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Abstract

Class-Incremental Unsupervised Domain Adaptation (CI-UDA) aims
to adapt a model from a labeled source domain to an unlabeled tar-
get domain, where the sets of potential target classes appearing
at different time steps are disjoint and are subsets of the source
classes. The key to solving this problem lies in avoiding catastrophic
forgetting of knowledge about previous target classes during con-
tinuously mitigating the domain shift. Most previous works cum-
bersomely combine two technical components. On one hand, they
need to store and utilize rehearsal target sample from previous
time steps to avoid catastrophic forgetting; on the other hand, they
perform alignment only between classes shared across domains
at each time step. Consequently, the memory will continuously
increase and the asymmetric alignment may inevitably result in
knowledge forgetting. In this paper, we propose to mine and pre-
serve domain-invariant and class-agnostic knowledge to facilitate
the CI-UDA task. Specifically, via using CLIP, we extract the class-
agnostic properties which we name as “attribute”. In our framework,
we learn a “key-value” pair to represent an attribute, where the key
corresponds to the visual prototype and the value is the textual
prompt. We maintain two attribute dictionaries, each correspond-
ing to a different domain. Then we perform attribute alignment
across domains to mitigate the domain shift, via encouraging visual
attention consistency and prediction consistency. Through attribute
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modeling and cross-domain alignment, we effectively reduce cata-
strophic knowledge forgetting while mitigating the domain shift,
in a rehearsal-free way. Experiments on three CI-UDA benchmarks
demonstrate that our method outperforms previous state-of-the-art
methods and effectively alleviates catastrophic forgetting. Code is
available at https://github.com/RyunMi/VisTA.
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1 Introduction

Class-Incremental Learning (CIL) [1, 18, 47] aims to handle sequen-
tially arriving tasks, where at each time step new classes emerge.
The model needs to classify all seen classes during testing without
access to the task ID. CIL methods generally rely on labeled data,
which is often limited due to the high cost of data annotation in
real-world scenarios [28, 30, 44, 45]. A feasible approach is to lever-
age an off-the-shelf labeled dataset (i.e., source domain) to transfer a
model to a class-incremental unlabeled dataset (i.e., target domain),
with the source domain containing all classes.

However, the distribution shift between domains poses signif-
icant challenges to the transferability of a model. Conventional
unsupervised domain adaptation (UDA) or partial domain adapta-
tion (PDA) methods can be utilized to mitigate the distribution shift
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Figure 1: Existing CI-UDA methods retain knowledge by stor-
ing rehearsal target data (yellow circles), which will intro-
duce additional computational overhead. These methods also
detect the shared classes (e.g., “zebra”) between domains at
each time step, which may result in errors (e.g., “tiger”) and ig-
nore valuable attributes of source-private classes (e.g., “Black-
White” of “panda” and “Horse-like” of “horse”).

by feature alignment [6, 10, 14, 17, 32, 35, 46] and domain-invariant
knowledge transfer [23, 25, 29, 41, 42]. Nevertheless, existing do-
main adaptation methods may suffer from catastrophic knowledge
forgetting [19] in class-incremental target domain, inspiring meth-
ods specifically designed for Class-Incremental Unsupervised Do-
main Adaptation (CI-UDA) [16, 37, 40].

Recently, several CI-UDA methods have been proposed [16, 37,
40]. They usually consist of two technical components. On one hand,
they typically store and utilize rehearsal data from previous target
classes (as illustrated by the yellow circles in Figure 1) to retain
historical knowledge. However, rehearsal data may not be available
due to constraints such as data privacy or memory limitations (e.g.,
the memory will increase as the number of tasks increases). On the
other hand, to avoid negative knowledge transfer [9, 23], CI-UDA
methods perform alignment only between classes shared across
domains. However, they may still suffer from knowledge forgetting.
Specifically, as shown in Figure 1, suppose the target class is “zebra”
(a shared class) at step T. On one hand, the shared-class discov-
ery process is imperfect. It may mistakenly treat private classes
in source domain (i.e., source-private classes), such as “tiger,” as
a shared class, leading to misalignment. On the other hand, even
in source-private classes, valuable knowledge exists but may be
ignored during cross-domain alignment, such as “Black-White” of
“panda,” and “Horse-like” of “horse,” which are also typical prop-
erties of “zebra” [8]. Recent works utilize CLIP-based [22] prompt
learning [4, 7, 13, 21, 27, 49] to deal with domain adaptation problem.
Technically, some methods can be directly applied to the CI-UDA
setting, but as they typically do not consider the catastrophic for-
getting issue, their performance is still far from satisfactory.

In this paper, we propose cross-domain Vision-Text Attribute
Alignment (VisTA), a novel CI-UDA framework based on CLIP [22].
In our framework, we aim to mine and preserve domain-invariant
and class-agnostic knowledge. Firstly, inspired by [34], we employ
an Attribute Modeling module to utilize CLIP to extract class-
agnostic properties which we refer to as “attribute”. We freeze the
encoders of CLIP and construct a dictionary for source domain
and target domain, respectively. The dictionaries store attributes
in the form of “key-value” pairs, where the key and value bridge
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the visual and textual modalities. For each input image, several
textual attributes are selected from the dictionary based on its vi-
sual attributes. These textual attributes, serving as prompts, are
sent into CLIP to compute the class probability of the image. Then
we perform attribute alignment across domains to mitigate the
domain shift, via encouraging visual attention consistency and pre-
diction consistency. Specifically, for each image in both domains,
prompts are selected from the two dictionaries to compute paired
class probabilities (one from each domain). However, since the two
dictionaries are learned independently, the attributes selected from
the other domain are domain-specific and may not effectively con-
tribute to the current prediction due to the domain shift. Therefore,
we introduce a Visual Attention Consistency (VAC) module to
ensure the semantically similar attributes across domains are se-
lected for paired prediction. VisTA then encourages Prediction
Consistency by minimizing the Jensen-Shannon divergence be-
tween these paired probability distributions, enabling the learning
of domain-invariant attributes. Benefiting from the modeling of
domain-invariant and class-agnostic attributes, we are able to deal
with the CI-UDA task in a rehearsal-free manner.

In a nutshell, the contributions of our work are summarized as
follows:

e We propose a CI-UDA framework named VisTA, which
leverages CLIP to learn class-agnostic attributes that act
as prompts, achieving rehearsal-free training.

o VisTA learns domain-invariant attributes through attribute
alignment, guided by a Visual Attention Consistency module
and a Prediction Consistency loss.

o Extensive experiments firmly demonstrate the effectiveness
of VisTA, as it achieves state-of-the-art performance on
Office-31, Office-Home, and Mini-DomainNet.

