
Server-Client Collaborative Distillation for Federated
Reinforcement Learning

WEIMING MAI, Department of CS, Hong Kong Baptist University, Hong Kong SAR, China

JIANGCHAO YAO∗, CMIC, Shanghai Jiao Tong University & Shanghai AI Laboratory, China

CHEN GONG, School of CSE, Nanjing University of Science and Technology, China

YA ZHANG, CMIC, Shanghai Jiao Tong University & Shanghai AI Laboratory, China

YIU-MING CHEUNG, Department of CS, Hong Kong Baptist University, Hong Kong SAR, China

BO HAN∗, Department of CS, Hong Kong Baptist University, Hong Kong SAR, China

Federated Learning (FL) learns a global model in a distributional manner, which does not require local clients

to share private data. Such merit has drawn lots of attention in the interaction scenarios, where Federated

Reinforcement Learning (FRL) emerges as a cross-field research direction focusing on the robust training of

agents. Different from FL, the heterogeneity problem in FRL is more challenging, because the data depends

on the policy of agents and the environment dynamics. FRL learns to interact under the non-stationary

environment feedback, while the typical FL methods aim at handling the constant data heterogeneity. In

this paper, we are among the first attempts to analyze the heterogeneity problem in FRL and propose an

off-policy FRL framework. Specifically, a student-teacher-student model learning and fusion method, termed

as Server-Client Collaborative Distillation (SCCD), is introduced. Unlike the traditional FL, we distill all local

models on the server side for model fusion. To reduce the variance of the training, a local distillation is also

conducted every time the agent receives the global model. Experimentally, we compare SCCD with a range of

straightforward combinations between FL methods and RL. The results demonstrate that SCCD has a superior

performance in four classical continuous control tasks with non-iid environments.

CCS Concepts: • Computing methodologies→ Cooperation and coordination; Reinforcement learning.

Additional Key Words and Phrases: Federated learning, collaborative learning, heterogeneous environment.

ACM Reference Format:
WEIMING MAI, JIANGCHAO YAO, CHEN GONG, YA ZHANG, YIU-MING CHEUNG, and BO HAN. 2023.

Server-Client Collaborative Distillation for Federated Reinforcement Learning. ACM Trans. Knowl. Discov.
Data. 1, 1 (June 2023), 22 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Deep Reinforcement Learning (DRL) has achieved great success in video games and robotic control

recently. However, DRL always requires lots of computation resources to master one specific

∗
Correspondence authors.

Authors’ addresses: WEIMING MAI, Department of CS, Hong Kong Baptist University, Hong Kong SAR, China, w.m.

mai@tudelft.nl; JIANGCHAO YAO, CMIC, Shanghai Jiao Tong University & Shanghai AI Laboratory, Shanghai, China,

Sunarker@sjtu.edu.cn; CHEN GONG, School of CSE, Nanjing University of Science and Technology, Nanjing, China,

chen.gong@njust.edu.cn; YA ZHANG, CMIC, Shanghai Jiao Tong University & Shanghai AI Laboratory, Shanghai, China,

ya_zhang@sjtu.edu.cn; YIU-MING CHEUNG, Department of CS, Hong Kong Baptist University, Hong Kong SAR, China,

ymc@comp.hkbu.edu.hk; BO HAN, Department of CS, Hong Kong Baptist University, Hong Kong SAR, China, bhanml@

comp.hkbu.edu.hk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

1556-4681/2023/6-ART $15.00

https://doi.org/XXXXXXX.XXXXXXX

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article . Publication date: June 2023.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

2 WEIMING MAI, JIANGCHAO YAO, CHEN GONG, YA ZHANG, YIU-MING CHEUNG, and BO HAN

0 25 50 75 100 125 150 175 200

Episodes

0

50

100

150

200

Av
er

ag
e

R
et

ur
n

Identical environment parameters

Local Env 1
Local Env 2
Local Env 3

(a)

30 20 10 0 10 20 30

20

10

0

10

20

30

Distributions of the data

Local Env 1
Local Env 2
Local Env 3

(b)

0 25 50 75 100 125 150 175 200

Episodes

50

0

50

100

150

200

250

300

Av
er

ag
e

R
et

ur
n

Different environment parameters

Local Env 1
Local Env 2
Local Env 3

(c)

30 20 10 0 10 20 30 40
30

20

10

0

10

20

30

Distributions of the data

Local Env 1
Local Env 2
Local Env 3

(d)

Fig. 1. A toy example to illustrate the affection of the environment heterogeneity. (a) shows the performance
of FedAvg in three identical environments. The black dashed line indicates the average reward of the global
model performed in each environment. Figure (b) shows the distribution of the sample data from each agent’s
local replay buffer after processing by t-SNE. The experiment of Figures (c) and (d) was conducted among
three environments with different physical coefficients (e.g. the mass and length of the pole, the mass of
the cart, and gravity). We can see that the learning curve and data distribution of the left column are more
consistent. While there would be a distribution shift of the data in the right column because the policy of
each agent is inconsistent.

task in the simulator, and there exists a huge gap between simulated environments and practical

environments. Specifically, in many real-world scenarios, data privacy and the communication

budget are usually the main concerns, which limit the application domain of DRL. For instance, in

autonomous driving, when we leverage multi-agent techniques to train the vehicle, the agents need

to share the observations with each other, which is usually disallowed due to the intrinsic privacy

limitation. Fortunately, Federated Learning (FL) techniques offer users the ability to collaboratively

train a machine learning model without frequently sending local models or gradients to a central

server, thus preserving the privacy of their data. This has led to the development of Federated

Reinforcement Learning (FRL). FL has been extensively studied and applied in various domains,

including recommendation systems [45–47] and transportation [48], among others. Furthermore,

the application of FL in DRL for decision-making and industrial robotic control [36] shows great

promise and is an appealing direction to explore.

Recently, numerous techniques have been proposed in FL to speed up distributed training and

tackle the issue of data heterogeneity. For example, Federated Averaging (FedAvg) [5] intends to

increase the number of local updates to reduce the computational cost. However, it usually achieves

poor performance when the local data distribution is heterogeneous. [14, 18] have explored the

possibility of using reinforcement learning (RL) to optimize FL frameworks and facilitate edge

computing. Meanwhile, others have proposed the addition of regularization to the objective function.

For example, FedProx [23] deals with this issue with a 𝑙2-norm regularizer, which minimizes the

distance between the local and the global models in the local updates. However, FedProx has a lower

convergence rate compared to FedAvg. Another approach is MOON [22] utilizes the similarity

model representations to correct the training on the local database and get a good performance

on image datasets. FedDF [27] and FedMD [21] perform the knowledge distillation to exchange

knowledge between server and client-side through the public dataset and demonstrate the model

distillation is superior to the naive model averaging in terms of highly heterogeneous local data.

Nevertheless, the above methods are not suitable for RL due to two reasons: 1) there is no public

dataset for RL agents to make use of for distillation; 2) their methods both utilize the average logits

that cannot be exploited in the task with continuous action space.

On the other side, placing RL into the FL scenarios raises the intrinsic challenge from the non-

stationary environments. In the conventional simulation of RL, we always assume the training

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article . Publication date: June 2023.

Server-Client Collaborative Distillation for Federated Reinforcement Learning 3

environment of the RL agent is identical to the testing environment, and there exists a unique

state transition function across different environments. However, this assumption is not always

satisfied in real-world FL applications. For example, the local agents in autonomous driving may face

different weather conditions and different agents may have heterogeneous equipment. This kind of

heterogeneity in FRL would be different from the objective heterogeneity in supervised FL. Hence, a

more efficient and robust model fusion scheme is required to handle the non-stationary problem in

FRL. The formal analysis would be illustrated in Section 3. Figure 1 shows the performance of FedAvg

with three clients in identical local environments 𝐶𝑎𝑟𝑡𝑃𝑜𝑙𝑒 and the non-identical ones. Apparently,

the traditional model averaging has a performance degradation in terms of the heterogeneous

environment.

Although several FRL works [7, 28, 43, 49] have considered training the agents federally without

sharing the data, most of them study the data heterogeneity problem caused by the local agent’s

policy and rarely consider the different dynamics (i.e., local environments could have varied

transition functions) of the local environments, which could bring the objective heterogeneity [31]

issue into the training. To address the aforementioned objective

The early explorations in FL cannot always perform well in the reinforcement learning setting.

As long as the value network is trained on the local data, its estimation on different environments

would be unreliable and thus leading to poor performance of the actor network. Naively constraint

the distribution between the local model and global model it’s hard for the RL-based algorithm to

converge in the early stage of training, resulting in a high communication cost issue.

In this paper, we proposed an FRL approach that can be aligned with traditional FL frameworks

and study how to incorporate the FL techniques to deal with the environmental heterogeneity

problem. Specifically, our goal is to train the agents locally with the aid of the server so that the

agents perform well in similar environments but with different dynamics.

Inspired by the work in [30] and [27], we utilize the knowledge distillation for the model fusion,

but unlike FedDF and FedMD, we make use of the representation generated from a Gaussian

distribution for distillation [30] instead of the public dataset.

Besides, we conduct distillation in both the server and client side to reduce the problem of

negative transfer [35] and remain feature extractor on the local side to obtain personalization. The

role of the transmitted model between server and client would switch from both sides in order

to deal with the dynamically changing heterogeneity. Specifically, we find such kind of iterative

model distillation could be more efficient than the traditional model aggregation and hence the

agents could learn better. Our contribution can be summarized as follows:

• We propose a federated learning framework for the off-policy DRL algorithm TD3 [13] named

FedTD3. It is proved that it is equivalent to the centralized TD3 under some specific conditions.

With this framework, the methods in traditional FL methods can be easily transferred to the

FRL setting. Besides, this framework could be easily transferred to the other off-policy or

actor-critic-based RL algorithm.

