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Abstract

Data-free knowledge distillation aims to learn a compact
student network from a pre-trained large teacher network
without using the original training data of the teacher net-
work. Existing collection-based and generation-based meth-
ods train student networks by collecting massive real exam-
ples and generating synthetic examples, respectively. How-
ever, they inevitably become weak in practical scenarios
due to the difficulties in gathering or emulating sufficient
real-world data. To solve this problem, we propose a novel
method called Hybrid Data-Free Distillation (HiDFD), which
leverages only a small amount of collected data as well
as generates sufficient examples for training student net-
works. Our HiDFD comprises two primary modules, i.e.,
the teacher-guided generation and student distillation. The
teacher-guided generation module guides a Generative Ad-
versarial Network (GAN) by the teacher network to produce
high-quality synthetic examples from very few real-world
collected examples. Specifically, we design a feature integra-
tion mechanism to prevent the GAN from overfitting and fa-
cilitate the reliable representation learning from the teacher
network. Meanwhile, we drive a category frequency smooth-
ing technique via the teacher network to balance the genera-
tive training of each category. In the student distillation mod-
ule, we explore a data inflation strategy to properly utilize a
blend of real and synthetic data to train the student network
via a classifier-sharing-based feature alignment technique. In-
tensive experiments across multiple benchmarks demonstrate
that our HiDFD can achieve state-of-the-art performance us-
ing 120 times less collected data than existing methods. Code
is available at https://github.com/tangjialiang97/HiDFD.

Introduction
The success of Deep Neural Networks (DNNs) (He et al.
2016; Hao et al. 2024) is usually accompanied by significant
computational and storage demands, which hinders their de-
ployment on practical resource-limited devices. Knowledge
Distillation (KD) (Hinton, Vinyals, and Dean 2015; Miles
and Mikolajczyk 2024) has served as an effective compres-
sion technology that transfers knowledge from a complex
pre-trained teacher network to improve the performance of a

*Corresponding authors: Chen Gong, Shuo Chen.
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

lightweight student network. However, in practice, the train-
ing data of the teacher network is usually inaccessible due to
privacy concerns and only the pre-trained teacher network it-
self can be used to learn the student network. This is because
users may prefer sharing a pre-trained black box DNN rather
than disclosing their sensitive data. In such cases, vanilla KD
methods can hardly train a reliable student network owing
to the absence of original training data. To address this is-
sue, various Data-Free Knowledge Distillation (DFKD) ap-
proaches (Binici et al. 2022; Chen et al. 2019, 2021b; Tang
et al. 2023) have been developed to enable training the stu-
dent network without using any original data.

Among existing DFKD methods, collection-based ap-
proaches (Chen et al. 2021b; Tang et al. 2023) can achieve
satisfactory performance by amassing numerous real exam-
ples to train the student network. However, it is still difficult
for the collection-based methods to train a reliable student
network in practical tasks, e.g., medical image classification
because gathering sufficient training examples can be chal-
lenging. On the other hand, generation-based methods (Yin
et al. 2020; Chen et al. 2019) leverage the teacher network to
guide a generative model (Creswell et al. 2018) in produc-
ing fake examples, thereby successfully training the student
network without reliance on real examples. Nevertheless, the
synthesized examples may exhibit low quality in the absence
of real data supervision, leading to suboptimal student per-
formance, especially for many challenging recognition tasks
on ImageNet (Deng et al. 2009). The inherent constraints of
both collection-based and generation-based DFKD methods
prompt an essential question: Can we train an effective gen-
erative model only using a small number of collected exam-
ples and then learn reliable student networks with the hybrid
data comprising both collected and synthetic examples?

To answer the above question under the practical data-free
distillation scenario, we need a generative model that not
only possesses powerful generative capabilities but also has
the ability to acquire valuable knowledge from the teacher
network. Recent studies (Cui et al. 2023; Rangwani, Mop-
uri, and Babu 2021) suggest that the Generative Adversarial
Network (GAN) (Mirza and Osindero 2014) can easily learn
from pre-trained models and then generate high-quality syn-
thetic examples, so we employ this great approach as our
generative module. The standard GAN consists of a gener-
ator and a discriminator trained in an adversarial manner,



where the generator attempts to produce fake examples to
deceive the discriminator while the discriminator strives to
distinguish between real and fake examples. However, the
collected data in practice tasks like medical image classifi-
cation has two inherent characteristics that may impede the
training of the GAN, namely: 1) Limited data quantity, as
capturing medical images requires expensive and complex
equipment; and 2) Imbalanced class distribution, where cer-
tain diseases (e.g., “vascular lesions”) are more rarely than
others (e.g., “nevus”). When training on the collected data
with limited examples and imbalanced class distribution, the
discriminator is susceptible to overfitting (Huang et al. 2022;
Jiang et al. 2021). It implies that the discriminator tends to
memorize all real examples and almost perfectly distinguish
them from fake examples, resulting in the disappearance of
the gradient for the generator. Moreover, the generator train-
ing is dominated by a few classes occupying the majority of
examples, which prevents it from generating diverse exam-
ples. Therefore, it is critical to overcome the overfitting issue
of discriminator and data imbalance issue of generator when
training with scarce collected examples.

In this paper, we propose a novel approach called Hybrid
Data-Free Distillation (HiDFD), which learns reliable stu-
dent networks on the hybrid data comprising synthetic ex-
amples and very few real collected examples. Our HiDFD
is composed of two pivotal modules of teacher-guided gen-
eration and student distillation. In the teacher-guided gen-
eration module, we aim to solve the critical issues in the
GAN mentioned above, and thus generating high-quality
synthetic examples. Specifically, we propose a feature in-
tegration mechanism to aggregate the features of both the
collected and synthetic examples between the teacher net-
work and GAN. Such an integration mechanism not only
mitigates the overfitting of the discriminator, which forcibly
distinguishes those closely resembling examples, but also
transfers valuable representations to guide the discriminator
to capture category dependencies. Meanwhile, we also de-
velop a new technique called category frequency smoothing
to alleviate the imbalanced training of the generator. In the
student distillation module, we develop a data inflation oper-
ation to adjust the contribution of collected examples among
the hybrid data when training the student network. Finally,
we design a classifier-sharing-based strategy to closely align
the features of student network with those of teacher net-
work to enhance student performance. Thanks to effectively
transferring knowledge from the teacher network to both
the GAN and student network, our HiDFD can successfully
train reliable student networks using very few collected real-
world examples. The contributions of our HiDFD are sum-
marized as follows:

• By considering the difficulties in gathering or emulating
real-world data, we propose a novel data-free distillation
method called HiDFD, which only requires a small num-
ber of collected data to generate high-quality synthetic
examples for training the student network.