2 Related Work

In this section, we review some relevant works, including unsuper-
vised domain adaptation and vision language models.
Unsupervised Domain Adaptation. To mitigate distribution shift,
conventional UDA methods or PDA methods typically fall into
two main directions. The first direction of work aims to align the
feature distributions across different domains. Common techniques
include minimizing the statistical distribution metrics in the feature
space directly [10, 32, 46] and applying adversarial learning to
obtain domain-agnostic features [6, 14, 17]. The other direction
of work seeks to transfer domain-invariant knowledge between
models in source domain and target domain. For example, the works
of [23, 25, 41] propose to learn an invariant classifier with consistent
predictions, while [29, 42] propose to improve the performance of
the target domain by knowledge distillation.

However, in practice, UDA is often integrated with continual
learning problems [5, 33, 38]. One scenario is where target data ar-
rives in a streaming manner with different classes. In this scenario,
conventional UDA methods suffer from the catastrophic forgetting
problem [19]. Therefore, some recent CI-UDA methods [16, 37, 40]
have been developed to mitigate the domain shift while learning
class-incremental target classes. For instance, ProCA [16] detects
the shared classes by computing cumulative prediction probabili-
ties of target examples and achieves adaptation through prototype
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Figure 2: Framework of VisTA. Parameters of Ej and ET in CLIP are frozen and only prompts are tunable during training. The
classification loss Ly is applied separately to D; (visual features z* and text embeddings * in blue) and D; (z' and € in yellow).
VisTA integrates three core modules. Attribute Modeling module for constructing domain-specific dictionaries [, A] of visual
attributes k € % and textual attributes a € A. Given an image from D;, VisTA selects target attributes @’ based on the cosine
similarity between k’ and z/, while selecting source attributes @ via a Visual Attention Consistency module. VisTA then aligns
paired class probabilities (e.g., p** and p’’) via a Prediction Consistency loss Lcon. We use p'’ for inference on D;.

alignment. PLDCA [37] builds upon ProCA and further alleviates
negative transfer through domain-level and instance-level con-
trastive alignment. Besides, GROTO [2] designs a multi-granularity
class prototype self-organization module and a prototype topology
distillation module to handle CI-UDA in a source-free scenario (i.e.,
CI-SFUDA). It is worth noting that existing CI-UDA methods are
suboptimal owing to continuously increasing memory and asym-
metric alignment.

Vision Language Models. Recent Vision Language Models (VLMs)
like CLIP [22] have demonstrated impressive performance on vari-
ous downstream vision tasks by pretraining on large-scale image-
text pairs [43]. VLMs typically use hand-crafted text like “a photo
of a [class_name]” for zero-shot prediction on downstream tasks,
which preserves generalization knowledge while maintaining low
computational cost. However, hand-crafted text is not always ef-
fective, and thus prompt learning has gained increasing attention.
For instance, CoOp [49] and CoCoOp [48] use learnable continu-
ous prompts to improve the generalization performance of CLIP.
MaPLe [11] proposes multi-modal prompt learning to align text and
image representations. Moreover, since only the prompts should
be stored, certain prompt learning methods serve as rehearsal-
free learners, which can be effectively utilized to address class-
incremental problem [34].

However, these prompt learning methods often suffer from per-
formance degradation when encountering domain shift problems.
To address this, DAPL [7] introduces domain-specific and domain-
agnostic prompts to learn the label distribution of target domain.
AD-CLIP [27] learns domain-invariant prompts by combining do-
main style information with image content information. DAMP [4]
mutually aligns visual and textual embeddings to learn domain-
agnostic prompts. PGA [21] frames UDA as a multi-objective op-
timization problem and promotes consensus among per-objective
gradients. Although existing prompt learning methods have shown
quite promising performance, they cannot deal with CI-UDA, as
the historical knowledge encoded in prompts may be overwritten

by new class information, leading to catastrophic forgetting. To this
end, in this paper, we propose a rehearsal-free method based on
prompt learning for CI-UDA, which effectively reduces catastrophic
forgetting while mitigating distribution shift.

3 Preliminaries
3.1 CI-UDA Problem Formulation

In CI-UDA, we consider two domains, including the labeled source
domain Ds = {(x},y;)}" (where x] denotes the i-th source image,
yf € {1,2---,C} denotes the label of i-th image and ns; means the
number of source examples), and unlabeled target domain D; =
{x; }"*¢. The sample in D is available at all time steps and covers all
the considered C classes, and the sample in D; comes incrementally.
For each time step, the underlying class set of Dy is only a subset
of {1,---,C} and the class sets of different time steps are disjoint.

The goal of CI-UDA is to learn a model by leveraging data from
9D and class-incremental Dy, such that it performs well on all seen
classes of D during testing.

3.2 Prompt Learning in CLIP

CLIP [22], a prominent VLM, pretrains an image encoder Ej and
a text encoder ET on large-scale image-text pairs to learn well-
aligned visual and textual representations. In downstream tasks,
class-specific textual prompts Pr. may be utilized for each class k
(e.g., “a photo of [CLSg],” where [CLS] is the k-th class name).
CLIP predicts the probability that an input image x belongs to
each class by computing the cosine similarity between the visual
feature z = Er(x) € RP (where D is the feature dimension) and the
class-wise text embeddings wy = ET(Py) € RPk=1---,C:

exp (cos{wyg, z)/7)
Ty exp (cos(we,2)/7)]

p(y =klx) = (1)

where cos(-, -) is cosine similarity, and 7 is temperature parameter.
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However, such hand-crafted prompts may be suboptimal. To
further enhance the performance of CLIP in downstream tasks,
CoOp [49] introduces learnable continuous vectors V with length
M to replace hand-crafted prompt templates. The learnable prompt
for class k is then defined as Py = [V1,Va,- -,V CLSk]. During
training, the prompt Py is updated to minimize the cross-entropy
loss on sample from downstream tasks. For the inference, they
follow the same way which utilizes Eq. (1) to predict the label
for each example. The only difference is that they use the learned
prompts instead of manually designed prompts for prediction.

4 Method

As shown in Figure 2, at time step T, VisTA processes D and the
current D, through Ej, generating visual features z* and z’. Tak-
ing 7
dictionary based on the cosine similarity between z’ and visual
attributes (Section 4.1). These attributes serve as textual prompts
for E1. Concurrently, we propose a Visual Attention Consistency
module (Section 4.2), which applies a Grad-CAM-based attention
heatmap matching mechanism to select L source attributes with
similar semantic concepts as prompts. This process yields two class
probability distributions for z'. The target attributes then are opti-
mized through a Prediction Consistency loss (Section 4.2) to enable
the learning of class-agnostic and domain-invariant knowledge. A
similar procedure is adopted for z*. Finally, Section 4.3 discusses
two regularization terms and the training objective of VisTA.

as an example, we retrieve L textual attributes from target

4.1 Attribute Modeling

In CI-UDA setting, the underlying class set of target domain at each
time step is only a subset of that of source domain and is disjoint
from that of previous time steps. If mitigating knowledge forget-
ting at the class-level, we may inevitably need to store previous
target sample and discover shared classes between domains at each
time step to perform alignment—a cumbersome process that may
introduce too much noise during training. In this paper, we aim
to mitigate the knowledge forgetting in CI-UDA at the “attribute”
level. The “attribute” refers to the basic components which combine
to support correct predictions.