• We propose a model fusion method called Server-Client Collaborative Distillation. This

method intends to solve the environment heterogeneity by distilling knowledge from the

local critic’s output layer so that it could have a lower communication workload while

learning more local information. Besides, the critic network in each environment would have

a specific feature extractor to better identify the distribution of the local data.

• We generate the non-identical environments for the local agents and explore how the policies

of the local agents and the varied transition functions affect the federated training. The results

show that SCCD could perform well even in some highly heterogeneous environments.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article . Publication date: June 2023.

4 WEIMING MAI, JIANGCHAO YAO, CHEN GONG, YA ZHANG, YIU-MING CHEUNG, and BO HAN

MTRL

FLFRLMARL

Fig. 2. The relationship between FL, FRL, MARL, and MTRL. Our work locates in their interaction zone.

2 RELATEDWORK
2.1 Reinforcement Learning
Reinforcement learning is one of the basic machine learning paradigms. Generally, RL could be

divided into off-policy reinforcement learning and on-policy reinforcement learning. The main-

stream off-policy RL is developed based on the representative algorithm DQN [32], which was

proposed in 2015 and achieved the human player level in the Arcade Learning Environment. After

that, DDPG [26] and Twined Delayed DDPG [12] have been proposed to tackle the continuous

control problem. The on-policy RL aims to update the agent’s policy based on the real-time data

collected from the environment and maximize its accumulated reward. REINFORCE [41] is a kind

of on-policy RL based on the policy gradient methods. With this foundation, Konda et al. [19]

proposed the famous Actor-Critic RL framework, which utilizes the neural network to estimate the

value function. In this work, we mainly focus on the off-policy RL and choose TD3 as our FRL base

algorithm because of its higher sampling efficiency.

2.2 Federated Learning
FL is a learning framework that requires multiple devices to perform training and simultaneously

protects the privacy of the device. FedAvg [5] has been a practical federated learning approach.

In FedAvg, the server sends the global model to the clients and then performs stochastic gradient

descent to update the local models. After that, the local models are sent back to the server for

aggregation. However, FedAvg is prone to falling into the local optima as the local optimums are far

away from each other. FedProx [23] tries to deal with this issue by introducing a 𝑙2 norm regularizer

which limits the difference between the local model and the global model in the local updates.

Karimireddy et al. [17] proposed Scaffold reduces the variance caused by the local updates and has

a higher convergence rate than the former methods. MOON [22] utilizes the model representations

to correct the training on the local database and achieve a good performance on image datasets. Luo

et al. [30] proposed a post-calibration strategy CCVR to improve the classification performance by

virtual representations. Other than performing the model aggregation, Lin et al. [27] presented the

ensemble distillation (FedDF) to distill the knowledge from local models and increase the flexibility

of the model’s structure.

2.3 Knowledge Transfer MARL
Multi-Agent Reinforcement Learning (MARL) aims to organize multiple agents within a partially

observable environment and to optimize the total reward. The parameters of each agent should be

reserved and the goal of the agents maintains the same. Note that, we especially distinguish MARL

from Multi-Task Reinforcement Learning (MTRL), which could be either multi-agent or single

agent tries to learn a unique policy that could be adapted to different tasks. There have been some

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article . Publication date: June 2023.

Server-Client Collaborative Distillation for Federated Reinforcement Learning 5

Table 1. A summary of related works in FL and FRL.We compare our work with the others from the perspective
of category, learning type, transmission, and whether consider the local personalization and non-stationary
environment with different dynamics. The first subtable contains classic FL methods while the second subtable
lists recent works of FRL. V and H denote the approach categorized as vertical FRL or horizontal FRL.

Methods Category Learning Type Transmission Personalization Non-stationary Environment

FedAvg[5] H \ full network × \

FedProx[23] H \ full network × \

FedMD[21] H \ average logits × \

FedDF[27] H \ average logits × \

Dec-POMDP[34] V off-policy original experience × ×

FCRL[49] V off-policy model outputs / full network × ×

LFRL[28] H off-policy score matrix / full network × ✓

FTRL[25] H off-policy scaled experience / full network × ✓

MT-FedRL[2] H on-policy full network ✓ ×

FRD[7] H off/on-policy proxy experience × ×

FEMRL[43] H on-policy fictitious experience / full network × ×

SCCD (ours) H off-policy statistic of representation / partial network ✓ ✓

works that leverage knowledge distillation to transfer the knowledge between agents to accelerate

the learning procedure of the agents. In [20], the authors introduced a student-student framework

in which two agents explore in the same environment and share the knowledge with each other by

policy distillation[37]. Another objective is to tackle the non-stationary environment, in which the

environment dynamics are changing over time [1, 8, 29]. However, the works mentioned above

don’t consider protecting private data but just directly shares the observation of each agent. The

following section would introduce the works that incorporate privacy protection into these two

learning paradigms and relate them to federated reinforcement learning.

2.4 Federated Reinforcement Learning
In this section we will introduce Federated Reinforcement Learning (FRL) techniques that allow

agents to learn collectively without sharing their collected data, ensuring privacy. In [36], FRL

techniques are categorized as Horizontal Federated Reinforcement Learning (HFRL) and Vertical

Federated Reinforcement Learning (VFRL) to maintain consistency with FL. In HFRL, the local

environments of the agents are independent, which means that the behavior of the agent would not

affect the other agents [4, 7, 33, 43]. Under this setting, Sherine et al. [4, 33] proposed to combine FL

with RL from the perspective of game personalizing. The authors defined the personalized metric

as the interaction between the human player and the agent, that is, the different players could have

different skill levels. To protect the players’ privacy and make a better gaming experience, they

built up global models for each player group. Fan et al. [10] proposed the FedPG-BR framework by

sending the local gradients to the server and introduced a filtering method to tackle the Byzantine

General Problem. In [43], the authors have presented a model-based FRL framework based on

TRPO [38] to learn the environment model (i.e. the transition function) in a decentralized manner.

In their framework, each agent is trained according to the environment model from the server.

Recently, Jin et al. [16] proposed two algorithms, QAvg and PAvg, which are federated extensions

of Q-Learning and policy gradient, respectively. They exhaustively analyzed the convergence of

these algorithms.

In VFRL, the agents explore in the same environment but the observation space is limited, they

need to work with each other to complete the task. MARL would be more consistent with this

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article . Publication date: June 2023.

6 WEIMING MAI, JIANGCHAO YAO, CHEN GONG, YA ZHANG, YIU-MING CHEUNG, and BO HAN

setting. Most other works [34, 40, 42] are related to this field. However, they intend to improve the

collaboration of each agent and did not consider privacy protection. In the work of Zhou et al.[49],

they proposed an FRL framework integrated with DQN and exploit the Gaussian differentials to

encrypt the outputs of the value network. Since there is a central Q network to distill the knowledge

of local models and the observation space of agents is limited, it can be considered as the classic

VFRL.

In addition to the HFRL and VFRL taxonomies, some research in FRL overlaps with transfer

learning, multi-task reinforcement learning, and meta reinforcement learning. For example, Liang

et al.[25] present an online federated RL process that transfers both the local model and scaled local

data to the server, tailored for car steering control. Anwar et al. [2] analyze adversarial attacks

in multi-task RL where local environments have different action and observation spaces. Liu et

al. [28] concurrently train agents to obtain a universe meta-model and enhance lifelong learning

adaptability. FEMRL [43] aims to learn environment dynamic models federally and construct a

federated model-based RL framework, but the real-world domain’s dynamic model can be highly

complicated and difficult to learn. Table 1 summarizes and compares these FL and FRL research

works. Note that metric personalization considers whether the client model preserves partial

original model information rather than being directly updated from the server model. Figure 2

depicts the relationship between different areas.

In our work, we adopted the off-policy model-free FRL framework and tries to train the Q

network [32] from the previous experiences stored in the replay buffer which can be less affected

by the data heterogeneity caused by the policies of different agents. Roughly speaking, the methods

proposed in this paper can be categorized as the HFRL, but different from the work mentioned above.

We introduce a slight perturbation to the local environment to accord with the non-stationary

real-world environments. In our setting, the distribution of the data collected by the agent would

be influenced by two factors: the agent’s policy and the transition function. The details would be

discussed in the following sections.

3 PRELIMINARY
3.1 Federated Learning
FL aims to train a global model without sharing the data of local devices. The major challenges

are the data heterogeneity and the communication cost between servers and clients. Formally, the

objective function of FL is defined as

L = min

𝑤
𝐹 (𝑤) ≜

𝐾∑︁
𝑘=1

𝑝𝑘𝐹𝑘 (𝑤), (1)

where 𝐹𝑘 is the loss function over the local data in the 𝑘-th client, 𝐾 is the client number. 𝑝𝑘 =

𝑛𝑘/
∑𝐾
𝑘=1

𝑛𝑘 , where 𝑛𝑘 is the sample batch size of client 𝑘 . By increasing the local update iterations,

FedAvg improves communication efficiency and simultaneously encourages convergence. Fed-

Prox [23] introduces a normalization for the loss function to calibrate the local training. In [44],

Wang et al. proposed FedNova to normalize local model updates when averaging. Li et al. [22]

proposed MOON which combines model-contrastive learning with the training procedure and

outperforms the aforementioned FL algorithms.

3.2 Policy Distillation
Policy distillation is proposed to solve the knowledge transfer and model compression problems in

reinforcement learning. It is also used in multi-task learning where expert policies can be combined

into a single multi-task policy. Following the convention [37],DT = {𝑠𝑖 }N𝑖=0
is the set of observations

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article . Publication date: June 2023.

