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a b s t r a c t 

In recent years, there has been increasing demand for social security and identity authentication, which 

leads to the booming of many biometrics involved large-scale problems such as recognition, retrieval, 

and identification. In this case, traditional models are infeasible due to the limited capability for handling 

large-scale data. Therefore, hashing technique is becoming prevalent due to its low storage cost and fast 

query speed. Recently, researchers have shown that supervised hashing can achieve higher accuracy than 

unsupervised hashing by incorporating tag or label information of data for learning hashing function. 

However, existing supervised methods treat all training examples equally, ignoring the different impacts 

of various training examples on the learning process. As a result, their performance is not satisfactory un- 

der some practical situations. As an improvement, this paper proposes a new method called “Supervised 

Hashing with Informative Set Selection” (SHISS), which assumes that different training examples have 

different influence on the learning process, and their usage should follow a logic way during optimiza- 

tion. In particular, we propose two criteria, certainty and diversity, to evaluate the informativeness of the 

subsets of training examples and encourage the more informative subsets to be learned ahead of the less 

informative ones. The experiments on two typical image retrieval datasets and one face dataset demon- 

strate that the proposed SHISS obtains higher mean average precision and shows faster convergence rate 

compared with the state-of-the-art hashing methods. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

The use of biometrics for identity authentication has gained

ignificant popularity in various applications, such as intelligent

urveillance, boarder control, corporate governance, etc [4–6] . Bio-

etrics can be an ideal tool to automatically identify individuals

ased on their physiological (e.g., fingerprint, iris, palmprint, and

ein) and behavioral (e.g., voice, signature, and gait) characteris-

ics [15] . For example, in a face identification system, a query face

hould be compared with all gallery face images in the system.

herefore, the direct comparison by traditional exhaustive tech-

iques would be intractable to such large-scale face dataset due to

heir large computational and storage costs in the presence of the

igh-dimensional feature. Moreover, the examples belonging to the

ame class may appear quite differently in practical applications.

or example, although the face images in Fig. 1 represent the same

erson, they look very dissimilar due to different poses, lighting
∗ Corresponding authors. 
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onditions and facial expressions. At this time, hashing provides an

deal solution to find a high-level, compact and accurate represen-

ation of examples to understand their essential semantic informa-

ion. 

Existing hashing methods can be divided into two cate-

ories: data-independent and data-dependent methods. For data-

ndependent methods, such as locality-sensitive hashing (LSH)

8,17,18] , the hashing function is randomly generated without us-

ng any training data. For data-dependent methods, the hashing

unctions are learned from a set of training data, therefore data-

ependent methods are also called Learning to Hashing (L2H). As

his paper studies data-dependent methods, next we briefly review

ome representative hashing approaches belonging to this cate-

ory. L2H methods can be unsupervised, semi-supervised, or su-

ervised. 

Unsupervised data-dependent hashing methods mainly utilize 

he data distribution or the underlying manifold structure to de-

ign effective indexing schemes. For example, Weiss et al. [36] pre-

ented a spectral hashing (SH) algorithm in which the objec-

ive function was similar to Laplacian eigenmaps [1] . Gong et al.

11] proposed an iterative quantization (ITQ) algorithm that mini-

ized the binarization loss between hashing codes and the orig-
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Fig. 1. Face images of a single person. Note that these images are different in pose variations, lighting conditions, and facial expressions. 
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inal examples. Anchor graph hashing (AGH) [26] and inductive

manifold hashing (IMH) [31] mainly utilized the manifold learning

algorithm to learn hashing functions. 

Semi-supervised data-dependent hashing methods leverage

both supervised information and unsupervised information. For ex-

ample, Kulis and Darrell [20] proposed a binary reconstructive em-

bedding (BRE) algorithm that minimized the reconstruction error

between the learning Hamming distance and the original Euclidean

distance. Wang et al. [34] proposed a semi-supervised hashing

(SSH) method that minimized the empirical error on the labeled

data while maximized the entropy of the generated hashing bits

over unlabeled data. 

Supervised data-dependent methods employ supervised infor-

mation (e.g., labels or tags) of examples to obtain the discrimina-

tive hashing codes. For example, Liu et al. [25] proposed a kernel-

based supervised hashing (KSH) algorithm that required a limited

amount of label information, i.e. similar and dissimilar example

pairs. Zhang et al. [39] proposed a latent factor hashing (LFH) al-

gorithm to learn similarity-preserving binary codes based on the

latent factor model. Shen et al. [30] proposed a new supervised

hashing framework, where the learning objective was to generate

the optimal binary hash codes for linear classification. 

