
760 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 22, NO. 3, MARCH 2020

Toward Making Unsupervised Graph
Hashing Discriminative

Chao Ma , Chen Gong , Member, IEEE, Xiang Li, Xiaolin Huang , Senior Member, IEEE,
Wei Liu , Member, IEEE, and Jie Yang

Abstract—Recently, hashing has attracted much attention in
visual information retrieval due to its low storage cost and
fast query speed. The goal of hashing is to map original
high-dimensional data into a low-dimensional binary-code space
where the similar data points are assigned similar hash codes
and dissimilar points are far away from each other. Existing
unsupervised hashing methods mainly focus on recovering the
pairwise similarity of the original data in hash space, but do not
take specific measures to make the generated binary codes to
be discriminative. To address this problem, this paper proposes
a novel unsupervised hashing method, named “Discriminative
Unsupervised Graph Hashing” (DUGH), which takes both
similarity and dissimilarity of original data into consideration to
learn discriminative binary codes. In particular, a probabilistic
model is utilized to learn the encoding of original data in low-
dimensional space, which models the original neighbor structure
through both positive and negative edges in the KNN graph
and then maximizes the likelihood of observing these edges. To
efficiently and accurately measure the neighbor structure for large-
scale datasets, we propose an effective KNN graph construction
algorithm based on the random projection tree and neighbor
exploring techniques. The experimental results on one synthetic
dataset and four typical real-world image datasets demonstrate
that the proposed method significantly outperforms the state-of-
the-art unsupervised hashing methods.

Manuscript received June 10, 2018; revised November 23, 2018; accepted
July 22, 2019. Date of publication July 29, 2019; date of current version
February 21, 2020. This work was supported in part by NSFC, China (No:
61602246, 61876107, U1803261, 61603248), in part by Committee of Science
and Technology, Shanghai, China (No. 19510711200) and 973 Plan, China (No.
2015CB856004), in part by 1000-Talent Plan (Young Program), in part by NSF
of Jiangsu Province (No: BK20171430), in part by the Fundamental Research
Funds for the Central Universities (No: 30918011319), in part by the open project
of State Key Laboratory of Integrated Services Networks (Xidian University,
ID: ISN19-03), in part by the Summit of the Six Top Talents Program (No:
DZXX-027), in part by the Innovative and Entrepreneurial Doctor Program of
Jiangsu Province, in part by the Young Elite Scientists Sponsorship Program by
Jiangsu Province, and in part by the Young Elite Scientists Sponsorship Program
by CAST (No: 2018QNRC001). The associate editor coordinating the review of
this manuscript and approving it for publication was Prof. Mohammed Daoudi.
(Corresponding author: Jie Yang; Xiaolin Huang.)

C. Ma and X. Li are with the Institute of Image Processing and Pattern
Recognition, Shanghai Jiao Tong University, Shanghai 200240, China (e-mail:
sjtu_machao@sjtu.edu.cn; xx.lee@sjtu.edu.cn).

C. Gong is with the PCA Lab, the School of Computer Science and Engineer-
ing, Nanjing University of Science and Technology, Nanjing 210094, China
(e-mail: chen.gong@njust.edu.cn).

X. Huang and J. Yang are with the Institute of Image Processing and Pat-
tern Recognition, Institute of Medical Robotics, Shanghai Jiao Tong Univer-
sity, Shanghai 200240, China (e-mail: xiaolinhuang@sjtu.edu.cn; jieyang@sjtu.
edu.cn).

W. Liu is with the Tencent AI Lab, Shenzhen 518172, China (e-mail: wliu@
ee.columbia.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2019.2931808

Index Terms—Unsupervised hashing, graph-based method,
discrimination, probabilistic model.

I. INTRODUCTION

R ECENTLY, with the advance of computer technology and
the development of the World Wide Web, a huge amount

of digital data including texts, images and videos, are gener-
ated, stored, analyzed, and accessed every day. Nearest neighbor
search is one of the critical techniques in many fields of infor-
mation processing and analysis, such as data mining, informa-
tion retrieval, and pattern recognition [1]–[5]. However, greedily
searching the nearest neighbor in a large-scale dataset is infeasi-
ble. Due to this problem, approximate nearest neighbor (ANN)
search has attracted much attention in a variety of areas, and
many researches have been developed to handle the ANN search
tasks. Hashing [1], [4], [6]–[27] is a widely-studied solution to
ANN search, which tries to map original high-dimensional data
into a low-dimensional binary-code space where the neighbor-
ing structure is preserved. Specifically, the Hamming distance
between the binary codes of two data points should be small if
they are similar, and the Hamming distance should be large if
the two points are dissimilar.

Existing hashing methods can be divided into two cat-
egories: data-independent and data-dependent methods. For
data-independent methods, such as Locality-Sensitive Hashing
(LSH) and its variants [1], [28], [29], the hash functions are gen-
erated by using the random projection. Although LSH takes low
computation complexity and is ensured to achieve high collision
probability for similar data points, it requires relatively long hash
codes to achieve high precision in practice, which leads to the
increase of storage space and retrieval time cost.

The other category, data-dependent methods have been de-
veloped rapidly in recent years, as they can effectively in-
dex large-scale data with very compact binary codes. Unlike
data-independent hashing methods that randomly select pro-
jection functions, data-dependent hashing methods attempt to
learn parameters of different projection functions from a training
set. Data-dependent methods can be unsupervised or supervised.
Benefiting from the utilization of label information, supervised
hashing methods have demonstrated to be promising in some
applications [12], [13], [17]. However, it is often the case that
the semantic labels are not available in many real-world applica-
tions, hence only unsupervised hashing can be performed, which
is also the focus of this paper.

1520-9210 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on July 20,2020 at 14:15:18 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6758-1100
https://orcid.org/0000-0002-4092-9856
https://orcid.org/0000-0003-4285-6520
https://orcid.org/0000-0002-3865-8145
https://orcid.org/0000-0003-4801-7162
mailto:sjtu_machao@sjtu.edu.cn
mailto:xx.lee@sjtu.edu.cn
mailto:chen.gong@njust.edu.cn
mailto:xiaolinhuang@sjtu.edu.cn
mailto:jieyang@sjtu.edu.cn
mailto:wliu@ee.columbia.edu

MA et al.: TOWARD MAKING UNSUPERVISED GRAPH HASHING DISCRIMINATIVE 761

Fig. 1. Visualization of Two-SwissRolls dataset in 3-dimensional space.

Existing unsupervised hashing methods mainly utilize the
data distribution or the underlying manifold structure to design
effective indexing schemes [16], [23]. Although these meth-
ods have obtained promising results to some extent, they share
two common problems. One basic problem is that all previ-
ous methods solely focus on recovering the pairwise similar-
ity of original data in hash space, but they do not take specific
measures to enforce the generated binary codes of dissimilar
points to be dissimilar. In other words, the discriminability of
the obtained binary codes has never been considered in unsu-
pervised hashing methods, which results in undesirable results.
For example, the 16-bit relaxed codes on a synthetic dataset
called Two-SwissRolls (the dataset is shown in Fig. 1, and the
details of this dataset are shown in Section V-B) learned by
four graph-based unsupervised hashing algorithms (i.e., Spectral
Hashing (SH) [6], Anchor Graph Hashing (AGH) [30], Inductive
Manifold Hashing (IMH) [31], and our method) are visualized
in Fig. 2. As we can see, due to the neglect of the dissimilarity
relationship between original data points, SH, AGH, and IMH
are not able to push dissimilar points far away from each other
in hash space, therefore the obtained binary codes cannot accu-
rately reflect the neighboring structure of original data. There-
fore, preserving the dissimilarity of the original data is indeed
important in hashing task. Another problem of existing hashing
methods is how to effectively measure the similarity and dis-
similarity relationship between the original data, since directly
searching the neighbors of all points for large-scale datasets is
too time-consuming. Several existing methods [30], [32] adopt
anchor graph [33] technique to approximate the exact graph,
where two points are considered to be similar if they share at
least one common anchor point. However, it cannot be guaran-
teed that the nearby points in the original feature space will al-
ways have identical nearest anchors [34], and the widely utilized
kernel-defined local weights in these methods are also sensitive
to the variations of hyper-parameters [35]. As a result, the orig-
inal neighboring structure may be destroyed in the established

anchor graph. The above mentioned two bottlenecks have se-
riously limited the utilization of existing unsupervised hashing
algorithms in practice.

