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Abstract

Knowledge distillation aims to learn a lightweight stu-
dent network from a pre-trained teacher network. In prac-
tice, existing knowledge distillation methods are usually
infeasible when the original training data is unavailable
due to some privacy issues and data management consid-
erations. Therefore, data-free knowledge distillation ap-
proaches proposed to collect training instances from the In-
ternet. However, most of them have ignored the common
distribution shift between the instances from original train-
ing data and webly collected data, affecting the reliability
of the trained student network. To solve this problem, we
propose a novel method dubbed “Knowledge Distillation
between Different Distributions” (KD3), which consists of
three components. Specifically, we first dynamically select
useful training instances from the webly collected data ac-
cording to the combined predictions of teacher network and
student network. Subsequently, we align both the weighted
features and classifier parameters of the two networks for
knowledge memorization. Meanwhile, we also build a new
contrastive learning block called MixDistribution to gen-
erate perturbed data with a new distribution for instance
alignment, so that the student network can further learn
a distribution-invariant representation. Intensive experi-
ments on various benchmark datasets demonstrate that our
proposed KD3 can outperform the state-of-the-art data-free
knowledge distillation approaches.

1. Introduction
In recent years, advanced deep neural networks (DNNs)

have significantly succeeded in many computer vision

*Corresponding authors: Chen Gong (chen.gong@njust.edu.cn), Shuo

Chen (shuo.chen.ya@riken.jp).

fields [19, 21]. However, those excellent DNNs usually

have excess learning parameters, which may incur unaf-

fordable computation and memory burdens for resource-

limited intelligent devices. To address this problem, model

compression algorithms have been developed to constrict

heavy DNNs into portable ones, mainly including the net-

work pruning [28], network quantization [35], and knowl-

edge distillation [23].

Most existing compression algorithms are data-driven

and rely on massive original training data that is usually

inaccessible in the real world. For example, the large-scale

ImageNet [12] requires 138GB of storage and is too heavy

to transfer among devices, yet the ResNet34 [22] trained on

ImageNet only needs 85MB memory and can be shared at

a relatively low cost. Besides, users may be more willing

to share pre-trained models than their personal data, such

as photos and travel records. As a result, existing data-

driven algorithms for model compression frequently fail to

deal with large DNNs in practical applications.

To address this issue, data-free model compression meth-

ods have received wide attention in recent studies [6, 10,

13, 16]. Among these methods, data-free knowledge distil-

lation has shown encouraging results, which only requires

a pre-trained large network (a.k.a. a teacher network) to

learn a compact network (a.k.a. a student network). Exist-

ing data-free knowledge distillation methods train student

network with the guidance of teacher network through the

generated pseudo data [7, 45, 50] or real-world data col-

lected from the Internet [6]. Generally, the performance

of the student networks trained on synthetic data might be

suboptimal due to the flawed or distorted synthetic images.

In comparison, the student networks using real-world data

from the Internet usually achieve better performance, espe-

cially on the tasks involving complicated natural images.

Current data-free knowledge distillation methods [6] that
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Figure 1. The illustration of distribution shift between the webly

collected data and original data, where the original data consists

of realistic images of animals. Nevertheless, the webly collected

data may include cartoon and sketch images of animals, and even

some non-animal images.

train student network with data from the Internet (i.e., we-

bly collected data) seek to select confident instances from

the collected data, so that they can provide correctly labeled

images for training student network. However, the webly

collected data and original data may have different distribu-

tions, and existing methods usually ignore the distribution

shift (e.g., the image style and image category) between

them, as shown in Fig. 1. For example, when we are in-

terested in classifying various real-world animals and enter

“cat” into the image search engines, we may obtain the im-

ages of “cartoon cat” or “cat food”. Apparently, the former

is with different styles of cat images, and the latter is even

unrelated to our interested animal classification task. The

student network trained on the webly collected data will in-

evitably suffer from distribution shift when it is evaluated

on the unseen test data. This makes the performance of stu-

dent network trained on the webly collected data obviously

lower than that using the original data. Consequently, it

is critically important to alleviate the distribution shift be-

tween the webly collected data and original data.

To this end, we propose a new data-free approach called

Knowledge Distillation between Different Distributions

(KD3) to learn a student network by utilizing the plentiful

data collected from the Internet with specific considerations

on the distribution shift. More specifically, we first select

the webly collected instances with the similar distribution

to original data by dynamically combining the predictions

of teacher network and student network during the train-

ing phase. After that, to exhaustively learn the informa-

tion of teacher network, we share the classifier of teacher

network with student network and conduct a weighted fea-

ture alignment. In this way, we can encourage student net-

work to mimic the feature extraction of teacher network.

Furthermore, a new contrastive learning block MixDistribu-

tion is designed to control the statistics (i.e., the mean and

variance) of instances, so that we can generate perturbed

instances with the new distribution. The student network

is encouraged to produce consistent features for the un-

perturbed and perturbed instances to learn the distribution-

invariant representation, which can generalize to the previ-

ously unseen test data. As a result, the student network that

precisely mimics teacher network can produce the features

that are consistent with teacher network. Finally, these fea-

tures fed into the shared classifier can make the predictions

as accurate as the corresponding teacher network. Thanks to

effectively resolving the distribution shift between the we-

bly collected data and original data, our KD3 finally learns

an accurate and lightweight student network, which can

achieve comparable performance to those student networks

trained on the original data. The contributions of our pro-

posed KD3 are summarized as follows:

• We propose a new data-free knowledge distillation

method termed KD3, which dynamically selects useful

training instances from the Internet by alleviating the

distribution shift between the original data and webly

collected data.

• We design a weighted feature alignment strategy and

a new contrastive learning block to closely match stu-

dent network with teacher network in the feature space,

so that the student network can successfully learn use-

ful knowledge from teacher network for the unseen

original data.