Server-Client Collaborative Distillation for Federated Reinforcement Learning 7

generated by the teacher model, where N is the number of the samples, the objective function can

be defined as

J = E𝑠∼DT [𝐷 (𝑄𝑤 (·|𝑠), 𝑄𝑤̃ (·|𝑠))], (2)

where𝐷 (·|·) is a proper distance measure of the output between the student Q-network𝑄𝑤 (·|𝑠) and
the teacher Q-network𝑄𝑤̃ (·|𝑠), which can be themean square error, KL divergence, or log-likelihood.

In [20], the authors introduced a dual policy distillation framework for two independent agents

explored in the same environment. The agents can perceive different aspects of the environment

such that they can complement each other by sharing knowledge, which reveals the possibility of

the knowledge transfer among multiple agents and acceleration of the learning process by policy

distillation.

3.3 Non-IID Environments
The environments vary under different spatial and temporal characteristics. Therefore, the data

collected in each environment is from a different distribution. Suppose 𝑥 = (𝑠𝑡 , 𝑎, 𝑟𝑡 , 𝑠𝑡+1) is the
collected state action tuple, where 𝑟𝑡 is the instant reward and 𝑠𝑡+1 is the next state. Formally we

have

𝑃 (𝑥) = 𝑃 (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)
= 𝑃 (𝑠𝑡) 𝑃𝜙 (𝑎𝑡 |𝑠𝑡)︸ ︷︷ ︸

agent policy

𝑃𝜃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡)︸ ︷︷ ︸
environment dynamic

. (3)

From this equation, we can see the data collected from exploration is mainly affected by two factors,

namely, the environment dynamic and the current policy of the agent. The local agents continuously

learn from the replay buffer which contains the heterogeneous data collected by different policies,

and thus the effect of the second term in Equation (3) can be minimized by off-policy RL. Hence,

we mainly focus on how to handle the heterogeneous environment dynamic in FRL.

4 FEDERATED OFF-POLICY REINFORCEMENT LEARNING
4.1 Problem Statement
Similar to FL, the objective of FRL is to find the optimal value estimation function 𝑄𝑤∗ (𝑠𝑡 , 𝑎𝑡)
over the state action pairs that draw from the local replay buffer of the agents. The local function

𝑄𝑤∗ (𝑠𝑡 , 𝑎𝑡) could be defined by the optimal Bellman equation:

𝑄𝑤∗ (𝑠𝑡 , 𝑎𝑡) ≜ E𝑆𝑡+1∼𝑝 (· |𝑠𝑡 ,𝑎𝑡) [𝑟𝑡 + 𝛾 max

𝑎∈𝐴
𝑄𝑤∗ (𝑆𝑡+1, 𝑎) |𝑆𝑡 = 𝑠𝑡 , 𝐴𝑡 = 𝑎𝑡], (4)

where 𝑟𝑡 is the instant reward the agent received after taking action 𝑎𝑡 at the current state 𝑠𝑡 .

Random variable 𝑆𝑡+1 drawn from the state transition probability distribution function 𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡).
The local objective function 𝐹𝑘 (𝑤) in (1) is formulated as follows:

𝐹𝑘 (𝑤) =
1

𝑛𝑘

∑︁
𝑗

𝑙 (𝑤 ;𝑥𝑘 𝑗),

𝑙 (𝑤 ;𝑥𝑘 𝑗) =
(
𝑄𝑤 (𝑠𝑘 𝑗𝑡 , 𝑎

𝑘 𝑗
𝑡) − (𝑟

𝑘 𝑗
𝑡 + 𝛾 max

𝑎
𝑄𝑤 (𝑠𝑘 𝑗𝑡+1, 𝑎))

)
2

.

Where the superscript 𝑘 𝑗 denotes the 𝑗th sample collected from the 𝑘th agent. Supposing the

amount of the exploration data 𝑛𝑘 of each agent is all the same, the term 𝑝𝑘 = 1

𝐾
can be eliminated.

Therefore, the final objective in (1) can be rewritten as

L = E(𝑠𝑡 ,𝑠𝑡+1)∼𝐷+ [𝑄𝑤 (𝑠𝑡 , 𝑎𝑡) − (𝑟𝑡 + 𝛾 max

𝑎
𝑄𝑤 (𝑠𝑡+1, 𝑎))]2, (5)

where 𝐷+ = 𝐷1 ∪ · · · ∪ 𝐷𝐾 , the union of all local agent data.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article . Publication date: June 2023.

8 WEIMING MAI, JIANGCHAO YAO, CHEN GONG, YA ZHANG, YIU-MING CHEUNG, and BO HAN

ALGORITHM 1: FedTD3 (server-side)
Input: number of clients 𝐾 , total communication round 𝑅

Output: Global value model 𝑄𝑤̄ and policy 𝜋 ¯𝜙

1 Server Update:
2 Initialize Q-network parameters𝑤0

, actor network parameters 𝜙0

3 for r=1:R do
4 for i=1:K do
5 send global model𝑤0, 𝜙0 to agent 𝐴𝑖

6 𝑤𝑡
𝑖
, 𝜙𝑡
𝑖
← ClientUpdate(𝑤𝑡 , 𝜙𝑡)

7 end
8 𝑤̄𝑡+1, ¯𝜙𝑡+1 = aggregate(𝑤𝑡

𝑖
, 𝜙𝑡
𝑖
), 𝑖 = 1, . . . , 𝐾

9 end

4.2 Federated Twin Delayed DDPG
In this section, we provide an instance FedTD3, a federated learning counterpart of TD3 which

has been a state-of-the-art off-policy RL algorithm [12] by integrating the actor-critic diagram

in the traditional DQN. TD3 is the benchmark off-policy RL algorithm to solve the continuous

control task and compare to traditional DDPG, it is more stable and overcomes the value function

overestimation issue.

In the framework of FedTD3, there is an individual state transition probability function 𝑃𝜃𝑘 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡)
for each of the local environments. Besides, there are two types of communication in FedTD3, the
transmission of the policy net and that of the Q-value net, between the server and the local agents.

To maintain consistency with the single-agent TD3 framework, we have three processes to update

the models: Firstly, the Q-value net does the local updates 𝑁 times based on the current policy that

is synchronized from the server and then sends it back to the server and waits for aggregation.

Every 𝑀 times updates of the Q-value network, conduct the delayed policy updates. Once the

number of policy updates is achieved 𝐿, send the policy model to the server for aggregation. Both

the target Q-value network and the target policy network are updated based on the model received

from the server. Given the total exploration step 𝑇 in each local update, the communication rounds

are calculated by 𝑅 = 𝑇 /𝑁 + 𝑇 /(𝑀 × 𝐿). Algorithm 1 and 2 present the detailed procedure of

server update and client update in FedTD3. Each agent waits for the server for the new model after

sending the local one in a synchronous manner. The 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 function in Algorithm 1 adopts the

naive weighted aggregation method for simplicity, and the loss functions could be constrained by

different kinds of regular terms in order to deal with the heterogeneity, namely:

𝐿(𝑤𝑡𝑖) = 𝐿TD (𝑤𝑡𝑖) + 𝛽𝑙reg (𝑤𝑡𝑖 , 𝑤̄𝑡),
𝐽 (𝜙𝑡𝑖) = −E[𝑄𝑤𝑡

𝑖
(𝑠, 𝜋𝜙𝑡

𝑖
(𝑠))] + 𝛽𝑙reg (𝜙𝑡𝑖 , ¯𝜙𝑡).

(6)

The first term 𝐿TD (𝑤𝑡𝑖) is the TD loss function in Equation (5) and 𝑙reg constrains the distance

between the server model and the client models during the local training. In the baseline methods,

the 𝑙2 norm would be adopted in FedProx [23] and the model contrastive loss 𝑙con is adopted in

MOON [22] in the experiments. These terms can improve local training in a slightly heterogeneous

environment, however, as the heterogeneity increase, the performance of these methods cannot be

guaranteed. Moreover, empirically they are prone to slowing down the convergence rate in the RL

setting. The results of the baselines will be shown in Section 5.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article . Publication date: June 2023.

Server-Client Collaborative Distillation for Federated Reinforcement Learning 9

ALGORITHM 2: FedTD3 (client-side)
Input: number of local exploration 𝑇 , communication frequency of value model 𝑁 , communication

frequency of policy model 𝐿, delayed policy updates frequency𝑀

Output: Local model 𝑄𝑤𝑡
𝑖
and 𝜋𝜙𝑡

𝑖

1 Client Update:
2 Synchronized𝑤𝑡 , 𝜙𝑡 from server

3 Set 𝑐𝑜𝑢𝑛𝑡 = 0

4 for t=1:T do
5 Explore in the local environment to get (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1), save to replay buffer. Sample mini-batch data,

compute gradient 𝑔𝑡
𝑖
with respect to𝑤𝑡

𝑖
, update 𝑄𝑤𝑡

𝑖
.

6 if 𝑡 mod N then
7 send𝑤𝑡

𝑖
to server.

8 𝑤̄𝑡 ← ServerUpdate(𝑤𝑡
𝑖
)

9 end
10 if 𝑡 mod M then
11 𝜙𝑡

𝑖
← DelayedPolicyUpdate

12 𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1

13 if 𝑐𝑜𝑢𝑛𝑡 mod L then
14 agent send 𝜙𝑡

𝑖
to server.

15 ¯𝜙𝑡 ← ServerUpdate(𝜙𝑡
𝑖
)

16 end
17 agent updates target net 𝜙𝑡

𝑖
based on local 𝜙𝑖 .

18 agent updates target net𝑤𝑡
𝑖
based on local𝑤𝑖 .

19 end
20 end

4.3 Server-Side Distillation
Previous work [27] proposed knowledge distillation performed on the server side for the model

fusion. However, they utilized the pre-trained GAN or unlabeled data for distillation, which is

impractical in the RL setting as it requires the agent to interact with the environment to gather the

data. In this section, we introduce our server-side distillation (SSD), which enables the local critic

models to transfer their knowledge to the central student model, thus reducing the degradation

caused by the previous model aggregation. On the other hand, we generate fictitious data from the

statistic of the representations in the local replay buffer, and the global model can directly learn

from these data, which allows the model to learn more information about the local critic and in

the meantime protect the privacy. Figure 3 depicts the procedure of client-side distillation and the

details of the server-side distillation.

