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Abstract—Real-world data may contain a considerable amount of noisily labeled examples, which usually mislead the training
algorithm and result in degraded classification performance on test data. Therefore, Label Noise Learning (LNL) was proposed, of
which one popular research trend focused on estimating the critical statistics (e.g., sample mean and sample covariance), to recover
the clean data distribution. However, existing methods may suffer from the unreliable sample selection process or can hardly be applied
to multi-class cases. Inspired by the centroid estimation theory, we propose Per-Class Statistic Estimation (PCSE), which establishes
the quantitative relationship between the clean (first-order and second-order) statistics and the corresponding noisy statistics for every
class. This relationship is further utilized to induce a generative classifier for model inference. Unlike existing methods, our approach
does not require sample selection from the instance level. Moreover, our PCSE can serve as a general post-processing strategy
applicable to various popular networks pre-trained on the noisy dataset for boosting their classification performance. Theoretically, we
prove that the estimated statistics converge to their ground-truth values as the sample size increases, even if the label transition matrix
is biased. Empirically, we conducted intensive experiments on various binary and multi-class datasets, and the results demonstrate that
PCSE achieves more precise statistic estimation as well as higher classification accuracy when compared with state-of-the-art
methods in LNL.
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1 INTRODUCTION

THE training of modern machine learning or pattern
recognition models usually relies heavily on large-

scale datasets with accurate label annotations. However,
in many practical applications, acquiring high-quality la-
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bels for training data can be challenging due to various
subjective or objective factors such as the limitation of hu-
man knowledge, the measurement error of instruments, the
unreliable automatic labeling processes, etc. The previous
study [35] revealed that label noise even exists in many well-
curated datasets such as CIFAR-10, CIFAR-100 [24], and Ima-
geNet [8]. It has also been shown that deep neural networks
can easily be misled by such noisily labeled examples, lead-
ing to dramatic performance degradation [54]. Therefore,
developing robust Label Noise Learning (LNL) algorithms
is highly demanded in various real-world applications.

The existing methods for handling label noise can be
roughly classified into three categories, namely sample se-
lection based methods, robust loss function design, and
statistic estimation based methods [6], [41]. Among them,
sample selection aims to pick up clean examples or remove
noisy examples from the original training set. Representa-
tive methods include MentorNet [22], Co-teaching [18], and
Co-teaching+ [53]. However, most sample selection based
methods cannot theoretically guarantee the label correctness
of selected clean examples, so they can hardly obtain stable
performance in practical uses. Therefore, the second line of
research focuses on designing robust loss functions for tack-
ling noisy labels. Representative methods are Generalized
Cross Entropy (GCE) [57], Determinant based Mutual In-
formation (DMI) [50], Symmetric Cross Entropy (SCE) [43],
and Active Passive Loss (APL) [32]. Nevertheless, the above
two types of methods do not explicitly characterize the
generation process of the label noise, so they inevitably
become weak in some complicated noisy scenarios [6].

The third trend of research is methods based on esti-
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Fig. 1. Sample mean estimations output by RoG and our PCSE, where
the empirical mean of the observed noisy dataset is also illustrated. The
number of examples is 1000 and the noise rate is 30%. The circles
represent clean examples, while the triangles represent noisy examples.
The colors of data points indicate the observed labels (i.e., Ỹ throughout
this paper), and the colors of the shaded areas indicate the ground-truth
labels of instances. Different markers represent different methods. Their
estimation errors regarding positive class based on the Euclidean dis-
tance are also shown along the names of different methods. This figure
suggests that our PCSE method achieves more accurate estimations on
per-class sample mean than RoG.

mation of some statistics. These methods can be further
partitioned based on the estimated statistics such as the
noise transition matrix [29], [30], [46], [51], [52], dataset cen-
troid [9], [15], [16], [36], and mean/covariance of data [12],
[25]. In transition matrix estimation methods, the transi-
tion matrix consists of label flip rates of pairwise classes,
which approximates the probabilities that each ground-truth
label converts to other incorrect ones. Such a matrix can
be utilized to estimate the clean class prior [9], [12], [30]
and learn statistically consistent classifiers [37], [52]. To this
end, plenty of methods have been proposed to estimate
the transition matrix, e.g., Importance Reweighting [30], T -
revision [46], VolMinNet [29], ROBOT [52], and Total Varia-
tion Regularization [56]. For centroid estimation methods,
a series of methods [9], [11], [15], [16], [36] decompose
the empirical loss into two parts, one of which is label-
independent while the other is label-dependent. Then the
learning objective is to estimate the centroid of the clean
dataset by directly utilizing the noisy centroid and a transi-
tion matrix. Among them, Class-Wise Denoising (CWD) [15]
proposed a global centroid estimator on the entire training
set based on class-wise transformation, which was proved to
be statistically more efficient than the estimator of Labeled
Instance Centroid Smoothing (LICS) [11].