In order to address the above shortcomings, we propose a
novel unsupervised hashing method named “Discriminative Un-
supervised Graph Hashing” (DUGH), which aims at learning
both accurate and discriminative binary codes for large-scale
hashing tasks. Specifically, in order to keep similar data points
close and dissimilar points far away from each other in hash
space, the low-dimensional encoding of the original data points
is learned through a probabilistic method. In particular, our
method models both the positive and negative edges (here neg-
ative edges mean the vertices1 that are not linked by an edge)
in the KNN graph of the original data, and then maximizes the
likelihood of observing these edges in hash space. Furthermore,
in order to efficiently and accurately measure the similarity and
dissimilarity relationship inherent in the original data, we pro-
pose an efficient graph construction algorithm to build the sparse
KNN graph based on the random projection (RP) tree [36] and
neighbor exploring [37] techniques. The experimental results
on one synthetic dataset and four typical image datasets demon-
strate that the proposed method significantly outperforms the
state-of-the-art unsupervised hashing methods.

The rest of this paper is organized as follows. We briefly in-
troduce some related works in Section II. The details of our
method are shown in Section III. The out-of-sample extension
of our method is presented in Section IV. Our approach is em-
pirically evaluated in Section V. Finally, we conclude the entire
paper in Section VI.

II. RELATED WORKS

In this section, we briefly review some related works in the
recent hashing literatures. Existing hashing algorithms can be
roughly divided into two groups: data-independent and data-
dependent.

A. Data-Independent Hashing

The most well-known data-independent hashing technique
is Locality-Sensitive Hashing (LSH) [1]. LSH simply utilizes
random linear projection to map the original data close in the
Euclidean space to similar codes, and theoretical analyses illus-
trate that as the code length increases, the Hamming distance
between two codes will approach to the Euclidean distance be-
tween their corresponding data points. With the success of LSH,
random projection based hash functions have been extended
to various similarity measures, including p-norm distance [28],
Mahalanobis metric [38], and kernel similarity [39], [40], and
these methods have been successfully utilized for large-scale
image retrieval and classification. However, in realistic applica-
tions, LSH-related methods require long hash codes to achieve
high precision, which results in low recall because the collision
probability that two points fall into the same bucket decreases
as the code length increases [41].

1In this paper, the terms “vertex”, “point” and “example” have the same mean-
ing.

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on July 20,2020 at 14:15:18 UTC from IEEE Xplore. Restrictions apply.

762 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 22, NO. 3, MARCH 2020

B. Data-Dependent Hashing

To solve the problem of data-independent hashing methods,
data-dependent hashing methods are proposed to learn effective
but compact hash codes through a set of training data. Desir-
able hashing functions can be effectively learned by mining the
structure of the original data points, representing the structure
on the objective function, and solving optimization problems as-
sociated with the objective function. Therefore, data-dependent
methods are also called “Learning to Hash” (L2H) [4]. L2H
methods can be further divided into two groups: unsupervised
[6], [7], [16], [23], [24], [31], [42] and supervised [8], [12]–[14],
[17], [43]. Supervised hashing algorithms employ various super-
vision information (labels or tags) to improve the performance
of learned binary codes, and have demonstrated to be promising
to some extent. However, the lack of the semantic labels in most
real applications limits the utilization of these methods. There-
fore, we mainly focus on unsupervised hashing in this paper.

Unsupervised hashing algorithms mainly learn hash functions
through the data distribution of training set. For example, Princi-
pal Component Analysis based Hashing (PCAH) [7] generates
linear hash functions through simple PCA projection, which per-
forms better than random projection. Gong et al. [7] developed
the Iterative Quantization (ITQ) method, which employs a sim-
ple and efficient alternating minimization scheme for finding an
orthogonal rotation of zero-centered data to minimize the quan-
tization error. Except these two PCA-based hashing methods,
Heo et al. [42] proposed a novel hypersphere-based hashing
method, Spherical Hashing (SpH), which is able to map more
spatially coherent data points into binary codes compared to
hyperplane-based methods. Graph techniques [33], [44]–[48]
have develop rapidly and have been widely utilized in hashing
methods. For instance, Spectral Hashing (SH) [6] is a repre-
sentative unsupervised hashing method, which learns similar-
ity preserved hash codes by spectral decomposition on Lapla-
cian matrix with the balanced and uncorrelated constraints. Liu
et al. [30] proposed the Anchor Graph-based Hashing (AGH)
method, which automatically discovers the neighboring struc-
ture inherent in the original data to learn binary codes. In AGH,
the anchor graph technique [33] is employed to make such ap-
proach computationally feasible. Shen et al. [31] proposed the
Inductive Manifold Hashing (IMH) method, which attempts to
learn compact embedding on the intrinsic manifolds of original
data. More recently, hashing with Binary Autoencoders (BA)
algorithm is proposed to combine the data dimension reduction
and binary quantization into a single step by using autoencoder,
where the algorithm encourages similar inputs map to similar
binary codes. Song et al. [21] proposed a unsupervised deep
video hashing method which learns the video hash codes by
simultaneous reconstructing the video contents and neighbor-
hood structure. Shen et al. [23] proposed an unsupervised hash-
ing framework, which can directly handle the binary constraints
with a general hashing loss.

III. METHODOLOGY

Suppose we have an image collection X = {xi}Ni=1, where
xi ∈ Rd is the d-dimensional feature vector of the i-th image
example. Without loss of generality, the data are assumed to be

zero centered which means
∑N

i=1 xi = 0. In general, the goal of
hashing is to map each pointxi into a binary codebi ∈ {−1, 1}c,
where c denotes the code length. Ideally, we hope that the Ham-
ming distance between bi and bj should be small when the two
data points are similar in the original space, while the Hamming
distance should be large when they are dissimilar. To solve this
problem, an approximate KNN graph should be constructed,
then we encode the obtained KNN graph into low-dimensional
hash space where the neighboring structure is preserved. The
proposed algorithm DUGH is detailed as follows.

A. Graph Construction

As we know, constructing the exact KNN graph takesO(N2d)
time, which is too time-consuming in real cases. Therefore, vari-
ous indexing techniques have been proposed to approximate the
KNN graph [1], [28], [36], [37], [49]–[51]. Among these tech-
niques, RP tree [36] technique has been proved to be efficient for
ANN search in high-dimensional space. However, constructing
a KNN graph with high accuracy requires many trees, which sig-
nificantly hurts the model efficiency. Therefore, in this paper, we
propose to construct an approximate KNN graph G = {V,E}
with limited number of RP trees and then improve the accuracy
of the graph via using the idea of neighbor exploring [37], [52].