Recently, many deep learning algorithms have been proposed,

some of which have been successfully applied to hashing tasks

[3,23,24,37,40] . For example, Lin et al. [24] and Li et al. [23] utilized

convolutional neural networks (CNNs) [22] for supervised hash-

ing. Carreira-Perpinán and Raziperchikolaei [3] proposed a hash-

ing model with binary autoencoder, which sought to reconstruct

an image from the binary code produced by the hashing function. 

Among the above methods, supervised hashing has been inten-

sively used in various real-world applications because it achieves

very impressive accuracy with short hashing codes. However, ex-

isting supervised hashing methods treat all the training examples

equally when learning the hashing function, and thus the exam-

ples are used in an imperfect sequence. To be specific, during their

optimization, they simply select a subset of training examples at

random and then blindly learn from these examples without con-

sidering whether they are beneficial for the ongoing learning pro-

cess. For example, Zhang et al. [39] proposed a latent factor hash-

ing model (LFH) which is optimized via a stochastic learning solver

with linear-time complexity. In this stochastic learning process, the

examples are uniformly sampled from the whole training set to

form the batches for iterations. As a result, LFH does not consider

the influence of every example to the learning process. However,

the impacts of various training examples on establishing the hash-
ng function are quite different. For example, selecting the train-

ng examples far from potential decision boundary helps little on

fficiently deciding the accurate hashing function; picking up the

xamples all belonging to one class is harmful as in this case the

xamples are imbalanced and reveal very little class information.

ence, it is necessary to find a way to evaluate the “values” of ex-

mples so that they can be rearranged for the learning process. 

Similar to our motivation, some prior works [2,9,10,27] have

lso found that properly organizing the examples for learning

s critical to boosting the performance. Curriculum Learning [2] ,

hich is inspired by the cognitive process of humans and animals,

avors of learning simple examples first, and then gradually tak-

ng more complex examples into consideration [7,16] . Gong et al.

9,10] proposed a teaching-to-learn and learning-to-teach frame-

ork, which shows that the results of graph-based label diffusion

an be improved via a simple-to-difficult propagation sequence.

oshchilov et al. [27] developed an online batch selection method

o help stochastic gradient descent (SGD) focus on the most rele-

ant training examples according to their loss values. However, all

hese methods are not applicable to supervised hashing problems.

n supervised hashing, loss functions usually model the similari-

ies between different examples based on the Hamming distance,

herefore they cannot reflect the loss regarding every individual ex-

mple. Besides, above methods do not take measures to avoid the

lass imbalance issue, which is adverse for supervised hashing to

btain the satisfactory performance. 

Based on this consideration, we propose a novel hashing

ethod, dubbed “Supervised Hashing with Informative Set Selec-

ion” (SHISS), which aims to perform supervised hashing by es-

ablishing a sequence of sets of informative examples during the

earning process. Specifically, the informativeness of an example

et is evaluated by two criteria including “Certainty” and “Diver-

ity”. In particular, the certainty of a set is measured by the dis-

ances of its examples to the decision boundary, which depicts

ow certain the feature vectors of these examples are encoded into

he corresponding hashing codes. The diversity criterion evaluates

ow much class information is potentially included by a set of ex-

mples. Therefore, an informative set should be uncertain and di-

erse. The entire objective function of our model is then integrated

y such two criteria and can be optimized via the method of aug-

ented Lagrangian multiplier (ALM). The ability of the proposed

lgorithm is systematically evaluated on two typical natural image

atasets (i.e. CIFAR-10 [19] and MIR-FLICKR [13] ) and one challeng-

ng large-scale face dataset LFW [12,21] . Experimental results indi-

ate that the proposed algorithm outperforms the existing hashing
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lgorithms. This demonstrates that the proposed SHISS is effective

n obtaining compact and accurate hashing codes, and thus it is

uitable for various identity authentication applications. 