• Intensive experiments on multiple benchmarks demon-

strate that our KD3 can outperform the state-of-the-art

data-free knowledge distillation approaches.

2. Related Works
In this section, we review previous works related to our

proposed KD3, mainly including knowledge distillation and

the learning approaches under distribution shift.

2.1. Knowledge Distillation

Conventional knowledge distillation usually needs the

original training data to launch knowledge transfer from a

teacher to a student. In general, they utilize the soften pre-

dictions [1, 23], middle-layer features [5, 36], and instance

relationships [33, 40] as the transferred knowledge, which

can achieve satisfactory results on various datasets and dif-

ferent DNNs. However, they are usually ineffective in prac-

tice when the original data is unusable.
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To solve this problem, data-free knowledge distilla-

tion [4, 48] employs synthetic data or webly collected data

to train student network with the help of the pre-trained

teacher network, which can bypass privacy issues and save

data management costs in practical applications. Inspired

by the Generative Adversarial Networks [20], a series of

works [7, 15, 30] treat the teacher network as the discrimi-

nator to supervise a generator to produce pseudo data from

random noise. Besides, DeepInversion [45] extracts the

means and variances stored in the batch normalization lay-

ers of teacher network to reconstruct training images. Re-

cently, Contrastive Model Inversion (CMI) [16] argues that

the instances generated by DeepInversion are highly similar,

which is ineffective for student network training. Conse-

quently, CMI augments the diversity of generated data via

contrastive learning [9]. Lately, Zhao et al. [50] use the

means and variances of teacher network to guide the gener-

ator and further produce new realistic data, thereby improv-

ing the performance of student network.

Instead of generating new data for approximating the

original data, it is promising to train a satisfactory student

network by utilizing the plentiful realistic instances on the

Internet. Xu et al. [44] select useful examples from the we-

bly collected data based on a portion of the original data.

Chen et al. [6] propose to select useful instances with a

low cross-entropy value to train student network. However,

they neglect the distribution discrepancies between the we-

bly collected data and original data, which inevitably cor-

rupts the performance of the student network. In this work,

we carefully consider and effectively process the distribu-

tion shift, thus obtaining a reliable student network.

2.2. Learning under Distribution Shift

In the learning scenarios with distribution shift, the train-

ing data and test data may come from different distributions

[32, 34]. In this case, DNNs are biased to training data

and cannot perform well during the test phase. To tackle

this problem, a series of works [2, 42] propose to select in-

stances that are similar to the target distribution, and those

selected instances are used for retraining the DNNs. Some

other works [17, 39] adapt the reweighting technique to

find out the useful training instances which have the similar

distribution to the original data. Furthermore, domain adap-

tion approaches [14, 49] are proposed to transfer knowledge

from the training data (i.e., the source data) to test data (i.e.,
the target data) , thereby improving the generalization abil-

ity of the model under distribution shift.

In data-free knowledge distillation, the distribution of

webly collected data is usually different from the unseen

test data, which may drop the performance of student net-

work significantly. Therefore, we propose the new method

KD3 to explicitly deal with such a distribution shift issue

for data-free knowledge distillation.

3. Our Approach
In this section, we first introduce some necessary pre-

liminary knowledge, and then we state our KD3 on how to

learn student networks without using the original data.

3.1. Preliminary

Conventional knowledge distillation methods [23, 36]

seek to learn a small student network NS by promoting

it to mimic the output of a large pre-trained teacher net-

work NT . Formally, we denote the original training data

as D = {(xi, yi)}|D|
i=1 ⊂ X × Y , where “| · |” is the data

cardinality; X ⊂ R
I (I is the data dimensionality) and

Y = {1, · · · ,K} (K is the total number of classes) are

the sample space and label space, respectively. For a train-

ing dataset D, the knowledge distillation is accomplished

by minimizing the following loss function:

Lkd(NS) =
1

|D|

|D|∑
i=1

[Hce (NS (xi) , yi) + λHkt

(
fSi , f

T
i

)
],

(1)

where Hce is the cross-entropy loss function, encouraging

the prediction of student network to be as consistent as the

ground-truth; Hkt is the knowledge transfer function to pro-

mote student network to learn the knowledge fTi of teacher

network (e.g., predictions or feature maps); fSi is the corre-

sponding knowledge of student network; λ > 0 denotes the

trade-off parameter, which is used to balance Hce and Hkt.

The necessary original data D of conventional knowl-

edge distillation methods is usually untouchable due to

practical limitations discussed in Section 1. Consequently,

a sequence of data-free methods [6, 7, 10] propose to gen-

erate the pseudo data from teacher network NT , but the vi-

sual quality and diversity of the synthetic images limit their

performance. Instead of generating pseudo data, there are

massive realistic data D̄ = {(x̄i, ȳi)}|D̄|
i=1 ⊂ X̄ × Ȳ on the

Internet which can be gathered to train the student network

NS [8]. Here, the notations with superscript “–” denote

that they are related to the webly collected data. However,

there is distribution shift between the webly collected data

D̄ and original data D, namely: 1) p(y|x) �= p(ȳ|x̄), i.e.,
D̄ may contain many uninterested instances due to Y ⊂ Ȳ
and |D| � |D̄|; 2) p(x) �= p(x̄), i.e., the image quality or

style of D and D̄ are different from each other because the

instances in D̄ are roughly collected from the Internet. In

this case, the student network trained on D̄ inevitably per-

forms poorly on the unseen test data due to the distribution

shift.