Firstly, we build up NT RP trees to construct the initial neigh-
bor graph. Specifically, for every non-leaf node of each tree, the
algorithm selects a random hyperplane to split the subspace cor-
responding to the non-leaf node into two, which become the
children of that node. This process continues until the depth of
the tree reaches a threshold. Once the RP trees are constructed,
the corresponding leaf node of each point can be found through
traversing in the trees. The points in the subspaces of the same
leaf nodes will be treated as the candidates of their neighbors,
and theK-nearest neighbors in all the candidates ofNT RP trees
are utilized for initializing the KNN graph.

Secondly, starting from the initial KNN graph, the neighbor
exploring technique is employed to iteratively update the graph.
The key idea of neighbor exploring is that “a neighbor of my
neighbor is also likely to be my neighbor” [37]. During each
iteration, we search the neighbors of the neighbors for each data
point, and the union of its neighbors and its neighbors’ neighbors
forms the candidate set of its “new” neighbors. We then update
the KNN graph by searching the K-nearest neighbors in this
candidate set. This neighbor exploring is repeated for T times
to improve the accuracy of the approximate KNN graph.

After that, we calculate the weights of the edges using the
same approach as [53]. For a pair of points (xi,xj) which are
connected in the obtained graph, the weight wij is defined as

wij =
pj|i + pi|j

2N
, (1)

where pj|i denotes the conditional probability and it is defined
as

pj|i =
e
− ‖xi−xj ‖2

2σ2
i

∑
(i,k)∈E e

−‖xi−xk‖2
2σ2

i

, (2)

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on July 20,2020 at 14:15:18 UTC from IEEE Xplore. Restrictions apply.

MA et al.: TOWARD MAKING UNSUPERVISED GRAPH HASHING DISCRIMINATIVE 763

Algorithm 1: Algorithm for Graph Construction

Input: Training set X = {xi}Ni=1, the number of RP trees
NT , the number of the nearest neighbors in KNN graph K,
the maximum iterations for neighbor exploring T .

Output: Approximate KNN graph G = {V,E}.
1: Build NT RP trees on X ;
2: // Initialize the KNN graph
3: for each point xi ∈ X do
4: Search the K-nearest neighbors based on RP trees,

and then store the results in the set Ki;
5: end for
6: // Neighbor exploring
7: t = 1;
8: while t ≤ T do
9: for each point xi ∈ X

10: Search the candidate set of its “new” neighbors
Ci = Ki ∪ (

⋃
xj∈Ki

Kj);
11: Search the K-nearest neighbors of xi in the

candidate set Ci, and then update Ki;
12: end for
13: t = t+ 1;
14: end while
15: for each point xi ∈ X , xj ∈ Ki

16: Add edge eij into KNN graph G;
17: Calculate the weight wij of the edge eij according

to Eqn. (1);
18: end for

whereE denotes the edge set and the parameterσi is set in such a
way that the perplexity of the conditional distribution p·|i equals
to a predefined perplexity.

The entire procedure of graph construction is briefly summa-
rized in Algorithm 1.

B. Encoding the Graph

Once the KNN graph is constructed, we would like to encode
the graph into a low-dimensional space to learn the relaxed vec-
tors of data, and then quantize the relaxed vectors into binary
codes. In this paper, we take the discrimination of data points
into consideration and solve the encoding problem through two
aspects: 1) we utilize a Student t-distribution function to calcu-
late the probability of observing the edges in the KNN graph;
and 2) a probabilistic method is adopted to learn the encoding
of the original data, which models both the positive and nega-
tive edges in the KNN graph. We detail the entire procedure as
follow.

Given a pair of points (xi,xj), we first define the probability
of observing a binary edge eij = 1 between xi and xj as

P (eij = 1) = f(‖ui − uj‖), (3)

where ui ∈ Rc is the relaxed code of point xi in the low-
dimensional space, and f(·) is a probabilistic function w.r.t. the
distance between ui and uj . The function f(x) = 1/(1 + x2) is
employed in this paper, as it specifies a Student t-distribution and
is able to deal with the “crowd problem” according to [53]. This

is because this probabilistic function is insensitive to the scale
change of the distance between the encoding results. As shown in
Fig. 3, we perform the comparison between the t-distribution and
the widely utilized Gaussian distribution in hash tasks. As we can
see, if we enforce the probabilities of observing an edge in the
graph under two different distribution functions to be equal, the
distance between the encoding results under the t-distribution
is supposed to be smaller than that under the Gaussian distribu-
tion when the original points are similar, otherwise the distance
under the t-distribution is supposed to be larger than that under
the Gaussian distribution when the original points are dissimilar.
This property is extremely important for achieving the discrim-
inative hashing results.

Eqn. (3) only defines the probability of observing a binary
edge between a pair of data points. To further extend it to gen-
eral weighted edges, we define the likelihood of observing a
weighted edge eij = wij as

P (eij = wij) = P (eij = 1)wij . (4)

With the above definition and the weighted graph G = {V,E},
the likelihood of observing all the edges in the graph can be
calculated as

L =
∏

(i,j)∈E
p(eij = 1)wij

∏

(i,j)∈Ē
(1− p(eij = 1))γ

∝
∑

(i,j)∈E
wij log p(eij = 1)

+
∑

(i,j)∈Ē
γ log (1− p(eij = 1)), (5)

in which Ē is the set of vertex pairs without edges and γ is an
unified weight assigned to the negative edges. Eqn. (5) models
the likelihood of observing all the edges in the graph through
two parts. The first part

∑
(i,j)∈E wij log p(eij = 1) models the

likelihood of observing all the positive edges. By maximizing
this part, similar data points will be put close together in the
low-dimensional space. The second part

∑
(i,j)∈Ē γ log (1−

p(eij = 1)) models the likelihood of observing all the vertex
pairs without edges (i.e., negative edges). By maximizing this
part, dissimilar data points will be pushed away from each other.

By maximizing Eqn. (5), the relaxed code of each point can
be learned. However, directly solving Eqn. (5) with stochastic
gradient descent (SGD) algorithm is intractable, as the number
of negative edges is quadratic to the number of nodes. To ad-
dress this bottleneck, negative edge sampling technique [54] is
adopted for optimization. For each vertex i ∈ V, we randomly
sample several vertices j ∈ V according to a noisy distribution
Pn(j) ∝ d0.75j and treat {i, j} as the negative edges, where dj
is the degree of vector j. The objective function (5) can be re-
formulated as

L′ =
∑

(i,j)∈E
wij(log p(eij = 1)

+

M∑

k=1

Ejk∼Pn(j)γ log (1− p(eij = 1))), (6)

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on July 20,2020 at 14:15:18 UTC from IEEE Xplore. Restrictions apply.

764 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 22, NO. 3, MARCH 2020

Algorithm 2: The training procedure of DUGH
Input: Training set X , code length c.
Output: The binary codes B.

1: Construct the approximate KNN graph according to
Algorithm 1;

2: Encode the KNN graph into the low-dimentional space
by maximizing Eqn. (5);

3: Initialize the R with a random orthogonal matrix;
4: Minimize Eqn. (7) by alternatively updating B and R

while fixing the other one;
5: Calculate the binary codes as B = sgn(UR).

whereM is the number of negative edges for each positive edge.
The objective function (6) is still problematic to be optimized by
SGD. This is because that the weight of edges wij is multiplied
into the gradient, and as the value of wij varies in a wide range,
it is very difficult to choose a suitable learning rate. To solve
this problem, the approach of edge sampling [52], [55] is used
in our paper, in which the edges are randomly sampling with the
probability proportional to their weights and then the sampling
edges are treated as binary edges. As a result, the learning process
is robust to the variations of the weights. With all the above
mentioned techniques, the entire optimization problem can be
solved efficiently with asynchronous stochastic gradient descent
[56].