However, the above methods usually directly estimate
one global centroid over the whole training set, so the
local statistical property inherited by each class is ignored.
To the best of our knowledge, there are only two stud-
ies devoted to estimating the unbiased sample mean and
covariance. Specifically, Noise Estimation Statistics with
Clusters (NESC) [12] proposed unbiased estimators using
noisy first- and second-order statistics. However, this ap-
proach was only designed for binary classification and
can hardly be applied to multi-class cases. Besides, Robust
Generative (RoG) classifier [25] assumes that both clean
and noisy examples for each class follow the isotropic
Gaussian distribution [4], and the noisy examples are more

widely scattered than the clean examples. Based on this as-
sumption, the approximate Minimum Covariance Determi-
nant [38] (MCD) estimators were then adopted to estimate
class-wise statistics. Nevertheless, the Gaussian distribution
assumption cannot be necessarily satisfied in lots of real-
world data, and the effectiveness of RoG may depend on
the reliability of the sample selection process.

In view of the above problems, we propose a new
method called Per-Class Statistics Estimation (PCSE) to
obtain unbiased estimators for per-class statistics in multi-
class situations. Inspired by [9], which only estimates a
single global centroid on the entire dataset, we further
decompose the mathematical expectation of such global
centroid into a series of conditional expectations of the mean
conditioned on each class. Subsequently, the quantitative re-
lationship between the noisy mean and clean mean (as well
as the relationship between the noisy and clean covariances)
within each class can be successfully established. Thanks
to the broad generality of such a quantitative relationship,
our PCSE makes full use of all the examples, and there
is no need to identify the clean examples from instance
level. Therefore, the unreliable instance selection process
widely used in existing LNL approaches [17], [18], [25]
can be avoided. We utilized a toy dataset to showcase the
superiority of our PCSE in estimating clean statistics com-
pared with RoG and empirical estimations derived directly
from the noisy dataset. The sample means estimated by
different methods are shown in Fig. 1, where the sample
means estimated by PCSE are clearly more accurate than
those estimated by other strategies. After obtaining the
estimation results for these key statistics, we follow the
common practice [25] and also apply Gaussian Discriminant
Analysis (GDA) [19] to construct a generative classifier for
clean label inference. Similar to RoG [25], our method can
also be used as a post-processing strategy for boosting the
classification performance of various existing label noise
learning methods such as Co-teaching [18].

Theoretically, we derive error upper bounds for the
proposed estimators of the first- and second-order statistics,
which reveals that our estimation results effectively con-
verge to the corresponding true values with the increase
of the sample size. The empirical results across different
datasets also demonstrate that the estimation errors of our
PCSE are lower than those of NESC and RoG. Finally,
the experiments on synthetic and real-world noisy datasets
indicate that our PCSE can achieve higher classification
accuracy than the state-of-the-art LNL algorithms in both
binary and multi-class cases.

In summary, we propose a novel approach called PCSE
to obtain unbiased estimators for per-class statistics in the
context of multi-class label noise learning. Here, it should be
highlighted that our PCSE does not require sample selection,
and thereby it is sample-efficient, and it can handle both
binary and multi-class noisy scenarios. Moreover, it is prov-
able that the estimated statistics by our method converge to
their ground-truth values as the sample size increases, even
if the noise transition matrix is slightly biased.

Before delving into details, we highlight the main contri-
butions of our paper in three folds:
• Algorithmically, we propose PCSE, which conducts per-

class estimation for both the mean and covariance to fully
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characterize the data distribution of different classes.
• Theoretically, we are the first to provide estimation error

bounds of per-class statistics for multi-class classification
under noisy supervision.

• Empirically, we conducted intensive experiments on syn-
thetic and real-world noisy datasets, which demonstrate
that PCSE outperforms existing methods on both classifi-
cation accuracy and the precision of estimated statistics.

The rest of this paper is organized as follows. In Sec-
tion 2, we review related works on learning under label
noise. In Section 3, we introduce necessary notations and
useful preliminary knowledge, which is followed by Sec-
tion 4 that presents the proposed method in detail. The-
oretical analyses and experimental results are provided in
Section 5 and Section 6, respectively. Finally, we conclude
our paper in Section 7.

2 RELATED WORK

In this section, we review three major types of existing LNL
methods, including sample selection based methods, robust
loss function design, and statistic estimation based methods.

2.1 Sample Selection Based Methods

Sample selection based methods aim to select clean ex-
amples from the noisy dataset for reliable classifier training.
Collaborative learning and co-training have been widely
adopted by this type of method. Due to the memoriza-
tion effect [1] of Deep Neural Networks (DNNs), these
methods regard examples with small loss values as clean
ones during training. A representative approach is Co-
teaching [18], which trains two networks collaboratively,
and each network exchanges its small-loss examples with its
peer network for updating network parameters. After that,
Co-teaching+ [53] was proposed, which further employs the
disagreement strategy of decoupling when compared with
the original Co-teaching. Meanwhile, Joint Training with
Co-Regularization (JoCoR) [44] reduces the inconsistency
between two networks via the co-regularization technique,
and a joint loss is utilized to select small-loss examples
so that the error from the biased selection would not be
accumulated in a single network. Moreover, some hybrid
models were proposed to combine sample selection with
other techniques, such as semi-supervised learning [27],
data augmentation [34], and label correction [3], [27], further
improving the reliability of the sample selection results.