Here, since the critic learned from all the environments is more reliable with the guidance

of the critic, the actor can be trained more effectively. Therefore, we only focus on the value

network distillation in this paper. Inspired by the concept in multi-task RL policy distillation [37],

the Q network is constructed by a feature extractor ℎ𝑤 (·) and a predictor 𝑓𝑤 (·). which is both

implemented by the fully connected multi-layer perceptron (MLP). The extractor is to find a better

representation of the input data. For the predictor, we send it to the server for model distillation

and send it back to the agents. The choice of MLPs as function approximators is quite common in

reinforcement learning [12, 39] due to their sample efficiency and ease of training. And also it is

worth noting that for image data, a sophisticated CNN can also be used as the feature extractor.

In order to obtain as much global information as possible, all the agents share the parameters of

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article . Publication date: June 2023.

10 WEIMING MAI, JIANGCHAO YAO, CHEN GONG, YA ZHANG, YIU-MING CHEUNG, and BO HAN

Execute

Predictor Distillation

Loss

Server
DB

Sample Data

copy

RB

Transmit

Statistic

Aggregate

Generate
Distribution

Local
Predictor

Local
Actor

Local
Extractor

Return Representations

Teacher Student

Server

Stay Local

Transmit

Update Model

Store Statistic

Client Distillation

Local
Predictor

Model Update and Explore

Fig. 3. The diagram of SCCD. The global server collects the actor parameters and the predictor parameters to
do the model fusion. The representations of the local data are acquired on the local side, and the statistics
are sent to the server for generating pseudo data. The local predictor would be fused as a single model based
on the data generated by local statistics and sent back to the client. Next step on the client side, the local
value models are updated via distillation from the global predictor.

the predictor of the value network 𝑓𝑤 (·). The server-side distillation would usually conduct a few

epochs, before the distillation we average the model parameters of the predictor to get a good

initial parameter base. During each communication round, the local agent would send either the

policy network or the partial value network to the server for model fusion.

For the data we use for the model distillation, their corresponding distribution from each local

environment follows its own transition function 𝑝𝜃𝑘 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡). After extracting the representation
of the observations, we calculate the statistic of the representation and send it back to the server

for generating the pseudo data. To minimize the effect of the Gaussian distribution assumption, in

each round, the local agents only calculate the statistic of a mini-batch of data, and the data are

randomly sampled from the local replay buffer. Before conducting the model distillation, the server

collects all the local model and do the aggregation. After obtaining the aggregated parameters, the

model would do the distillation based on the parameters, in order to combine the knowledge of

each critic in different environments.

Here, we term the partial value networks of the local agents as the teacher networks and the

value network on the server side as the student network. We adopt the mean-square-error loss

function 𝑙 (𝑤 ;𝑏) to train the server student network. Assume 𝑧𝑖 is the representations of the 𝑖-th

agent’s input 𝑥 , it can be obtained by 𝑧𝑖 = ℎ𝑤𝑖
(𝑥). After getting 𝑧𝑖 , the server utilizes its statistic

to generate data as the input of the teacher network, such that we can get the distillation dataset

D = {(𝑧𝑖 , 𝑞𝑖)}𝐾𝑖=0
, where each sample contains the pseudo representation 𝑧𝑖 and the output Q

value 𝑞𝑖 as the label. The network we use for the critic and actor are both MLP, while the number

of layers of the critic network and actor network is different. One of the advantages of sending

partial parameters of the critic network is to reduce the workload that is transferred to the server.

In the RL setting, an MLP with few layers is sufficient to learn from the state and action pair.

Theoretically, as long as the capacity of the predictor of the critic network is enough to learn from

the representations, there is no need to send the whole Q network to the server [15].

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article . Publication date: June 2023.

Server-Client Collaborative Distillation for Federated Reinforcement Learning 11

4.4 Client-Side Distillation
In FedDF [27], the authors claim that only performing server-side distillation is sufficient to address

the heterogeneity problems. Nevertheless, this cannot be guaranteed in a multi-task learning

framework because of the issue of negative transfer [35]. Therefore, extra fine-tuning on the client

side is necessary for local personalizing. In our method, from the server-side distillation, the global

model can obtain knowledge from each local environment. After that, the server sends back the

model to update the local model. Traditionally, the local model is directly updated from the global

model, however in the early stage of training, the distilled global model is not completely reliable,

and the update might delay the evolution of the critic network. Therefore in our method, two

versions of the predictors would send back to the local clients: an aggregation one and a distillation

one.

The local predictor would be updated based on the aggregated predictor and then distill the

knowledge from the distillation predictor. To stabilize the local training process, the distillation

loss function consists of two parts: the first part is the TD loss of the local replay buffer; the second

part is the distillation loss function between the local Q network and the distilled global predictor:

L(𝑤𝑖 , 𝑤̄) = 𝛼𝐿TD (𝑤𝑖) + (1 − 𝛼)J (𝑤𝑖 , 𝑤̃), (7)

where𝑤𝑖 , 𝑤̄ are the parameters of the local critic network and server critic network. Loss function

J can be referred to Equation (2). Note that the hyper-parameter 𝛼 can be varied in different exper-

iments. Algorithm 3 describes the procedure of SCCD, which is based on the FedTD3 framework in

Algorithms 1 and 2 and only the model fusion and the transmission are changed. Besides, there is

another way to conduct the client-side distillation in Equation (7), which is regarding the second

term as the regularizer. This leads to no extra local update when the client side receives the model

from the server if we choose the second type of distillation.

4.5 Theoretical Analysis
In this Section, we are going to analyze the convergence of our proposed method and compare it

with FedAvg by exploring the upper bound. We begin with two standard assumptions:

Assumption 1. There exists an optimal value function 𝑄𝑤∗ (𝑠, 𝑎) to estimate the value of the
state-action pair from environments with heterogeneous transition dynamic.

Assumption 2. The local TD loss function 𝐹𝑘 and server-side distillation loss L are L-smooth and
𝜇-strongly convex.

We can define the degree of heterogeneity Γ as follows:

Γ =

�����𝐹𝑤∗ −∑︁
𝑘

𝑝𝑘𝐹𝑤∗𝑛

����� . (8)

to describe the Non-IID characteristics of the environments, where 𝐹𝑤∗ is the global minimum of the

TD loss function over all the environments and 𝐹𝑤∗𝑛 is the local minimum of the 𝑛 th environment.

When Γ falls within an acceptable range, i.e., 0 < Γ < 𝜖 , Assumption 1 holds. It is worth noting

that this index is commonly used to describe the Non-IID characteristics of environments [43].

Regarding Assumption 2, we follow the general spirit of [24], and consider both the TD loss and

distillation loss functions as the mean square error, which satisfies the practical hypothesis on the

loss space and is appropriate in designing SCCD. We now need to verify two key aspects:

• If 𝑄𝑤∗ exists, the local Q function 𝑄𝑤𝑛
could finally converges to 𝑄𝑤∗ .

• The global policy 𝜋𝑔𝑙𝑜𝑏 can be improved monotonically.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article . Publication date: June 2023.

12 WEIMING MAI, JIANGCHAO YAO, CHEN GONG, YA ZHANG, YIU-MING CHEUNG, and BO HAN

ALGORITHM 3: SCCD
Input: number of global distillation epochs 𝑁 , local distillation iteration𝑀 , communication round 𝑅,

number of agents 𝐾

Output: parameters of the global actor
¯𝜙 and predictor 𝑤̄

1 Initialize𝑤0
, 𝜙0

2 for r=1:R do
3 for i=1:K do
4 send global model𝑤0, 𝜙0 to agent 𝐴𝑖

5 𝑤𝑡
𝑖
, 𝜙𝑡
𝑖
, 𝜇𝑖 , 𝜎𝑖 ← ClientUpdate(𝑤𝑡 , 𝜙𝑡)

6 end
7 𝑤̄𝑡+1, 𝜙𝑡+1 = aggregate(𝑤𝑡

𝑖
, 𝜙𝑡
𝑖
), 𝑖 = 1, . . . , 𝐾

8 generate data D based on 𝜇𝑖 and 𝜎𝑖

9 𝑤̄𝑡+1 ← SSD(D, 𝑤̄𝑡+1)
10 clients conduct CSD based on 𝑤̄𝑡+1.
11 agents explore the local environments.

12 sending local predictor𝑤𝑖 or actor 𝜙𝑖 to server for model fusion.

13 end
14 SSD:
15 for each epoch from 1 to N do
16 for each batch 𝑏 ∈ D do
17 𝐿(𝑤̄ ;𝑏) = 1

|𝑏 |
∑
𝑧∈𝑏 ∥ 𝑓𝑤̄ (𝑧) − 𝑞𝑖)∥22

18 𝑤̄ ← 𝑤̄ − 𝜂∇𝐿(𝑤̄ ;𝑏)
19 end
20 end
21 CSD:
22 for j = 1:𝑀 do
23 Sample a batch of data 𝑏 from the local replay buffer

24 L(𝑤𝑖 , 𝑤̄ ;𝑏) = 𝛼𝐿TD (𝑤𝑖 ;𝑏) + (1 − 𝛼)J (𝑤𝑖 , 𝑤̃ ;𝑏)
25 𝑤𝑖 ← 𝑤𝑖 − 𝜂∇L(𝑤𝑖 , 𝑤̄ ;𝑏)
26 end

Suppose 𝑤𝑛 is the local parameters and 𝑤∗ is the optimal global parameters. According to the

Bellman Optimality Equation [3], in each round of local update, the local value function should be

closer to the optimal value function, i.e.,

𝑤𝑡+𝐸𝑛 −𝑤∗

 ≤

𝑤𝑡𝑛 −𝑤∗

 . (9)

In our method, both the global predictor and the actor network are the aggregation of the local

models:

𝑓 𝑡 =
1

𝑁

∑︁
𝑛

𝑓 𝑡𝑛 ,

𝜋𝑔𝑙𝑜𝑏 =
1

𝑁

∑︁
𝑛

𝜋𝑡𝑛,

(10)

where 𝑓 𝑡 is the predictor on the server side and 𝜋𝑔𝑙𝑜𝑏 is the estimated global policy based on each

local agent policy 𝜋𝑛 . Following the proof in [24], the convergence of the actor model can be

guaranteed by the following theorem.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article . Publication date: June 2023.