• We design a teacher-guided generation module to effec-
tively tackle the critical issues of discriminator overfit-
ting and imbalanced learning in generating synthetic ex-

amples, which empowers the distillation module to learn
reliable student networks from the teacher network.

• Our HiDFD can achieve State-Of-The-Art (SOTA) per-
formance using only 1/120 (5,000/600,000) of examples
required by existing collection-based DFKD methods.

Related Works
In this section, we review the relevant works, including
knowledge distillation and generative models.

Knowledge Distillation
Traditional KD methods (Chen et al. 2021a; Li et al. 2023)
learn a compact and reliable student network by encouraging
it to mimic a variety of knowledge, i.e., softened logits (Zhao
et al. 2022a), intermediate features (Chen et al. 2022), and
representation relationships (Peng et al. 2019), from a large
teacher network using ample original training data. How-
ever, in practical applications, these approaches might be in-
effective because the original data is usually unavailable due
to privacy concerns.

To address the above issue, generation-based (Tran et al.
2024; Wang et al. 2024a,b) and collection-based (Chen et al.
2021b; Tang et al. 2023) DFKD methods have been pro-
posed to train student networks using synthetic and collected
data, respectively. The generation-based methods utilize the
teacher network to guide a generator in producing exam-
ples from statistics in the teacher network or random noise.
However, the resulting student network still achieves sub-
optimal performance due to the flawed synthetic examples.
Conversely, collection-based methods assume that there are
numerous easily accessible examples in the real-world, and
they acquire an oversized collected data (e.g., 600,000 exam-
ples on CIFAR10) to train the student network. In practical
tasks, it is hard to gather so many examples, and thus they
still fail to train reliable student networks.

In this paper, our HiDFD only utilizes a small collected
data that contains fewer examples than the original data,
which initially guides the GAN in training on such collected
data by the teacher and then trains the student on adequate
data composed of the synthetic and collected examples.

Generative Models
Recent advances in generative models, including Variational
AutoEncoders (Kingma and Welling 2013; Zhao, Song, and
Ermon 2019), diffusion models (Ho, Jain, and Abbeel 2020;
Mei and Patel 2023), and GAN (Hou et al. 2021; Mirza and
Osindero 2014) have significantly propelled the data genera-
tion. This paper focuses on the powerful GAN due to its abil-
ity to learn from pre-trained models (Cui et al. 2023; Rang-
wani, Mopuri, and Babu 2021). The traditional GAN (Good-
fellow et al. 2020) consists of a generator and a discrimi-
nator, where the generator produces fake examples to de-
ceive the discriminator, and the discriminator tries to accu-
rately distinguish between real and fake examples. Recently,
Auxiliary Discriminative Classifier GAN (ADCGAN) (Hou
et al. 2022) captures dependencies between generated ex-
amples and class labels by encouraging the discriminator to



classify synthetic examples into specific categories, which
effectively improves the quality of synthetic data.

In our method, we hope the GAN can produce high-
quality synthetic examples that are easily classifiable, and
thus training a precise student network. Therefore, we adopt
ADCGAN as the foundational generative model. The AD-
CGAN composed of a generator NG : Z × Y → X maps
a noise-label pair (z, y) to a fake example NG(z, y) ∈ X
that can be precisely predicted as y ∈ Y; and a discrimina-
torND : X → {0, 1} determines whether the input example
is real (i.e., 1) or fake (i.e., 0), which also has a classifier
ΨD : X → Y+ ∪ Y− (y+ ∈ Y+ and y− ∈ Y− denote
the labels for real and fake examples, respectively). Math-
ematically, the objective functions for the discriminator and
generator in the ADCGAN are defined as Ladc d and Ladc g,
respectively, as follows:

Ladc d =− L
d

+ Ex,y∼PX,Y
[log ΨD(y+ | x)]

+ Ex,y∼QX,Y
[log ΨD(y− | x)],

Ladc g = Lg − Ex,y∼QX,Y
[log ΨD(y+ |x)]

+ Ex,y∼QX,Y
[log ΨD(y− | x)],

(1)

where Ld = Ex∼PX
[logND(x)] + Ex∼QX

[log(1 −
ND(x))] and Lg = Ex∼QX

[log(1 − ND(x))] are the
loss functions for the standard GAN, P and Q denote the
distribution of real collected data and fake synthetic data,
respectively. ΨD(y+ | ·) (resp. ΨD(y− | ·)) denotes the
probability that the input example is classified as the label
y and real (resp. fake) simultaneously by the following
classifier of the discriminator. Formally, ΨD (y+ | x) =

exp(Ψ+
D(y)·ΦD(x))∑

ȳ∈Y+ exp(Ψ+
D(ȳ)·ΦD(x))+

∑
ȳ∈Y− exp(Ψ−D(ȳ)·ΦD(x))

, where

ΦD represents the shared feature extractor between the
original discriminator ND and the classifier ΨD. Ψ+

D (resp.
Ψ−D) captures the dependencies between the category labels
and real (resp. fake) data. Notably, DeGAN (Addepalli et al.
2020) also trains a GAN using collected data, but it still
requires a large number of collected examples and can only
utilize synthetic examples to train the target model.