2.2 Robust Loss Function Design

Since sample selection based methods usually fall short
of the theoretical guarantee and empirical guidance on clean
data selection, they cannot always obtain stable perfor-
mance on lots of real-world data. Therefore, the second line
of research focuses on designing risk-consistent loss func-
tions for tackling noisy labels. For example, Ghosh et al. [14]
proposed a sufficient condition for robust loss functions and
proved the robustness of the Mean Absolute Error (MAE)
loss. However, since MAE treats every example equally (re-
flected in the gradient), it may incur difficulty in optimiza-
tion when complicated data are involved. Therefore, Zhang
et al. [57] proposed the Generalized Cross Entropy (GCE)
loss, which is an extension of Cross Entropy (CE) and

MAE. Recently, some other loss functions, such as Active
Passive Loss (APL) [32], Taylor-CE [10], Peer Loss [31], and
Regularly Truncated M-estimators [47], are also proved to be
noise-robust under certain assumptions. However, this type
of methods lacks explicit characterization of the generation
process of label noise, leading to inherent limitations in
addressing complex noise scenarios [6].

2.3 Statistic Estimation Based Methods

The third trend of research can be summarized as the
statistic estimation based methods. These methods target
to recover clean data distribution by estimating some crit-
ical statistics such as transition matrix [5], [29], [30], [46],
[51], [52], [56], dataset centroid [9], [15], [16], [36], and the
mean/covariance of data [12], [25]. The methods based on
transition matrix estimation usually aim to learn statistically
consistent classifiers [37], [52], and the critical task is to
estimate the transition matrix. To this end, Liu et al. [30]
proposed to explore anchor points for calibrations, which
are defined as examples that belong to a specified class
almost surely. Besides, Li et al. [29] proposed the Sufficiently
Scattered Assumption, which is less stringent when com-
pared with the Anchor Point Assumption.

Another line of research estimates some critical statistics
regarding the whole dataset, such as the centroid, mean, and
covariance, and this type of method is usually combined
with the loss factorization technique. For centroid estima-
tion, the common practice is to decompose the loss into two
parts, one of which is label-independent while the other one
is label-dependent [9], [11], [15], [16], [36]. Then the problem
is transformed into that of estimating the centroid of the
clean dataset by utilizing the noisy one and a transition
matrix. Representative methods include Labeled Instance
Centroid Smoothing (LICS) [11], µSGD [36], and Centroid
Estimation with Guaranteed Efficiency (CEGE) [16]. How-
ever, they mainly focus on the binary classification. In order
to handle label noise in the multi-class situation, Ding et
al. [9] extended LICS and CEGE by defining a new form
of centroid, so that the global centroid over the multi-class
dataset can be consequently estimated. Recently, Gong et
al. [15] proposed Class-Wise Denoising (CWD), which esti-
mates the centroid of the entire training set by handling the
label noise via a class-by-class way. This method was proved
to be statistically more efficient than LICS [11]. However, the
above methods primarily aim at estimating a single global
centroid over the entire training set, so the local statistical
property inherited by each class is usually overlooked.

To the best of our knowledge, there are only two existing
studies attempting to estimate unbiased per-class statis-
tics (i.e., the sample mean and sample covariance). Specifi-
cally, Noise Estimation Statistics with Clusters (NESC) [12]
proposed unbiased estimators of the first- and second-order
statistics based on the observed noisy data. However, this
approach can hardly deal with multi-class cases. Besides,
Robust Generative Classifier (RoG) [25] estimated per-class
statistics from the perspective of outlier removal. It assumes
that both clean and noisy examples for each class obey the
isotropic Gaussian distribution, with the noisy examples
being more widely scattered than the clean ones. Then, the
Minimum Covariance Determinant [38] (MCD) estimators
were adopted to estimate the class-wise statistics. However,



4

TABLE 1
Summary of main mathematical notations.

Notation Interpretation

(X,Y ), (X, Ỹ ) A pair of input random variable and the
observed contaminated counterpart. Here
X ∈ X ⊆ Rd represents the feature and
Y ∈ Y = {0, 1}C represents the one-hot
label, where d is the dimension of feature
space and C denotes the number of classes.

S = {(xi,yi)}ni=1
The unobserved clean sample of (X,Y )
with n data points.

S̃ = {(xi, ỹi)}ni=1
The observed noisy sample of (X, Ỹ ) with
n possible mislabeled training data.

πi, π̃i ∈ (0, 1) The clean and noisy class priors for the i-th
class.

µi ∈ Rd The sample mean (first-order statistic) for
the i-th class.

σi ∈ Rd×d The second-order statistic for the i-th class.

Σi ∈ Rd×d The covariance matrix for the i-th class.

T = [Tij ]
The label transition matrix, of which the
(i, j)-th element is Tij .

the assumption of the isotropic Gaussian distribution may
not hold in many real-world scenarios, and the instance
selection process of RoG is not reliable as the selected
examples may still contain noisy labels, leading to biased
estimation on the mean and covariance.

To tackle the aforementioned issues, we propose a novel
method named PCSE to estimate per-class statistics. Our
method makes full use of all the training examples when
estimating statistics, and there is no need to identify the
clean examples at the instance level.