To address the aforementioned issue, we propose a novel

data-free knowledge distillation method called KD3 to train

a reliable NS on the webly collected data D̄. As illustrated

in Fig. 2, our KD3 contains three key components (as de-

tailed in Sections 3.2, 3.3, and 3.4, respectively), includ-

17472



Parameter sharing

Webly collected data

Projection head of teacher/student

Data flow of perturbed data
Data flow of teacher/student

Perturbed instancesUnlearnable
Learnable

Feature 
extractor
of teacher

a b

c d

e f

g h

a b

c d

Feature 
extractor
of teacher

Feature 
extractor
of student

Feature 
extractor
of student

Shared classifier

0.95 0.86 0.92 0.71

Weights

Feature 
alignment

Invariant 
representation 

learningInstances selection

a b

c d

Selected instances

M
ixD

istribution
Figure 2. The diagram of our Knowledge Distillation between Different Distributions (KD3). The frozen teacher network NT consists of a

feature extractor φT and a classifier gT . The student network NS has a learnable feature extractor φS and shares gT with NT , where gT is

fixed to preserve the information learned by NT . Firstly, the webly collected data D̄ is dynamically selected by NT and NS . For example,

here we assume the original data contain two classes including: “cat” and “dog”. Then we select the images “a-d” while discarding the

images “e-h” (with different distributions). Subsequently, the weighted feature alignment conducted on the selected data further promotes

NS to make accurate predictions. Moreover, the MixDistribution contrastive learning is applied to both the perturbed instances (obtained

by the MixDistribution) and unperturbed instances, promoting NS to learn robust representations that are invariant to distribution shift.

ing 1) Teacher-student dynamic instance selection, which

chooses webly collected instances having the similar distri-

bution of original instances; 2) Classifier sharing & feature

alignment, where the student network and teacher network

share their classifier parameters and align their output fea-

tures; 3) MixDistribution contrastive learning, which pro-

motes the student network to produce consistent represen-

tations for both perturbed and unperturbed instances.

3.2. Teacher-Student Dynamic Instance Selection

As mentioned above, there is distribution shift between

the webly collected data D̄={(x̄i, ȳi)}|D̄|
i=1 and original data

D. Since the teacher network is well-trained on D, it is

able to show high confidence levels for those instances in D̄
which have the similar distribution with D. Consequently,

we propose to select useful instances from D̄ based on the

output probabilities of teacher network NT and student net-

work NS to alleviate the distribution shift.

Specifically, we first input all instances in D̄ into both

NT and NS to get the corresponding output probabilities:{
NT (x̄i) = gT (φT (x̄i)),
NS(x̄i) = gT (φS(x̄i)),

(2)

where φT and φS denote the feature extractor of NT

and NS , respectively, and gT represents the shared clas-

sifier learned by NT . Then, we combine the predictions

{NT (x̄i)}|D̄|
i=1 and {NS(x̄i)}|D̄|

i=1 by the following criterion:

Combine (x̄i) = (1− α(t))NT (x̄i) + α(t)NS (x̄i) . (3)

The combination is dynamically adjusted by the following

time-dependent function:

α(t) =

⎧⎨
⎩ exp

(
−5

(
t

I/2 − 1
)2

)
, t ≤ I/2,

1, t > I/2,
(4)

where α(t) grows from 0 to 1 according to current epoch

t, and I represents the total number of iterations in training

student network. In the early-staged training, the initialized

NS is unable to offer accurate predictions for the instances

in D̄, while the pre-trained NT can precisely recognize the

instances in D̄ which are similar to D. Therefore, function

α(t) attributes a big weight to NT (x̄i) at the early stage.

With the improvement of NS , α(t) will gradually highlight

the importance of NS (x̄i). When α(t) = 1 (namely t ≥
I/2), the selection of training instances will be completely

determined by the student network NS .

Subsequently, we can obtain the predicted label ypred
i of

image x̄i and the confidence pi of x̄i belong to ypred
i as:

ypred
i = argmax

j
(Combine (x̄i))j ,

pi = (Combine (x̄i))ypred
i

,
(5)

respectively. Based on the above {ypred
i } ¯|D|

i=1, we can count

the number of labels for each class as {ni}Ki=1, and then

we obtain the thresholds {Ti}Ki=1 for filtering out the low-

confidence instances of each category as:

Ti = Normalization(ni) · Vth, (6)
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where Vth is a fixed threshold, and {ni}Ki=1 is normalized to

[0, 1] via the following rule:

Normalization(ni) =
ni

max1≤j≤K (nj)
. (7)

Finally, we obtain the useful data D̄s = Select(x̄i)
(1 ≤ i ≤ ¯|D|) which has the similar distribution with D.

Here, the selection operator is defined as:

Select (x̄i) =

{
x̄i ∈ D̄s, pi > Typred

i
,

x̄i /∈ D̄s, pi ≤ Typred
i

.
(8)

During the training phase, D̄s is continuously updated based

on NT , NS , and α(t). If NS performs worse on a certain

category, it will produce low confidence values for the in-

stances of this category and lead to a low threshold. In this

case, many instances belonging to this category can be se-

lected to supplement the training of NS for this category.

3.3. Classifier Sharing & Feature Alignment

In Section 3.2, we successfully select the useful data

D̄s={(x̄i, ȳi)}|D̄s|
i=1 from the webly collected data D̄. How-

ever, teacher network NT and student network NS are un-

able to make completely correct predictions for all instances

in D̄ because both two networks are imperfect, especially

in the early-staged iterations. Therefore, the distribution

p(ȳ|x̄) of D̄s is still different from p(y|x) of D in some

cases, which may incur inaccurate supervisions to hurt the

performance of student network. Recent works [14, 27] re-

vealed that the classifiers of DNNs can learn task-specific

information. Inspired by this, we share the classifier gT
(learned by NT ) with NS , so that the critical information

of unseen original data (contained in D) can be transferred

from NT to NS . Furthermore, we freeze gT to prevent the

information learned from the original data being disturbed

by parameter update, which means that NS only updates its

parameters in φS during training. Subsequently, we utilize

D̄s to drive feature alignment between NS and NT in the

preceding layer of the shared gT , so that the student net-

work can memorize critical knowledge of teacher network

as much as possible.