. Problem description 

Suppose we have a data collection X = { x i } N i =1 
, where x i ∈ R 

d 

s the d -dimensional feature vector of the i th example. Besides,

 ij denotes the available pairwise labels between examples, where

 i j = 1 means x i and x j are similar and s i j = 0 means x i and x j 
re dissimilar. The goal of hashing is to learn the hashing codes

 i ∈ {−1 , 1 } k ×1 for each x i with length k . Ideally, we hope that

he Hamming distance between b i and b j should be small when

 i j = 1 , while the Hamming distance should be large when s i j = 0 .

n general, we can write the hashing code as b i = sgn (W 

T x i ) =
gn (u i ) , where W ∈ R 

d×k denotes the projection matrix, u i denotes

he relaxed codes calculated as u i = W 

T x i , the element of b i is

 if the corresponding element of u i is greater than 0, and −1

therwise. Besides, we use the set S = { s i j } to include all pairs

f examples that are similar or dissimilar, and employ the matrix

 = [ b 1 , · · · , b N ] 
T ∈ {−1 , 1 } N×k to represent the hashing codes of all

 examples. 

In this paper, we use LFH model [39] to learn the hashing func-

ion as it achieves state-of-the-art performance. In this method, the

ikelihood F of the pairwise similarity between any two examples

s modeled as the function of the Hamming distance, which is: 

 = log p(U |S) 

= 

∑ 

s i j ∈S 
(s i j �i j − log (1 + e �i j )) − 1 

2 α
‖ U ‖ 

2 
F + c, (1) 

here �i j = 

1 
2 u 

T 
i 

u j , U = [ u 1 , · · · , u N ] 
T , α is a normalized hyper-

arameter that is set to a pre-computed optimal value, ‖ · ‖ F de-

otes the Frobenius norm of a matrix, and c is a constant term

ndependent of U . LFH then learns the optimal U by maximizing

 in Eq. (1) . The gradient and the Hessian matrix of the objective

unction F in Eq. (1) with respect to U i ∗ can be derived as: 

∂F 

∂ U 

T 
i ∗

= 

1 

2 

∑ 

j: s i j ∈S 
(s i j − a i j ) U 

T 
j∗

+ 

1 

2 

∑ 

j: s ji ∈S 
(s ji − a ji ) U 

T 
j∗ − 1 

α
U 

T 
i ∗, (2) 

∂ 2 F 

∂ U 

T 
i ∗∂ U i ∗

= −1 

4 

∑ 

j: s i j ∈S 
a i j (1 − a i j ) U 

T 
j∗U j∗

−1 

4 

∑ 

j: s ji ∈S 
a ji (1 − a ji ) U 

T 
j∗U j∗ − 1 

α
I , (3) 

here U i ∗ denotes the i th row of the matrix U . 

LFH defines H i as: 

 i = − 1 

16 

∑ 

j: s i j ∈S 
U 

T 
j∗U j∗ − 1 

16 

∑ 

j: s ji ∈S 
U 

T 
j∗U j∗ − 1 

α
I . (4)

t can be proved that 

∂ 2 F 

∂ U 

T 
i ∗∂ U i ∗

� H i , (5) 

here A � B denotes that A − B is a positive semi-definite matrix. 

Since directly optimizing U can be very time-consuming, LFH

hen constructs a lower bound of Eq. (1) and maximizes this bound

teratively. The lower bound 

˜ F (·) is defined as: 
˜ 
 (U i ∗) = F (U i ∗(t)) + (U i ∗ − U i ∗(t)) 

∂F 

∂ U 

T 
i ∗

(t) 

+ 

1 

2 

(U i ∗ − U i ∗(t)) H i (t)(U i ∗ − U i ∗(t)) T (6) 

here the variables with ( t ) denote their values in the t th iteration.

 can be iteratively updated by using the rule below: 

 i ∗(t + 1) = U i ∗(t) −
[

∂F 

∂ U 

T 
i ∗

(t) 

]T 

H i (t) −1 . (7)

From Eq. (7) , we see that for a set of N examples, LFH can only

pdate one row of U at one time, which is time-consuming when

 grows large. To handle the large-scale problems, LFH proposes

 variant of SGD method with linear-time complexity to solve this

odel. During the iteration t , LFH randomly selects M examples

rom the whole training set X to form the batch X t and then con-

tructs S t = { s i j } , where x i ∈ X t or x j ∈ X t . Therefore, H i defined in

q. (4) can be simplified as: 

 i = −1 

8 

∑ 

j: s i j ∈S t 
U 

T 
j∗U j∗ − 1 

α
I . (8)

or all { i : x i / ∈ X t } , the associated H i are kept unchanged, therefore

FH computes H 

−1 
i 

of these examples in a preprocessing step and

pdates U i ∗ through only once calculation. By doing so, LFH can

fficiently update U with acceptable computational cost. 