After obtaining the relaxed codes U = [u1, . . . ,uN]T , our
next goal is to find the binary codes B = [b1, . . . ,bN]T . Di-
rectly thresholding the continuous vectors into binary codes
would lead to large quantization errors, and the performance
might deteriorate as the code length c increases. Therefore, the
orthogonal transformation is employed to minimize the quanti-
zation loss following [7]. The quantization loss is defined as

min
B,R

‖B−UR‖2F ,

s.t.B ∈ {−1, 1}N×c,RTR = I, (7)

where R ∈ Rc×c is the orthgonal matrix. To solve Eqn. (7),
we firstly initialize R with a random orthogonal matrix, and
then iteratively minimize the quantization loss in an alternating
procedure. The details are explained below.

Fix R and update B. It is obvious that the optimal solution
is B = sgn(UR).

Fix B and update R. While fixing B, Eqn. (7) corresponds
to the classic Orthogonal Procrustes Problem (OPP) [57]. It can
be minimized by firstly computing the SVD of the matrix BTU
as BTU = SΩŜT , and then setting R = ŜST .

We briefly summarize the entire training procedure of our
method in Algorithm 2.

IV. OUT-OF-SAMPLE EXTENSION

For a new coming data point xq , the binary code bq should
be derived efficiently. By following [31], we solve this problem
by utilizing a two-stage strategy: firstly we generate uq through
its s-nearest neighbors Ns(xq) in the training set X , and then
quantize it into the binary code bq with the learned orthogonal

transformation. This two-stage procedure can simultaneously
preserve the neighboring structure of the query points and min-
imize the quantization loss.

The first problem for generating the embedding uq is how
to identify Ns(xq). In this paper, we search the approximate
s-nearest neighbors of uq through clustering algorithm such as
K-means. We firstly partition the training set X into M clusters
offline. For a query xq , we can find its nearest cluster (i.e., the
distance from the query to the centroid of the selected cluster
is the smallest) and then retrieve the s-nearest neighbors in this
cluster to form Ns(xq).

After that, we minimize the following objective to learn uq ,
namely

min
uq

∑

xi∈Ns(xq)

w(xq,xi)‖uq − ui‖2. (8)

Here we define w(xq,xi) as w(xq,xi) = exp(−‖xq − xi‖2/
σ2), where σ is the bandwidth parameter. Simply, the optimal
solution is calculated as

u∗
q =

∑s
i=1 w(xq,xi)ui∑s
i=1 w(xq,xi)

, xi ∈ Ns(xq). (9)

The hash code for the query xq is then calculated by

bq = sgn(RTu∗
q). (10)

V. EXPERIMENTAL RESULTS

This section presents the experimental results and demon-
strates the effectiveness of the proposed approach. We start by
introducing the details of our experimental setting, and then pro-
vide the comparison results of our method with typical existing
approaches.

A. Experimental Setting

In the following experiments, we compare the proposed
DUGH method with several state-of-the-art hashing methods,
which include: Locality-Sensitive Hashing (LSH) [1], Spectral
Hashing (SH) [6], Anchor Graph Hashing (AGH) [30], Inductive
Manifold Hashing (IMH) [31], Principal Component Analysis
based Hashing (PCAH) [7], Iterative Quantization (ITQ) [7],
Spherical Hashing (SpH) [42], Asymmetric Inner-product Bi-
nary Coding (AIBC) [16], and Similarity-Adaptive Deep Hash-
ing (SADH) [23]. As we all know, convolutional neural network
(CNN) has emerged as the state-of-the-art method for global de-
scriptors in image retrieval tasks [13], [58], but it is not the focus
of our paper to compare the description ability of the CNN fea-
tures and hand-crafted features. Therefore, in this paper, we do
not compare our method with unsupervised deep hashing meth-
ods based on CNN architectures such as [59], [60]. Further-
more, to illustrate the advantage of the quantization strategy, we
show the performance of the proposed DUGH method without
the stage of quantization (represented as DUGH0 in the experi-
ments).

We run the previous methods using publicly available codes
with suggested parameters in their papers. Specifically, for our

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on July 20,2020 at 14:15:18 UTC from IEEE Xplore. Restrictions apply.

MA et al.: TOWARD MAKING UNSUPERVISED GRAPH HASHING DISCRIMINATIVE 765

TABLE I
THE COMPARISON BETWEEN DUGH AND SEVERAL TYPICAL UNSUPERVISED HASHING ALGORITHMS WITH THE HASH CODES OF DIFFERENT LENGTHS ON

TWO-SWISSROLLS DATASET. THE BEST RESULT UNDER EACH SETTING IS SHOWN IN BOLDFACE

DUGH, the parameters are set as follows unless otherwise spec-
ified. The number of the RP trees is set to be NT = 10. The
number of neighbors for each data point in the KNN graph is
decided as K = 150. We repeat the neighbor exploring for three
iterations to improve the accuracy of the KNN graph, as it has
shown satisfactory performance as discussed in Section V-G.
In the out-of-sample stage, the number of K-means clusters is
tuned to M = 300, and the number of the nearest neighbors is
determined as s = 5.

By following the evaluation protocols used in previous hash-
ing methods [4], we split each dataset into training set and test
set. We evaluate all mentioned methods by Hamming ranking
and hash lookup using 16 to 128 hash bits. For Hamming rank-
ing, we perform mean Average Precision (mAP), which is a
widely used metric for evaluating the performance of hashing
methods. We also use the average precision of first N ranked
images (Precision@N) for each query to measure the Ham-
ming ranking performance. For hash lookup, we measure the
results by F1 score within Hamming radius 2 [61], which is cal-
culated as F1 = 2(precision · recall)/(precision+ recall).
The precision-recall curve is also employed to measure the per-
formance in the experiments.

B. Results on Synthetic Dataset

To illustrate the basic performance of the proposed DUGH,
we firstly report the results on a synthetic dataset dubbed Two-
SwissRolls. The visualization of this dataset in 3-dimensional
space is shown in Fig. 1, where we can see that the two man-
ifolds are partially overlapped. Each of the manifolds con-
sists of 2,000 points. Following [62], we first generate the
3-dimensional points, and then embed them into R200 by adding
197-dimensional uniform noise. We randomly choose 1,000 ex-
amples as the test set, and the rest of examples form the training
set. We perform the feature normalization on all examples to
make each dimension have zero mean.

In order to illustrate the superiority of our method for learn-
ing discriminative codes, we perform the visualization of the
16-bit relaxed codes learned by four graph-based unsupervised

Fig. 2. Visualization of the 16-bit relaxed codes learned by four graph-based
unsupervised hashing algorithms. The codes are projected into 2-dimensional
space with PCA technique. (a) SH. (b) AGH. (c) IMH. (d) Ours.

hashing algorithms (i.e., SH, AGH, IMH, and DUGH) in Fig. 2,
where the codes are projected into 2-dimensional space with
PCA technique. As we can see, the learned binary codes of the
proposed DUGH is able to better preserve the original neighbor-
ing structure when compared with the other three graph-based
methods. This is mainly because DUGH pulls the similar points
together and meanwhile pushes dissimilar points far away from
each other, and these results demonstrate the effectiveness and
discriminability of our methods.

Table I and Fig. 4 show other experimental results. As we
can see, the proposed method outperforms other methods in
most cases. Compared with other graph-based method includ-
ing SH, AGH, and IMH, the proposed DUGH outperforms these
methods with a large margin, which validates the advantage of
DUGH to learn both accurate and discriminative hash codes.

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on July 20,2020 at 14:15:18 UTC from IEEE Xplore. Restrictions apply.

