNet16-
VGGNet13. During training, we select Stochastic Gradient
Descent (SGD) as optimizer and set the weight decay and
momentum parameters as 10−4 and 0.9, respectively. We train
all networks for 200 epochs with batch-size b = 64, and the
learning rate is initially set as 0.1 and divided by ten at 80 and
160 epochs. Besides, the trade-off parameters in Eq. (21) are
set to α = β = 0.1 and γ = 0.01, and the temperature
parameter t in Eq. (11) is set to 0.3. The parametric sensitivity
will be studied in Section V-F.

Table I reports the classification results on the noisy datasets
CIFAR-10/100 + ImageNet and TinyImageNet + WebVision.
Firstly, we observe that noisy labels will damage the effect of
knowledge distillation. VKD neglects label noise and performs
poorly on noisy datasets over various noise levels. In contrast,
DFND and our MODUL can handle noisy labels, so their per-
formance is significantly better than VKD. Secondly, we can
see that our MODUL consistently outperforms DFND on noisy
datasets over various noise levels with a large margin. This is
because DFND ignores massive open-set noisy examples that
are ubiquitous in the wild, which are still useful for student
network training if explored appropriately. In contrast, our
MODUL properly utilizes both closed-set and open-set noisy
examples. When ρ1 = ρ2 = 0.75, the accuracy of MODUL is
1.99% and 7.29% higher than that of DFND on CIFAR-10 +

TABLE II
CLASSIFICATION RESULTS OF THE STUDENT NETWORKS TRAINED ON

THE REALISTIC NOISY DATASET CONSTRUCTED BY THE IMAGES IN
THE WILD. THE ORIGINAL DATASET OF TEACHER NETWORK AND

NOISY DATASET OF STUDENT NETWORK ARE TINYIMAGENET
AND WEBVISION, RESPECTIVELY.“RESNET34 (65.75%)”

REPRESENTS THAT THE ACCURACY OF RESNET34
TRAINED ON THE ORIGINAL DATASET IS 65.75%,

AND THE SAME APPLIES TO OTHER ITEMS

ImageNet and CIFAR-100 + ImageNet, respectively. The
experimental results demonstrate that the proposed MODUL
can effectively process the noisy dataset containing universal
label noise and train a compact student network to solve the
data-free model compression problem.

Table II reports the classification results on the realistic
noisy dataset WebVision. We can observe that the student
networks trained by our method still achieve comparable
performance with the same one trained on the original dataset.
For the teacher-student pair ResNet34-ResNet18, the accuracy
of our method is 15.63% and 9.23% higher than that of
VKD and DFND, respectively. For the teacher-student pair
VGGNet16-VGGNet13, the accuracy of our method is 14.10%
and 7.70% higher than that of VKD and DFND, respec-
tively. The experimental results demonstrate that the proposed
MODUL can effectively process the real-world noisy dataset
containing both closed-set label noise and open-set label noise,
therefore training a compact and reliable student network.

C. Comparison With Other Data-Free Knowledge
Distillation Methods

In this paper, we focus on data-free model compression.
Therefore, we further compare the proposed MODUL with
other data-free methods, which usually generate fake data from
a pre-trained teacher network for training student network,
such as:

• Data-Free Learning (DFL) [6], which introduces a gen-
erator to synthesize fake data under the supervision of a
pre-trained teacher network.

• Data-Free Adversarial Learning (DFAD) [12], which
utilizes teacher network and student network to jointly
supervise generator to produce fake data.

• DeepInversion [56], which inverts the means and vari-
ances stored in teacher’s features to generate training
images.
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TABLE III
CLASSIFICATION RESULTS OF THE PROPOSED MODUL AND OTHER

COMPARED METHODS. THE REPORTED ACCURACIES ARE EVALUATED
ON THE TEST SETS OF CIFAR-10 AND CIFAR-100 DATASETS. “−”

MEANS THAT THE CORRESPONDING METHOD DOES
NOT NEED INPUT DATA

• Zero-Shot Knowledge Transfer (ZSKT) [37], which pro-
motes student network to mimic the predictions of
teacher network for “hard” examples that are produced by
generator.

In addition, we also introduce VKD and DFND appeared in
Section V-B for comparison. In this section, VKD is trained
on the clean CIFAR-10 and CIFAR-100 datasets, while DFND
and our MODUL are trained on CIFAR-10 + ImageNet and
CIFAR-100 + ImageNet with ρ1 = ρ2 = 0.50. The student
networks trained by all methods are evaluated on the test sets
of CIFAR-10 and CIFAR-100.

The experimental settings of MODUL are the same as those
declared in Section V-B. It is worth noting that, for fair a
comparison, all baseline methods and our MODUL employ
ResNet34 and ResNet18 as teacher network and student net-
work, respectively. The parameters α and β in DFL [6] to
balance activation loss and entropy loss for generator are set
to 0.01 and 20, respectively. In DFAD [12], the generator
is updated one time when the student network is updated
every five times. In DeepInversion [56], the parameter αc for
image diversity competition loss is adjusted to 10. Besides, the
gradient steps of student and generator during each iteration
in ZSKT [37] are set as 10 and 1, respectively. Moreover, the
temperature parameter τ of DFND [5] is determined as 4.