From above description, we see that X t is randomly generated

ithout considering the informativeness of different exam ples, so

ur goal is to improve the optimization process of LFH by advanc-

ng the most informative examples among the entire training set

or learning, such that the selected examples are consistently help-

ul for efficient and accurate supervised hashing. 

. Selection of informative examples 

In this section, we discuss the details of our SHISS method

or deciding the most informative example set for optimization.

pecifically, we utilize certainty and diversity criteria to pick up

he informative set of examples. 

.1. Certainty 

Recall that in our supervised hashing model, the binary hashing

ode b i is obtained by thresholding a projection of an example x i ,

hich is: 

 i = sgn (W 

T x i ) 

= sgn (w 

T 
1 x i , · · · , w 

T 
k x i ) 

T 

= [ sgn (u 

1 
i ) , · · · , sgn (u 

k 
i )] T , (9) 

here W = [ w 1 , w 2 , · · · , w k ] ∈ R 

d×k , and u 

j 
i 

is the j th element of

 i . Therefore, the linear hashing function based on W can be

iewed as k decision hyperplanes, and each of them is used to gen-

rate one bit hashing code. More precisely, if a data point sits on

he positive side of a decision hyperplane, its corresponding hash-

ng bit is 1, otherwise -1. Inspired by [35,41] , the certainty of an

xample for obtaining a hashing code can be measured by its dis-

ance to the associated hyperplane. Consequently, for the i th ex-

mple, its distance to the j th hyperplane can be calculated as: 

is (x i ) j = 

| w 

T 
j 
x i | 

‖ w j ‖ 2 

= 

| u 

j 
i 
| 

‖ w j ‖ 2 

. (10)

e can find that the shorter the distance of an example to a hy-

erplane, the more uncertain it is. Fig. 2 shows an extreme case,

here an example lies exactly on a decision hyperplane, so it is

ighly uncertain to decide such example’s corresponding bit as 1

r −1. 
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Fig. 2. An illustration of certainty criterion in R 2 space with two classes and a de- 

cision hyperplane. Red crosses represent the examples on the negative side of de- 

cision hyperplane with hashing bit -1, green dots denote the examples on the pos- 

itive side with hashing bit 1. Besides, an example x p lies exactly on the decision 

hyperplane, and thus it is quite uncertain to decide its hashing bit as 1 or -1. (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 3. A setup in R 2 with four classes and two hashing functions f 1 and f 2 . The 

points with different colors belong to different classes and the selected points have 

been circled in black. Fig. 3 (a) shows that if four points from two classes are se- 

lected, both f 1 and f 2 partition the entire feature space into two parts. Fig. 3 (b) 

reveals that if diverse examples are chosen, the four classes will be successfully 

detected by f 1 and f 2 . 
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Note that for all examples, the values of ‖ w j ‖ 2 are the same, so

we may directly use dis (x i ) j = | u 

j 
i 
| to model the distance of x i to

the j -th hyperplane. Since there are totally k decision hyperplanes,

the certainty c i of an example x i is defined by: 

c i = 

( 

k ∑ 

j=1 

dis (x i ) 
2 
j 

) 

1 
2 

= ‖ u i ‖ 2 . (11)

Based on Eq. (11) , the certainty of the selected set of examples

(denoted by X s ) can be calculated as: 

ertainty (X s ) = 

∑ 

x i ∈X s 
c i . (12)

3.2. Diversity 

Jiang et al. [14] reveal that diversity among examples should be

deployed to enrich the information carried out by an example set.

In other words, the selected examples should be sufficiently dis-

similar to each other to alleviate the information redundancy for

learning. This is quite similar to the cognitive mechanism of hu-

mans, who need to learn many different subjects to form a com-

prehensive knowledge system. 

For better illustration, we use a toy example to demonstrate the

superiority of selecting diverse data points. As shown in Fig. 3 , the

entire dataset contains the examples from four classes. Suppose we
hoose the four examples illustrated in Fig. 3 (a), the hashing func-

ion f 2 will play the same role as f 1 in deciding the hashing codes

f the four data points. In contrast, if the diverse examples are se-

ected as shown in Fig. 3 (b), f 1 and f 2 altogether will assign dif-

erent 2-bit hashing codes to the four examples belonging to four

ifferent classes. 