766 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 22, NO. 3, MARCH 2020

TABLE II
THE COMPARISON BETWEEN DUGH AND SEVERAL TYPICAL UNSUPERVISED HASHING ALGORITHMS WITH THE HASH CODES OF DIFFERENT LENGTHS ON

MNIST DATASET. THE BEST RESULT UNDER EACH SETTING IS SHOWN IN BOLDFACE

Fig. 3. Comparison of probability density functions between the Gaussian dis-
tribution and t-distribution. The red curve is the standard Gaussian distribution,
and the blue one follows the Student t-distribution with one degree of freedom.

Furthermore, we can find that the F1 score of all these meth-
ods decreases dramatically when the code length increase, but
DUGH still achieves relatively high results with long code
lengths. All these results significantly demonstrate the effec-
tiveness of our method in unsupervised hashing. Besides, by
comparing the results of DUGH and DUGH0, we can find that
DUGH obtains much higher F1 score than DUGH0, and per-
forms a little bit better in terms of mAP and Precision@500. As
for precision-recall curves shown in Fig. 4, the performance of
these two methods is similar, and DUGH performs better than
DUGH0 with 16-bit binary codes. Therefore, the experimental
results confirm the effectiveness of the quantization strategy.

C. Results on MNIST

We next test our method on a popular handwritten digit
dataset, i.e., MNIST [63]. MNIST consists of 70,000 images
regarding the digits from “0” to “9”, and each of which is repre-
sented by a 784-dimensional vector. In our experiments, 1,000

queries are randomly selected as the test set, while the remain-
ing 69,000 examples are regarded as the training set. The feature
normalization is also performed on this dataset.

We report the comparative results with code length ranging
from 16 to 128 bits in Table II and Fig. 5. We can see that
DUGH outperforms other state-of-the-art methods under all the
code lengths. The gain of DUGH is huge over IMH which is
the most competitive one, and this result illustrates the remark-
able ability of DUGH in unsupervised graph hashing as it takes
the discrimination of data points into consideration. As shown in
Fig. 5, DUGH consistently performs better than other methods in
terms of the precision-recall curve. Furthermore, while F1 scores
of all the other methods decrease sharply with the increase of
code length, the results of DUGH are constant. In addition, it can
be found that DUGH achieves better performance when com-
pared with DUGH0 in terms of F1 scores and precision-recall
curves. This is mainly because the quantization strategy can sig-
nificantly reduce the quantization error and improve the quanlity
of the binary codes.

D. Results on CIFAR-10

In this section, we evaluate our method on CIFAR-10 [64],
which is a subset of the well-known 80M tiny image collection.
It consists of 60,000 images that are manually labeled with 10
classes (6000 examples per class). Each image in this dataset
is represented by the GIST feature vector [65] of which the
dimension is 384. We randomly sample 1,000 queries as the test
set and use the rest as the training set. The feature normalization
is also performed on this dataset.

The comparison experimental results on CIFAR-10 are re-
ported in Table III and Fig. 6. Compared with the other meth-
ods, the proposed DUGH achieves better performances in most
cases. This demonstrates the effectiveness of our methods in im-
age hashing tasks. By comparing the mAP results and F1 scores
among the four graph-based methods including SH, AGH, IMH,
and DUGH, we can see that the proposed DUGH outperforms
the other three methods. In addition, it can be seen that the F1
scores of all the other methods except DUGH is extremely low

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on July 20,2020 at 14:15:18 UTC from IEEE Xplore. Restrictions apply.

MA et al.: TOWARD MAKING UNSUPERVISED GRAPH HASHING DISCRIMINATIVE 767

Fig. 4. Comparison of precision-recall curves with the hash codes of different lengths on Two-SwissRolls dataset.

Fig. 5. Comparison of precision-recall curves with the hash codes of different lengths on MNIST dataset.

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on July 20,2020 at 14:15:18 UTC from IEEE Xplore. Restrictions apply.

768 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 22, NO. 3, MARCH 2020

TABLE III
THE COMPARISON BETWEEN DUGH AND SEVERAL TYPICAL UNSUPERVISED HASHING ALGORITHMS WITH THE HASH CODES OF DIFFERENT LENGTHS ON

CIFAR-10 DATASET. THE BEST RESULT UNDER EACH SETTING IS SHOWN IN BOLDFACE

Fig. 6. Comparison of precision-recall curves with the hash codes of different lengths on CIFAR-10 dataset.

on this dataset when the code length is long, and this is because
the precision and recall within Hamming radius 2 in these cases
is almost zero in this case. Furthermore, the precision-recall
curves of all these methods are shown in Fig. 6, and we can find
that the results of DUGH and DUGH0 are similar, and both of
them perform better than other compared methods.

E. Results on Fashion-MNIST

In this section, we conduct the extensive experiments on
Fashion-MNIST dataset [66], which consists of totally 70,000
images. On this dataset, each example is a 28 × 28 grayscale
image belonging to one of 10 classes. In the experiments,
we directly flatten each image into a 784-dimensional feature

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on July 20,2020 at 14:15:18 UTC from IEEE Xplore. Restrictions apply.

MA et al.: TOWARD MAKING UNSUPERVISED GRAPH HASHING DISCRIMINATIVE 769

TABLE IV
THE COMPARISON BETWEEN DUGH AND SEVERAL TYPICAL UNSUPERVISED HASHING ALGORITHMS WITH THE HASH CODES OF DIFFERENT LENGTHS ON

FASHION-MNIST DATASET. THE BEST RESULT UNDER EACH SETTING IS SHOWN IN BOLDFACE

Fig. 7. Comparison of precision-recall curves with the hash codes of different lengths on Fashion-MNIST dataset.

vector. We select 1,000 queries as the test set, while the
remaining 69,000 examples are regarded as the training set. The
feature normalization is performed on this dataset.

Table IV shows the performance comparison of different
hashing methods in terms of mAP, F1 score, and Precision@500.
As we can see, the proposed DUGH obtains better mAP results

and F1 scores in most cases. According to the quantitative re-
sults of Precision@500, AGH performs slightly better than our
methods with 16-bit, 32-bit, 48-bit, and 64-bit codes, while ITQ
performs best with 128-bit codes among all the other methods.
However, our method still shows comparable results with these
two methods. Moreover, as shown in Fig. 7, the proposed DUGH

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on July 20,2020 at 14:15:18 UTC from IEEE Xplore. Restrictions apply.

770 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 22, NO. 3, MARCH 2020

TABLE V
THE COMPARISON BETWEEN DUGH AND SEVERAL TYPICAL UNSUPERVISED HASHING ALGORITHMS WITH THE HASH CODES OF DIFFERENT LENGTHS ON

NUS-WIDE DATASET. THE BEST RESULT UNDER EACH SETTING IS SHOWN IN BOLDFACE

outperforms all the other methods significantly. These results
demonstrate the superiority of our method.

F. Results on NUS-WIDE Dataset

Lastly, we compare the proposed DUGH and DUGH0 with
the state-of-the-art methods on NUS-WIDE dataset [67]. The
NUS-WIDE dataset contains 269,648 images collected from
Flickr. Each image is represented by a 1134-dimensionnal low-
level feature vector. This dataset contains 81 ground-truth con-
cepts, and each image is tagged with multiple semantic labels.
Following [23], we select the images associated with the 21 most
frequent concepts and utilize a total of 195,834 images for eval-
uation. We randomly select 1,000 images to form the test set,
and all the remaining images are used as the training set. The
feature normalization is also performed on this dataset. Note that
we do not compare our method with AIBC on this dataset, since
it requires to compute the inner product of original features for
all points and this is infeasible on the large-scale dataset.