In detail, the overall goal of our feature alignment is to

encourage NS to produce outputs as consistent as that of

NT . Accordingly, we estimate the feature alignment weight

wi for x̄i ∈ D̄s by calculating the consistency between

NT (x̄i) and NS(x̄i), which is:

wi = 1− Sigmoid (‖NS (x̄i)−NT (x̄i)‖1) . (9)

For an image x̄i, if NS produces consistent outputs with that

of NT , we regard it as an easily-aligned instance and give

it a large weight to highlight its positive influence in feature

Algorithm 1 Knowledge Distillation between Different

Distributions.
Require: A large pre-trained teacher network NT , webly

collected data D̄ = {(x̄i, ȳi)}|D̄|
i=1, trade-off parameter

α.

1: Initialize the small student network NS ;

2: Share the classifier gT of NT with NS ;

3: repeat
4: Stage 1: Similar distribution data selection.
5: Calculate α(t) via Eq. (4);

6: Combine outputs of NT and NS via Eq. (3);

7: Calculate thresholds {Ti}Ki=1 via Eq. (6);

8: Sample data D̄s from D̄ via Eq. (8);

9: Stage 2: Learning student network NS .

10: Measure instance weights {wi}|D̄s|
i=1 via Eq. (9);

11: Calculate feature alignment loss Lwfa(NS ,NT ) via

Eq. (10);

12: Perturbe instances in D̄s via Eq. (12);

13: Calculate MixDistribution contrastive learning loss

Lmdcl(NS ,NT ) via Eq. (17);

14: Calculate complete objective loss Lobjective(NS ,NT )
via Eq. (18);

15: Update student network NS via SGD;

16: until convergence

Ensure: Lightweight student network NS .

alignment and vice versa. Based on {wi}|D̄s|
i=1 , the weighted

feature alignment loss Lwfa(NS ,NT ) is formulated as:

Lwfa(NS ,NT )=
1

|D̄s|

|D̄s|∑
i=1

wiHmse(φS(x̄i), φT (x̄i)) , (10)

where Hmse is the mean square error and it measures the

similarity between φT (x̄i) and φS(x̄i).
Classifier sharing and feature alignment successfully ad-

dress the shortage of supervision in the student network,

thereby eliminating the negative impact of inaccurate labels

caused by the webly collected data. When evaluated on the

test instance xtest, the student network well aligned with the

teacher network can produce feature φS(xtest) which is con-

sistent to φT (xtest). After that, the parameter-shared clas-

sifier gT can produce an accurate prediction gT (φS(xtest))
like the teacher prediction gT (φT (xtest)).

3.4. MixDistribution Contrastive Learning

In our problem setting, the original training data D of

teacher network NT is inaccessible and student network NS

trained on the selected data D̄s needs to correctly recog-

nize the unseen test data. In practice, the original data D
is usually selected and processed manually, so the distri-

bution p(x̄) of webly collected instances cannot accurately

match the distribution p(x) of the original data. Recent
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studies [45, 51] find that the data distribution is closely re-

lated to image style and quality, which can be reflected in

statistical variables, e.g., the standard deviation and mean.

Therefore, we propose MixDistribution to construct the per-

turbed data with new distribution, which disturbs statistics

of images in D̄s. Finally, we promote student network to

learn representation that is invariant to distribution shift by

improving the consistency between perturbed and unper-

turbed instances.

More specifically, we first randomize {x̄i}|D̄s|
i=1 as

Randomize ({x̄i}|D̄s|
i=1 ) and compute the perturbed statistics

by the following rules:{
γmix = λσ({x̄i}|D̄s|

i=1 ) + (1− λ)σ(Rand({x̄i}|D̄s|
i=1 )),

βmix = λμ({x̄i}|D̄s|
i=1 ) + (1− λ)μ(Rand({x̄i}|D̄s|

i=1 )),
(11)

where λ > 0 is produced by beta distribution Beta(δ, δ)
with δ ∈ (0,∞) being a hyper-parameter. Here, σ(·) and

μ(·) denote the standard deviation and mean of the corre-

sponding variables, respectively. Then, we construct the

perturbed image x̂i by:

x̂i = γmix

x̄i − μ(x̄i)

σ(x̄i)
+ βmix, (12)

where we scale and shift the normalized x̄i by γmix and

βmix, respectively. After the above instance perturbation,

the raw images {x̄i}|D̄s|
i=1 and the perturbed images {x̂i}|D̄s|

i=1

are fed into NT and NS to obtain the features in penulti-

mate layer. Subsequently, we follow [9] to transfer features

of all dimensionalities into the embedding space by a pro-

jection head. By taking the teacher network NT and the

corresponding feature φT (x̄i) as an example, the embed-

ding result z̄Ti is calculated by:

z̄Ti = Normalization
(
WT

p φT (x̄i) + bT
p

)
, (13)

where WT
p and bT

p denote the weight and bias of projec-

tion head, and the notations with superscripts “T ” and “S”

represent they are related to teacher network and student

network, respectively. Similarly, the embedding result ẑTi
of perturbed example x̂i is computed by:

ẑTi = Normalization
(
WT

p φT (x̂i) + bT
p

)
. (14)

Based on the embeddings of unperturbed instances

{z̄Ti }
|D̄s|
i=1 and perturbed instances {ẑTi }

|D̄s|
i=1 , we can calcu-

late the MixDistribution contrastive learning (MDCL) loss

LT
mdcl(NT ) for the teacher network as follows:

LT
mdcl(NT )=−

|D̄s|∑
i=1

log
exp

(
sim

(
z̄Ti , ẑ

T
i

)
/τ

)
∑|D̄s|

j=1 �[j �=i] exp
(
sim

(
z̄Ti , ẑ

T
j

)
/τ

),
(15)

where τ > 0 is a temperature parameter; sim(·) denotes the

well-known cosine similarity [43]; �[j �=i] is the indicator

function, and its value is 0 only if i = j, and its value is 1,

otherwise. Likewise, the MDCL loss of student network is:

LS
mdcl(NS)=−

|D̄s|∑
i=1

log
exp

(
sim

(
z̄Si , ẑ

S
i

)
/τ

)
∑|D̄s|

j=1 �[j �=i] exp
(
sim

(
z̄Si , ẑ

S
j

)
/τ

).
(16)

LT
mdcl(NT ) and LS

mdcl(NS) depict the relationship among

the embeddings of NT and NS , respectively. Recent stud-

ies [33, 40, 52] have demonstrated that transferring the re-

lationship between representations is more effective than

transferring representations directly. Therefore, by follow-

ing [52], we integrate the following learning objectives of

NT and NS based on the similarity relationship:

Lmdcl(NS ,NT ) = LS
mdcl(NS) + LT

mdcl(NT ). (17)

By minimizing Lmdcl(NS ,NT ), the student network is

encouraged to produce close representations for perturbed

and unperturbed versions of the same instance, despite dis-

tribution shift between the two versions. Therefore, the stu-

dent network can accurately classify the test instances of

which the distribution is different from D̄s. Note that the

parameters in the projection heads of teacher and student

will keep updating during the training phase.

Overall Learning Objective. In the end, the complete

objective function of our KD3 is:

Lobjective (NS ,NT)=Lwfa(NS ,NT)+αLmdcl(NS ,NT), (18)

where α is a non-negative trade-off parameter to balance

the weighted feature alignment loss Lwfa(NS ,NT ) and

MixDistribution contrastive learning loss Lmdcl(NS ,NT ).
The detailed training algorithm of KD3 is summarized in

Alg. 1, which includes two main stages. In the first stage,

the useful instances with the similar distribution of original

training data are selected from the webly collected data. In

the second stage, the features of the student network (shares

the classifier of teacher network) are closely matched with

that of teacher network, and the MixDistribution contrastive

learning is deployed on the student network to learn a rep-

resentation that is invariant to distribution shift.

4. Experiments
In this section, we demonstrate the effectiveness of our

proposed KD3 on multiple image classification datasets.

Compared Methods: We compare our proposed KD3

with representative data-free methods, including Data-

Free Learning (DAFL) [7], Data-Free Adversarial Learn-

ing (DFAD) [15], Dual Discriminator Adversarial Distil-

lation (DDAD) [50], DeepInversion (DI) [45], Zero-Shot
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Dataset Arch #paramsT #paramsS FLOPsT FLOPsS ACCT ACCS DAFL DFAD DDAD DI ZSKT PRE DFQ CMI DFND KD3 ACC↑
MNIST ∇ 0.062M 0.019M 0.42M 0.14M 98.91 98.65 98.20 98.31 98.09 – 97.44 98.33 97.49 – 98.37 98.76 +0.39

CIFAR10
♦ 21.28M 11.17M 1.16G 0.56G 95.70 95.20 92.22 93.30 93.08 93.26 93.32 93.25 94.61 94.84 94.02 95.21 +0.37

♥ 14.73M 9.42M 0.40G 0.28G 94.07 92.69 86.92 90.38 90.85 85.27 91.22 91.82 91.36 88.49 92.61 94.13 +1.52

CIFAR100
♦ 21.28M 11.17M 1.16G 0.56G 78.05 77.10 74.47 67.70 73.64 61.32 67.74 74.19 77.01 77.04 76.35 78.44 +1.40

♥ 14.73M 9.42M 0.40G 0.28G 74.53 72.28 65.36 64.90 68.33 60.00 58.33 70.34 62.53 59.70 70.88 74.21 +3.33

CINIC
♦ 21.28M 11.17M 1.16G 0.56G 86.62 85.09 60.54 71.38 80.10 78.57 64.73 77.56 71.76 78.47 82.96 86.55 +3.59

♥ 14.73M 9.42M 0.40G 0.28G 84.22 83.28 59.08 60.67 77.90 68.90 58.84 65.38 74.33 74.99 81.82 83.54 +1.72

TinyImageNet
♦ 21.28M 11.17M 4.65G 2.23G 66.44 64.87 52.20 20.63 59.84 6.98 31.51 50.15 63.73 64.01 60.92 66.24 +2.23

♥ 14.73M 9.42M 1.26G 0.92G 62.34 61.55 53.89 38.95 42.25 1.22 30.63 45.92 23.43 17.73 56.87 61.98 +5.11

Table 1. Classification accuracy (in %) of the student network trained by various methods on five image classification datasets. The notations

∇, ♦, and ♥ represent the teacher-student pairs LeNet5-LeNet5 half, ResNet34-ResNet18, and VGGNet16-VGGNet13, respectively.

ACC, #params, and floating point operations (FLOPs) denote the yielded accuracy, parameters (in millions, M), and calculations (in Gigas,

G) of the corresponding DNN, respectively. These notations with superscripts “T ” and “S” represent that they are related to the teacher

network and student network, respectively. The best results achieved by baseline methods are underlined, and the column “ACC↑” with

green fonts shows the accuracy improvement of KD3 in contrast to the best results among compared baseline methods.

Knowledge Transfer (ZSKT) [30], Pseudo Replay En-

hanced Data-Free Knowledge Distillation (PRE) [3], Data-

Free Quantization (DFQ) [10], Contrastive Model Inversion

(CMI) [16], and Data-Free Noisy Distillation (DFND) [6]

(the only existing method using the webly collected data).