Specifically, with CLIP extracting visual and textual features,
we represent each attribute as a “key-value” pair, where the value
refers to the textual representation of attribute and the key refers
to the visual representation of attribute, in other words, the visual
prototype. Formally, attributes are denoted as:

[K, Al = [{ki,a1}, {kz,az2},- -+, {kn,an}], (2)

where each key k; € RP (i = 1,2,...,N) is designed to capture
the visual attributes of an image x, and each value a; € RMxD (i=
1,2,...,N) encodes the textual description of a specific attribute.
VisTA maintains a source attribute dictionary [K*, A°] and a
target attribute dictionary [K?, A’]. We design specific update
strategies for attributes to learn class-agnostic knowledge.
Visual Attributes. We perform K-means++ clustering on all source
features to obtain source visual attributes K* before training and
keep K* fixed during training. As the target classes appearing at
different time steps are disjoint in CI-UDA, target visual attributes
K" are initialized via K-means++ clustering on the data from the
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first time step in the class-incremental training sequences. During
each subsequent time step in class-incremental learning process,
we apply a moving average strategy to update K.
Textual Attributes. VisTA randomly initializes A° and A’. These
textual attributes are then modeled through supervised training or
self-training to mine and preserve class-agnostic knowledge.
Given an image x from both domains, we select the top-L visual
attributes K C % based on their cosine similarity to x. The paired
textual attributes are then indexed from the dictionary as A = apr.
These textual attributes are concatenated with the class name to
form the prompt:

Pi(A) = [a1,@,- - ,ar, CLS; ],k =1,---,C. 3)

The source textual attributes A° are optimized by minimizing
cross-entropy loss on labeled Ds:

Ly =—logp (y =y°[x°). 4)

Moving to unlabeled Dy, target textual attributes A’ are opti-
mized by minimizing self-training loss:

Liyp = ~I(max(p) > y)logp (y = y'[x'), ®)

where 7 represents the pseudo-label, I(-) is the indicator function,
y is a threshold to select high-confidence pseudo-label of target
example, and p denotes the debiased soft pseudo-label. This debias-
ing follows DebiasPL [36], which aims to enhance the reliability of
pseudo-labels and has recently been adopted in several CLIP-based
UDA methods [12, 15]. In detail, p is computed as:

B
A 1
p=p-rlogq g —mg+(1-m)z > pj. (©)
J=1
where m is a momentum coefficient, 7 is a debias factor, B denotes
the batch size, and g is initialized before training as a uniform
probability vector over C classes.

4.2 Cross-Domain Attribute Alignment

To mitigate the domain shift in CI-UDA, VisTA performs cross-
domain attribute alignment through a Visual Attention Consistency
module and a Prediction Consistency loss. We want to mention
that previous work AttriCLIP [34] can also extract class-agnostic
attributes to benefit general continual learning, but cannot guar-
antee the domain-invariant property, which is crucial for CI-UDA.
Hence, we design two novel modules to address this limitation.
Visual Attention Consistency (VAC). Taking x* as an example,
we select L visual attributes A’ from target dictionary through
cosine similarity between x’ and K. Then we select L source
visual attributes A° for alignment. Note that the update of visual
attributes mentioned previously (Section 4.1) is domain-specific,
so selecting AS for x! by cosine similarity may introduce bias
due to domain shift. Therefore, based on Grad-CAM [26], VisTA
proposes an attention heatmap matching mechanism for cross-
domain attribute selection.
Specifically, we compute L target CAM scores for x’ as:

st _exp (cos(E1(al,), Zt>/f) @)
CAM ™ S |m| £yt '
Yoy EXp (cos(Er(ah),z")/7)
where al,, € A, (m=1,---,L) are individual textual attributes.
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Table 1: Final Accuracy (%) on Office-31. DA, CI, and RF respectively represent domain adaptation, class-incremental, and
rehearsal-free. The * indicates the result is cited from GROTO [2].

Method DA CI RF ‘ Backbone ‘ A—-D A-W D—A D-W W-HA W-D Avg
ViT-B* (ICLR21) - - - 82.4 80.0 70.8 83.1 75.1 87.4 79.8
ProCA (ECCV22) v v X ViT 91.1 86.3 75.6 98.3 77.2 99.4 88.0
PLDCA (TIP24) v /X 91.5 90.7 75.6 96.9 77.8 99.4 88.7
CLIP (ICML21) - - - 77.2 75.2 79.7 75.2 79.7 77.2 77.4
CoOp (IJICV22) - - - 89.0 87.0 83.0 96.1 81.5 98.1 89.1
AttriCLIP (CVPR23) X v 7/ 82.8 85.7 79.5 94.4 79.8 954 86.3
AD-CLIP (ICCVW23) v X v CLIP 85.1 85.9 83.0 95.1 81.4 93.6 87.4
DAMP (CVPR24) v X v 82.8 79.3 81.3 90.3 80.1 91.7 84.3
PGA (NeurIPS24) v X v 49.0 68.4 81.2 88.7 81.3 81.8 75.1
DAPL (TNNLS25) v X v 79.1 76.7 79.5 79.2 81.1 79.3 79.2
VisTA (Ours) v v/ 87.8 88.2 84.5 95.2 84.0 96.5 89.4

Then we use the gradients of Sé M With respect to the features

from a layer as weights, and perform a weighted aggregation to
highlight attribute-level discriminative regions. This procedure
follows Grad-CAM to generate L heatmaps H for x*. In the same
way, we also compute N source CAM scores S, , for all source
attributes A, thereby obtaining N candidate heatmaps H® for x*.

To select A from N candidates, VisTA quantify the visual at-
tention consistency between flattened H* and H® using the Pearson

Correlation Coefficient (PCC): p = %
represents the covariance, and o denotes the standard deviation. A
higher value of p highlights attributes for prioritized selection.

The visual attention consistency in images can be interpreted as
the similarity of semantic concepts. As illustrated in the bottom-
right panel of Figure 2, we analyze a “panda” image from D;. The
attention heatmap H! of the selected target attribute A’ exhibits
concentrated activations in the central-right region of the image,
likely corresponding to the semantic concept of “Head”. Notably,
the selected source attribute A° with the highest p = 0.66 explicitly
aligns with the same semantic concept of “Head”.