The comparison results are shown in Table V and Fig. 8. As
we can see, the proposed DUGH and DUGH0 outperform other
methods in terms of mAP, F1 score, and precision-recall curve
in most cases. Specifically, the F1 score of DUGH is signifi-
cantly higher than all the other methods, and the precision-recall
curves with the hash codes of different code lengths also show
that DUGH obtains better results than all the other algorithms.
These results illustrate the effectiveness of our method. As for
the precision@5000, the ITQ method obtains the best results
with 48-bit and 64-bit hash codes among all mentioned methods,
and the SpH method performs better than ours with 32-bit and
128-bit binary codes. However, our method is still comparable to
ITQ and SpH in these cases, while it performs much better than
these methods in terms of mAP, F1 score, and precision-recall
curve.

G. Analyses and Discussions

1) Efficacy of Graph Construction Methods: As mentioned
in Section III-A, we adopt an approximate way to efficiently con-
struct the KNN graph. To illustrate the efficacy of our method,

TABLE VI
THE COMPARISON BETWEEN TWO DIFFERENT GRAPH CONSTRUCTION

METHODS ON CIFAR-10 DATASET IN TERMS OF CPU TIME AND MAP

TABLE VII
THE COMPARISON BETWEEN TWO DIFFERENT GRAPH CONSTRUCTION

METHODS ON NUS-WIDE DATASET IN TERMS OF CPU TIME AND MAP

we study the quality of the established graph in this section.
Firstly, we perform the ablation study to compare the perfor-
mances of the exact KNN graph (denoted “Exact KNN”) and the
graph built by our method (denoted “Ours”). The experimental
results are shown in Table VI and Table VII. We can find that the
proposed method based on RP tree and neighbor exploring tech-
niques can significantly reduce the computation time for graph
construction on both CIFAR-10 and NUS-WIDE, which demon-
strates the superiority of our method on large-scale hashing task
over the methods based on exact KNN graph. Moreover, the
mAP results of both two methods are extremely similar, which
validates that our method is able to maintain the mAP obtained
by the accurate KNN graph.

Secondly, we perform the comparison results under different
numbers of iterations for neighbor exploring on the five adopted
datasets. As shown in Fig. 9, the accuracy of the approximate
KNN graph improves from 98.91% to 100% with only one it-
eration for neighbor exploring on Two-SwissRolls, improves
from 62.77% to 99.51% on MNIST, improves from 36.06%
to 98.89% on CIFAR-10, improves from 77.66% to 99.81%

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on July 20,2020 at 14:15:18 UTC from IEEE Xplore. Restrictions apply.

MA et al.: TOWARD MAKING UNSUPERVISED GRAPH HASHING DISCRIMINATIVE 771

Fig. 8. Comparison of precision-recall curves with the hash codes of different lengths on NUS-WIDE dataset.

Fig. 9. Accuracy of the KNN graph under different numbers of iterations for neighbor exploring on all five datasets. (a) Two-SwissRolls. (b) MNIST.
(c) CIFAR-10. (d) Fashion-MNIST. (e) NUS-WIDE.

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on July 20,2020 at 14:15:18 UTC from IEEE Xplore. Restrictions apply.

772 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 22, NO. 3, MARCH 2020

Fig. 10. Parameter sensitivity on MNIST. (a) NT . (b) M . (c) K. (d) s.

Fig. 11. Parameter sensitivity on CIFAR-10. (a) NT . (b) M . (c) K. (d) is s.

on Fashion-MNIST, and improves from 24.96% to 94.76% on
NUS-WIDE. Besides, it can be found that our method needs at
most three iterations to achieve the almost accurate KNN graph
on all five datasets. This result demonstrates the effectiveness of
the neighbor exploring strategy for improving the accuracy of
the approximate KNN graph.

2) Parameter Sensitivity: In this section, we study the influ-
ences of parameters on the performance of DUGH on MNIST
and CIFAR-10 with 32-bit hash codes. The parameters include
the number of RP trees NT , the neighbor number of the KNN
graph K, the cluster number of the training set M , and the num-
ber of selected points for out-of-sample coding s. The defaults
of these parameters are set as NT = 10, K = 150, M = 300,
and s = 5. We then vary one of these parameters while fixing
the others to the defaults. The experimental results are shown in
Fig. 10 and Fig. 11. It reveals that the performance of DUGH is
not sensitive to the variations of these parameters, so they can
be easily tuned for practical use.

VI. CONCLUSION

In this paper, we propose a novel unsupervised hashing
method named “Discriminative Unsupervised Graph Hashing”
(DUGH), which aims at learning both accurate and discrimina-
tive binary codes for unsupervised hashing task. Different from
existing methods that mainly focus on recovering the pairwise
similarity of the original data in hash space, DUGH also takes
the discrimination of data points into consideration and employs
a probabilistic method to model both data similarity and dis-
similarity in the original space. To efficiently and accurately
calculate the neighbor graph, an effective graph construction al-
gorithm is adopted in this paper, and it has been shown that our
method can achieve the almost accurate KNN graph with limited

number of iterations for neighbor exploring. The experimental
results on five datasets reveal that the proposed method achieves
very encouraging performance in terms of both hash lookup and
hamming ranking when compared with the state-of-the-art un-
supervised hashing methods.

In our future work, we will extend our method with deep
learning technique, which is able to simultaneously learn binary
codes and hash functions in an end-to-end way. Furthermore,
we will also try to solve the optimization problem with discrete
constraint of hashing problems.

REFERENCES

[1] A. Gionis et al., “Similarity search in high dimensions via hashing,” VLDB,
vol. 99, no. 6, 1999, pp. 518–529.

[2] H. Jegou, M. Douze, and C. Schmid, “Product quantization for nearest
neighbor search,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 1,
pp. 117–128, Jan. 2011.

[3] L. Gao et al., “Learning in high-dimensional multimedia data: The state
of the art,” Multimedia Syst., vol. 23, no. 3, pp. 303–313, 2017.

[4] J. Wang et al., “A survey on learning to hash,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 40, no. 4, pp. 769–790, Apr. 2018.

[5] T. Zhou, C. Zhang, C. Gong, H. Bhaskar, and J. Yang, “Multiview la-
tent space learning with feature redundancy minimization,” IEEE Trans.
Cybern., 2018.

[6] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Advances in
Neural Information Processing Systems 21, D. Koller, D. Schuurmans,
Y. Bengio, and L. Bottou, Eds., Red Hook, NY, USA: Curran Associates,
Inc., 2009, pp. 1753–1760.

[7] Y. Gong and S. Lazebnik, “Iterative quantization: A procrustean approach
to learning binary codes,” in Proc. IEEE Conf. Comput. Vision Pattern
Recognit., IEEE, 2011, pp. 817–824.

[8] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang, “Supervised hash-
ing with kernels,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit.,
IEEE, 2012, pp. 2074–2081.

[9] J. Wang, S. Kumar, and S.-F. Chang, “Semi-supervised hashing for large-
scale search,” IEEE Trans. on Pattern Anal. Mach. Intell., vol. 34, no. 12,
pp. 2393–2406, Dec. 2012.

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on July 20,2020 at 14:15:18 UTC from IEEE Xplore. Restrictions apply.

MA et al.: TOWARD MAKING UNSUPERVISED GRAPH HASHING DISCRIMINATIVE 773

[10] J. Song, Y. Yang, X. Li, Z. Huang, and Y. Yang, “Robust hashing with local
models for approximate similarity search,” IEEE Trans. Cybern., vol. 44,
no. 7, pp. 1225–1236, Jul. 2014.