We implement the above methods by using the codes on

their official GitHub pages.

Original Datasets: We verify our proposed KD3 on the

test set of MNIST [26], CIFAR10 [24], CINIC [11], CI-

FAR100 [24], and TinyImageNet [25].

Webly Collected Datasets: When using MNIST as the

original data, we adopt the training images from both

MNIST-M [18] and SVHN [31] datasets as the webly col-

lected data, and we grayscale the RGB images in MNIST-

M and SVHN because the images in MNIST only have one

channel. When using other datasets with natural images as

the original data, we employ the training images from the

large-scale ImageNet [12]. We also downsample the im-

ages in ImageNet to 32×32 or 64×64 to ensure the size

consistency between the original data and webly collected

data. Details of the adopted datasets can be found in sup-
plementary material.
Implementation Details: When training on MNIST, we

use Adam with the initial learning rate of 10−3 as the opti-

mizer, and all student networks are trained with 40 epochs.

When training on other datasets, we utilize Stochastic Gra-

dient Descent (SGD) with weight decay of 5×10−4 and mo-

mentum of 0.9 as the optimizer. By following [5], all stu-

dent networks are trained with 240 epochs, and the initial

learning rate is set to 0.05, which is divided by ten at 150,

180, and 210 epochs. Besides, the temperature parameter τ
in Eq. (15) and Eq. (16), threshold parameter Vth in Eq. (8),

and trade-off parameter α in Eq. (18) are 0.30, 0.95, and

0.01, respectively. The parametric sensitivity will be inves-

tigated in Section 4.3.

4.1. Experiments on Image Classification Datasets

In this section, we conduct intensive experiments on five

image classification tasks mentioned above to demonstrate

Operation Type CIFAR10 CIFAR100

No classifier

sharing

One-hot 93.42 (−1.79) 74.54 (−3.90)

Soft 93.98 (−1.23) 76.92 (−1.52)

Instance

selection

Random 90.22 (−4.99) 73.60 (−4.84)

Only NS 91.99 (−3.22) 75.30 (−3.14)

Only NT 94.01 (−1.20) 76.76 (−1.68)

MDCL
No Lmdcl 94.48 (−0.73) 77.35 (−1.09)

No MD 94.61 (−0.60) 77.43 (−1.01)

KD3 Lobjective 95.21 78.44

Table 2. Classification accuracy (in %) of ablation experiments.

Brackets with red font denote the accuracy drop of the correspond-

ing item compared with the complete KD3.

the effectiveness of our proposed KD3. We select four

teacher-student pairs for experiments, including LeNet5-

LeNet5 half [26], ResNet34-ResNet18 [22], VGGNet16-

VGGNet13 [38], which are widely used in data-free meth-

ods [3, 7]. The experimental results are reported in Table 1.

Firstly, the performance of student networks trained on

synthetic data is suboptimal in general, particularly when

evaluating on the complex TinyImageNet, because the gen-

erated data is usually flawed or distorted. Secondly, we can

observe that DFND using the instances on the Internet is

still unable to produce a student network competitive to that

trained on the original data, which is due to the ignorance

of the distribution shift between the webly collected data

and original data. In contrast, our KD3 can successfully ac-

quire the student networks which achieve significantly bet-

ter performance than those trained on the original data in

most cases. The experimental results demonstrate that our

KD3 can effectively resolve the distribution shift between

the webly collected data and original data, thus training a

superior student network without any original data.

4.2. Ablation Studies & Feature Visualization

Ablation Studies. We select the teacher-student pair

ResNet34-ResNet18 to evaluate the three key operations in

KD3, and the results are shown in Table 2. The contribu-
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Teacher Student
#params FLOPs CIFAR10 CIFAR100 CINIC TinyImageNet

Teacher Student Teacher Student ACCS KD3 ACCS KD3 ACCS KD3 ACCS KD3

ResNet32×4 ResNet8×4 7.41M 1.21M 1.09G 0.18G 92.09 93.05 73.09 73.17 81.74 81.71 55.40 55.13

ResNet32×4 MobileNetV2 7.41M 0.81M 1.09G 7.37M 92.38 92.16 69.06 69.40 77.61 77.95 57.15 60.60

ResNet32×4 ShuffleV1 7.41M 0.86M 1.09G 42.11M 92.92 93.24 66.43 72.15 80.13 80.93 57.94 60.01

ResNet32×4 ShuffleV2 7.41M 1.26M 1.09G 46.66M 93.23 93.53 72.60 73.14 80.64 80.74 60.93 61.41

ResNet110×2 ResNet110 6.89M 1.73M 1.02G 0.26G 93.37 94.59 74.31 73.59 84.29 84.75 59.80 60.21

ResNet110×2 ResNet116 6.89M 1.83M 1.02G 0.27G 93.21 94.57 74.46 73.75 84.45 84.68 59.85 59.52

ResNet110×2 ShuffleV1 6.89M 0.86M 1.02G 42.11M 92.92 93.24 66.43 72.15 80.13 81.25 57.94 58.54

ResNet110×2 ShuffleV2 6.89M 1.26M 1.02G 46.66M 93.23 93.46 72.60 72.93 80.64 81.54 60.93 60.80

Table 3. Classification accuracy (in %) of various network backbones. The columns “ACCS” report the accuracies yielded by the student

networks using the original data. Here, the FLOPs are calculated by feeding a 32×32 sized RGB image into the corresponding DNN.