Server-Client Collaborative Distillation for Federated Reinforcement Learning 13

Theorem 4.1. If Assumtion 1 and 2 hold and the learning rate 𝜂 ≤ 1

4𝐿
, we have the following

convergence analysis for FedAvg:

E ∥𝑤̄𝑡+1 −𝑤∗∥2 ≤ (1 − 𝜂𝜇)E ∥𝑤̄𝑡 −𝑤∗∥2 + 𝜂2𝐵. (11)

Based on this theorem in [24], we compare the bound of FedAvg with server-side distillation in

the following. Suppose 𝑤̃𝑡 is the distillation result of 𝑤̄𝑡 . If Assumption 2 holds, the distillation loss

function is strongly convex, and the global minimum of the distillation loss L can be obtained by

the sufficient update of SGD. Thus, 𝑤̃𝑡 can be obtained by 𝑤̃𝑡 = 𝑤̄𝑡 −
∑𝑇
𝑖=1
𝛼𝑖𝑔
(𝑖)
, where 𝑇 is the

total steps for SGD optimization, 𝑔 (𝑖) is the gradient over all the fictitious data at iteration step

𝑖 and 𝛼𝑖 is the learning rate. When 𝑖 = 1, 𝑔 (1) = ∇L(𝑤̄𝑡 ;D𝑡), suppose the learning rate is fixed,

we have ∥∑𝑇
𝑖=1
𝛼𝑔 (𝑖) ∥ ≤ ∑𝑇

𝑖=1
𝛼2∥𝑔 (𝑖) ∥ ≤ 𝛼2𝑇 ∥𝑔 (1) ∥. Then, by applying the Triangle inequality, we

obtain the following upper bound for server-side distillation:

E ∥𝑤̃𝑡 −𝑤∗∥2 = E ∥𝑤̃𝑡 − 𝑤̄𝑡 + 𝑤̄𝑡 −𝑤∗∥2

≤ E ∥𝑤̄𝑡 −𝑤∗∥2 + E ∥𝑤̃𝑡 − 𝑤̄𝑡 ∥2

≤ E ∥𝑤̄𝑡 −𝑤∗∥2 + E

 𝑇∑︁
𝑖=1

𝛼𝑖𝑔
(𝑖)

2

≤ E ∥𝑤̄𝑡 −𝑤∗∥2︸ ︷︷ ︸
B

+𝛼2𝑇E ∥∇L(𝑤̄𝑡 ;D𝑡)∥2

(12)

Remark. The inequality above introduces B as the bound of FedAvg, the details can be found in

the lemma 1 of [24]. The second term in the inequality is influenced by the distillation training steps

𝑇 and the gradient of 𝑤̄𝑡 . This suggests that the upper bound of our algorithm would be affected by

the shape of the distillation loss function and the distribution of the fictitious data. Ideally, as the

value function of the agent progresses, the norm of the gradient in the second term could gradually

decrease. This implies that with sufficient optimization to approach the optimum𝑤∗ on the server

side, our method with server-side distillation can converge and be bounded similarly to FedAvg.

5 EXPERIMENTS
In this section, we first introduce the heterogeneous environments used in our federated rein-

forcement learning experiments and then compare the FRL methods that incorporate different FL

methods to overcome the heterogeneity under the FedTD3 framework
1
. Finally, we analyze the

results and discuss the advantages and disadvantages of the current methods.

5.1 Experimental Setup
5.1.1 Dataset and Model Structure. In our experiments, we build a four-layer MLP with 256 hidden

neurons and ReLU activation to represent the value network and the policy network respectively.

During the training, the Adam optimizer is applied. The smoothing factor 𝜏 involved in the target

network update is set at 0.01, noise clipping threshold is 0.5. Four environments developed by

Open-AI are used in the experiments. The first two environments are the classic control task

𝐶𝑎𝑟𝑡𝑃𝑜𝑙𝑒 and 𝑃𝑒𝑛𝑑𝑢𝑙𝑢𝑚 and the other two are 𝐵𝑖𝑝𝑒𝑑𝑎𝑙𝑊𝑎𝑙𝑘𝑒𝑟𝐻𝑎𝑟𝑑𝑐𝑜𝑟𝑒 and 𝐿𝑢𝑛𝑎𝑟𝐿𝑎𝑛𝑑𝑒𝑟 [6]. In

all experiments, we explore 𝐾 = 5 agents for all algorithms. To fairly compare each method, the

hyper-parameters e.g. the capacity of the replay buffer, and the distillation learning rate are shown

in Table 2. The standard deviation of the noisy action keeps the same in each task. For the parameter

1
The source codes are available at https://github.com/tmlr-group/SCCD

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article . Publication date: June 2023.

14 WEIMING MAI, JIANGCHAO YAO, CHEN GONG, YA ZHANG, YIU-MING CHEUNG, and BO HAN

𝛽 of the regular term and penalty 𝛼 in the client-side distillation loss function, we set them to be

0.01 and 0.1 in each task. The learning rate of the critic and actor is set to be 2e-3 for each task.

5.1.2 Baselines. We compare SCCD with the following baselines, where each method is conducted

based on the FedTD3 framework:

• FedAvg: Naively aggregate the local actor-critic models into a global model. The averaging

weights are calculated based on the local training batch size.

• FedProx: Adding a 𝑙2 norm to the local training objective.

• MOON: Leveraging the concept of contrastive learning [9] in federated learning and propose

a new loss function that considers the global and local model parameters as a pair of samples.

This loss function measures the contrast between the global and local models:

𝑙con = − log

exp(𝑧⊤𝑧glob/𝜏)
exp(𝑧⊤𝑧glob)/𝜏) + exp(𝑧⊤𝑧prev/𝜏)

,

where 𝑧 is the representation before the output layer of the network, 𝑧glob is the representation

of the aggregated global model, 𝑧prev is the last round global model.

• Scaffold: Construct the variance reduction to correct the client shift in the local updates.

• FedDF: Ensemble the local networks as the teacher networks and leverage the synthesis data

to conduct the model distillation.

• MTFRL: Similar to FedAvg, but there are two parameters to control the model averaging

which make it more smooth and more stable.

• FRD: The local experiences are clustered and sent to the server to construct global proxy

states, The agents receive the global proxy states and perform policy distillation.

5.1.3 Environment Heterogeneity. In CartPole, the pendulum starts upright and the goal is to

prevent it from falling over. The agent gets a -1 score punishment once the pole cannot remain

vertical and the angle of the pole is more than 15 degrees. We set the length of each episode as 300,

so the maximum score would be no more than 300. In Pendulum, the pendulum starts in a random

position and the goal is to swing it up so it could stay upright. The episode length is set to be

200, and the closer the score approaches 0 the better. To generate the heterogeneous environment,

we introduce Gaussian noise to the physical coefficient of the environment, namely, the mass of

the cart in CartPole and the length of the pole in Pendulum etc. For the BipedalWalkerHardcore
environment, we aim to study how the data imbalance issue in the FRL setting affects the training.

In this environment, the goal of the robot is to go as far as possible. The reward is given for

moving forward and totaling 300+ points up to the far end. The robot gets punished when it falls to

the ground. The state consists of the hull angle speed, the angular velocity, the horizontal speed, the

vertical speed, the position of joints, the joints’ angular speed, and a boolean indicator of whether

the legs contact with the ground and the measurements of 10 lidar range finder. There are three

kinds of obstacles in this environment, normally in the original environment setting, the occurrence

of each kind of obstacle is the same probability. We skew the probability so that the data collected

by each agent would be imbalanced in the local replay buffers. In Lunar Lander, the agent perceives

the coordinate of the landing pad and its own velocity, and the goal is to land on the pad safely.

The initial random force perturbation applies to the rocket and the smoothness of the land is set to

be different. Figure 4 shows some exemplary local environments.

5.1.4 Metrics. In our experiments, we evaluate all algorithms from the perspective of the overall

performance and stability in each local environment. For the classical control environment, we set

the different seeds to generate different environmental parameters and report the average reward

of different seeds. For BipedalWalkerHardcore and Lunar Lander, the local environment parameters

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article . Publication date: June 2023.

Server-Client Collaborative Distillation for Federated Reinforcement Learning 15

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. (a)&(e): Cartpole; (b)&(f): Pendulum; (c)&(g) BipedalWalkerHardcore; (d)&(h): Lunar Lander. For
CartPole and Pendulum, the length of the pole and other physical parameters 𝑒.𝑔. gravity and mass are
different. For BipedalWalkerHardcore, the agent interacts with the environment with three kinds of obstacles,
and the appearance probability is variant across the local environments. For Lunar Lander, the regularity of
the surface of the moon and the height of the landing pad in different environments vary.

Table 2. The setting of the key hyper-parameters of SCCD. Server epochs and client epochs represent the
number of distillation epochs on the server and client side.

distill lr server epochs client epochs replay buffer size

CartPole 1 e-02 10 40 1 e+04

Pendulum 1 e-02 20 20 1 e+04

Walker 1 e-02 20 40 1 e+06

Lunar 1 e-02 40 10 3.2 e+04

are fixed, because empirically the variance of the final result can be very large even if we set it to

be fixed. We run multiple times for each method and report their final average reward.