Based on this consideration, we propose to measure the diver-

ity of a set according to the pairwise similarities of its included

xamples. To be specific, the similarity d ij between x i and x j is de-

ned as: 

 i j = 

u 

T 
i 

u j 

‖ u i ‖ 2 ‖ u j ‖ 2 

, (13)

hen the diversity of the selected set of examples is calculated as:

i v ersity (X s ) = 

∑ 

x i , x j ∈X s 
d i j . (14)

Note that here we do not use x i and x j in the original feature

pace to characterize the pairwise similarity as in [38] . Instead, we

se the projection results of x i and x j (i.e. u i and u j ) in hashing

pace to assess the similarity between two examples, as this rep-

esentation is concise, high-level and also related to the hashing

cenario. 

.3. Overall objective and optimization 

The entire objective function for example selection integrates

he certainty component in Eq. (12) and the diversity component

iven in Eq. (14) , which is: 

in 

X s 

∑ 

x i ∈X s 
c i + β

∑ 

x i , x j ∈X s 
d i j , (15)

here β > 0 is a trade-off parameter. By solving the above opti-

ization problem, the most informative set X s of examples can be

ound. 

However, Eq. (15) is symbolic and cannot be solved directly. To

ormalize the objective, we introduce an indicating vector μ∈ {0,

} N × 1 in which the i th element μi specifies whether or not the

orresponding example should be selected, i.e., μi = 1 when x i is

elected and μi = 0 otherwise. Eq. (15) can then be rewritten as: 

in 

μ
μ T C d + βμT D s μ

s.t. μ ∈ { 0 , 1 } N×1 , 

μ T 1 = L, (16)

here C d = [ c 1 , c 2 , · · · , c N ] 
T is the data certainty vector and D s =

 d i j } N×N is the data diversity matrix, 1 is an all-one vector, and

he constraint μT 1 = L means that we wish to select exact L ( L =
 × T , where M is the batch size, and T is the maximal number of

terations.) examples to form the most informative set X s . 

Directly solving the problem Eq. (16) is intractable due to the

nteger constraint that will make the problem NP-hard. Therefore,

e relax the constraint to the continuous constraint 0 ≤μ≤ 1 , and

hus Eq. (16) can be reformulated as: 

in 

μ
μ T C d + βμT D s μ

s.t. 0 ≤ μ ≤ 1 , 

μ T 1 = L. (17)

q. (17) can be easily solved by the method of ALM. The main idea

f ALM is to transform a constrained optimization problem into

 non-constrained problem by incorporating penalty terms. Com-

ared with the traditional Lagrangian method, ALM adds an addi-

ional quadratic penalty function to the objective, which leads to

aster convergence rate and lower computational cost. 
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Algorithm 2 Learning algorithm for SHISS. 

Input: X , S , ε, M, T 

1: Initialize U by performing PCA on X . 

2: Compute C d and D s by using Eqs.(11) and (13). 

3: Solve the optimization problem in Eq.(17) to form the optimal 

set X s . 

4: for t = 1 → T do 

5: Update U in LFH with M examples by using Eq. (7). 

6: Compute loss function F in Eq.(1) using the updated U . 

7: Terminate the iterative process when the change of F is 

smaller than ε. 

8: end for 

9: B = sgn (U ) . 

Output: Relaxed codes U , hashing codes B . 
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The augmented Lagrangian function of Eq. (17) is: 

L ( μ , λ1 , λ2 , λ3 , T 1 , T 2 , σ ) 

= μ T C d + βμT D s μ + 

σ

2 

‖ μ − T 1 ‖ 

2 
2 − λT 

1 ( μ − T 1 ) 

+ 

σ

2 

‖ 1 − μ − T 2 ‖ 

2 
2 − λT 

2 (1 − μ − T 2 ) 

+ 

σ

2 

( μT 1 − L ) 2 − λ3 ( μ
T 1 − L ) , (18) 

here λ1 , λ2 , λ3 are the Lagrangian multipliers, T 1 , T 2 are the non-

egative auxiliary vectors, and σ is the penalty coefficient. 