Therefore, for L selected target attributes A and total N source
attributes A®, we compute L X N PCC p. Leveraging these values,
we match and identify the top-L attributes AS as the cross-domain
attribute selection result for x*. The procedure to employ VAC mod-
ule is identical for x*. Importantly, PCC, defined as cosine similarity
on normalized vectors, reduces the influence of global style and is
thus suitable for quantifying the visual attention consistency.
Prediction Consistency. To achieve attribute alignment, we intro-
duce a Prediction Consistency loss applied to the attributes selected
by the VAC module, which enforces domain invariance for these
attributes exhibiting semantic similarity.

As illustrated in the top-right panel of Figure 2, the selected
attributes A and A’ are served as textual prompts for Et to gen-
erate class-wise text embeddings e;’t =E7(Py (ﬁs’t)), k=1,...,C.
This enables the computation of paired class probabilities for x
using Equation (1). For example, given an image x’ is sampled from
Dy, we utilize prompts P(.7~[s ) and P(?Tt ) to obtain class probabil-
ity vectors p’S and p’?, respectively. For an image x°* is sampled
from Dy, analogous terms p** and p*! are computed. Here, the
superscripts of p denote the domain of the x (first symbol) and the
dictionary from which the prompt is selected (second symbol).

€ [-1,1], where cov

The Prediction Consistency loss is achieved by minimizing the
Jensen-Shannon divergence Djs between each pair of class proba-
bilities:

Lcon = Dys (PSS)PSt) +Dys (P”’Pts)~ (8)

In this way, VisTA effectively reduces catastrophic knowledge
forgetting while mitigating the domain shift by learning class-
agnostic and domain-invariant attributes. During inference, we
use p” as the prediction score of target example.

4.3 Training Objective

Notably, we aim to enhance the generalization capacity of A°*,
enabling it to effectively guide predictions in D;. Inspired by [39],
VisTA proposes a regularization loss which minimizes the distance
between class-wise embeddings e} generated by A°* and those
derived from hand-crafted prompts (wy.):

C
Loy =D lef —wil. )
k=1

Finally, to promote the diversity of textual attributes, a regu-
larization loss is applied separately to both D and Dy to enforce
orthogonality among the attributes within A:

1 N N
Lav= =g 2 2 |costBr(an).Er(@)l. (0

m=1n=m+1

As a result, the final optimization objective of VisTA is:
L= Lsyp+A1Leon + /12-£hp + A3 Ly (11)

where A1, A2, and A3 are non-negative trade-off weights, and Lgup =
Lip + .[:stup is the classification loss.

5 Experiment

5.1 Experimental Setup

Datasets. Office-31 [24] includes 31 categories from three domains:
Amazon (A), DSLR (D), Webcam (W), totaling 4,600 images. Office-
Home [31] comprises 65 categories across four distinct domains:
Art (A), Clipart (C), Product (P), and Real World (R), totaling 15,500
images. Mini-DomainNet is a subset of DomainNet [20] and in-
cludes 126 categories across four domains: Clipart (C), Painting (P),
Real World (R), and Sketch (S).
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Table 2: Final Accuracy (%) on Office-Home. DA, CI, and RF respectively represent domain adaptation, class-incremental, and
rehearsal-free. The ¢ indicates the result is cited from DAPL [7], and the * indicates the result is cited from GROTO [2].

Method DA CI RF ‘ Backbone ‘ A—-C A-P A-R C—»A C—»P C—-R P—-A P-C P-R R—A R—-C R-P Avg
ViT-B* (ICLR21) - - - 53.2 77.7 82.1 69.1 76.6 78.7 67.8 50.8 82.1 73.0 50.2 81.8 70.3
ProCA (ECCV22) v /X ViT 56.8 81.9 89.9 68.4 80.9 83.9 70.1 51.3 89.9 77.4 50.3 879 741
PLDCA (TIP24) v v X 58.2 83.2 89.5 76.5 83.3 85.3 74.2 54.5 87.6 80.4 55.8 90.0 76.6
CLIP® (ICML21) - - 67.8 89.0 89.8 82.9 89.0 89.8 82.9 67.8 89.8 82.9 67.8 89.0 824
CoOp (IJCV22) - - - 70.6 88.9 89.8 81.4 88.4 87.9 79.8 69.6 89.6 83.3 71.6 919 827
AttriCLIP (CVPR23) X v 7/ 67.4 87.9 89.4 84.0 90.2 87.3 82.3 67.3 88.7 83.9 69.0 90.4 823
AD-CLIP (ICCVW23) Vv X v CLIP 70.9 91.3 89.3 82.2 91.3 90.4 80.4 71.9 90.5 83.3 71.4 92.7 83.8
DAMP (CVPR24) 2T S 68.3 86.7 88.7 81.3 90.1 88.2 81.5 68.3 89.1 80.3 69.0 90.7  81.9
PGA (NeurIPS24) v X v 61.6 70.9 85.3 55.7 83.7 84.3 58.5 59.7 81.3 59.4 63.1 82.1 70.5
DAPL (TNNLS25) v o x v 69.3 91.2 90.5 83.3 90.1 90.1 83.3 68.9 90.2 82.2 70.4 90.8  83.4
VisTA (Ours) v v 7/ 71.8 928 913 844 929 911 84.7 728 915 8438 72.2 928 853

Table 3: Final Accuracy (%) on Mini-DomainNet. DA, CI, and RF respectively represent domain adaptation, class-incremental,
and rehearsal-free. The ¢ indicates the result is cited from DAPL [7].

Method DA CI RF ‘ Backbone ‘ C-»P C-»R C-»S P-»C P-R P-S R—-C R—P R-S S—»C S—P S—HR Avg
ViT-B (ICLR21) - - - 50.2 61.9 43.8 50.8 76.8 51.6 58.9 60.0 449 60.8 48.6 66.4 56.2
ProCA (ECCV22) v /X ViT 50.7 73.3 51.0 56.2 83.0 37.0 56.8 55.2 39.7 57.7 44.3 70.8 563
PLDCA (TIP24) v /X 56.2 71.5 51.9 61.5 78.6 52.5 60.5 66.2 429 62.1 588 719 612
CLIP® (ICML21) - - - 80.3 90.5 77.8 82.7 90.5 77.8 82.7 80.3 77.8 82.7 80.3 905 8238
CoOp (IJCV22) - - - 78.5 88.5 77.8 82.5 88.8 73.3 83.0 77.8 79.2 82.8 76.5 86.2 812
AttriCLIP (CVPR23) X v 7/ 73.8 74.7 76.7 81.8 84.0 78.2 83.0 70.5 73.3 83.8 78.0 782 78.0
AD-CLIP (ICCVW23) v X v CLIP 77.5 89.5 75.7 85.7 90.8 77.5 83.8 78.7 79.8 85.2 79.5 89.8  82.8
DAMP (CVPR24) v X v/ 77.8 85.0 76.5 82.7 87.3 79.2 79.7 74.0 78.5 84.3 747 823 80.2
PGA (NeurIPS24) v X v 80.9 90.2 80.3 80.7 89.3 76.2 65.8 75.6 76.0 84.4 81.8 89.6  80.9
DAPL (TNNLS25) 2 G4 81.5 90.3 78.3 85.5 91.0 78.0 85.0 81.0 77.3 85.7 80.2  90.8 837
VisTA (Ours) v v/ 84.0 91.5 815 85.7 917 817 850 830 812 86.0 823 912 854

Table 4: Step-level Accuracy (%) on Office-Home and Mini-DomainNet. DA, CI, and RF respectively represent domain adaptation,

class-incremental, and rehearsal-free.