Approach
Data-free distillation aims to train a compact student net-
workNS using a pre-trained teacher networkNT without ac-
cessing the teacher’s original training dataDo. BothNT and
NS consist of a feature extractor Φ and classifier Ψ, where
the subscripts T and S indicate “teacher” and “student”, re-
spectively. Existing collection-based DFKD methods (Tang
et al. 2023) usually rely on the collected data Dc with over-
whelming examples searched based on the categories of the
original data. Here, the data amount |Dc| � |Do|, which
is hard to satisfy in practice tasks. To overcome this limita-
tion, we propose a more practical method that only requires
a small number of collected examples for DFKD, i.e., the
data amount |Dc| ≤ |Do|. To this end, we develop a hybrid
framework to generate abundant synthetic examples from
very few collected examples, and then we integrate them as
the hybrid data for training the reliable student network.

Motivation of the Hybrid Learning
Formally, we denote the distribution of the collected dataDc

and synthetic data Ds as P and Q, respectively, while the
distribution of the hybrid data D = Dc ∪ Ds is represented
as U = αP + (1 − α)Q. Here α = |Dc| / (|Dc|+ |Ds|)
represents the proportion of collected examples in the hy-
brid data. In general, the synthetic and collected examples
usually exhibit a significant distribution gap. This can cause
substantial fluctuations during the training of the student
network on hybrid data, ultimately leading to poor perfor-
mance (Wang, Zhang, and Wang 2024). Therefore, it is es-
sential to align the distribution of synthetic data with that of
collected data, thereby forming reliable hybrid data. Here,
the synthetic data is generated under the supervision of the
collected data, so we assume that synthetic data, collected
data, and hybrid data have the same support set X . Then, the
distribution gap between the reliable hybrid data and syn-
thetic data can be characterized by the Total Variation Dis-
tance (TVD), which is defined as

TVD(U,Q) =
1

2

∑
x∈X
|U(x)−Q(x)|, (2)

where U(x) ∈ (0, 1) and Q(x) ∈ (0, 1) measure the
distribution probability of x in the hybrid and synthetic
data, respectively. Here TVD(·, ·) ≥ 0, and TVD(U,Q) =
1
2

∑
x∈X |U(x)−Q(x)| ≤ 1

2

∑
x∈X (|U(x)|+|Q(x)|) = 1.

Based on the triangle inequality (Steerneman 1983) of TVD,
we easily have that

TVD(U,Q) ≤ TVD(U,P ) + TVD(P,Q). (3)

Then, given that U = αP + (1 − α)Q with parameter α
controlling the weight of collected data, we can compute
TVD(U,P ) as

TVD(U,P ) =
1

2

∑
x∈X
|U(x)− P (x)|

=
1

2

∑
x∈X
|αP (x) + (1− α)Q(x)− P (x)|

=
1

2
(1− α)

∑
x∈X
|Q(x)− P (x)|

= (1− α)TVD (Q,P ) .
(4)

By invoking the symmetry of TVD and Eq. (3), we obtain

TVD(U,Q) ≤ (2− α)TVD(P,Q). (5)

Here Eq. (5) reveals that the high-quality synthetic dataDs

and the mix proportion α are two critical factors influenc-
ing the distribution gap TVD(U,P ).

The above observation inspires us to employ two modules
to align the distribution of synthetic data with that of col-
lected data, as shown in Fig. 1(c). In the teacher-guided gen-
eration module, we employ the teacher network to guide the
GAN to enhance the quality of synthetic data, which solves
its intrinsic issues when trained on the small and imbalanced
collected data, including the overfitting of discriminator and
imbalanced learning of generator:



Figure 1: The diagram of (a) generation-based methods (Fang et al. 2021; Yin et al. 2020; Chen et al. 2019; Micaelli and Storkey
2019), (b) collection-based methods (Chen et al. 2021b; Tang et al. 2023), and (c) our HiDFD. In HiDFD, the teacher-guided
generation module employs the teacher network to guide the training of the GAN on limited collected data. Subsequently, the
student distillation module closely aligns the features of the student network with those of the teacher network on the hybrid
data comprising high-quality synthetic examples and properly inflated collected examples.

Discriminator Overfitting. When trained with very few
collected data, the discriminator is prone to be overconfident
in determining fake examples, i.e., Ex∼QX

[ND(x)] tends to
be 0. As a result, the gradient of Lg in Eq. (1), which spe-
cialized in promoting generator to produce high-quality ex-
amples, may become ineffective, namely

∇NGEx∼QX
[log(1−ND(x))]=Ex∼QX

[
−∇NGND(x)

1−ND(x)

]
≈0,

(6)
as the parameters of ND and NG are independent of each
other, and Eq. (6) is proved by (Arjovsky and Bottou 2022).
Meanwhile, the discriminator also has a classifier that pro-
vides valuable category dependencies for the generator by
precisely predicting input examples, and thus promoting the
generator to generate classifiable examples. However, multi-
class classification is more challenging than binary determi-
nation of true and fake. Given very few collected examples,
the discriminator is difficult to learn powerful representa-
tions for its classifier to achieve precise classification.
Imbalanced Generator Learning. Given the optimal clas-
sifier Ψ∗D

1 of the discriminator, optimizing the generator to
produce the classifiable examples2 is equivalent to

max
NG

[Ex,y∼QX,Y
log(

p(x, y)

q(x, y)
)]⇒min

NG

KL(QX,Y ‖PX,Y) ,

(7)
1Ψ∗D

(
y+| x

)
= p(x,y)

p(x)+q(x)
,Ψ∗D

(
y−| x

)
= q(x,y)

p(x)+q(x)
(see Appendix).

2maxNG [Ex,y∼QX,Y [log Ψ∗D(y+|x)]−Ex,y∼QX,Y [log Ψ∗D(y−|x)]].

where KL represents the Kullback-Leibler divergence, and
the proof of Eq. (7) is provided in Appendix. The above
Eq. (7) indicates that optimizing the generator will force the
joint distribution QX,Y of synthetic data toward the PX,Y

of the imbalanced collected data, inevitably resulting in syn-
thetic examples with poor diversity.