3 PRELIMINARIES

In this section, we first introduce some mathematical
notations which will be used in this paper. Specifically, the
superscript “˜” indicates that the variable is calculated based
on noisy observations, and the variable with a superscript
“̂” is the corresponding empirical estimation. Note that a
statistic accompanied by the term “clean” means that this
statistic is calculated using underlying clean labels, whereas
a statistic accompanied by the term “noisy” implies that it is
calculated using observed noisy labels. We use the notation
JKK to represent the set {1, 2, · · · ,K} for any K ∈ Z.
Besides, the one-hot vector with a value of 1 in its j-th
element is denoted by ej . The mathematical expectation is
denoted by E[·]. Here we also introduce some norms used
in this paper. Specifically, ∥v∥2 represents the ℓ2-norm of a

vector v, defined as ∥v∥2 =
√∑

i v
2
i , with vi being the i-th

element of v. We use ∥Q∥2 to represent the spectral norm
of a matrix Q, which is defined as the largest singular value
of Q. Besides, cond2(Q) = ∥Q∥2 ∥Q−1∥2 [21] means the
condition number of a nonsingular matrix Q. Unless other-
wise stated, the spectral norm is used throughout this paper
for the calculation of the condition number. For a matrix Q,
the norm ∥Q∥1 is defined as ∥Q∥1 = maxj

∑
i |Qij | with

Qij being the (i, j)-th element of Q. Additionally, we use
1{·} to denote the indicator function. Here 1{·} = 1 if and
only if the event within the bracket is satisfied. The main
mathematical notations that will be later used for algorithm
description are listed in Table 1.

We consider a typical classification problem with C
classes of data. Let X ⊆ Rd and Y be the input feature
space and output label space, respectively, where d denotes
the dimension of features and Y = {0, 1}C . We define
the clean joint distribution of a pair of random variables
(X,Y ) ∈ X×Y as D. The clean sample set S = {(xi,yi)}ni=1

of (X,Y ) containing n data points is drawn identically and
independently from D, where the one-hot vector yi is the
ground-truth label of xi. However, under label noise learn-
ing, we are only accessible to a sample of n independent and
identically distributed data points S̃ = {(xi, ỹi)}ni=1 from a
noisy distribution D̃ of random variables (X, Ỹ ) ∈ X × Y ,
where Ỹ is the contaminated version of Y . Let ñc be the
number of examples for the c-th class in S̃. The task of
LNL is to learn a robust classifier by leveraging S̃ that can
approximate the optimal classifier trained on S.

In this paper, we consider the class-dependent label
noise, which is a widely used setting in label noise learn-
ing [30], [46], [56]. In this setting, the observed noisy label
for each x ∈ X only depends on its underlying clean label.
To be more specific, the transition probability of class i to
class j is P (Ỹ = ej |Y = ei, X = x) = P (Ỹ = ej |Y =
ei) = Tij ,∀i, j ∈ JCK, where T = [Tij ] ∈ [0, 1]C×C is the
noise transition matrix. We denote the noise rate by ϵ, then
for symmetric label noise and ∀i, j ∈ JCK, Tii = 1 − ϵ and
Tij =

ϵ
C−1 with j ̸= i. We can estimate the transition matrix

by solving the following problem [29]:

min
θ,T̂

L(θ, T̂) =
1

n

n∑
i=1

ℓ(T̂⊤hθ(xi), ỹi) + λ · log det(T̂), (1)

where ℓ is the loss function (cross-entropy loss is typically
used). The function hθ(·) is the output of a neural network
parameterized by θ. The regularizer log det(T̂) stands for
the natural logarithm of determinant of T̂, which ensures
that the simplex formed by T̂ has the minimum volume,
and λ > 0 is the trade-off hyperparameter.

Before formally introducing our proposed algorithm,
here we first discuss two related methods which also focus
on statistic estimation.

3.1 Loss Decomposition and Centroid Estimation

Loss Decomposition and Centroid Estimation (LDCE)
[11], [15], [36] has been used as an effective technique
to construct unbiased loss functions by leveraging noisy
training set S̃. For multi-class cases, Ding et al. [9] proposed
an extension of LDCE (termed “MC-LDCE”), by defining a
generalized form of data centroid. Suppose that we use the
linear scoring function hW(x) = W⊤x parameterized by
W ∈ Rd×C , and use the ℓ2 loss as the loss function. Then
the empirical risk over the clean set S can be formulated by

R̂(h, S) =
1

n

n∑
i=1

∥∥∥yi −W⊤xi

∥∥∥2
2
. (2)

This loss function can be further decomposed to the sum of a
label-independent term and a label-dependent term, namely

R̂(h, S) =

(
1+

1

n
x⊤
i WW⊤xi

)
︸ ︷︷ ︸

label-independent term

− 2 · trace
(
W⊤µ̂(S)

)︸ ︷︷ ︸
label-dependent term

, (3)
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where µ̂(S)= 1
n

∑n
i=1 xiy

⊤
i ∈ Rd×C is dubbed as the empir-

ical clean centroid, and its expectation is E(X,Y )∼D[XY
⊤],

which is called clean centroid. We use trace(M) to denote
the trace of a square matrix M, which is defined as the
sum of all diagonal elements of M. Note that we do not
have access to the clean set S and thus we cannot obtain
µ̂(S). Instead, we can derive the empirical noisy centroid
µ̂(S̃)= 1

n

∑n
i=1 xiỹ

⊤
i based on S̃. The corresponding expec-

tation E(X,Ỹ )∼D̃[XỸ
⊤] is called noisy centroid. To obtain

the unbiased ℓ2 loss based only on S̃, we need to find an
unbiased estimator of the clean centroid according to the
noisy centroid µ̂(S̃).