The derivative of the augmented Lagrangian function L ( μ, λ1 ,

2 , λ3 , T 1 , T 2 , σ ) with respect to μ is calculated as follow: 

∂L 

∂ μ
= (2 βD s + 2 σ I + σ1 

T 1 ) μ

−[ σ (T 1 − T 2 + 1 + L 1 ) + λ1 − λ2 + λ3 1 − C d ] . (19) 

et 

 = 2 βD s + 2 σ I + σ1 

T 1 , (20)

nd 

 = σ (T 1 − T 2 + 1 + L 1 ) + λ1 − λ2 + λ3 1 − C d , (21)

nd then the derivative of Lagrangian function with respect to μ
an be rewritten as: 

∂L 

∂ μ
= A μ − p . (22) 

y setting the value of Eq. (22) to zero, the indicating vector μ is

pdated by: 

= A 

−1 p . (23) 

The entire iterative ALM process for solving Eq. (17) is summa-

ized in Algorithm 1 , which is guaranteed to converge according to

lgorithm 1 The algorithm for solving Eq. (17) . 

nput: C d , D s , L , β , σ = 1 , ρ = 1 . 5 , iter = 0 

1: repeat 

2: // Compute T 1 , T 2 
3: T 1 = max (0 , μ − λ1 /σ ) ; 

4: T 2 = max (0 , 1 − μ − λ2 /σ ) ; 

5: // Update μ by using Eq.(23) 

6: μ := A 

−1 p ; 

7: // Update variables 

8: λ1 := max (0 , λ1 − σμ) ; 

9: λ2 := max (0 , λ2 − σ (1 − μ)) ; 

10: λ3 := λ3 − σ ( μT 1 − L ) ; 

11: σ := min (ρσ, 10 10 ) ; 

12: it er := it er + 1 ; 

13: until Convergence 

utput: μ that minimizes Eq.(17) 

29] . After obtaining the solution of Eq. (17) , we select L examples

ith the largest μ to form the optimal set X s , in which the exam-

les are sorted by the value of μ in descending order. 

The full SHISS algorithm is summarized in Algorithm 2 . Firstly,

e initialize U by performing PCA on X , which is common in

any popular hashing methods such as ITQ [11] and LFH [39] . Sec-

ndly, we solve the optimization problem in Eq. (17) to form the

ptimal set X s . Next, we sequentially select M examples from X s to

pdate U . Finally, the hashing codes B are obtained by binarizing

he relaxed codes U . 
.4. Out-of-sample extension 

In order to perform the retrieval, the binary code b q for a query

 q need to be computed. We achieve this by finding the projection

atrix W ∈ R 

d×k that maps x to u in the following way: 

 = W 

T x . (24)

he liner regression is used to train W over the training set. The

quared loss L e with regularization term is shown below: 

 e = ‖ U − XW ‖ 

2 
F + λe ‖ W ‖ 

2 
F . (25)

he optimal W can be calculated as: 

 = (X 

T X + λe I ) 
−1 X 

T U . (26)

. Experiments 

This section presents the experimental results and demon-

trates the effectiveness of the proposed approach. We start by in-

roducing the datasets and setting, and then provide the compari-

on results of our method with existing approaches. 

.1. Dataset and setting 

We demonstrate the effectiveness of our proposed method by

onducting experiments on two typical image datasets (CIFAR-10

19] and MIR-FLICKR [13] ), and one challenging and large-scale face

ataset LFW [12,21] . As a subset of well-known 80M tiny image

ollection [32] , CIFAR-10 contains 60,0 0 0 images which are catego-

ized into 10 classes (6,0 0 0 images per class) and the original size

f the contained color images is 32 × 32. It is a single-label dataset

n which each image belongs to one of ten classes. MIR-FLICKR

ontains 25,0 0 0 images, and it is a multi-label dataset in which

ach image is annotated with one or multiple class labels from

8 classes. LFW is a challenging and large-scale face dataset de-

igned for studying the problem of unconstrained face recognition.

he dataset contains more than 13,0 0 0 images of faces collected

rom the web and each face has been labeled with the name of

he person pictured. In our experiment, only persons represented

y over 10 images in the dataset are used (4,272 images from 154

ersons). Each image is cropped and normalized to 250 × 250. 

For all datasets, we represent each image by a 512-dimensional

IST vector [28] . We perform normalization on the feature vectors

f all examples to make each dimension have zero mean and equal

ariance. Two images are considered to be semantically similar if

hey share the same class label, otherwise they are dissimilar. As

n LFH [39] , we randomly choose 10 0 0 examples as validation set

nd 10 0 0 examples as test set for all datasets. The rest of examples

orm the training set. We run the compared methods ten times
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Table 1 

MAP results of various compared methods. The best MAP under each setting is shown in boldface. 