In student distillation, we properly inflate the collected
examples to construct the hybrid data with a moderate mix
proportion α for effectively training the student network.

Teacher-Guided Generation
In this section, we promote GAN to generate high-quality
examples by solving its critical issues guided by the teacher
network. To mitigate the discriminator overfitting, we design
a feature integration mechanism to force the aggregation be-
tween the features of both real collected examples and fake
synthetic examples. Specifically, we blend the boundaries
between real and fake examples to increase the difficulty for
the discriminator to accurately discriminate them, and thus
preventing the discriminator from overconfidence, i.e.,

Lblend=Ex,y∼PX,Y,x̂,y∼QX,Y
[I(p>q)(‖ΦT(x)−ΦD(x̂)‖2

+ ‖ΦT(x̂)−ΦD(x)‖2)],
(8)

where I(p > q) is an indicator function to control Lblend be
applied with a probability of q and its value is 1 if p > q
and 0 otherwise (p is sampled from [0, 1], q=0.7 and it is an-
alyzed in Appendix). Meanwhile, we transfer the expressive
features of the teacher network to enhance the representation



ability of the discriminator, i.e.,

Ltrans =Ex,y∼PX,Y ,x̂,y∼QX,Y
[(‖ΦT(x)− ΦD(x)‖2

+ ‖ΦT(x̂)− ΦD(x̂)‖2)].
(9)

To alleviate the imbalanced learning of the generator, we
regularize the GAN training across all categories. During
generator training, we dynamically update the class frequen-
cies {ntc}Cc=1 (C represents the number of categories) at the
beginning of iteration t via the following exponential mov-
ing average function with a weight γ ∈ [0, 1], namely

ntc = (1− γ)nt−1
c + γn̄t−1

c , (10)

where n̄t−1
c is the number of synthetic examples belonging

to class c in iteration t−1, ntc is initially set as a constant, and
γ=0.5 (analyzed in Appendix). Then, each class frequency
ntc ∈ {ntc}Cc=1 is normalized as

n̂tc =
ntc∑C
j=1 n

t
j

. (11)

Thereafter, the generator is regulated to produce balanced
examples by minimizing the loss function:

Lreg =

C∑
c=1

pc
T log (pc

T)

n̂tc
, (12)

where pT =Ex,y∼QX,Y
[SoftMax(NT(x))] is the average

softmax vector output by the teacher network. The teacher
network is well-trained on the original data, so it can pre-
cisely predict synthetic examples. In such a case, pc

T can be
regarded as the proportion of examples in category c within
the synthetic data. In Eq. (12), the generation of examples in
a category c with the lower (or higher) pc

T is adjusted by the
larger (or smaller) 1/n̂tc.

The loss functions of discriminator and generator in our
teacher-guided GAN are summarized as{

LD = Ladc d + λd(Lblend + Ltrans),
LG = Ladc g + λgLreg,

(13)

whereLadc d andLadc g are defined in Eq. (1), and the trade-
off parameters λd > 0 and λg > 0.

Student Distillation
In the teacher-guided generation module, we successfully
trained an effective GAN for generating high-quality syn-
thetic examples, which are then combined with collected
examples to construct the hybrid data D for training the
student network. However, directly composing the limited
collected examples with numerous synthetic examples will
result in a small mix ratio α (i.e., a large distribution gap
TVD(U,Q)) to disturb the training of the student network.
Therefore, we inflate the collected data via example re-
peating to enlarge the α from |Dc| / (|Dc|+ |Ds|) to N ×
|Dc| / (N × |Dc|+ |Ds|), where N is the inflation factor.
We adopt a moderate inflation factor of N = b|Ds|/|Dc|c
and further details are available in Extended Experiments.

Recent works (Chen et al. 2021b; Tang et al. 2023) indi-
cate that the collected data usually contains many noisy ex-
amples, which may mislead the GAN to produce undesired

synthetic examples with wrong labels. As a result, these po-
tentially noisy examples will harm the training of the stu-
dent network, particularly affecting its classifier. In DFKD,
the teacher network is well-trained on the original data and
possesses an accurate classifier. Recent studies (Tang et al.
2023; Chen et al. 2022) show that the teacher’s classifier
contains useful category information regarding the original
data. Therefore, we share the classifier of the teacher net-
work with the student network. Then, we closely align the
feature of the student network with that of the teacher net-
work as follows:

Lalign = Ex∼D [‖ΦS(x)− ΦT(x)‖2] . (14)

By minimizing the Lalign, the feature of the student network
is closely aligned with that of the teacher network, and the
aligned feature is inputted into the shared classifier can pro-
duce predictions as accurately as the teacher network. The
student network did not use any example labels during the
training process, thereby avoiding the negative impact of po-
tentially noisy labels. The whole algorithm of our proposed
HiDFD is given in Appendix.

Experiments
In this section, we employ various DNNs commonly utilized
in DFKD methods (Chen et al. 2021b; Tang et al. 2023)
and conduct intensive experiments on different benchmark
datasets to evaluate the effectiveness of our HiDFD.

Datasets and Implementation Details
Original Datasets. We evaluate the effectiveness of our
HiDFD on popular datasets, including CIFAR (Krizhevsky
2009), CINIC (Darlow et al. 2018), and TinyImageNet (Le
and Yang 2015), which are widely used by existing DFKD
methods (Chen et al. 2019, 2021b). Additionally, we also
conduct experiments on the large-scale ImageNet (Deng
et al. 2009) and the practical medical image dataset
HAM (Tschandl, Rosendahl, and Kittler 2018), which are
challenging for existing DFKD methods.
Collected Datasets. When using CIFAR and CINIC as
the original datasets, we search for examples from Im-
ageNet. With TinyImageNet and ImageNet as the origi-
nal datasets, we utilize WebVision (Li et al. 2017) as our
source of collected data. Moreover, we collect examples
from ISIC (Codella et al. 2018) when using HAM as the
original dataset. We follow (Chen et al. 2021b) and sam-
ple a part of examples from the corresponding dataset as
collected data Dc. Here, we define the ratio between the
collected data Dc and original data Do as ρ = |Dc|/|Do|.
We construct small (ρ=0.1) and moderate (ρ=1.0) collected
data for the experiments of collection-based DFKD meth-
ods. Notably, the original dataset is solely required for the
pre-training of the teacher network. Detailed information re-
garding these datasets and the corresponding synthesized ex-
amples are provided in Appendix.