[11] J. Song, L. Gao, Y. Yan, D. Zhang, and N. Sebe, “Supervised hashing with
pseudo labels for scalable multimedia retrieval,” in Proc. 23rd ACM Int.
Conf. Multimedia, ACM, 2015, pp. 827–830.

[12] F. Shen, C. Shen, W. Liu, and H. Tao Shen, “Supervised discrete hashing,”
in Proc. IEEE Conf. Comput. Vision Pattern Recognit., 2015, pp. 37–45.

[13] W.-J. Li, S. Wang, and W.-C. Kang, “Feature learning based deep su-
pervised hashing with pairwise labels,” Preprints, arXiv:1511.03855,
2015.

[14] J. Gui, T. Liu, Z. Sun, D. Tao, and T. Tan, “Fast supervised discrete hash-
ing,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 2, pp. 490–496,
Feb. 2018.

[15] X.-J. Mao, Y.-B. Yang, and N. Li, “Hashing with pairwise correlation
learning and reconstruction,” IEEE Trans. Multimedia, vol. 19, no. 2,
pp. 382–392, Feb. 2017.

[16] F. Shen et al., “Asymmetric binary coding for image search,” IEEE Trans.
Multimedia, vol. 19, no. 9, pp. 2022–2032, Sep. 2017.

[17] F. Shen, X. Gao, L. Liu, Y. Yang, and H. T. Shen, “Deep asymmetric
pairwise hashing,” in Proc. ACM Multimedia Conf. ACM, 2017, pp. 1522–
1530.

[18] Z. Chen, J. Lu, J. Feng, and J. Zhou, “Nonlinear discrete hashing,” IEEE
Trans. Multimedia, vol. 19, no. 1, pp. 123–135, Jan. 2017.

[19] X. Zhu et al., “Graph PCA hashing for similarity search,” IEEE Trans.
Multimedia, vol. 19, no. 9, pp. 2033–2044, Sep. 2017.

[20] J. Zhang and Y. Peng, “Query-adaptive image retrieval by deep weighted
hashing,” IEEE Trans. Multimedia, vol. 20, no. 9, pp. 2400–2414, Sep.
2018.

[21] J. Song et al., “Self-supervised video hashing with hierarchical binary
auto-encoder,” IEEE Trans. Image Process., vol. 27, no. 7, pp. 3210–3221,
Jul. 2018.

[22] J. Song et al., “A distance-computation-free search scheme for binary
code databases,” IEEE Trans. Multimedia, vol. 18, no. 3, pp. 484–495,
Mar. 2016.

[23] F. Shen et al., “Unsupervised deep hashing with similarity-adaptive and
discrete optimization,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40,
no. 12, Dec. 2018.

[24] M. Hu, Y. Yang, F. Shen, N. Xie, and H. T. Shen, “Hashing with angular
reconstructive embeddings,” IEEE Trans. Image Process., vol. 27, no. 2,
pp. 545–555, Feb. 2018.

[25] J. Song, L. Gao, L. Liu, X. Zhu, and N. Sebe, “Quantization-based hash-
ing: A general framework for scalable image and video retrieval,” Pattern
Recognit., vol. 75, pp. 175–187, 2018.

[26] Z. Chen, X. Yuan, J. Lu, Q. Tian, and J. Zhou, “Deep hashing via discrep-
ancy minimization,” in Proc. IEEE Conf. Comput. Vision Pattern Recog-
nit., Jun. 2018.

[27] K. Ghasedi Dizaji et al., “Unsupervised deep generative adversarial hash-
ing network,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit.,
Jun. 2018.

[28] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” in Proc. 20th Annu. Symp.
Comput. Geometry, ACM, 2004, pp. 253–262.

[29] B. Kulis and K. Grauman, “Kernelized locality-sensitive hashing,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 34, no. 6, pp. 1092–1104, Jun.
2012.

[30] W. Liu, J. Wang, S. Kumar, and S.-F. Chang, “Hashing with graphs,” in
Proc. 28th Int. Conf. Mach. Learn. (ICML-11), 2011, pp. 1–8.

[31] F. Shen, C. Shen, Q. Shi, A. Van Den Hengel, and Z. Tang, “Inductive hash-
ing on manifolds,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit.,
2013, pp. 1562–1569.

[32] F. Shen et al., “A fast optimization method for general binary code
learning.” IEEE Trans. Image Process., vol. 25, no. 12, pp. 5610–5621,
Dec. 2016.

[33] W. Liu, J. He, and S.-F. Chang, “Large graph construction for scalable
semi-supervised learning,” in Proc. 27th Int. Conf. Mach. Learn. (ICML-
10), 2010, pp. 679–686.

[34] M. Wang, W. Fu, S. Hao, D. Tao, and X. Wu, “Scalable semi-supervised
learning by efficient anchor graph regularization,” IEEE Trans. Knowl.
Data Eng., vol. 28, no. 7, pp. 1864–1877, Jul. 2016.

[35] X. Li, C. Ma, J. Yang, and X. Huang, “Discrete locally-linear preserving
hashing,” in Proc. 25th IEEE Int. Conf. Image Process. (ICIP), IEEE, 2018,
pp. 490–494.

[36] S. Dasgupta and Y. Freund, “Random projection trees and low dimensional
manifolds,” in Proc. 40th Annu. ACM Symp. Theory Comput., ACM, 2008,
pp. 537–546.

[37] W. Dong, C. Moses, and K. Li, “Efficient k-nearest neighbor graph con-
struction for generic similarity measures,” in Proc. 20th Int. Conf. World
Wide Web, ACM, 2011, pp. 577–586.

[38] B. Kulis, P. Jain, and K. Grauman, “Fast similarity search for learned
metrics,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 12, pp. 2143–
2157, Dec. 2009.

[39] B. Kulis and K. Grauman, “Kernelized locality-sensitive hashing for scal-
able image search,” in Proc. IEEE 12th Int. Conf. Comput. Vision, IEEE,
2009, pp. 2130–2137.

[40] M. Raginsky and S. Lazebnik, “Locality-sensitive binary codes from shift-
invariant kernels,” in Proc. Adv. Neural Inf. Process. Syst., 2009, pp. 1509–
1517.

[41] L. Liu, M. Yu, and L. Shao, “Latent structure preserving hashing,” Int. J.
Comput. Vision, vol. 122, no. 3, pp. 439–457, 2017.

[42] J.-P. Heo, Y. Lee, J. He, S.-F. Chang, and S.-E. Yoon, “Spherical hashing,”
in Proc. IEEE Conf. Comput. Vision Pattern Recognit., CVPR, IEEE, 2012,
pp. 2957–2964.

[43] P. Zhang, W. Zhang, W. J. Li, and M. Guo, “Supervised hashing with
latent factor models,” in Proc. 37th Int. ACM SIGIR Conf. Res. Develop.
Inf. Retrieval, 2014, pp. 173–182.

[44] J. Song et al., “Optimized graph learning using partial tags and multiple
features for image and video annotation,” IEEE Trans. Image Process.,
vol. 25, no. 11, pp. 4999–5011, Nov. 2016.

[45] X. Wang, L. Gao, P. Wang, X. Sun, and X. Liu, “Two-stream 3-D convNet
fusion for action recognition in videos with arbitrary size and length,”
IEEE Trans. Multimedia, vol. 20, no. 3, pp. 634–644, Mar. 2018.

[46] C. Gong, H. Shi, J. Yang, and J. Yanga, “Multi-manifold positive and
unlabeled learning for visual analysis,” IEEE Trans. Circuits Syst. Video
Technol., 2019.

[47] C. Gong, D. Tao, W. Liu, L. Liu, and J. Yang, “Label propagation via
teaching-to-learn and learning-to-teach,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 28, no. 6, pp. 1452–1465, Jun. 2016.