Method DA CI RF ‘ Office-Home ‘ Mini-DomainNet

‘ Step1 Step2 Step3 Step4 Step5 Step6 Avg. ‘ Step1l Step2 Step3 Step4 Step5 Step6 Avg.
ProCA (ECCV22) v /X 73.2 74.0 72.3 73.3 73.8 74.1 73.5 59.8 55.3 57.8 57.1 55.1 56.3 56.9
PLDCA (TIP24) v /X 70.8 74.4 73.7 74.8 76.1 76.6 74.4 61.0 60.9 63.7 61.4 60.4 61.2 61.4
AttriCLIP (CVPR23) X v 7/ 82.7 84.5 81.8 82.7 83.1 82.3 82.9 74.1 77.9 80.2 79.9 80.0 78.0 78.4
AD-CLIP (ICCVW23) v X v 79.5 83.5 81.8 83.5 83.3 83.8 82.6 81.5 83.2 84.4 83.9 83.6 82.1 83.1
DAMP (CVPR23) 2 S 81.0 83.3 82.1 82.4 82.0 81.9 82.1 82.5 83.5 84.2 83.2 82.3 80.2 82.6
DAPL (TNNLS25) 4 X v 81.6 83.7 81.9 82.9 83.4 83.4 82.8 83.7 85.6 86.3 85.5 84.3 83.7 84.9
VisTA (Ours) v v/ 80.3 84.7 84.2 85.1 85.1 853 84.1 | 835 85.5 87.2 86.6 86.1 854 85.7

Following ProCA [16], we divide each domain of Office-31 into

three disjoint subsets, each containing 10 classes in alphabetical
order, and divide each domain of Office-Home into six disjoint
subsets, each containing 10 classes in an order consistent with
ProCA [16]. Additionally, as the first CI-UDA method to handle
Mini-DomainNet, we divide each domain into six disjoint subsets,
each containing 20 classes in alphabetical order. More details of
datasets construction are in Appendix! A.
Baseline Methods. We compare VisTA with five types of methods:
(1) source-only: ViT-B/16 and CoOp [49]; (2) zero-shot: CLIP; (3)
existing CI-UDA methods: ProCA [16] and PLDCA [37]; (4) prompt
learning method for CIL: AttriCLIP [27]; (5) prompt learning meth-
ods for UDA: AD-CLIP [27], DAMP [4], PGA [21], and DAPL [7].

LAll the appendices can be found at https://github.com/RyunMi/VisTA.

Implementation Details. We use ViT-B/16 [3] as the image en-
coder for VisTA and all baseline methods. Details on the hyperpa-
rameters of VisTA, as well as the training procedures for VisTA and
several baseline methods, are provided in Appendix B. We analyze
the sensitivity of our method to hyperparameters in Section 5.3.
Evaluation Metrics. To comprehensively evaluate the perfor-
mance of VisTA, we employ three metrics for CI-UDA:

1) Final Accuracy: the classification accuracy across all classes at
the final time step for each adaptation task;

2) Step-level Accuracy: the average classification accuracy over
all adaptation tasks at each time step;

3) §-1 Accuracy: the average classification accuracy of all adapta-
tion tasks at each time step for classes in Step-1.
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Table 5: Ablation analysis on Office-Home.
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Figure 3: S-1 Accuracy at each step and its percentage change
(A%) compared with Step-1 on Office-Home.

5.2 Comparisons with previous state-of-the-arts

The Final Accuracy results are summarized in Tables 1, 2, 3, while
the Step-level Accuracy results are detailed in Table 4. The numbers
reported in the tables are reproduced by us using the officially
released code, unless otherwise specified. Additionally, the results
of S-1 Accuracy are visualized in Figure 3. Due to page limitations,
complete results with extended details for all metrics across three
benchmarks are reported in Appendix C.

Comprehensive learning ability of VisTA. In Tables 1, 2, 3, each
column corresponds to one specific CI-UDA task, i.e.,, Source —
Target. The column “Avg” means the average of Final Accuracy for
all CI-UDA tasks.

The results of Final Accuracy demonstrate that VisTA performs
favorably against other methods. VisTA achieves improvements
of 0.7%, 8.7%, and 24.2% over the leading CI-UDA method PLDCA
on Office-31, Office-Home, and Mini-DomainNet, respectively. It
also outperforms other top competitors, surpassing CoOp by 0.3%
on Office-31, AD-CLIP by 1.5% on Office-Home, and DAPL by 1.7%
on Mini-DomainNet. We find that the performance advantages
of VisTA scale with benchmark complexity (Office-31—Office-
Home—Mini-DomainNet), as quantified by the number of time
steps and underlying classes. It substantiates that the class-agnostic
and domain-invariant attributes learned by VisTA effectively allevi-
ate catastrophic forgetting and domain shift, especially in scenarios
with numerous classes and long-sequence tasks.

The results further indicate that existing CI-UDA methods with
ViT-B/16 underperform against source-only CoOp (on all bench-
marks) and zero-shot CLIP (except on Office-31). This highlights
the exceptional generalization ability of pretrained CLIP, which
encodes comprehensive category knowledge via prompt learning.

Additionally, some UDA methods (i.e, DAMP, PGA) and CIL
method (i.e., AttriCLIP) based on prompt learning obtain worse
results than source-only CoOp across all three benchmarks. This
suggests that an exclusive focus on mitigating either domain shift
or catastrophic forgetting may reduce the generalization capability
of prompt learning methods in handling CI-UDA.

Incremental learning ability of VisTA. The Step-level Accuracy
and S-1 Accuracy are used to evaluate whether a method can retain
knowledge of previous target classes while learning new ones. Each
column in Table 4 represents the average accuracy of all adaptation
tasks at a specific time step, and the column “Avg” denotes the

Method | w/o.VAC  w/o. Leon Wlo. Ly w/o. Ly | VisTA
Final Acc. (%) 84.9 835 85.0 85.1 85.3
Final S-1 Acc. (%) 80.5 80.3 80.9 81.0 81.3

average Step-level Accuracy. The x-axis indicates time steps and
the y-axis shows the S-1 Accuracy in Figure 3(a).