Since the relationship between the clean centroid and
noisy centroid is crucial for our proposed method, here
we briefly outline the derivation process. MC-LDCE begins
with studying the conditional expectation of XỸ ⊤ over the
noisy set, which is formulated as

EỸ [XỸ
⊤|(X,Y )] =

C∑
i=1

πiEỸ [XỸ
⊤|(X,Y = ei)], (4)

where πi = P (Y = ei) is the class prior for the i-th class.
For the one-hot vectors ei and ej , we can use a permutation
matrix Ki→j to convert ei to ej , namely ej = Ki→jei. Here,
the permutation matrix Ki→j is constructed by exchanging
the i-th and the j-th rows of an identity matrix. This equa-
tion allows us to calculate the conditional expectation as

EỸ [XỸ
⊤|(X,Y = ei)] =

C∑
j=1

TijXY
⊤K⊤

i→j . (5)

Therefore, the conditional expectation in Eq. (4) can be
further transformed to

EỸ [XỸ
⊤|(X,Y )] = XY ⊤

 C∑
i=1

πi

C∑
j=1

TijK
⊤
i→j


︸ ︷︷ ︸

M

, (6)

where we define M =
∑C

i=1

∑C
j=1 πiTijK

⊤
i→j , with Mij

being its (i, j)-th element. Then, the relationship between
the clean global centroid and noisy global centroid can be
directly derived from Eq. (6), which is given by

E(X,Ỹ )∼D̃[XỸ
⊤]M−1 = E(X,Y )∼D[XY

⊤], (7)

where we use the fact that M does not depend on the
clean distribution D. This relationship is then used to obtain
µ̂(S) = µ̂(S̃)M−1, which will be further substituted into
Eq. (3) for recovering the original empirical risk on the clean
set S. Therefore, we only need noisy labels (instead of the
unobservable clean ones) to construct the unbiased ℓ2 loss.

Note that in [9], the invertibility of M is not proved and
thus they use the pseudo-inverse M† instead in the above
derivations. However, in this paper, we theoretically reveal
that its invertibility can be guaranteed by Lemma 1 under
mild conditions.

Lemma 1. (Invertibility of matrix M) Let M =∑C
i=1

∑C
j=1 πiTijKi→j . If one of the following conditions is

satisfied, then M is invertible:
1) For symmetric label noise, the noise rate ϵ <

min
{

C−1
maxi∈JCK πi(2C−4)+2 ,

C−1
C

}
.

2) For asymmetric label noise, the class priors are uniform, i.e.,
πi =

1
C ,∀i ∈ JCK, and the noise rate ϵ < 1

2 .

The proof of Lemma 1 has been put to the supple-
mentary material. Note that for the first condition, if
maxi∈JCK πi≤ 1

2 , then maxi∈JCK πi(2C−4)+2<C, and thus
the condition for invertibility of M becomes ϵ < C−1

C , which
is a commonly used assumption in LNL [10], [14], [57].

3.2 Robust Generative Classifier

Robust Generative Classifier [25] (RoG) is a label in-
ference method that can be regarded as a general post-
processing strategy applicable to many robust classifiers
pre-trained on noisy datasets. It induces a generative clas-
sifier on top of hidden feature spaces of the pre-trained
DNNs, for obtaining a more robust decision boundary with
boosted classification accuracy.

We denote the sample means w.r.t. the ground-truth
labels by

µi = EX|Y=ei
[X], ∀i ∈ JCK, (8)

which is also known as the first-order statistic for each class.
The covariance matrix w.r.t. the ground-truth labels for the
i-th class is denoted by

Σi = EX|Y=ei
[(X − µi)(X − µi)

⊤]. (9)

The empirical sample mean and covariance for the i-th class
are denoted by µ̂i and Σ̂i, respectively.

To estimate per-class statistics, RoG constructs the set
S̃i = {xj | (xj , ỹj) ∈ S̃, ỹj = ei, j ∈ JnK}, which contains
the examples of which the observed noisy labels are ei.
Then RoG proposes to use Minimum Covariance Discrim-
inant (MCD) method to select clean examples for statistics
estimation. Specifically, the MCD estimator considers noisy
examples as outliers and removes them via a class-by-class
way. For the i-th class, this method seeks for a subset S̃sub

i

from S̃i by the following objective

min
S̃sub
i ⊆S̃i

det(Σ̂i) subject to |S̃sub
i | = Ki, (10)

where the constant Ki is the number of selected examples
for class i, and Σ̂i is the covariance matrix for examples in
S̃sub
i . Once the optimal S̃sub

i is obtained, the examples in this
set will be used to calculate the sample mean and covariance
for class i directly, while the excluded examples in S̃i will
be perceived as outliers or noisy examples.