Table III presents the classification results. We see that DFL,
DFAD, DeepInversion, and ZSKT can generate fake data for
student network training, but their performance is poor due
to the discrepancy between the generated data and true data.
Meanwhile, the performance of DFND is still lower than VKD
since it ignores open-set label noise in the collected examples.
In particular, our MODUL achieves the best classification
performance among all methods. Specifically, the accuracy of
the proposed MODUL is 1.47% and 1.50% higher than the
same network trained by VKD on CIFAR-10 and CIFAR-100
datasets, respectively. It indicates that even when half of the
examples in the dataset are noisy, our MODUL can still
acquire a student network to achieve comparable performance
with the same network trained on the original clean dataset.

D. Comparison With Other Learning Methods With
Noisy Labels

In our approach, we aim to train a compact and reliable
student network on the noisy dataset with universal label noise.
To achieve this target, it is vital to properly solve the potential

TABLE IV
CLASSIFICATION RESULTS OF THE PROPOSED MODUL AND OTHER

POPULAR METHODS OF LEARNING WITH NOISY LABELS. ALL STU-
DENT NETWORKS TRAINED ON NOISY DATASET ARE EVALUATED

ON THE TEST SETS OF CIFAR-10 AND CIFAR-100. THE COL-
UMN “WITHOUT/WITH MIXUP” PRESENTS THE RESULTS

PRODUCED BY THE CORRESPONDING METHODS
WITHOUT/WITH MIXUP OPERATION

noisy data in the divided clean set, closed noisy set, and
open noisy set. Therefore, we compare our method with state-
of-the-art methods of learning with noisy labels to evaluate
the effectiveness of our method for combating label noise,
including:

• Reweighting [32], which assigns different weights to
noisy examples based on their estimated probability of
being noisy.

• Dimensionality-Driven Learning (D2L) [35], which mod-
ifies the loss of DNNs at their dimensionality expansion
stage that is usually prone to noisy labels.

• Generalized Cross Entropy (GCE) [60], which encour-
ages DNNs to learn both the true labels and predicted
probabilities.

• Symmetric Cross Entropy (SCE) [50], which can simul-
taneously solve overfitting on noisy labels in easy
categories and underfitting on hard categories.

• Classification Loss with Entropic Optimal Transport
(CLEOT) [9], which utilizes entropic optimal transporta-
tion to prevent DNNs from overfitting to noisy labels.

• Early-Learning Regularization (ELR) [31], which corrects
the noisy labels in the early training stage of DNNs to
avoid them remembering these noisy labels.

• Wasserstein Adversarial Regularization (WAR) [13],
which transforms the predicted distribution of labels into
the true distribution based on Wasserstein distance.

To compare these label noise processing methods with our
method, we use them to replace the cross entropy loss in our
method and discard hybrid contrastive learning loss Lhybrid
(Eq. (7)) and rotation recognition loss Lrr (Eq. (18)). For
a fair comparison, all compared methods and our MODUL
employ the teacher-student pair ResNet34-ResNet18 to train
on CIFAR-10 + ImageNet and CIFAR-100 + ImageNet
datasets with ρ1 = ρ2 = 0.50. The experimental setups are
the same as those declared in Section V-B.

The experimental results, as reported in Table IV, highlight
two main observations. Firstly, the methods involving label
noise handling achieve better performance than those only
using cross entropy loss function, which demonstrates the
necessity of handling potentially noisy examples. Secondly,
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TABLE V
CLASSIFICATION RESULTS OF THE ABLATION EXPERIMENTS. THE PERFORMANCE DROP OF EACH SETTING COMPARED WITH COMPLETE MODUL IS

INDICATED IN RED FONT IN THE BRACKET

our method with Mixup performs better than those methods
with advanced techniques of learning with noisy labels, which
reflects that our method can further effectively address the
possible noisy labels in the divided dataset.

E. Verification of Key Operations in MODUL

To further demonstrate the effectiveness of the proposed
MODUL, we conduct ablation studies and visualize the
divided examples to show that the key operations designed
in MODUL are indeed necessary.

1) Ablation Study: To understand the function of each
component in the proposed MODUL, we use CIFAR-10 +

ImageNet and CIFAR-100 + ImageNet datasets with noise
ratios ρ1 = 0.50 and ρ2 ∈ {0.25, 0.50, 0.75} for our abla-
tive experiments. Specifically, we study the performances of
three key components of MODUL by removing the related
operations, namely: 1) Open-set noisy examples utilization
in Section IV-C (see “No Lrr ”); 2) Knowledge transfer in
Section IV-B (see “No Lhybrid”, “No Linstance”, and “No
Lcategory”); and 3) Mixup in Section IV-C (see “No Mixup”).
The experimental setups are the same as those in Section V-B.
Table V shows the experimental results of ablation studies and
below we will analyze the contribution of each component in
our MODUL:

1) Open-set noisy examples utilization. The performance
of student network consistently degrades as the number
of open-set noisy examples increases, i.e., ρ2 rises. The
results indicate that our MODUL can effectively utilize
the valuable open-set noisy examples.