It is observed that all comparison methods are affected by cat-
astrophic forgetting, resulting in lower S-1 Accuracy at the final
step compared with the first step. Some methods also exhibit a
decline in Step-level Accuracy over time, indicating that they not
only forget previously learned target classes but also struggle to
learn new ones. In contrast, VisTA shows an upward trend in both
Step-level Accuracy and S-1 Accuracy over time, achieving the best
performance at both the final step and on average. The results of
both metrics also show that the performance in the early adaptation
phase is not state-of-the-art. We analyze that although VisTA aligns
attributes across domains as much as possible, the learned Al is
not sufficiently refined in the early stage, while A is trained on all
classes. Aligning A° and A’ with unequal learning progress may
harm performance. Only after A’ fully learns the attributes over
time steps can the performance advantages manifest.

Moreover, Figure 3 (b) illustrates the percentage change in S-1
Accuracy at each step compared with the first step. VisTA is the only
method that consistently achieves positive gains and demonstrates
continuous improvement. This indicates that VisTA effectively pre-
serves and progressively reinforces knowledge of class-incremental
D; when addressing CI-UDA on Office-Home.

Extension to source-free scenario. In Appendix D, we com-
pare VisTA with the CI-SFUDA method GROTO [2]. These results
demonstrate the capabilities of VisTA under source-free scenarios.

5.3 Ablation Analysis

Table 5 presents Final Accuracy and S-1 Accuracy at the final step
(i.e., Final S-1 Accuracy) on Office-Home, obtained by removing
specific modules (i.e., “w/0.”) while keeping other settings identical.
More studies about various VLMs and computational overhead are
reported in Appendix E.

Effect of VAC. The “w/o0. VAC” is achieved by removing the VAC
module, with attributes selected directly from the dictionary corre-
sponding to the other domain using cosine similarity. This leads
to a noticeable performance degradation, demonstrating that the
selection enabled by the VAC module effectively mitigates bias
caused by the domain shift.

Effect of L on. The “w/0. Leon” indicates that Ds and Dy share
the same attributes dictionary without Lcon. Notably, the “w/o.
Lcon” leads to the sharpest performance decline, demonstrating that
separate attribute modeling in Ds, D, with alignment effectively
prevents conflicting knowledge acquisition in entangled attributes.
Effect of regularization terms. The “w/o. Ly, and “w/o. Lg;,”
denote the Ly, and Lg;, are removed from the objective (11), re-
spectively. The observed performance decline confirms the effec-
tiveness of both regularization terms in attribute learning.
Sensitivity to loss weights. We need to determine three loss
weights of the objective (11). Empirical observations reveal A3 has
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Figure 4: Hyperparameter sensitivity analysis with respect to Final Accuracy on Office-Home.
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Figure 5: Grad-CAM visualization of C — R task (Mini-
DomainNet) for different classes in D;. Attributes selected
directly from [K, A" are displayed in a ranked order beside
the first-row images. The second and third rows show some
attention heatmaps for A’ and A%, respectively. Heatmaps
with the same semantic concept are grouped in columns, and
their matching is guided by p (highlighted in green).

negligible impact, so we fix it at 1.0 and vary A; and A3. As shown
in Figure 4(a), the performance of VisTA is generally insensitive to
A1, A2 € [5,10, 15, 20, 25], with best performance at A1 = 25, A2 = 20.
Sensitivity to hyperparameters of attribute dictionary. We
consider the following hyperparameters, such as the prompt length
M, the number of attributes in the bank N, and the number of
selected attributes L. To cap training and computational costs, we
fix N = 8 and explore variations in M and L. Figure 4(b) shows
that the performance of VisTA is robust to M. Moreover, when a
sufficient number of attributes are selected (L > 2), VisTA also
exhibits robustness to L.

Visualization of textual attributes. To verify whether the learned
attributes reflect the semantic concept of images, we visualize the
image contents of distinct classes corresponding to different at-
tributes using Grad-CAM [26]. To further demonstrate the attribute
matching process in VAC module, we present examples of target
classes “horse,” “panda,” and “zebra” from Mini-DomainNet.

As shown in Figure 5, the learned A’ exhibit two key proper-
ties: (1) different attributes reflect distinct semantic concepts within
the same image (e.g., A, — “Background,” A} — “Head A} —
“Body”), and (2) the same attribute reflects identical semantic con-
cept across different images. This demonstrates that the learned A’
are class-agnostic and diverse, effectively retaining knowledge to
alleviate catastrophic forgetting. Unlike the learned A’ correspond-
ing to Dy, the A°, affected by the distribution shift, fail to learn

D - Dr s K & Kt Ds - Dy s+ K5 a Kt Ds - Dy » K5 a Kt

(a) Step 1 (b) Step 4 (c) Step 6
Figure 6: t-SNE visualization of C — P task from Office-Home

at different time steps.

attributes identical to A’ and do not exhibit property (2). However,
AS may still be partially similar to A’ in semantic concepts. Build-
ing on this similarity, VAC module selects cross-domain attributes
through a p-guided matching mechanism to learn domain-invariant
attributes that mitigate the distribution shift.

Visualization of visual attributes. To verify whether %* and K*
can adequately cover the attributes of all examples, we conducted
t-SNE visualizations for C — P task from Office-Home at steps 1, 4,
and 6 as shown in Figure 6. It displays CLIP-extracted visual features
from Dy (orange) and D (green), along with % obtained through K-
means++ clustering. We observe that the elements within K* (blue)
and K* (red) consistently remain diverse and distinct. Furthermore,
K* at the final step successfully covers the examples from other
time steps (gray), demonstrating that K effectively captures the
overall attributes of the sample from both domains.

Conclusion

In this paper, we propose to model and align attributes across
domains based on CLIP to deal with the class-incremental unsu-
pervised domain adaptation (CI-UDA), which is a rehearsal-free
approach. Specifically, via CLIP, we extract the class-agnostic prop-
erties, i.e., attributes. Each attribute is represented as a “key-value”
pair where the key corresponds to visual prototype and the value
corresponds to textual prompt. In our method, we learn to construct
two dictionaries, each corresponding to a specific domain. Each dic-
tionary consists of a group of attributes. Then we perform attribute
alignment to make attribute invariant across domains via utilizing
the consistency knowledge including visual attention consistency
and prediction consistency. Experiments on three benchmarks ver-
ify the effectiveness of our proposed method.