Subsequently, RoG employs Gaussian Discriminant
Analysis (GDA) [19] to train a generative classifier. Ac-
tually, the output of the l-th layer ϕl of a DNN can be
regarded as the hidden-layer features for the examples in S̃.
RoG induces a generative classifier by assuming that ϕl(x)
(conditioned on Y ) obeys multivariate Gaussian distribu-
tions with the identical covariance across all classes, i.e.,
P (ϕl(x)|Y = ec) = N (ϕl(x)|µ(l)

c ,Σ(l)), where Σ(l) is the
shared covariance based on the assumptions of GDA. Then
based on the Bayesian rule, for a test example x, the class
posterior is

P (Y = ec|ϕl(x)) =
π̂cP (ϕl(x)|Y = ec)∑
c′ π̂c′P (ϕl(x)|Y = ec′)

=
exp(µ̂⊤

c Σ̂
−1ϕl(x)− 1

2 µ̂cΣ̂
−1µ̂c + log π̂c)∑

c′ exp(µ̂
⊤
c′Σ̂

−1ϕl(x)− 1
2 µ̂c′Σ̂−1µ̂c′ + log π̂c′)

,

(11)
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Encoder

Classifier

① Pre-training Neural Network

② Es�ma�ng noisy sta�s�cs 

Coefficient Matrix  

③ Es�ma�ng clean sta�s�cs 

Learnable Fixed Backpropagation & Parameter updates

Encoder

⑤ Learning ensemble weights

④ Building class posterior

Fig. 2. The overall framework of our PCSE method. In the framework, PCSE first pre-trains the neural network using any existing method (①), and
the hidden-layer features generated by this network are utilized to calculate the noisy per-class statistics µ̃

(l)
i and Σ̃

(l)
i , ∀i ∈ JCK (②). Subsequently,

the noisy statistics and the coefficient matrix M are employed to estimate per-class clean statistics µ
(l)
i and Σ

(l)
i , ∀i ∈ JCK (③), which are then

utilized to build the class posterior P (Y = ỹ |ϕl(x)) (④). Finally, the examples (xval, ỹval) from the noisy validation set S̃val are used to learn the
ensemble weights, and the generative classifier induced by {P (Y |ϕl(x))}l∈L takes the place of the pre-trained classifier for model inference (⑤).

where Σ̂ =
∑

i π̂iΣ̂i is the overall covariance. Here uniform
class priors are assumed, which means π̂i = 1

C for all
i ∈ JCK. Note that for brevity, we omit the superscript “(l)”
for µ̂c and Σ̂ in Eq. (11). To further boost performance,
RoG proposes to use an ensemble version of generative
classifiers. To this end, RoG computes the estimated clean
means and covariances for hidden-layer features from sev-
eral specified layers. Then the final clean class posterior is
induced as the weighted sum of posterior distributions for
these layers, namely

P (Y = ec|X = x) =
∑
l∈L

αlP (Y = ec|ϕl(x)), (12)

where αl is the ensemble weight for the l-th layer and
L is the set of selected layers. Here the weights satisfy∑

l∈L αl = 1 and αl > 0,∀l ∈ L. To learn these weights,
RoG optimizes the Negative Log-likelihood Loss (NLL)
over a noisy validation set S̃val. Actually, some other loss
functions such as logistic loss and mean squared loss, can
also be adopted here, and the main difference lies in the op-
timization process, where they will have different gradients
for iterations.

However, RoG has certain limitations in real-world ap-
plications as mentioned in Section 1. Moreover, it is empir-
ical to decide how many examples to be selected for each
class, so it is still challenging to obtain accurate estimations
in some scenarios with complicated noise.

4 OUR PROPOSED METHOD

In this section, we provide a new method to obtain unbi-
ased estimators of noise-free statistics. Different from MC-
LDCE [9] which estimates a single global statistic over the
entire training set, our method unbiasedly estimates the
statistics via a class-wise way.

The framework of our method is presented in Fig. 2. As
shown in this figure, our target is to establish the relation-
ship between the first-/second-order statistics of noisy data
and clean data in each class. Subsequently, we will utilize
this relationship to derive unbiased estimators for the means

and covariances of clean sample. After that, we leverage
these statistics to induce a generative classifier by using
Eqs. (11) and (12) in RoG [25]. Therefore, we find that in this
process, the critical step is to accurately estimate the mean
{µ̂c}Cc=1 and covariance Σ̂ in Eqs. (11) and (12). To fulfill
such estimation, here we need the following assumptions.

Assumption 1. (Sufficiently Scattered Assumption [29]).
The clean class posterior P(Y |X) = [P (Y = e1|X), P (Y =
e2|X), · · · , P (Y = eC |X)]⊤ ∈ [0, 1]C is said to be sufficiently
scattered if there exists a set H = {x1,x2, · · · ,xm} such that
the matrix H = [P(Y |X = x1), · · · ,P(Y |X = xm)] satisfies:
(1) Q ⊆ cone{H}, where Q = {v ∈ RC |v⊤1 ≥

√
C − 1∥v∥2}

and cone{H} denotes the convex cone combined by the columns
of H; and (2) cone{H} ̸⊆ cone{U} for any unitary matrix
U ∈ RC×C that is not a permutation matrix.