Methods CIFAR-10 MIR-FLICKR LFW 

8-bits 16-bits 32-bits 64-bits 8-bits 16-bits 32-bits 64-bits 8-bits 16-bits 32-bits 64-bits 

SHISS 0 .3638 0 .4925 0 .5417 0 .5932 0 .6725 0 .6806 0 .6968 0 .7038 0 .1482 0 .1828 0 .1891 0 .2085 

LFH 0 .3372 0 .4532 0 .5176 0 .5678 0 .6402 0 .6590 0 .6699 0 .6770 0 .1312 0 .1651 0 .1658 0 .1955 

BA 0 .1349 0 .1458 0 .1500 0 .1553 0 .5678 0 .5458 0 .5476 0 .5597 0 .0308 0 .0355 0 .0373 0 .0419 

SDH 0 .2652 0 .3964 0 .4145 0 .4346 0 .6031 0 .6066 0 .6096 0 .6148 0 .1037 0 .1470 0 .2058 0 .2293 

KSH 0 .2334 0 .2662 0 .2933 0 .3128 0 .5702 0 .5744 0 .5701 0 .5742 0 .0412 0 .0423 0 .0470 0 .0452 

ITQ 0 .1388 0 .1105 0 .1212 0 .1216 0 .4427 0 .4381 0 .4591 0 .4643 0 .0264 0 .0283 0 .0293 0 .0299 

PCAH 0 .1562 0 .1406 0 .1226 0 .1207 0 .4690 0 .4576 0 .4601 0 .4555 0 .0269 0 .0288 0 .0299 0 .0311 

SH 0 .1601 0 .14 4 4 0 .1185 0 .1226 0 .4696 0 .4691 0 .4581 0 .4550 0 .0271 0 .0261 0 .0272 0 .0282 

LSH 0 .1511 0 .1249 0 .1257 0 .1210 0 .4646 0 .4645 0 .4617 0 .4539 0 .0259 0 .0278 0 .0287 0 .0294 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c  

w  

s

 

S  

(  

h  

t  

t

4

 

f  

o  

o  

b  

b  

p  

o  

o  

r

 

p  

d  

e  

F  

A  

f

4

 

o  

t  

fi  

a  

c  

c  

l  

e  

i  

l  

b  

e

 

fi  

a  

o  

w  

s  

i  
with different splits of training / validation / test sets, and the re-

ported accuracies are calculated as the mean value of the outputs

of these ten independent runs. 

We compare our SHISS method with several state-of-the-art

hashing methods, which include: 

• Data-independent method: locality-sensitive hashing (LSH) [8] ; 
• Unsupervised hashing methods: spectral hashing (SH) [36] ,

principal component analysis based hashing (PCAH) [33] , iter-

ation quantization (ITQ) [11] ; 
• Supervised hashing methods: kernel-based supervised hashing

(KSH) [25] , supervised hashing with latent factor models (LFH)

[39] , supervised discrete hashing (SDH) [30] . 
• Deep hashing method: hashing with binary autoencoders (BA)

[3] . 

The source codes of all the baselines are provided by the cor-

responding authors. For LFH, the batch size is set to M = 100 on

CIFAR-10 and MIR-FLICKR, and M = 50 on LFW. For KSH, the num-

ber of support vectors is 300 as suggested by [25] . For our SHISS,

the trade-off parameter is set to β = 1 on all three datasets. The

batch size is set to M = 100 on CIFAR-10 and MIR-FLICKR, and

M = 50 on LFW. The reasons will be explained in Section 4.4 . All

experiments are conducted on a workstation with Intel Xeon E5

CPU @3.70 Ghz and 16GB RAM. 

We report the experimental results using Mean Average Preci-

sion (MAP). MAP is a widely used metric for evaluating the per-

formance of hashing methods. For a query q , all the points in the

training set are ranked according to the Hamming distance be-

tween their hashing codes and the query’s. The average precision

AP ( q ) is then defined as: 

AP (q ) = 

1 

L q 

R ∑ 

r=1 

P q (r) δq (r) , (27)

where L q is the number of groundtruth neighbors in the ranked

list, P q ( r ) is the precision of the top r results, and δq (r) = 1 if the

r -th result is the real neighbor and 0 otherwise. 

4.2. Effect of informative set selection 

By comparing the MAP results of SHISS and LFH shown in

Table 1 , we find that by carefully selecting the most informative

examples for optimization, our method performs better than LFH

with random example selection. This convincingly demonstrates

the effectiveness of our informative example selection strategy by

considering both certainty and diversity. 

Besides, since SHISS improves the iterative optimization process

of LFH, we also compare the convergence rates of the two meth-

ods. Specifically, in Fig. 4 , we plot the convergence curves of SHISS

and LFH for generating 16-bit hashing codes on all three datasets.