Implementation Details. All student networks in our
HiDFD employ SGD with weight decay as 5× 10−4 and
momentum as 0.9 as the optimizer. The student networks are
trained over 240 epochs with a learning rate of 0.05, which



Dataset Arch ACCT ACCS
Generation-Based Collection-Based

DAFL DDAD DI PRE CMI SSNet DeGAN DFND KD3 HiDFD (ours)
ρ=0.1 ρ=1.0 ρ=0.1 ρ=1.0 ρ=0.1 ρ=1.0 ρ=0.1 ρ=1.0

CIFAR10
♦ 95.70 95.20 92.22 93.08 93.26 93.25 94.84 95.39 90.39 91.95 48.82 85.82 65.70 93.37 94.74 95.11
� 94.07 92.69 86.92 90.85 85.27 91.82 88.49 92.00 87.52 90.37 48.65 89.22 48.93 91.49 92.28 93.14
4 95.70 92.69 83.36 89.76 90.24 91.53 86.63 92.03 86.40 89.69 49.48 90.60 65.10 93.05 92.90 93.76

CIFAR100
♦ 78.05 77.10 74.47 73.64 61.32 74.19 77.04 77.41 53.20 62.94 21.45 64.73 26.96 72.90 76.93 78.35
� 74.53 72.28 65.36 68.33 60.00 70.34 59.70 71.16 53.97 61.80 23.48 63.90 21.27 71.44 71.26 74.18
4 78.05 72.28 45.28 68.59 61.07 67.49 61.80 72.38 46.82 56.44 23.86 64.54 25.25 72.46 73.44 75.65

CINIC
♦ 86.62 85.09 60.54 80.10 78.57 77.56 78.47 83.47 57.59 76.78 24.53 80.94 39.35 82.68 85.62 86.68
� 84.22 83.28 59.08 77.90 68.90 65.38 74.99 79.63 54.36 76.11 29.53 77.41 29.88 78.18 81.92 82.27
4 86.62 83.28 44.62 77.63 59.52 63.23 75.46 80.30 54.43 74.40 33.40 79.33 71.57 80.28 81.90 82.88

Tiny-
ImageNet

♦ 66.44 64.87 52.20 59.84 6.98 50.15 64.01 64.04 25.74 49.11 26.36 60.09 20.26 63.63 65.96 66.61
� 62.34 61.55 53.89 42.25 1.22 45.92 17.73 57.82 23.13 44.65 25.39 58.47 24.26 61.06 60.46 62.69
4 66.44 61.55 52.46 44.20 2.27 47.22 20.57 59.16 21.09 48.12 25.53 58.18 27.37 61.98 61.67 65.27

HAM ♦ 81.18 79.64 32.05 44.68 62.79 63.20 67.34 74.52 34.75 64.43 27.55 62.59 64.10 68.44 77.08 81.52
ImageNet ♦ 73.27 67.00 1.92 1.46 1.14 1.60 1.84 5.74 22.28 43.96 28.99 45.66 35.02 55.05 65.36 66.89

Table 1: Accuracies (in %) of student networks trained by various methods on six image classification datasets. The columns
“ACCT” and “ACCS” report the accuracies yielded by the teacher network and student network trained on the full original data,
respectively. The best and the second-best results are highlighted in bold and underlined, respectively. The notations ♦, �, and
4 represent the teacher-student pairs ResNet34-ResNet18, ResNet34-VGG13, and VGG16-VGG13, respectively.

is sequentially divided by 10 at the 150th, 180th, and 210th
epochs. Meanwhile, the generator and discriminator in GAN
utilize Adam for optimization with learning rates 1× 10−4

and 4× 10−4, respectively, and both of them are trained over
500 epochs. Additionally, the hyper-parameters in Eq. (13)
are configured as λd = 0.1 and λg = 0.1.

Experiments on Benchmark Datasets
In this section, we conduct comprehensive experiments on
various benchmark datasets to evaluate the performance of
our proposed HiDFD against SOTA generation-based (Chen
et al. 2019; Zhao et al. 2022b; Yin et al. 2020; Binici et al.
2022; Fang et al. 2021; Yu et al. 2023) and collection-
based (Addepalli et al. 2020; Chen et al. 2021b; Tang et al.
2023) DFKD methods. These methods are reproduced by
using their official source codes.

Tab. 1 reports the results of the compared methods and
our proposed HiDFD. Firstly, our proposed HiDFD using
only a small quantity of collected examples (ρ=0.1) achieves
comparable performance with those trained on the full orig-
inal data. Secondly, when trained on the modestly sized col-
lected data (ρ=1.0), our proposed HiDFD significantly out-
performs compared methods on most tasks, especially on the
challenging HAM and ImageNet. Thirdly, those generation-
based methods, which utilize generative models to produce
training examples without the supervision of real examples,
tend to perform unsatisfactorily due to the deficiencies in
their synthetic examples. These results demonstrate that our
proposed HiDFD can train robust student networks by effec-
tively generating training examples from limited real-world
examples and properly utilizing all realistic examples.