[48] C. Gong, D. Tao, X. Chang, and J. Yang, “Ensemble teaching for hybrid
label propagation,” IEEE Trans. Cybern., vol. 49, no. 2, pp. 388–402,
Feb. 2017.

[49] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517, 1975.

[50] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for finding
best matches in logarithmic expected time,” ACM Trans. Math. Softw.,
vol. 3, no. 3, pp. 209–226, 1977.

[51] C. Silpa-Anan and R. Hartley, “Optimised kd-trees for fast image descrip-
tor matching,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit.,
IEEE, 2008, pp. 1–8.

[52] J. Tang, J. Liu, M. Zhang, and Q. Mei, “Visualizing large-scale and high-
dimensional data,” in Proc. 25th Int. Conf. World Wide Web, International
World Wide Web Conferences Steering Committee, 2016, pp. 287–297.

[53] L. V. D. Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach.
Learn. Res., vol. 9, no. Nov, pp. 2579–2605, 2008.

[54] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in Proc.
Adv. Neural Inf. Process. Syst., 2013, pp. 3111–3119.

[55] J. Tang et al., “Line: Large-scale information network embedding,” in
Proc. 24th Int. Conf. World Wide Web, International World Wide Web
Conferences Steering Committee, 2015, pp. 1067–1077.

[56] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free approach
to parallelizing stochastic gradient descent,” in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2011, pp. 693–701.

[57] P. H. Schönemann, “A generalized solution of the orthogonal procrustes
problem,” Psychometrika, vol. 31, no. 1, pp. 1–10, 1966.

[58] R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan, “Supervised hashing for image
retrieval via image representation learning,” in Proc. AAAI, vol. 1, 2014,
p. 2.

[59] K. Lin, J. Lu, C.-S. Chen, and J. Zhou, “Learning compact binary de-
scriptors with unsupervised deep neural networks,” in Proc. IEEE Conf.
Comput. Vision Pattern Recognit., 2016, pp. 1183–1192.

[60] C. Huang, C. C. Loy, and X. Tang, “Unsupervised learning of discrimi-
native attributes and visual representations,” in Proc. IEEE Conf. Comput.
Vision Pattern Recognit., 2016, pp. 5175–5184.

[61] H. Schütze, “Introduction to information retrieval,” in Proc. Int. Commun.
Assoc. Comput. Machinery Conf., 2008.

[62] G. Irie, Z. Li, X. M. Wu, and S. F. Chang, “Locally linear hashing for ex-
tracting non-linear manifolds,” in Proc. IEEE Conf. Comput. Vision Pattern
Recognit., 2014, pp. 2123–2130.

[63] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–
2324, Nov. 1998.

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on July 20,2020 at 14:15:18 UTC from IEEE Xplore. Restrictions apply.

774 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 22, NO. 3, MARCH 2020

[64] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Tech. Rep., Univ. Toronto, 2009.

[65] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic
representation of the spatial envelope,” Int. J. Comput. Vision, vol. 42,
no. 3, pp. 145–175, 2001.

[66] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: A novel image
dataset for benchmarking machine learning algorithms,” 2017, Preprints,
arXiv:1708.07747.

[67] T.-S. Chua et al., “NUS-WIDE: A real-world web image database from
National University of Singapore,” in Proc. ACM Int. Conf. Image Video
Retrieval, ACM, 2009, p. 48.

Chao Ma received the B.E. degree in automation sci-
ence and technology from Xi’an Jiaotong University,
Xi’an, China, in 2015. He is currently working to-
ward the Ph.D. degree with the Institute of Image
Processing and Pattern Recognition, Shanghai Jiao
Tong University, under the supervision of Prof. Jie
Yang. His research areas mainly include multimedia
hashing and machine learning.

Chen Gong received the B.E. degree from East China
University of Science and Technology (E- CUST),
Shanghai, China, in 2010, and dual doctoral de-
gree from Shanghai Jiao Tong University (SJTU),
Shanghai, China and University of Technology Syd-
ney (UTS), NSW, Australia, in 2016 and 2017, re-
spectively. Currently, he is a Full Professor with the
School of Computer Science and Engineering, Nan-
jing University of Science and Technology, Nanjing,
China. His research interests mainly include ma-
chine learning, data mining, and learning-based vi-

sion problems. He has authored or coauthored more than 50 technical papers at
prominent journals and conferences such as IEEE T-NNLS, IEEE T-IP, IEEE
T-CYB, IEEE T-CSVT, IEEE T-MM, IEEE T-ITS, CVPR, AAAI, IJCAI, ICDM,
etc. He also serves as the reviewer for more than 20 international journals such
as AIJ, IEEE T-NNLS, IEEE T-IP, and also the PC member of several top-tier
conferences such as ICML, AAAI, IJCAI, ICDM, AISTATS, etc. He received
the Excellent Doctorial Dissertation awarded by Shanghai Jiao Tong University
(SJTU) and Chinese Association for Artificial Intelligence (CAAI). He was also
enrolled by the “Summit of the Six Top Talents” Program of Jiangsu Province,
China, and the “Young Elite Scientists Sponsorship Program” of China Associ-
ation for Science and Technology.

Xiang Li received the B.E. degree in automation sci-
ence and technology from the Xi’an Jiaotong Univer-
sity, Xi’an, China, in 2017. She is currently working
toward the M.E. degree with the Institute of Image
Processing and Pattern Recognition, Shanghai Jiao
Tong University, Shanghai, China, under the supervi-
sion of Prof. Jie Yang. Her research interests mainly
include machine learning and computer vision with
respect to deep learning and image hashing.

Xiaolin Huang (S’10–M’12–SM’18) received the
B.S. degree in control science and engineering, and
the B.S. degree in applied mathematics from Xi’an
Jiaotong University, Xi’an, China, in 2006. In 2012,
he received the Ph.D. degree in control science and en-
gineering from Tsinghua University, Beijing, China.
From 2012 to 2015, he worked as a Postdoctoral re-
searcher with ESAT-STADIUS, KU Leuven, Leuven,
Belgium. After that he was selected as an Alexan-
der von Humboldt Fellow and is working in
Pattern Recognition Lab, the Friedrich-Alexander-

Universität Erlangen-Nürnberg, Erlangen, Germany. From 2016, he has been an
Associate Professor with the Institute of Image Processing and Pattern Recogni-
tion, Shanghai Jiao Tong University, Shanghai, China. In 2017, he was awarded
by “1000-Talent Plan” (Young Program). His current research interests include
machine learning and optimization.

Wei Liu received the M.Phil. and Ph.D. degrees
in electrical engineering from Columbia University,
New York, NY, USA, in 2012. He is currently a Re-
search Scientist with Tencent AI Lab, and holds an
adjunct faculty position with Rensselaer Polytechnic
Institute, Troy, NY, USA. In 2012, he was the Josef
Raviv Memorial Postdoctoral Fellow with the IBM
T. J. Watson Research Center, for one year. His cur-
rent research interests include machine learning, data
mining, computer vision, pattern recognition, and in-
formation retrieval.

Jie Yang received the Ph.D. degree from the De-
partment of Computer Science, Hamburg University,
Germany, in 1994. Currently, he is a Professor with
the Institute of Image Processing and Pattern Recog-
nition, Shanghai Jiao Tong University, Shanghai,
China. He has led many research projects (e.g., Na-
tional Science Foundation, 863 National High Tech.
Plan), had one book published in Germany, and au-
thored more than 200 journal papers. His major re-
search interests include object detection and recogni-
tion, data fusion and data mining, and medical image
processing.

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on July 20,2020 at 14:15:18 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