It can be observed that SHISS converges much faster than LFH. This

is because the selected examples with small certainty are usually
lose to the potential decision boundary, so updating with them

ill help the iterative optimization process converge to a critical

olution quickly. 

Moreover, we also present the variations of MAP output by

HISS and LFH on the validation set during optimization process

see Fig. 5 ). We find that due to the example selection, SHISS yields

igher MAP than LFH when the iteration proceeds, which reflects

hat the hashing codes determined by SHISS can faithfully preserve

he real similarity relationship among examples. 

.3. Results 

We perform the MAP results of compared methods with dif-

erent code lengths on three datasets in Table 1 . We can find that

ur SHISS method consistently outperforms all the other baselines

n CIFAR-10 and MIR-FLICKR. On LFW dataset, SHISS performs the

est with 8-bit and 16-bit hashing codes compared with other

aselines. When the number of hashing bits is 32 and 64, SDH

erforms the best on LFW, but SHISS still outperforms other meth-

ds significantly. These results demonstrate the remarkable ability

f SHISS for obtaining better hashing function and preserving the

eal similarity relationship among examples. 

Furthermore, in order to illustrate the effectiveness of SHISS, we

resent the face retrieval results with 16-bit binary codes on LFW

ataset. The top ten images for a query returned by four differ-

nt hashing methods (e.g., SHISS, LFH, SDH, and ITQ) are shown in

ig. 8 . The incorrect retrieval results are outlined in red rectangles.

s we can see, our SHISS method is able to find the most relevant

ace images when compared with other hashing methods. 

.4. Parameter sensitivity 

In this section, we study the impacts of batch size M and trade-

ff parameter β on the performance of SHISS. We firstly examine

he influence of M on the MAP output by SHISS. To this end, we

x β to 1 and vary M from 10 to 100 on CIFAR-10 and MIR-FLICKR,

nd vary M from 10 to 50 on LFW. The obtained MAPs with 16-bit

odes are shown in Fig. 6 . We observe that the performances in-

rease as the batch size M increases on all datasets. This is because

arge M implies that SHISS incorporates many examples for one it-

ration, so the performance of SHISS will be improved. However,

f M is too large, which means that many examples are to be se-

ected, the selection process (i.e. the optimization of Eq. (17) ) will

e very time-consuming. Therefore, we make a trade-off between

fficiency and MAP, and set M as indicated in Section 4.1 . 

In order to investigate the impact of the selection of β to the

nal performance, we fix M = 100 on CIFAR-10 and MIR-FLICKR,

nd M = 50 on LFW. We then vary β from 0.01 to 100. The change

f the obtained MAP on all three datasets are reported in Fig. 7 ,

hich reveals that the performance of SHISS is not sensitive to the

election of β , so we simply set this parameter to 1 as introduced

n Section 4.1 as this parameter in our method can be easily tuned.
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Fig. 4. Convergence curves of LFH and SHISS with 16 hashing bits. (a) is CIFAR-10. (b) is MIR-FLICKR. (c) is LFW. 

Fig. 5. The MAP variations of LFH and SHISS during the iterations. (a) is CIFAR-10. (b) is MIR-FLICKR. (c) is LFW. 

Fig. 6. MAP results obtained under different batch sizes. (a) is CIFAR-10. (b) is MIR-FLICKR. (c) is LFW. 

Fig. 7. Parameter sensitivity of β . (a) is CIFAR-10. (b) is MIR-FLICKR. (c) is LFW. 
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Fig. 8. Face retrieval results with 16-bit hashing codes on the LFW dataset, where the incorrect retrieval results are marked by red rectangles. (a) SHISS; (b) LFH; (c) SDH; 

(d) ITQ. 
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5. Conclusion 

This paper proposes a novel supervised hashing method named

“Supervised Hashing with Informative Set Selection” (SHISS). Dif-

ferent from the existing supervised methods that randomly select

examples in each iteration, SHISS selects the most informative sub-

set of training examples for obtaining better hashing functions. Our

method is simple, efficient, and effective, and the experiments on

three typical datasets demonstrate that SHISS achieves very en-

couraging performance as well as significantly boost the conver-

gence speed. 

Note that the proposed SHISS is a general hashing method.

Therefore, in the future, we plan to apply SHISS to other iden-

tity authentication systems with different biometric characteristics

such as gait, palmprint, and iris. 
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