Ablation Studies & Parametric Sensitivities
In this section, we evaluate the effectiveness of our method
with a small collected data (ρ=0.1), where CIFAR and Im-
ageNet serve as the original and collected datasets, respec-
tively. Moreover, ResNet34 and ResNet18 are used as the
teacher network and student network, respectively.
Ablation Studies. We evaluate three key operations (Lblend,

Type Algorithm CIFAR10 CIFAR100

Teacher-
Guided
Generation

w/o Lblend 92.87 (↓1.87) 74.18 (↓2.75)
w/o Ltrans 91.86 (↓2.88) 74.40 (↓2.53)
w/o Lreg 92.76 (↓1.98) 73.95 (↓2.98)
w/o Lblend, Ltrans 91.10 (↓3.64) 71.02 (↓5.91)
w/o Lblend, Lreg 90.77 (↓3.97) 71.83 (↓5.10)
w/o Ltrans, Lreg 91.42 (↓3.32) 72.10 (↓4.83)
w/o Lblend, Ltrans, Lreg 89.55 (↓5.19) 70.25 (↓6.68)

Student
Distillation

OFAKD (Hao et al. 2023) 92.88 (↓1.86) 70.86 (↓6.07)
VKD (Hinton, Vinyals, and Dean 2015) 92.69 (↓2.05) 66.96 (↓9.97)
SemcKD (Chen et al. 2021a) 93.49 (↓1.25) 70.93 (↓6.00)
CC (Peng et al. 2019) 92.63 (↓2.11) 69.52 (↓7.41)
DKD (Zhao et al. 2022a) 92.95 (↓1.79) 68.25 (↓8.68)
RKD (Park et al. 2019) 92.40 (↓2.34) 70.53 (↓6.40)
CATKD (Guo et al. 2023) 92.49 (↓2.25) 68.69 (↓8.24)
NKD (Yang et al. 2023) 93.26 (↓1.48) 65.31 (↓11.62)
HiDFD (ours) 94.74 76.93

Table 2: Accuracies (in %) of ablation studies.

Ltrans, and Lreg) in teacher-guided generation and the
classifier-sharing-based strategy in the student distillation.
The experimental results are reported in Tab. 2, and the con-
tributions of these components are analyzed as follows:
1) Teacher-Guided Generation. The feature blending
Lblend in Eq. (8) and feature transferring Ltrans in Eq. (9)
for preventing the overfitting of discriminator and enhanc-
ing its representation ability. Meanwhile, the generator reg-
ulation Lreg in Eq. (12) is also essential for maintaining
the balanced training of the generator. Therefore, the omis-
sion of any components among them leads to a noticeable
reduction in the performance of the student network. Par-
ticularly, training the student network only on synthetic ex-
amples without any guidance from the teacher network re-
sults in the poorest performance (as shown in the term “w/o
Lblend, Ltrans, Lreg”). These results indicate the importance
of these operations for robust GAN training with limited col-
lected examples, thereby generating high-quality examples
for training reliable student networks.
2) Student Distillation. We examine the impact of replac-
ing the classifier-sharing-based feature alignment with tradi-
tional KD methods (Hinton, Vinyals, and Dean 2015; Chen
et al. 2021a). Both the student networks are trained on the
hybrid data composed of collected and synthetic examples.
We can find that the student networks trained by these meth-
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Figure 2: Parametric sensitivities of (a) λd and (b) λg in Eq. (13). Accuracies (in %) of the student networks trained with
collected data with (c) varying inflation factors and (d) various quantities.

ods generally achieve suboptimal performance due to their
inability to effectively handle the potentially noisy examples
among the hybrid data. These results highlight the suitability
of our training strategy for reliable student networks in the
data-free distillation scenarios.
Parametric Sensitivity. There are two tuning parameters in
our HiDFD, including λd and λg in Eq. (13). To analyze
the sensitivities, we individually vary each parameter while
keeping the others constant during training. The accuracies
of the corresponding student networks are shown in Fig. 2(a)
and Fig. 2(b). Despite the large fluctuations in these param-
eters, where λd, λg ∈ {0.001,0.01, 0.1, 1, 10}, the accuracy
curve of the student network remains relatively stable. These
results indicate the robustness of our HiDFD against param-
eter variations. Additionally, the student network achieved
the best performance when λd = λg = 0.1, so we adopted
such parameter configuration in our method.

Extended Experiments
Experiments with Various Backbones. We evaluate our
HiDFD across many widely used teacher-student pairs to as-
sess its adaptability to different networks. The results are
shown in Tab. 3, we can observe that our HiDFD con-
sistently achieves satisfactory performance across different
teacher-student pairs, where both the trained students per-
form comparably to those trained on the original data.
Experiments with Varying Inflation Factors. We report
the accuracies of the student networks trained on collected
data with various inflation factors in Fig. 2(c). The student
network performs better with increasing N , and the best ac-
curacy is observed at N=10. Furthermore, excessive infla-
tion may reduce the diversity brought by synthetic data, so
that the student network encounters performance degrada-
tion when N>10. Therefore, we adopt a moderate inflation
factor of N = b|Ds|/|Dc|c. These experiments demonstrate
that appropriately inflating the collected examples, which
are crucial for reducing the distribution gap between syn-
thetic and collected data, can effectively improve the perfor-
mance of the student network.
Experiments on Collected Data with Various Data Quan-
tities. We explore the impact of varying the volume of col-
lected data on the performance of student networks, with ρ
values ranging from 0.1 to 1. As shown in Fig. 2(d), student
networks trained by the compared collection-based DFKD

Dataset Teacher Student ACCS HiDFD ↑ or ↓

CIFAR10

ResNet32×4 ResNet110 93.37 95.04 ↑1.67
ResNet32×4 ShuffleNet 93.23 93.62 ↑0.39

ResNet110×2 ResNet116 93.21 94.83 ↑1.62
ResNet110×2 WRN40×2 94.86 95.35 ↑0.49

CIFAR100

ResNet32×4 ResNet110 74.31 75.69 ↑1.38
ResNet32×4 ShuffleNet 72.60 75.03 ↑2.43

ResNet110×2 ResNet116 74.46 74.49 ↑0.03
ResNet110×2 WRN40×2 76.31 75.65 ↓0.66

Table 3: Accuracies (in %) of various networks trained by
our method (ρ=1.0).

methods (Chen et al. 2021b; Tang et al. 2023) tend to under-
perform with small values of ρ. Conversely, our HiDFD con-
sistently achieves satisfactory performance across a spec-
trum of ρ values. These results further demonstrate the effec-
tiveness of our HiDFD in training reliable student networks
leveraging limited collected data.