5.2 Evaluation with Different Heterogeneity
We evaluate the aforementioned baseline methods and SCCD under different environment hetero-

geneity. For the classic control tasks, the standard deviation 𝜎 of the Gaussian noise added to the

environment parameters would be varied, the bigger the 𝜎 the more heterogeneous the environ-

ments. For the BipedalWalkerHardcore environment, in each local environment, the probability of

each obstacle is generated by the Dirichlet distribution. However, it’s not like supervised federated

learning, as the probability is generated within each environment so that the probability of each

obstacle would sum to one. Therefore, the heterogeneity of the environments is evaluated by the

Jensen-Shannon divergence [11] of each environmental probability.

𝐷JS (𝑝 | |𝑞) =
1

2

𝐷KL

(
𝑝 | |𝑝 + 𝑞

2

)
+ 1

2

𝐷KL

(
𝑞 | |𝑝 + 𝑞

2

)
.

In the above equation, 𝑝 and 𝑞 refer to probabilistic vectors of each environment, and we sum

up the paired Jensen-Shannon divergence as the overall heterogeneity of the Bipedal-Walker-

Hardcore problem. Similarly in the classic control problem, the higher value of 𝐷JS means that the

distributions of each environment are more dispersed. The heterogeneity is defined as three levels:

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article . Publication date: June 2023.

16 WEIMING MAI, JIANGCHAO YAO, CHEN GONG, YA ZHANG, YIU-MING CHEUNG, and BO HAN

Table 3. Average reward of different federated learning methods in four environments with heterogeneity
ℎ1 : (𝜎 = 0.05, 𝐷JS = 0), ℎ2 : (𝜎 = 1, 𝐷JS = 2.43), ℎ3 : (𝜎 = 2, 𝐷JS = 4.7).

Datasets FedAvg MOON FedProx Scaffold FedDF MTFRL FRD SCCD (ours)

CartPole

ℎ1 289.15±21.69 295.13±9.73 294.58±10.75 248.85±54.97 135.08±120.19 234.68±43.7 240.13±77.57 294.77±11.9

ℎ2 220.94±46.46 216.57±36.56 243.30±60.57 182.53±53.94 12.58±6.03 196.87±34.19 215.18±67.22 254.31±32.09

ℎ3 233.16±46.67 207.88±43.51 193.35±37.72 231.4±44.17 24.42±13.68 218.19±41.75 115.92±38.56 252.39±10.74

Pendulum

ℎ1 -148.54±5.64 -207.35±110.28 -146.65±4.13 -157.61±5.69 -149.90±5.11 -150.08±0.96 -154.74±21.29 -147.22±4.35

ℎ2 -364.30±90.24 -364.87±49.97 -301.66±97.45 -388.76±41.29 -511.45±161.91 -380.78±135.32 -528.88±68.93 -221.94±76.98

ℎ3 -537.14±121.62 -522.14±183.05 -518.56±218.37 -577.81±339.88 -533.29±169.94 -537.01±134.93 -730.01±260.31 -342.93±114.49

BipedalWalker

ℎ1 263.91±7.34 247.71±15.90 186.24±20.97 232.24±11.44 -10.76±7.19 -72.85±15.08 229.08±25.09 266.44±13.46

ℎ2 247.45±3.12 233.14±266.66 206.13±31.6 181.58±45.7 -57.62±19.13 -70.86±10.06 223.92±10.06 261.90±11.39

ℎ3 232.31±23.32 227.35±18.91 196.17±14.84 130.82±24.71 -34.81±48.50 -86.02±3.23 213.33±12.4 271.33±14.62

Lunar Lander

ℎ1 212.91±16.35 227.19±3.29 227.79±6.72 218.96±16.87 115.23±144.27 131.01±14.19 125.45±51.49 221.72±18.13

ℎ2 196.47±17.18 205.62±17.04 214.18±16.16 152.87±12.63 196.46±13.51 124.81±11.43 140.98±47.16 220.02±0.84

ℎ3 178.59±27.50 202.69±16.30 218.02±2.49 173.83±26.22 184.05±17.31 115.97±6.84 163.21±61.09 219.18±13.97

20 40 60 80 100 120 140
Actor Communication Rounds

50

100

150

200

250

Av
er

ag
e

R
et

ur
n

FedAvg
FedProx
MOON
Scaffold
SCCD

(a) CartPole

20 40 60 80 100
Actor Communication Rounds

1400

1200

1000

800

600

400

200

Av
er

ag
e

R
et

ur
n

FedAvg
FedProx
MOON
Scaffold
SCCD

(b) Pendulumn

0 100 200 300 400 500 600 700
Actor Communication Rounds

100

50

0

50

100

150

200

250

300

Av
er

ag
e

R
et

ur
n

FedAvg
FedProx
MOON
Scaffold
SCCD

(c) BipedalWalker

25 50 75 100 125 150 175 200
Actor Communication Rounds

200

100

0

100

200

Av
er

ag
e

R
et

ur
n

FedAvg
FedProx
MOON
Scaffold
SCCD

(d) Lunar Lander

Fig. 5. The validation curves during training were chosen from different heterogeneity levels. Each point
value is the mean over four learning curves and then smoothed by a sliding window with a fixed window
width. The shadow is the standard deviation of each trial on a particular point.

ℎ1 : (𝜎 = 0.05, 𝐷JS = 0), ℎ2 : (𝜎 = 1, 𝐷JS = 2.43), ℎ3 : (𝜎 = 2, 𝐷JS = 4.7). For the classical control
tasks, we run 4 times with different random seeds, each time the environment parameter would be

different. In the testing period, each agent would be tested in the local environment for 100 episodes,

and the average reward over all the local environments is reported as the final performance.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article . Publication date: June 2023.

Server-Client Collaborative Distillation for Federated Reinforcement Learning 17

100

150

200

250

300

Av
er

ag
e

R
et

ur
n

in
 E

va
lu

at
io

n

FedAvg
MOON

FedProx
SCCD

Scaffold

(a) CartPole

1200

1000

800

600

400

200

0

FedAvg
MOON

FedProx
SCCD

Scaffold

(b) Pendulumn

0

100

200

300

FedAvg
MOON

FedProx
SCCD

Scaffold

(c) BipedalWalker

0

50

100

150

200

250

300

FedAvg
MOON

FedProx
SCCD

Scaffold

(d) Lunar Lander

Fig. 6. The error bar of each dataset in different local environmental parameters. For the classical control
datasets CartPole and Pendulumn, the x-axis represents 4 experiments with a different random seed. For
BipedalWalkerHardcore and Lunar Lander, the x-axis represents 5 local environments. We choose the best
performance of each method among different trials.

Table 3 shows the overall performance of the baselines and SCCD. By comparing FedAvg, FedProx,

and MOON, we can see that both MOON and FedProx cannot always improve the performance

in the former three environments and sometimes even get a lower reward than FedAvg, which

indicates that by adding a regular term to constraint the model is not always suitable in the FRL

setting. However, SCCD utilizes the distillation technique to overcome the heterogeneity issue and

gets the best result in a highly heterogeneous environment. We can also observe that generally, the

average reward of each method decreases with the increasing heterogeneity. SCCD could perform

well in these four heterogeneous environments and it is more robust to high-level heterogeneity

than the other methods. We plot training curves of each baseline method and SCCD in a specific

heterogeneity level in Figure 5. The x-axis represents the actor communication times (1 round as a

unit in CartPole and Pendulum, 3 rounds as a unit in BipedalWalkerHardcore and Lunar Lander).
Compared to the other methods, most of the time SCCD converges faster than the other methods

in the early training stage, which means the server-side distillation can effectively enhance the

evolution of the critic model by distilling knowledge from local models. Besides, the smaller standard

deviation suggests the potential stabilization ability of the client-side distillation.

5.3 Generalization and Personalization
In this section, we analyze the generalization performance across the local environments of each

method. For CartPole and Pendulum, we draw the error bar of the average test score with different

random seeds. For the BipedalWalkerHardcore and Lunar Lander, we choose one of the best test
results of each method and plot the agent’s performance in five local environments. Based on the

results, From Figure 6(a)&(b), we can observe that SCCD is more robust to different environment

parameters (the dashed line of SCCD is straighter than the others). The changing random seed

does not bring a huge influence on SCCD compared to the other methods.

Figure 6(c)&(d) reflects the performance of the agent in the local environments. In Figure 6(c),

the BipedalWalkerHardcore local environment 2 (the second bar) only appears the stump, which is

a much more difficult environment than the other local ones. We can observe that the performance

of SCCD can still exceed the others, which indicates its better generalization and personalization

ability.

To analyze the reliability of each method, we roll out a trajectory in BipedalWalkerHardcore (about
776 state-action pairs within one episode) from a pre-trained policy 𝜋 ′ and plot the Q-value of three
methods in Figure 7(a). We can observe that the baseline methods tend to have a higher Q-value

which means the actor may select overestimated actions that could lead to poor performance.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article . Publication date: June 2023.

18 WEIMING MAI, JIANGCHAO YAO, CHEN GONG, YA ZHANG, YIU-MING CHEUNG, and BO HAN

Table 4. T-test for the difference between the reward of origin policy and updated policy. "Original" represents
the mean reward of the original policy, the same for "Updated". The improvement of the updated policy may
indicate that the Q network learned by the agents is trustworthy and reliable. If the statistic is positive, the
lower the P-value represents the higher confidence for the improvement of the policy.