Cross-Domain Attribute Alignment with CLIP

Acknowledgments

This research is supported by the National Natural Science Foun-
dation of China (NSFC) under Grants Nos. 62336003, 12371510,
92370114, and 62006119; and the National Key Research and De-
velopment Program of China (International Collaboration Special
Project, No. SQ2023YFE0102775).

References

(1]

&

=

[10]

[11]

[12

=
&

[14]

[15

[16]

[17]

(18]

[19

[20]

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ale§
Leonardis, Gregory Slabaugh, and Tinne Tuytelaars. 2022. A Continual Learning
Survey: Defying Forgetting in Classification Tasks. IEEE Transactions on Pattern
Analysis and Machine Intelligence 44, 7 (2022), 3366-3385.

Peihua Deng, Jichua Zhang, Xichun Sheng, Chenggang Yan, Yaoqi Sun, Ying
Fu, and Liang Li. 2025. Multi-Granularity Class Prototype Topology Distillation
for Class-Incremental Source-Free Unsupervised Domain Adaptation. In JEEE
Conference on Computer Vision and Pattern Recognition. 30566—30576.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021. An Image is
Worth 16x16 Words: Transformers for Image Recognition at Scale. In International
Conference on Learning Representations.

Zhekai Du, Xinyao Li, Fengling Li, Ke Lu, Lei Zhu, and Jingjing Li. 2024. Domain-
Agnostic Mutual Prompting for Unsupervised Domain Adaptation. In IEEE Con-
ference on Computer Vision and Pattern Recognition. 23375-23384.

Yu Feng, Zhen Tian, Yifan Zhu, Zongfu Han, Haoran Luo, Guangwei Zhang,
and Meina Song. 2024. CP-Prompt: Composition-Based Cross-modal Prompting
for Domain-Incremental Continual Learning. In Proceedings of the 32nd ACM
International Conference on Multimedia (MM °24). 2729-2738.

Yaroslav Ganin and Victor Lempitsky. 2015. Unsupervised Domain Adaptation
by Backpropagation. In International Conference on Machine Learning, Vol. 37.
PMLR, Lille, France, 1180-1189.

Chunjiang Ge, Rui Huang, Mixue Xie, Zihang Lai, Shiji Song, Shuang Li, and Gao
Huang. 2025. Domain Adaptation via Prompt Learning. IEEE Transactions on
Neural Networks and Learning Systems 36, 1 (2025), 1160-1170.

Zhuo Huang, Jian Yang, and Chen Gong. 2023. They are Not Completely Useless:
Towards Recycling Transferable Unlabeled Data for Class-Mismatched Semi-
Supervised Learning. IEEE Transactions on Multimedia 25 (2023), 1844-1857.
Taotao Jing, Haifeng Xia, and Zhengming Ding. 2020. Adaptively-Accumulated
Knowledge Transfer for Partial Domain Adaptation. In Proceedings of the 28th
ACM International Conference on Multimedia (MM °20). 1606-1614.

Guoliang Kang, Lu Jiang, Yi Yang, and Alexander G. Hauptmann. 2019. Con-
trastive Adaptation Network for Unsupervised Domain Adaptation. In IEEE
Conference on Computer Vision and Pattern Recognition. 4893-4902.

Muhammad Uzair Khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan,
and Fahad Shahbaz Khan. 2023. MaPLe: Multi-Modal Prompt Learning. In IEEE
Conference on Computer Vision and Pattern Recognition. 19113-19122.
Zhengfeng Lai, Noranart Vesdapunt, Ning Zhou, Jun Wu, Cong Phuoc Huynh,
Xuelu Li, Kah Kuen Fu, and Chen-Nee Chuah. 2023. PADCLIP: Pseudo-labeling
with Adaptive Debiasing in CLIP for Unsupervised Domain Adaptation. In IEEE
International Conference on Computer Vision. 16155-16165.

Jingzheng Li and Hailong Sun. 2023. LiFT: Transfer Learning in Vision-Language
Models for Downstream Adaptation and Generalization. In Proceedings of the
31st ACM International Conference on Multimedia (MM ’23). 4678-4687.

Shuang Li, Chi Harold Liu, Binhui Xie, Limin Su, Zhengming Ding, and Gao
Huang. 2019. Joint Adversarial Domain Adaptation. In Proceedings of the 27th
ACM International Conference on Multimedia (MM ’19). 729-737.

Xinyao Li, Yuke Li, Zhekai Du, Fengling Li, Ke Lu, and Jingjing Li. 2024. Split to
Merge: Unifying Separated Modalities for Unsupervised Domain Adaptation. In
IEEE Conference on Computer Vision and Pattern Recognition. 23364-23374.
Hongbin Lin, Yifan Zhang, Zhen Qiu, Shuaicheng Niu, Chuang Gan, Yanxia
Liu, and Mingkui Tan. 2022. Prototype-Guided Continual Adaptation for Class-
Incremental Unsupervised Domain Adaptation. In European Conference on Com-
puter Vision. Springer Nature Switzerland, Cham, 351-368.

Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. 2018.
Conditional Adversarial Domain Adaptation. In Advances in Neural Information
Processing Systems, Vol. 31. Curran Associates, Inc.

Marc Masana, Xialei Liu, Barttomiej Twardowski, Mikel Menta, Andrew D. Bag-
danov, and Joost van de Weijer. 2023. Class-Incremental Learning: Survey and
Performance Evaluation on Image Classification. IEEE Transactions on Pattern
Analysis and Machine Intelligence 45, 5 (2023), 5513-5533.

Michael McCloskey and Neal J Cohen. 1989. Catastrophic interference in con-
nectionist networks: The sequential learning problem. In Psychology of learning
and motivation. Vol. 24. Academic Press, 109-165.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang.
2019. Moment Matching for Multi-Source Domain Adaptation. In IEEE Interna-
tional Conference on Computer Vision. 1406-1415.

[21

[22

(23]

S
=}

[25

[26

[27

&
2

[29

[30

[31

[32

[33

[34

[35

[36

[38

[39

[40

(41

"~
&

[43

MM 25, October 27-31, 2025, Dublin, Ireland.

Hoang Phan, Lam Tran, Quyen Tran, and Trung Le. 2024. Enhancing Domain
Adaptation through Prompt Gradient Alignment. In Advances in Neural Informa-
tion Processing Systems, Vol. 37. 45518-45551.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual Models
From Natural Language Supervision. In International Conference on Machine
Learning. PMLR, 8748-8763.

Chuan-Xian Ren, Pengfei Ge, Peiyi Yang, and Shuicheng Yan. 2021. Learning Tar-
get Domain Specific Classifier for Partial Domain Adaptation. IEEE Transactions
on Neural Networks and Learning Systems 32, 5 (2021), 1989-2001.

Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. 2010. Adapting Visual
Category Models to New Domains. In European Conference on Computer Vision.
Springer Berlin Heidelberg, Berlin, Heidelberg, 213-226.