Conclusion

In this paper, we proposed a new data-free distillation ap-
proach termed HiDFD to train the student networks on the
hybrid data comprising high-quality synthetic examples and
scarce collected examples, which well meets practical re-
quirements. Our investigation reveals that bridging the dis-
tribution gap between the hybrid and synthetic data is cru-
cial for training reliable student networks, and it implies
that the quality of synthetic data and the weight of collected
data are two key factors in reducing this gap. This observa-
tion inspired us to propose a novel hybrid distillation frame-
work, where the teacher-guided generation module can ef-
fectively generate high-quality synthetic examples from the
limited collected data by leveraging the teacher network to
guide the GAN training process, and the student distilla-
tion module properly enhances the influence of collected ex-
amples within the hybrid data by inflating their frequency.
Consequently, we can naturally define a classifier-sharing-
based feature alignment to distill the student network, and
we achieve state-of-the-art performance using significantly
fewer examples than existing methods. The limitations and
broader impacts of our HiDFD are discussed in Appendix.
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Proofs
The Optimal Classifier of Discriminator
For a fixed generator, the optimal classifier Ψ∗D of the dis-
criminator in our employed Auxiliary Discriminative Clas-
sifier GAN (ADCGAN) can be formatted as follows:

Ψ∗D
(
y+ | x

)
=

p(x, y)

p(x) + q(x)
,

Ψ∗D
(
y− | x

)
=

q(x, y)

p(x) + q(x)
.

(1)

Proof.
max
ΨD

Ex,y∼PX,Y
[log ΨD(y+|x)]+

Ex,y∼QX,Y
[log ΨD(y−|x)]

⇒ max
ΨD

Ex,y∼Pm
X,Y

[log ΨD(y|x)],

(2)

with pm(x, y+) = 1
2p(x, y), pm(x, y−) = 1

2q(x, y), and
pm(x) =

∑
y p

m(x, y) = 1
2p(x) + 1

2q(x).

⇒ max
ΨD

Ex∼Pm
X
Ey∼Pm

Y |X
[log ΨD(y|x)] (3)

⇒ min
ΨD

Ex∼Pm
X
Ey∼Pm

Y |X
[− log ΨD(y|x)] (4)

⇒ min
ΨD

Ex∼Pm
X

[H(pm(y|x))+KL(pm(y|x)‖ΨD(y|x))](5)

⇒ Ψ∗D(y|x) = arg min
ΨD

KL(pm(y|x)‖ΨD(y|x)) (6)

= pm(y|x) =
pm(x, y)

pm(x)
(7)

Therefore, the optimal discriminative classifier of ADC-
GAN has the form of Ψ∗D(y+|x) = pm(x,y+)

pm(x) = p(x,y)
p(x)+q(x)

and Ψ∗D(y−|x) = pm(x,y−)
pm(x) = q(x,y)

p(x)+q(x) that conclude the
proof.

Proof of Eq. (7)
Given the optimal classifier of the discriminator, at the equi-
librium point, encouraging the generator to produce easily
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classifiable examples of our employed ADCGAN is equiva-
lent to

max
NG

[Ex,y∼QX,Y
[log Ψ∗D(y+ | x)]

− Ex,y∼QX,Y
[log Ψ∗D(y− | x)]]

⇒ min
NG

KL (QX,Y ‖PX,Y ) ,

(8)

Proof.

max
NG

Ex,y∼QX,Y

[
log Ψ∗D(y+|x)

]
(9)

−Ex,y∼QX,Y

[
log Ψ∗D(y−|x)

]
(10)

⇒ max
NG

Ex,y∼QX,Y

[
log

p(x, y)

p(x) + q(x)

]
(11)

−Ex,y∼QX,Y

[
log

q(x, y)

p(x) + q(x)

]
(12)

⇒ min
NG

Ex,y∼QX,Y

[
log

q(x, y)

p(x, y)

]
(13)

⇒ min
NG

KL(QX,Y ‖PX,Y ) (14)

Detailed Information of Benchmark Datasets
Comprehensive Dataset Overview
In Table A-1, we introduce the critical information of the
benchmark datasets used in our experiment, including the
image size, the number of categories, and the number of
images in training and test sets. First, we can observe that
the large-scale ImageNet contains a large number of exam-
ples, when using it as the original data, it is difficult to col-
lect sufficient examples (more than 1 million) from the real-
world. Therefore, it is essential to explore an efficient data-
free distillation method that requires only a small amount of
collected data. Second, a series of benchmark datasets con-
tain 224×224 sized high-resolution images, the generation-
based methods that without rely on real-world data are hard
to generate high-quality examples to provide effective infor-
mation for training the student network.

Moreover, Figure A-1 shows the number of collected ex-
amples in each category when the original data is the nat-
ural image datasets CIFAR10 and practical medical image



Table A-1: Details of the benchmark datasets used in our experiment, the items with the prefix “#” denotes the number of the
corresponding item.

Dataset Type Image size #classes #train #test
CIFAR10 Original data 32×32 10 50,000 10,000
CIFAR100 Original data 32×32 100 50,000 10,000

CINIC Original data 32×32 10 90,000 90,000
TinyImageNet Original data 64×64 200 100,000 10,000

HAM Original data 224×224 7 8,000 2,000
ISIC Collected data 224×224 8 20,000 5,000

ImageNet Original&collected data 224×224 1,000 1,281,167 50,000
WebVision Collected data 224×224 1,000 980,449 N/A

(a) CIFAR10(a) CIFAR10 (b) HAM  (b) HAM  

Figure A-1: The number of examples per category in the collected data (ρ = 0.1), where the original data is (a) CIFAR10 and
(b) HAM, respectively.

dataset HAM, respectively. We can observe that the col-
lected examples exhibit imbalanced class distribution, with
several categories accounting for the majority of examples
and other categories containing only a few examples. There-
fore, our proposed data-free distillation method is very prac-
tical.