Methods Original Updated Difference Statistic P-val

FedAvg 261.77 259.92 -1.85 -0.16 0.87

Moon 266.49 275.70 +9.2 0.82 0.41

FedProx 206.91 192.97 -13.93 -0.91 0.36

MTFRL -57.95 -58.48 -0.53 -0.19 0.84

FRD 256.39 244.97 -11.42 -0.84 0.39

SCCD 269.11 281.34 +12.22 0.99 0.32

0 100 200 300 400 500 600 700 800

States

6

8

10

12

14

16

18

20

Q
-V

al
ue

SCCD
FedAvg
MOON

(a)

0 50 100 150 200 250 300

Actions

18.75

18.80

18.85

18.90

18.95

Q
-V

al
ue

Q value of the actions
Trajectory action
Actual action
Average Q value

(b)

Fig. 7. (a) The Q-value of FedAvg, MOON, and SCCD. We can see that FedAvg and MOON would have an
overestimation issue. (b) We sample one state from the replay buffer and concatenate it with 300 continuous
actions sampled from the action space as the input, and plot the output Q value of SCCD.

In Figure 7(b), we sample one state from the replay buffer and plot the Q value of the actions

sample from the action space. The red line shows the Q value of the random actions and the blue

line is the Q value of the action chosen by the agent during training. While the orange line is

the value of the action chosen by the agent during testing. From the result we can see that the

agent would not always choose the action with a high value given a state in the testing period,

this phenomenon appears in all methods. With this, we want to further explore whether there’s

still room to improve the actor by performing one policy optimization step according to the value

network learned by the agents. Specifically, we use the well-trained agent to play one episode game

and collect the trajectory data, later on, the agent’s actor network would be updated based on these

station-action pairs by the policy gradient, which means we enforce the agent to act with a higher

Q value. Theoretically, the agent could enhance its performance as long as the value function is

accurate enough. We run 100 trials of one-step policy updates of each method. Table 4 shows the

results of the single sample T-test for the difference between the reward of the original policy and

the updated policy. We can see the mean reward of the original policy of SCCD and MOON can still

be enhanced, especially SCCD has a large improvement space, while the others decline to different

degrees.

5.4 Ablation Study
In this section, we target to answer the following questions:

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article . Publication date: June 2023.

Server-Client Collaborative Distillation for Federated Reinforcement Learning 19

Table 5. The effect of extra local training. FedAvg+ means more local training iterations than FedAvg.

Dataset Method trial 1 trial 2 trial 3 trial 4 overall

FedAvg+ 174.26 243 294.33 238.46 237.51±49.19
FedAvg 226.67 204.55 170.96 281.58 220.94±46.46CartPole

SCCD 209.62 253.2367 281.8733 272.52 254.31 ± 32.09
FedAvg+ -384.59 -747.28 -625.35 -670.51 -606.933±184.56
FedAvg -379 -621.85 -512.63 -635.08 -537.14±121.63Pendulum

SCCD -239.23 -461.38 -398.42 -272.72 −342.938 ± 114.50
FedAvg+ 229.61 198.14 218.14 247.56 225.50±20.72
FedAvg 240.75 204.90 251.29 205.08 225.51±24.07BipedalWalker

SCCD 260.96 264.94 288.04 272.27 271.55 ± 11.95

0 20 40 60 80 100
Actor Communication Rounds

1800

1600

1400

1200

1000

800

600

400

200

R
ew

ar
d

Pendulum

w/o SCCD
w/ SSD
w/ CSD

(a)

0 20 40 60 80 100 120 140
Actor Communication Rounds

100

0

100

200

300

400

R
ew

ar
d

CartPole

w/o SCCD
w/ SSD
w/ CSD

(b)

0 200 400 600
Actor Communication Rounds

100

0

100

200

300

R
ew

ar
d

BipedalWalkerHardcore

FedAvg
FedAvg+
SCCD

(c)

Fig. 8. (a)&(b) The average score of one of the local environments during the training period in Pendulum
and CartPole. (c) The learning curve of FedAvg, FedAvg+ and SCCD in BipedalWalker.

• Can local agents benefit from server-side distillation?

• Is the superior performance of SCCD caused by the extra local training?

For question 1, we can compare the results of SCCD and FRD. SCCD involves both client-side

distillation (CSD) and server-side distillation (SSD), while FRD only involves CSD. As shown in

Table 3, FRD tends to perform well when the local environments are complementary, such as in the

case of BipedalWalker. However, without a fused Q network on the server side, the aggregated actor

in FRD may not be able to effectively handle diverse local environment dynamics in other datasets.

This limitation of FRD is one reason why SCCD is a more robust choice in certain situations.

Furthermore, we decompose SCCD and compare the performance of its two components individ-

ually with a baseline method that does not involve either CSD or SSD (FedAvg). Figure 8 shows

the learning curve in Pendulum Figure 8(b) and CartPole Figure 8(c), where the blue line denotes

the training curve without SCCD i.e. the FedAvg. We can see that with the assistance of the SSD,

the training could converge faster. From Figure 8(c), the learning curve of the SSD could achieve

the highest score, but it also becomes very unstable and has dropped down lately. The negative

transfer probably causes this during the late stage. The final score it gets is even worse than the

FedAvg. In comparison, with CSD, the agent performance could remain at a relatively high score,

which means the CSD could stabilize the training.

Question 2 can be verified by increasing the local training steps in FedAvg. Each round the client

receives the global predictor from the server and then we can perform an extra TD update as the

same as SCCD. Table 5 shows the testing results in 4 random seeds with the same heterogeneity. In

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article . Publication date: June 2023.

20 WEIMING MAI, JIANGCHAO YAO, CHEN GONG, YA ZHANG, YIU-MING CHEUNG, and BO HAN

CartPole the performance of FedAvg is increased modestly but still can not exceed SCCD. However,

in Pendulum, the extra training would even spoil the correctness of the critic model and lead to

worse performance. Figure 8(d) shows the learning curve of FedAvg+, extra training does not

change the convergence rate and improve FedAvg. Therefore, the benefit is not due to the extra

training steps, but because CSD is more effective than the naive model aggregation.

6 CONCULSION AND FUTUREWORK
In this paper, we have proposed a federated reinforcement learning framework FedTD3, which is

designed on top of the state-of-the-art RL algorithm TD3 to federally train a robust intelligent agent.

On the basis of FedTD3, we have presented a server-client side model update procedure termed

SCCD to overcome the non-stationary heterogeneity issue that occurred in federated reinforcement

learning. By conducting a range of experiments, the results have shown that the proposed method

has superior performance, in terms of generalization ability and communication efficiency, in

comparison with the other federated learning counterparts.

In the future, we will further explore the generalization of SCCD by integrating it into other

off-policy RL frameworks like SAC. On the other hand, it is crucial to explore a more accurate

distribution generation method for the local representations. Additionally, It’s worth noting that

fairness is also an important issue in FRL. While our proposed SCCD approach in FRL does not

directly tackle fairness, it does offer a framework for integrating fairness considerations into the

development of distributed reinforcement learning systems. For example, the SCCD approach can

be extended to incorporate fairness constraints or objectives during the training process, such as

ensuring that the learned policies do not discriminate against certain groups of agents. Another

point is while designing the local reward function, make sure the distribution of rewards is equitable

across all agents. We encourage future research in FRL to consider fairness as an important aspect

of the design and evaluation of distributed RL systems.

7 ACKNOWLEDGEMENTS
WMM and BH were supported by NSFC Young Scientists Fund No. 62006202, Guangdong Basic and

Applied Basic Research Foundation No. 2022A1515011652, RGC Early Career Scheme No. 22200720,

CAAI-Huawei MindSpore Open Fund, and HKBU CSD Departmental Incentive Grant. YMC was

supported in part by the NSFC/Research Grants Council (RGC) Joint Research Scheme under Grant:

N_HKBU214/21, in part by the General Research Fund of RGC under Grants: 12202622 and 12201321,

and in part by Hong Kong Baptist University (HKBU) under Grant: RC-FNRA-IG/18-19/SCI/03.

JCY and YZ were supported by the National Key R&D Program of China (No. 2022ZD0160702, No.

2022ZD0160703), STCSM (No. 22511106101, No. 22511105700, No. 21DZ1100100), 111 plan (No.

BP0719010). CG was supported by NSF of China (No: 61973162), NSF of Jiangsu Province (Nos:

BZ2021013, BK20220080), and the Fundamental Research Funds for the Central Universities (Nos:

30920032202, 30921013114).

REFERENCES
[1] Maruan Al-Shedivat, Trapit Bansal, Yuri Burda, Ilya Sutskever, Igor Mordatch, and Pieter Abbeel. 2017. Continuous

adaptation via meta-learning in nonstationary and competitive environments. arXiv preprint arXiv:1710.03641 (2017).
[2] Aqeel Anwar and Arijit Raychowdhury. 2021. Multi-task federated reinforcement learning with adversaries. arXiv

preprint arXiv:2103.06473 (2021).
[3] Richard Bellman. 1954. The theory of dynamic programming. Bull. Amer. Math. Soc. 60, 6 (1954), 503–515.
[4] Anand Bodas, Bhargav Upadhyay, Chetan Nadiger, and Sherine Abdelhak. 2018. Reinforcement learning for game

personalization on edge devices. 2018 International Conference on Information and Computer Technologies, ICICT 2018
(2018), 119–122. https://doi.org/10.1109/INFOCT.2018.8356853

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article . Publication date: June 2023.

https://doi.org/10.1109/INFOCT.2018.8356853

Server-Client Collaborative Distillation for Federated Reinforcement Learning 21

[5] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas. 2017. Communication-

efficient learning of deep networks from decentralized data. Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics, AISTATS 2017 54 (2017). arXiv:1602.05629

[6] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba.

2016. Openai gym. arXiv preprint arXiv:1606.01540 (2016).
[7] Han Cha, Jihong Park, Hyesung Kim, Mehdi Bennis, and Seong Lyun Kim. 2020. Proxy Experience Replay: Federated

Distillation for Distributed Reinforcement Learning. IEEE Intelligent Systems 35, 4 (2020), 94–101. https://doi.org/10.