Kuniaki Saito, Donghyun Kim, Stan Sclaroff, Trevor Darrell, and Kate Saenko.
2019. Semi-Supervised Domain Adaptation via Minimax Entropy. In IEEE Inter-
national Conference on Computer Vision. 8050-8058.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. 2017. Grad-CAM: Visual Explanations from
Deep Networks via Gradient-based Localization. In IEEE International Conference
on Computer Vision. 618-626.

Mainak Singha, Harsh Pal, Ankit Jha, and Biplab Banerjee. 2023. AD-CLIP:
Adapting Domains in Prompt Space Using CLIP. In IEEE International Conference
on Computer Vision Workshops. 4355-4364.

Hongbo Sun, Jiahuan Zhou, Xiangteng He, Jinglin Xu, and Yuxin Peng. 2024.
FineFMPL: Fine-grained Feature Mining Prompt Learning for Few-Shot Class
Incremental Learning. In International Joint Conferences on Artificial Intelligence.
1299-1307.

Jialiang Tang, Shuo Chen, Gang Niu, Hongyuan Zhu, Joey Tianyi Zhou, Chen
Gong, and Masashi Sugiyama. 2025. Direct Distillation between Different Do-
mains. In European Conference on Computer Vision. Springer Nature Switzerland,
Cham, 154-172.

Xiaoyu Tao, Xiaopeng Hong, Xinyuan Chang, Songlin Dong, Xing Wei, and
Yihong Gong. 2020. Few-Shot Class-Incremental Learning. In IEEE Conference on
Computer Vision and Pattern Recognition.

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Pan-
chanathan. 2017. Deep Hashing Network for Unsupervised Domain Adaptation.
In IEEE Conference on Computer Vision and Pattern Recognition. 5018-5027.
Jindong Wang, Wenjie Feng, Yigiang Chen, Han Yu, Meiyu Huang, and Philip S.
Yu. 2018. Visual Domain Adaptation with Manifold Embedded Distribution
Alignment. In Proceedings of the 26th ACM International Conference on Multimedia
(MM ’18). 402-410.

Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. 2022. Continual Test-
Time Domain Adaptation. In IEEE Conference on Computer Vision and Pattern
Recognition. 7201-7211.

Rungi Wang, Xiaoyue Duan, Guoliang Kang, Jianzhuang Liu, Shaohui Lin, Song-
cen Xu, Jinhu Lii, and Baochang Zhang. 2023. AttriCLIP: A Non-Incremental
Learner for Incremental Knowledge Learning. In IEEE Conference on Computer
Vision and Pattern Recognition. 3654-3663.

Xuesong Wang, Yuting Ma, and Yuhu Cheng. 2018. Domain Adaptation Network
Based on Autoencoder. Chinese Journal of Electronics 27, 6 (2018), 1258-1264.
Xudong Wang, Zhirong Wu, Long Lian, and Stella X. Yu. 2022. Debiased Learning
From Naturally Imbalanced Pseudo-Labels. In IEEE Conference on Computer Vision
and Pattern Recognition. 14647-14657.

Kun Wei, Xu Yang, Zhe Xu, and Cheng Deng. 2024. Class-Incremental Unsuper-
vised Domain Adaptation via Pseudo-Label Distillation. IEEE Transactions on
Image Processing 33 (2024), 1188-1198.

Yinsong Xu, Zhuqing Jiang, Aidong Men, Yang Liu, and Qingchao Chen. 2022.
Delving into the Continuous Domain Adaptation. In Proceedings of the 30th ACM
International Conference on Multimedia (MM °22). 6039-6049.

Hantao Yao, Rui Zhang, and Changsheng Xu. 2023. Visual-Language Prompt
Tuning with Knowledge-guided Context Optimization. In IEEE Conference on
Computer Vision and Pattern Recognition. 6757-6767.

Jiaping Yu, Muli Yang, Aming Wu, and Cheng Deng. 2025. Memory-Enhanced
Confidence Calibration for Class-Incremental Unsupervised Domain Adaptation.
IEEE Transactions on Multimedia 27 (2025), 610-621.

Zhonggqi Yue, Qianru Sun, and Hanwang Zhang. 2023. Make the U in UDA
Matter: Invariant Consistency Learning for Unsupervised Domain Adaptation.
In Advances in Neural Information Processing Systems, Vol. 36. Curran Associates,
Inc., 26991-27004.

Bo Zhang, Xiaoming Zhang, Yun Liu, Lei Cheng, and Zhoujun Li. 2021. Matching
Distributions between Model and Data: Cross-domain Knowledge Distillation
for Unsupervised Domain Adaptation. In Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics, Online,
5423-5433.

Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu. 2024. Vision-Language
Models for Vision Tasks: A Survey. IEEE Transactions on Pattern Analysis and



MM °25, October 27-31, 2025, Dublin, Ireland.

Machine Intelligence 46, 8 (2024), 5625-5644.

[44] Jinghua Zhang, Li Liu, Olli Silvén, Matti Pietikdinen, and Dewen Hu. 2025. Few-

Shot Class-Incremental Learning for Classification and Object Detection: A Sur-
vey. IEEE Transactions on Pattern Analysis and Machine Intelligence 47, 4 (2025),
2924-2945.

Ruru Zhang, Haihong E, and Meina Song. 2024. FSCIL-EACA: Few-Shot Class-
Incremental Learning Network Based on Embedding Augmentation and Classifier
Adaptation for Image Classification. Chinese Journal of Electronics 33, 1 (2024),
139-152.

Yuchen Zhang, Tianle Liu, Mingsheng Long, and Michael Jordan. 2019. Bridging
Theory and Algorithm for Domain Adaptation. In International Conference on

Kerun Mi et al.

Machine Learning. PMLR, 7404-7413.

Da-Wei Zhou, Qi-Wei Wang, Zhi-Hong Qi, Han-Jia Ye, De-Chuan Zhan, and
Ziwei Liu. 2024. Class-Incremental Learning: A Survey. IEEE Transactions on
Pattern Analysis and Machine Intelligence 46, 12 (2024), 9851-9873.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. 2022. Conditional
Prompt Learning for Vision-Language Models. In IEEE Conference on Computer
Vision and Pattern Recognition. 16816-16825.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. 2022. Learning
to Prompt for Vision-Language Models. International Journal of Computer Vision
130, 9 (2022), 2337-2348.



	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 CI-UDA Problem Formulation
	3.2 Prompt Learning in CLIP

	4 Method
	4.1 Attribute Modeling
	4.2 Cross-Domain Attribute Alignment
	4.3 Training Objective

	5 Experiment
	5.1 Experimental Setup
	5.2 Comparisons with previous state-of-the-arts
	5.3 Ablation Analysis

	Acknowledgments
	References