Visualization of Synthetic Examples
In Figure A-2, we show synthetic examples produced by the
GAN trained on limited collected data using our teacher-
guided generation module. Specifically, we generate syn-
thetic instances for four original datasets, including CI-
FAR10, CINIC, TinyImageNet, and HAM. Despite these
original datasets having significantly different image sizes
(ranging from 32×32 to 224×224), the corresponding syn-
thetic examples consistently exhibit high quality. These vi-
sual results demonstrate the effectiveness of our approach
in leveraging the teacher network to address critical issues
of GAN training on limited collected data. By doing so,
our method can train reliable student networks on abundant
high-quality synthetic examples.

Algorithm
The detailed training algorithm of our proposed HiDFD is
summarized in Algorithm A-1. Our HiDFD contains two
primary modules to train a reliable student network only us-
ing a small number of collected examples, i.e., the teacher-

guided generation and student distillation. In the teacher-
guided generation, the GAN is trained on the limited col-
lected data under the guidance of the teacher network, where
the critical issues, i.e., overfitting of the discriminator and
imbalanced learning of the generator, are effectively re-
solved. In the student network, the collected examples are
properly inflated via repeating and combined with sufficient
high-quality synthetic examples to construct the hybrid data.
Then, the reliable student network can naturally train on the
hybrid data via the effective classifier-sharing-based feature
alignment strategy.

Limitations and Broader Impacts
Limitations
The proposed method can train reliable student networks us-
ing very few collected examples. Compared with previous
methods, we have reduced the data requirement by 99%,
making our method suitable for practical applications. In
general, the effectiveness of the proposed method depends
on the quality and representativeness of collected data to
some extent. If this collected data does not sufficiently rep-
resent the broader dataset or contains biases, the generated
synthetic examples and the trained student network may in-
herit these flaws. In practice, collecting fewer representative
examples in real-world applications is relatively easy. There-
fore, we believe that these limitations can be overcome well.



Figure A-2: Visualization of synthetic examples for the original tasks, including (a) CIFAR10, (b) CINIC, (c) TinyImageNet,
and (d) HAM.
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Figure A-3: Parametric sensitivities of (a) γ in Eq. (12) and (b) q in Eq. (9). Accuracies (in %) of the student networks trained
with (c) synthetic examples generated by various generative models. (d) shows the accuracies and training times of various
DFKD methods.

Broader Impacts

This paper proposed a novel data-free knowledge distilla-
tion method called HiDFD, which can train a compact and
reliable student network using very few collected examples.
In general, the proposed HiDFD could have the following
positive impacts: 1) HiDFD eliminates the need for origi-
nal training data required by traditional knowledge distilla-
tion methods, so it can help preserve data privacy for users;
2) HiDFD effectively compresses the large pre-trained mod-
els (i.e., the teacher networks) into smaller and faster mod-
els (i.e., the student networks) that are resource-efficient and
suitable for deployment on devices with limited capabilities;
3) HiDFD focuses on the classification tasks, which under-
pin many practical downstream tasks like object detection
and segmentation, suggesting its wide applicability; and 4)
HiDFD is compatible with different DNNs (e.g., ResNet and
VGG).

Although HiDFD has few negative social impacts, when it
compresses the large models of many Artificial Intelligence
(AI) technologies and enables these compressed models in
practical applications, the proposed HiDFD can be used for
good and also for harm, depending on human intent. This
actually falls into the general ethical debate on whether AI
is good or not.

In conclusion, we believe our proposed work can be ben-
eficial to society since many important real-world applica-

tions need compact and reliable models that stand to benefit
from HiDFD when the available real-world data is limited.

Additional Experiments
Additional Parametric Sensitivities
There are also two tuning parameters q and γ in Eq. (9) and
γ in Eq. (12), respectively. To analyze their sensitivities, we
individually vary each parameter while keeping the others
constant during training. The accuracies of the correspond-
ing student networks are shown in Figure A-3. Despite the
large fluctuations in these parameters, where q, γ ∈ {0.1,
0.3, 0.5, 0.7, 0.9}, the accuracy curve of the student net-
work remains relatively stable. These results indicate the ro-
bustness of our HiDFD against parameter variations. Addi-
tionally, the student network achieved the best performance
when q = 0.7 and γ = 0.5, so we adopted such parameter
configuration in our method.

Experiments on Various Collected Data
We compare the quality of synthetic examples produced
by different generative models trained with the limited col-
lected data and report the accuracies of the corresponding
student networks in Figure A-3(c). Here, the higher-quality
synthetic data consistently promotes a better student net-
work, which demonstrates that improving the quality of syn-
thetic examples can effectively improve the performance of



Algorithm A-1: Hybrid Data-Free Distillation

Require: Pre-trained teacher networkNT, limted collected
data Dc.

1: Initialize the discriminator ND and generator NG in
GAN, and the small student network NS;

2: Module 1: Teacher-Guided Generation
3: repeat
4: Sample the noise-label pair (z, y) to generate syn-

thetic example NG(z, y);
5: Mitigate the overfitting of discriminator ND via

blending Lblend and transferring Ltrans operations in
feature integration;

6: Calculate the class frequency {n̂c}Cc=1 of synthetic
examples;

7: Regularize the training of generator NG across all
categories;

8: Optimize the GAN via Adam;
9: until convergence

10: Module 1: Student Distillation
11: Generate abundant high-quality synthetic examples and

inflate collected examples to construct the hybrid data
D;

12: repeat
13: Sample the example x ∈ D and input it into the

teacher network NT and student network NS to ob-
tain the features ΦT(x) and ΦS(x), respectively.

14: Align the features ΦT(x) and ΦS(x) via Lalign;
15: Optimize the student network NS via SGD;
16: until convergence
Ensure: Lightweight student network NS.

the student network.
Moreover, we compared the training time of our method

with other collection-based DFKD methods, as depicted in
Figure A-3(d). We can observe that our method can train a
student network with satisfactory performance within a few
hours on an A100 GPU. These results further demonstrate
the effectiveness of our HiDFD in training reliable student
networks leveraging limited collected data.