Assumption 2. (Nonsingular T). The noise transition matrix
is nonsingular, i.e., Rank(T) = C .

Assumption 1 requires the clean class posteriors to be
sufficiently scattered in the probability simplex so that the
ground-truth transition matrix can be identified. Assump-
tion 2 is a widely adopted constraint in the literature [42],
[59], which ensures the invertibility of the transition matrix.
To verify these assumptions, we provide detailed experi-
ments and analyses in the supplementary material. Addi-
tionally, we need to assume that the DNN representations
still exhibit clustering properties (i.e., distinguishable for dif-
ferent classes) when the DNN is trained with noisy labels.
This is because that the lower-level features are usually
not significantly influenced by the higher-level supervision.
Actually, this assumption has been demonstrated by some
recent studies [25], [26], [55], [59], where it is identified that
even though label noise may mislead the final classification
results, it can still induce good feature representations.

Estimating per-class sample mean and covariance is a
challenging task as the underlying clean label for each
example is typically unknown. However, the noisy statis-
tics for each class can be easily estimated, forming the
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foundation of our approach. We denote the noisy sample
means for all classes by µ̃i = EX|Ỹ=ei

[X],∀i ∈ JCK, which

can be readily estimated empirically based on S̃. Addi-
tionally, σi = EX|Y=ei

[XX⊤] stands for the second-order
statistics of the i-th class. The corresponding contaminated
counterpart is σ̃i. The covariance matrix w.r.t. the ground-
truth labels for the i-th class (defined in Eq. (9)) can be
constructed based on the first- and second-order statistics,
namely Σi = σi − µiµ

⊤
i .

Subsequently, our task boils down to constructing un-
biased estimators of {µi}Ci=1 and {Σi}Ci=1 via leveraging
{µ̃i}Ci=1 and {σ̃i}Ci=1. Thanks to the global centroid estima-
tion method briefly revisited in Section 3, we can derive the
relationship between µi, Σi and µ̃i, σ̃i. Note that for [9] and
[15], the aim of global centroid estimation is to construct
an unbiased ℓ2 loss. By contrast, we further develop the
centroid estimation method for per-class statistic estimation
to consider local properties within each class.

First of all, the relationship between the clean global
centroid and noisy global centroid has already been pro-
vided in Eq. (7). Next, we will utilize this equation to
derive the relationship between clean and noisy sample
means. We define U = [µ1, · · · ,µC ], which contains the
per-class sample mean. The noisy counterpart is defined as
Ũ = [µ̃1, · · · , µ̃C ]. We factorize the clean global centroid
E(X,Y )∼D[XY

⊤] as follows:

E(X,Y )∼D[XY
⊤] = EY EX|Y [XY

⊤]

= [π1EX|Y=e1
[X], · · · , πCEX|Y=eC

[X]]

= [π1µ1, π2µ2, · · · , πCµC ]

= UΛ,
(13)

where Λ = diag([π1, · · · , πC ]) and diag(·) outputs a di-
agonal matrix of which the diagonal elements are filled
by the elements of the input vector. Similarly, we have
E(X,Ỹ )∼D̃[XỸ ] = ŨΛ̃, where Λ̃ = diag([π̃1, · · · , π̃C ]) is
the noisy version of Λ. As a sequel, by leveraging Eq. (7),
we obtain

U = ŨΛ̃M−1Λ−1. (14)

This implies that for any i = 1, 2, · · · , C, we have

µi =
C∑

j=1

π̃j
πi

M−1
ji µ̃j , (15)

which establishes the relationship between the clean sample
mean and noisy sample mean (or the first-order statistics).
Similarly, we can derive the relationship between the clean
and noisy second-order statistics, namely

σi =
C∑

j=1

π̃j
πi

M−1
ji σ̃j , ∀i ∈ JCK. (16)

From Eq. (15) and (16), we can find that we need to
empirically estimate each term (i.e., πi, π̃i, M, µ̃i, and σ̃i)
in the right-hand side of both equations so as to obtain the
unbiased estimators of µi and σi. To this end, first of all, we
need to estimate the transition matrix T by solving Eq. (1),
which is denoted by T̂. Based on Assumption 1, T̂ will
converge to the ground-truth T given the sufficient noisy

Algorithm 1 Per-Class Statistics Estimation (PCSE) for
multi-class label noise learning.

1: Input: Noisy training set S̃ = {(xi, ỹi)}ni=1; noisy val-
idation set S̃val = {(xval

i , ỹval
i )}nval

i=1; neural network fθ ;
and the set of layers L.