(a) Feature visualization on CIFAR10

(d) Feature visualization on TinyImageNet(c) Feature visualization on CINIC

(b) Feature visualization on CIFAR100

Figure 3. Visualization of ResNet34-produced features by t-

SNE [41]. The original images are from (a) CIFAR10, (b) CI-

FAR100, (c) CINIC, and (d) TinyImageNet, while the selected and

unselected images are from ImageNet, each part contains 1,000

images. The data points selected by our KD3 (i.e., orange dots)

show very similar distribution with the original data (i.e., red dots).

tions of these key operations are analyzed as follows:

1) Classifier Sharing in Section 3.3: To estimate the ef-

fectiveness of sharing the classifier of teacher network with

student network, we train a student with an initialized clas-

sifier. Moreover, to train the initialized classifier, we utilize

a cross-entropy or Kullback-Leibler (KL) [23] divergence

to enforce student network to mimic the one-hot predictions

or soft labels of teacher network (shown in “One-hot” and

“Soft”). It can be found that the performance of student

network with the initialized classifier obviously degrades,

which indicates that classifier sharing is vital to enhancing

student’s performance. It means that our method can effec-

tively transfer the teacher-learned information of original

data to student network.

2) Instance Selection in Section 3.3: The student network

obtains poor performance when the instances are randomly

selected (shown in “Random”) and only selected by student

network (shown in “Only NS”). Furthermore, the student

network that trained on the instances chosen by the pow-

erful teacher network achieves relatively good performance

(shown in “Only NT ”). In particular, the student network

achieves the best accuracy when utilizing the data selected

by our proposed data selection method, demonstrating that

our proposed data selection method can sample proper in-

stances for student network training.

3) MixDistribution Contrastive Learning in Section 3.4:

We directly remove Lmdcl(NS ,NT ) (shown in “No Lmdcl”)

or replace MixDistribution by data augmentations as in [46]

(shown in “No MD”) to train student network. The accuracy

of student network has reduced significantly when evaluated

on test data of which the distribution is different from the

webly collected data. The results demonstrate that MixDis-

tribution contrastive learning is critical to solving the distri-

bution shift problem.

Visualization of Features. To further understand the

effectiveness of our proposed data selection method, we

visualize the ResNet34-provided features of images from

original data, selected data, and unselected data. The origi-

nal training images are provided by CIFAR10, CIFAR100,

CINIC, and TinyImageNet, and webly collected images are

from ImageNet. The t-SNE [41] visualization results are

shown in Fig. 3, from which we can observe that the distri-

butions of selected images are close to the original images

in feature space. The visualization results demonstrate that

our data selection method can effectively select the webly

collected instances with the similar distribution to original

data. More visualization results are shown in supplemen-
tary material.

4.3. Parametric Sensitivity

The tuning parameters in our KD3 include the trade-

off parameter α in Eq. (18), temperature parameter τ in

Eq. (15) and Eq. (16), and threshold parameter Vth in

Eq. (8). This section analyzes the sensitivity of our KD3

to these parameters on the CIFAR dataset. The ResNet34

and ResNet18 are selected as teacher and student, respec-
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(a) Analysis of α (b) Analysis of τ (c) Analysis of 

92.18
95.21 95.07

91.57

76.12 78.44 78.26 77.40

95.21

78.44

95.04 95.07 95.01

78.31 78.16

95.1395.18 95.21 95.16

78.4378.32 78.44 78.3977.63

Figure 4. Parametric sensitivity of (a) α in Eq. (18), (b) τ in

Eq. (15) and Eq. (16), and (c) Vth in Eq. (6).

Teacher Student Dataset 5% 25% 50% 75% 100%

ResNet34 ResNet18

CIFAR10 84.35 92.83 94.11 94.97 95.21

CIFAR100 61.17 75.57 77.02 77.85 78.44

CINIC 75.01 82.19 84.49 85.88 86.55

TinyImageNet 52.28 63.87 65.86 66.15 66.24

ResNet34 VGGNet13

CIFAR10 82.90 92.66 93.76 94.18 94.28

CIFAR100 53.41 73.99 76.06 76.18 77.92

CINIC 71.06 82.00 83.39 83.76 84.07

TinyImageNet 50.71 60.01 62.99 63.54 63.83

Table 4. Classification accuracies (in %) of student networks under

different webly collected data ratios.

tively. We examine the resulting accuracy during training

by changing one parameter while holding the others.

Fig. 4 depicts the curves of test accuracy for stu-

dent network when the parameters vary. The param-

eters α, τ , and Vth vary within {0.001, 0.01, 0.1, 1},

{0.1, 0.3, 0.5, 0.7}, and {0.900, 0.925, 0.950, 0.975}, re-

spectively. Even though these parameters vary over a wide

range, we can obverse that the curves of accuracy are gen-

erally smooth and relatively stable, which indicates that the

performance of student network is robust to the variations

of parameters. Therefore, the parameters in our KD3 are

easy to tune.

4.4. Extented Experiments

In this section, we conduct intensive extented to further

verify the performance of KD3.

Experiments on More Network Backbones. We con-

duct experiments on four benchmark datasets to further ver-

ify the performance of KD3 equipped with various widely-

used teacher-student pairs [22, 29, 37, 47]. The results are

reported in Table 3. It can be found that the student net-

works trained by our KD3 consistently achieve competi-

tive performance to those trained on the original data, even

though some student networks are with different styles of

the teacher network. The experimental results demonstrate

that our data-free method KD3 can be flexibly employed to

teacher-student pairs with various structures to train reliable

student networks.

Experiments on Part Webly Collected Data. We fur-

ther conduct intensive experiments to evaluate the perfor-

mance when the ratio of available webly collected data

ranges from 5%∼100%. The experimental results are

shown in Table 4, we can observe that our method still ob-

tains satisfactory performance by using a small part of web

data. Meanwhile, we find that the performance of student

network can be consistently improved with the increase of

the available webly collected data.