2) Knowledge transfer. The student network gets poor
classification results when the term Lhybrid is removed,
as in this case, the student will not learn any categorical
or instance knowledge from teacher network. In contrast,
as shown in “No Linstance” and “No Lcategory”, the
student network learning category-level knowledge or
instance-level knowledge all exhibit considerable perfor-
mance improvements. In particular, the student network
achieves the best performance (shown in “MODUL”)
when both categorical and instance knowledge are trans-
ferred from teacher to student. The results demonstrate
that both categorical and instance knowledge are bene-
ficial for student network training.

Fig. 5. Visualization of divided examples of the noisy dataset CIFAR-10 +
ImageNet with ρ1 = ρ2 = 0.50. (a) shows that the clean examples are
annotated with correct true labels. (b) shows that the labels of closed-set
noisy examples can be correctly refined by our method. (c) displays that the
open-set noisy examples with unknown true labels can be accurately identified
by our method.

3) Mixup. The performance of student network
decreased significantly on CIFAR-10 + ImageNet and
CIFAR-100 + ImageNet over noisy datasets with
different noise levels. The results indicate that Mixup
is critical to handling unexpected noisy labels.

2) Visualization of Dataset Division: To show the effective-
ness of our proposed dataset division method in Section IV-A,
we visualize the examples divided by our method on the noisy
dataset CIFAR-10 + ImageNet with ρ1 = ρ2 = 0.50. Fig. 5
shows the determined images in clean set Dc, closed noisy
set Dcn , and open noisy set D̃on , respectively. Specifically,
the clean examples in Fig. 5(a) and closed-set noisy examples
in Fig. 5(b) contain the images of “cat”, “dog”, and “ship”,
etc., which belong to the classes-of-interests within CIFAR-10
dataset. From Fig. 5, we see that the labels of clean examples
are retained by our method, as they are consistent with their
actual labels. Meanwhile, the labels of mislabeled closed-set
noisy examples are precisely refined by our teacher network.
Furthermore, the open-set noisy examples in Fig. 5(c) are out-
of-distribution data not contained by the CIFAR-10 dataset.
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Fig. 6. Parametric sensitivity of (a) α, (b) β, (c) γ , and (d) t in our MODUL
on noisy datasets CIFAR-10 + ImageNet and CIFAR-100 + ImageNet with
noise ratios ρ1 = ρ2 = 0.50.

The visualization result demonstrates that the proposed dataset
division scheme in Section IV-A can effectively classify the
examples in the noisy dataset into Dc, Dcn , and D̃on . There-
fore, the student network supervised by teacher network can
be well-trained on these divided data.

F. Parametric Sensitivity

Three trade-off parameters α, β, γ , and the temperature
parameter t in our MODUL are required to be pre-tuned man-
ually. This section studies the sensitivity of our MODUL to
these parameters on the noisy datasets CIFAR-10 + ImageNet
and CIFAR-100 + ImageNet with noise ratios ρ1 = ρ2 =

0.50. The model configurations and experimental setups are
the same as those in Section V-B. During training, we examine
the produced accuracy by changing one of the four parameters
and fixing every remaining parameter to a constant value listed
in Section V-B.

Fig. 6 shows the curves of test accuracy produced by the
student network when the parameters vary. We can obverse
that these parameters cover a wide range, where α, β, and γ
are within {0.001, 0.01, 0.1, 1.0}, and t ∈ {0.1, 0.2, 0.3, 0.4}.
It can be observed that the curves of accuracies are generally
stable, indicating that the performance of student network is
robust to the variations of parameters. Therefore, the parame-
ters in our MODUL are easy to tune.

VI. CONCLUSION AND FUTURE WORK

This paper proposes a new data-free knowledge distillation
framework termed “MOdel Distillation with Universal Label
noise” (MODUL) to process the absence of original data. The
key of MODUL is to train a compact student network on a
webly-collected dataset under universal label noise. Specifi-
cally, our MODUL has the following key operations: firstly,

it carefully explores the loss value distribution of different data
types and precisely divides the noisy data into clean set, closed
noisy set, and open noisy set; secondly, student network can
learn both category-level and instance-level knowledge from
teacher network, and thus exhibiting satisfactory representa-
tion ability; and thirdly, it properly tackles the closed-set and
open-set label noise by Mixup and self-supervised learning,
respectively, leading to a noise-robust student network. The
results evaluated on the noisy benchmark datasets indicate that
our MODUL outperforms state-of-the-art data-free knowledge
distillation methods.

Generally speaking, a stronger teacher network might be
more powerful in dealing with label noise. However, in our
investigated knowledge distillation scenario, a significant gap
between teacher network and student network will also reduce
the distillation effect, ultimately decreasing the performance
of student network (see Supplementary Materials). Therefore,
in future work, we plan to explore the trade-off between
the capability of teacher network and the performance gap
between teacher and student.
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