1109/MIS.2020.2994942 arXiv:2005.06105

[8] Baiming Chen, Zuxin Liu, Jiacheng Zhu, Mengdi Xu, Wenhao Ding, Liang Li, and Ding Zhao. 2021. Context-aware

safe reinforcement learning for non-stationary environments. In 2021 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 10689–10695.

[9] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A simple framework for contrastive

learning of visual representations. In International conference on machine learning. PMLR, 1597–1607.

[10] Xiaofeng Fan, Yining Ma, Zhongxiang Dai, Wei Jing, Cheston Tan, and Bryan Kian Hsiang Low. 2021. Fault-tolerant

federated reinforcement learning with theoretical guarantee. Advances in Neural Information Processing Systems 34
(2021).

[11] Bent Fuglede and Flemming Topsoe. 2004. Jensen-Shannon divergence and Hilbert space embedding. In International
Symposium onInformation Theory, 2004. ISIT 2004. Proceedings. IEEE, 31.

[12] Scott Fujimoto, Herke Hoof, and David Meger. 2018. Addressing function approximation error in actor-critic methods.

In International Conference on Machine Learning. PMLR, 1587–1596.

[13] Scott Fujimoto, Herke Van Hoof, and David Meger. 2018. Addressing Function Approximation Error in Actor-Critic

Methods. 35th International Conference on Machine Learning, ICML 2018 4 (2018), 2587–2601. arXiv:1802.09477
[14] Ruchi Gupta and Tanweer Alam. 2022. Survey on federated-learning approaches in distributed environment. Wireless

Personal Communications 125, 2 (2022), 1631–1652.
[15] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. 1989. Multilayer feedforward networks are universal approxi-

mators. Neural networks 2, 5 (1989), 359–366.
[16] Hao Jin, Yang Peng, Wenhao Yang, Shusen Wang, and Zhihua Zhang. 2022. Federated reinforcement learning with

environment heterogeneity. In International Conference on Artificial Intelligence and Statistics. PMLR, 18–37.

[17] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and Ananda Theertha Suresh.

2020. Scaffold: Stochastic controlled averaging for federated learning. In International Conference on Machine Learning.
PMLR, 5132–5143.

[18] Young Geun Kim and Carole-Jean Wu. 2021. Autofl: Enabling heterogeneity-aware energy efficient federated learning.

In MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture. 183–198.
[19] Vijay Konda and John Tsitsiklis. 1999. Actor-critic algorithms. Advances in neural information processing systems 12

(1999).

[20] Kwei-Herng Lai, Daochen Zha, Yuening Li, and Xia Hu. 2020. Dual policy distillation. arXiv preprint arXiv:2006.04061
(2020).

[21] Daliang Li and Junpu Wang. 2019. Fedmd: Heterogenous federated learning via model distillation. arXiv preprint
arXiv:1910.03581 (2019).

[22] Qinbin Li, Bingsheng He, and Dawn Song. 2021. Model-contrastive federated learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 10713–10722.

[23] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. 2018. Federated

Optimization in Heterogeneous Networks. (2018). arXiv:1812.06127 http://arxiv.org/abs/1812.06127

[24] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. 2019. On the convergence of fedavg on

non-iid data. arXiv preprint arXiv:1907.02189 (2019).
[25] Xinle Liang, Yang Liu, Tianjian Chen, Ming Liu, and Qiang Yang. 2019. Federated transfer reinforcement learning for

autonomous driving. arXiv preprint arXiv:1910.06001 (2019).
[26] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan

Wierstra. 2015. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).
[27] Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. 2020. Ensemble distillation for robust model fusion in

federated learning. Advances in Neural Information Processing Systems 33 (2020), 2351–2363.
[28] Boyi Liu, Lujia Wang, and Ming Liu. 2019. Lifelong Federated Reinforcement Learning: A Learning Architecture

for Navigation in Cloud Robotic Systems. IEEE International Conference on Intelligent Robots and Systems 4, 4 (2019),
1688–1695. https://doi.org/10.1109/IROS40897.2019.8967908

[29] Fan-Ming Luo, Shengyi Jiang, Yang Yu, Zongzhang Zhang, and Yi-Feng Zhang. 2022. Adapt to Environment Sudden

Changes by Learning a Context Sensitive Policy. (2022).

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article . Publication date: June 2023.

https://arxiv.org/abs/1602.05629
https://doi.org/10.1109/MIS.2020.2994942
https://doi.org/10.1109/MIS.2020.2994942
https://arxiv.org/abs/2005.06105
https://arxiv.org/abs/1802.09477
https://arxiv.org/abs/1812.06127
http://arxiv.org/abs/1812.06127
https://doi.org/10.1109/IROS40897.2019.8967908

22 WEIMING MAI, JIANGCHAO YAO, CHEN GONG, YA ZHANG, YIU-MING CHEUNG, and BO HAN

[30] Mi Luo, Fei Chen, Dapeng Hu, Yifan Zhang, Jian Liang, and Jiashi Feng. 2021. No fear of heterogeneity: Classifier

calibration for federated learning with non-iid data. Advances in Neural Information Processing Systems 34 (2021).
[31] Aritra Mitra, Rayana Jaafar, George J. Pappas, and Hamed Hassani. 2021. Linear Convergence in Federated Learning:

Tackling Client Heterogeneity and Sparse Gradients. NeurIPS (2021). arXiv:2102.07053 http://arxiv.org/abs/2102.07053

[32] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin

Riedmiller. 2013. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).
[33] Chetan Nadiger, Anil Kumar, and Sherine Abdelhak. 2019. Federated reinforcement learning for fast personalization.

Proceedings - IEEE 2nd International Conference on Artificial Intelligence and Knowledge Engineering, AIKE 2019 (2019),
123–127. https://doi.org/10.1109/AIKE.2019.00031

[34] Shayegan Omidshafiei, Jason Pazis, Christopher Amato, Jonathan P. How, and John Vian. 2017. Deep decentralized

multi-task multi-agent reinforcement learning under partial observability. 34th International Conference on Machine
Learning, ICML 2017 6, July (2017), 4108–4122. arXiv:1703.06182

[35] Sinno Jialin Pan and Qiang Yang. 2009. A survey on transfer learning. IEEE Transactions on knowledge and data
engineering 22, 10 (2009), 1345–1359.

[36] Jiaju Qi, Qihao Zhou, Lei Lei, and Kan Zheng. 2021. Federated reinforcement learning: Techniques, applications, and

open challenges. arXiv preprint arXiv:2108.11887 (2021).

[37] Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James Kirkpatrick, Razvan Pascanu,

Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. 2015. Policy distillation. arXiv preprint arXiv:1511.06295
(2015).

[38] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and PhilippMoritz. 2015. Trust region policy optimization.

In International conference on machine learning. PMLR, 1889–1897.

[39] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal policy optimization

algorithms. arXiv preprint arXiv:1707.06347 (2017).

[40] Peter Stone and Manuela Veloso. 2000. Multiagent systems: A survey from a machine learning perspective. Autonomous
Robots 8, 3 (2000), 345–383.

[41] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. 1999. Policy gradient methods for reinforce-

ment learning with function approximation. Advances in neural information processing systems 12 (1999).
[42] Ming Tan. 1993. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceedings of the tenth

international conference on machine learning. 330–337.
[43] Jin Wang, Jia Hu, Jed Mills, and Geyong Min. 2021. Federated Ensemble Model-based Reinforcement Learning. (2021),

1–14. arXiv:2109.05549 http://arxiv.org/abs/2109.05549

[44] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. 2020. Tackling the objective inconsistency

problem in heterogeneous federated optimization. arXiv preprint arXiv:2007.07481 (2020).
[45] Jiangchao Yao, Feng Wang, Xichen Ding, Shaohu Chen, Bo Han, Jingren Zhou, and Hongxia Yang. 2022. Device-Cloud

Collaborative Recommendation via Meta Controller. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. 4353–4362.

[46] Jiangchao Yao, Feng Wang, Kunyang Jia, Bo Han, Jingren Zhou, and Hongxia Yang. 2021. Device-Cloud Collaborative

Learning for Recommendation. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining. 3865–3874.

[47] Jiangchao Yao, Shengyu Zhang, Yang Yao, Feng Wang, Jianxin Ma, Jianwei Zhang, Yunfei Chu, Luo Ji, Kunyang Jia,

Tao Shen, et al. 2022. Edge-cloud polarization and collaboration: A comprehensive survey for ai. IEEE Transactions on
Knowledge and Data Engineering (2022).

[48] Linlin You, Mazen Danaf, Fang Zhao, Jinping Guan, Carlos Lima Azevedo, Bilge Atasoy, and Moshe Ben-Akiva. 2023.

A Federated Platform Enabling a Systematic Collaboration Among Devices, Data and Functions for Smart Mobility.

IEEE Transactions on Intelligent Transportation Systems 24, 4 (2023), 4060–4074.
[49] Hankz Hankui Zhuo, Wenfeng Feng, Yufeng Lin, Qian Xu, and Qiang Yang. 2019. Federated Deep Reinforcement

Learning. (2019). arXiv:1901.08277 http://arxiv.org/abs/1901.08277

Received 1 January 2023; revised 26 March 2023; accepted 8 June 2023

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article . Publication date: June 2023.

https://arxiv.org/abs/2102.07053
http://arxiv.org/abs/2102.07053
https://doi.org/10.1109/AIKE.2019.00031
https://arxiv.org/abs/1703.06182
https://arxiv.org/abs/2109.05549
http://arxiv.org/abs/2109.05549
https://arxiv.org/abs/1901.08277
http://arxiv.org/abs/1901.08277