5. Conclusion

This paper proposed a new data-free approach termed

KD3 to train student networks using the webly collected

data. To our best knowledge, we are the first to address

the commonly overlooked yet important distribution shift

issue between the webly collected data and original data

in knowledge distillation. Our proposed KD3 adopts

three main techniques to tackle such distribution shift,

namely: 1) selection of webly collected instances with

the similar distribution to original data; 2) alignment of

feature distributions between the teacher network and

student network with parameter-shared classifiers; and 3)

promotion of feature consistency for input instances and

MixDistribution-generated instances. Intensive experi-

ments demonstrated that our KD3 can effectively handle

the distribution shift to train reliable student networks

without using the original training data.
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[26] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick

Haffner. Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

7

[27] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need

to access the source data? source hypothesis transfer for un-

supervised domain adaptation. In International Conference
on Machine Learning (ICML), pages 6028–6039. PMLR,

2020. 5

[28] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,

Shoumeng Yan, and Changshui Zhang. Learning effi-

cient convolutional networks through network slimming. In

Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 2736–2744, 2017. 1

[29] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.

Shufflenet v2: Practical guidelines for efficient cnn architec-

ture design. In Proceedings of the European conference on
computer vision (ECCV), pages 116–131, 2018. 9

[30] Paul Micaelli and Amos J Storkey. Zero-shot knowledge

transfer via adversarial belief matching. In Advances in Neu-
ral Information Processing Systems (NeurIPS), volume 32,

2019. 3, 7

[31] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-

sacco, Bo Wu, and Andrew Y Ng. Reading digits in natural

images with unsupervised feature learning. 2011. 7

17479



[32] Sinno Jialin Pan and Qiang Yang. A survey on transfer learn-

ing. IEEE Transactions on Knowledge and Data Engineer-
ing (TKDE), 22(10):1345–1359, 2010. 3

[33] Baoyun Peng, Xiao Jin, Jiaheng Liu, Dongsheng Li, Yichao

Wu, Yu Liu, Shunfeng Zhou, and Zhaoning Zhang. Correla-

tion congruence for knowledge distillation. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 5007–5016, 2019. 2, 6

[34] Joaquin Quinonero-Candela, Masashi Sugiyama, Anton

Schwaighofer, and Neil D Lawrence. Dataset shift in ma-
chine learning. Mit Press, 2008. 3

[35] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,

and Ali Farhadi. Xnor-net: Imagenet classification using

binary convolutional neural networks. In European Confer-
ence on Computer Vision (ECCV), pages 525–542. Springer,

2016. 1

[36] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou,

Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets:

Hints for thin deep nets. arXiv:1412.6550, 2014. 2, 3

[37] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey

Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: In-

verted residuals and linear bottlenecks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4510–4520, 2018. 9

[38] Karen Simonyan and Andrew Zisserman. Very deep con-

volutional networks for large-scale image recognition. In-
ternational Conference on Learning Representations (ICLR),
2014. 7

[39] Masashi Sugiyama, Matthias Krauledat, and Klaus-Robert

Müller. Covariate shift adaptation by importance weighted

cross validation. Journal of Machine Learning Research
(JMLR), 8(5), 2007. 3

[40] Frederick Tung and Greg Mori. Similarity-preserving knowl-

edge distillation. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages 1365–

1374, 2019. 2, 6

[41] Laurens Van der Maaten and Geoffrey Hinton. Visualizing

data using t-sne. Journal of Machine Learning Research
(JMLR), 9(11), 2008. 8

[42] Qin Wang, Wen Li, and Luc Van Gool. Semi-supervised

learning by augmented distribution alignment. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), pages 1466–1475, 2019. 3

[43] Nicolai Wojke and Alex Bewley. Deep cosine metric learn-

ing for person re-identification. In 2018 IEEE Winter Con-
ference on Applications of Computer Vision (WACV), pages

748–756. IEEE, 2018. 6

[44] Yixing Xu, Yunhe Wang, Hanting Chen, Kai Han, Chunjing

Xu, Dacheng Tao, and Chang Xu. Positive-unlabeled com-

pression on the cloud. In Advances in Neural Information
Processing Systems (NeurIPS), pages 2565–2574, 2019. 3

[45] Hongxu Yin, Pavlo Molchanov, Jose M Alvarez, Zhizhong

Li, Arun Mallya, Derek Hoiem, Niraj K Jha, and Jan Kautz.

Dreaming to distill: Data-free knowledge transfer via deep-

inversion. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages

8715–8724, 2020. 1, 3, 6

[46] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and

David Lopez-Paz. mixup: Beyond empirical risk minimiza-

tion. arXiv:1710.09412, 2017. 8

[47] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.

Shufflenet: An extremely efficient convolutional neural net-

work for mobile devices. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 6848–6856, 2018. 9

[48] Yiman Zhang, Hanting Chen, Xinghao Chen, Yiping Deng,

Chunjing Xu, and Yunhe Wang. Data-free knowledge dis-

tillation for image super-resolution. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 7852–7861, 2021. 3

[49] Ziyi Zhang, Weikai Chen, Hui Cheng, Zhen Li, Siyuan Li,

Liang Lin, and Guanbin Li. Divide and contrast: Source-free

domain adaptation via adaptive contrastive learning. arXiv
preprint arXiv:2211.06612, 2022. 3

[50] Haoran Zhao, Xin Sun, Junyu Dong, Milos Manic, Huiyu

Zhou, and Hui Yu. Dual discriminator adversarial distilla-

tion for data-free model compression. International Journal
of Machine Learning and Cybernetics (IJMLC), 13(5):1213–

1230, 2022. 1, 3, 6

[51] Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Do-

main generalization with mixstyle. International Conference
on Learning Representations (ICLR), 2021. 6

[52] Jinguo Zhu, Shixiang Tang, Dapeng Chen, Shijie Yu, Yakun

Liu, Mingzhe Rong, Aijun Yang, and Xiaohua Wang. Com-

plementary relation contrastive distillation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 9260–9269, 2021. 6

17480