2: Initialize: Set the learnable weight αl = 1/|L| for ∀l ∈
L; and pre-train neural network fθ with S̃ using any
existing method (e.g. Co-teaching [18], JoCoR [44]);

3: Obtain the transition matrix T̂ by solving Eq. (1);
4: Compute noisy class priors {̂̃πi}Ci=1 via Eq. (18);
5: Compute clean class priors {π̂i}Ci=1 by solving Eq. (17);
6: Compute M̂ via Eq. (19);
7: For all l in L do
8: Extract features {ϕl(xi)}ni=1 for examples in S̃;
9: For i = 1 to C do

10: Compute the empirical noisy first-order statistic ̂̃µi

and second-order statistic ̂̃σi via Eq. (20);
11: Compute the empirical clean sample mean µ̂i and

clean covariance Σ̂i via Eqs. (21), (22) and (23);
12: End For
13: Compute the class posterior P (Y = ỹval

i |ϕℓ(xval
i )) for

all (xval
i , ỹval

i ) in S̃val via Eq. (11);
14: End For
15: Learn the weights {αl}l∈L in Eq. (12) by optimizing the

Negative Log-likelihood Loss over S̃val.
16: Output: The optimal parameters θ∗ for the pre-trained

neural network and the optimal ensemble weights
{α∗

l }l∈L.

data (Theorem 1 in [29]). Subsequently, we need to empiri-
cally estimate clean class priors π = [π1, π2, · · · , πC ]⊤ so as
to estimate the matrix M. According to the common practice
in previous works [9], [15], estimating π is equivalent to
solving the following linear system of equations:

π̃1 = T11π1 + T21π2 + · · ·+ TC1πC
π̃2 = T12π1 + T22π2 + · · ·+ TC2πC

...
π̃C = T1Cπ1 + T2Cπ2 + · · ·+ TCCπC

, (17)

where π̃i = P (Ỹ = ei) is the noisy class prior for the i-th
class. Here π̃i can be empirically estimated by

̂̃πi =

∑n
j=1 1{ỹj = ei}

n
, ∀i ∈ JCK. (18)

Since T is assumed to be nonsingular in Assumption 2, we
can obtain a unique solution by solving Eq. (17), which is
denoted by π̂ = [π̂1, π̂2, · · · , π̂C ] ∈ (0, 1)C . Based on this,
the empirical estimation of matrix M can be calculated as

M̂ =
C∑
i=1

C∑
j=1

π̂iT̂ijK
⊤
i→j . (19)

For the contaminated statistics µ̃i and σ̃i, they can be
directly estimated based on the noisy dataset S̃. Specifically,
we use a DNN to extract the features of the given inputs. Let
ϕl(x) ∈ Rdl be the output of the l-th layer of a DNN given
input x, where dl is the feature dimensionality. For brevity,
we omit the superscript “(l)” in the following equations. For
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the i-th class, we denote the empirical estimations of µ̃i and
σ̃i by ̂̃µi and ̂̃σi, respectively, which are given by

̂̃µi =
1

ñi

∑
j∈JnK,ỹj=ei

ϕl(xj),

̂̃σi =
1

ñi

∑
j∈JnK,ỹj=ei

ϕl(xj)ϕl(xj)
⊤,

(20)

where ñi is the number of examples for the i-th class in
S̃. Subsequently, these empirical estimations can be used to
calculate the unbiased estimators of µi and σi, which are

µ̂i =
C∑

j=1

̂̃πj

π̂i
M̂−1

ji
̂̃µj , (21)

and

σ̂i =
C∑

j=1

̂̃πj

π̂i
M̂−1

ji
̂̃σj , (22)

respectively. The unbiased estimator of class-wise covari-
ance can also be derived, which is

Σ̂i = σ̂i − µ̂iµ̂
⊤
i , ∀i ∈ JCK. (23)

Then, the overall covariance under clean distribution can be
estimated as Σ̂ =

∑
i π̂iΣ̂i. By substituting these estimated

noise-free statistics into Eq. (11) and (12), the clean class
posterior can be inferred. The main steps of our PCSE are
summarized in Algorithm 1.

Remark 1. Our PCSE is different from MC-LDCE [9] and
CWD [15] in that PCSE focuses more on the local infor-
mation of dataset while MC-LDCE and CWD build un-
biased loss functions based on the estimation of dataset
centroid. Besides, our theoretical results differ from those
of CWD in that we focus on the estimation error bounds of
per-class statistics while CWD aims to provide guarantees
on the generalization error bound. Such estimation error
bounds successfully ensure the practical effectiveness of our
proposed estimators by revealing the critical factors that
substantially affect estimation performance.

Remark 2. It is worth noting that our PCSE can not only
be applied to LNL with a single ground-truth label, it can
potentially be adapted to the problem of learning with class-
conditional multi-label noise [49] as well. Since such an
extension is beyond the scope of this paper, we provide a
brief discussion in the supplementary material.

5 THEORETICAL ANALYSES

In this section, we provide the error bounds of our PCSE
in estimating the per-class noise-free statistics (Section 5.1).
Moreover, we establish the relationship between our pro-
posed PCSE and NESC [12] for binary classification sce-
narios (Section 5.2). Due to space limitations, the detailed
proofs of all the theorems in this section are deferred to the
supplementary material.

5.1 Estimation Error Bound

Our method aims to estimate the mean and covariance
values of clean data. Such two estimations can be sim-

ply decomposed into the first- and second-order statistics1.
Therefore, here we directly provide the estimation error
bounds of our method on clean first- and second-order
statistics by the following theorem.

Theorem 1. (Estimation error bounds under clean T) Let
ψ1(x) = x and ψ2(x) = vec(xx⊤)2 correspond to the first- and
second-order statistics, respectively. For s ∈ {1, 2}, assume that
we have a bounded space X (s) = {ψs(x) | ∥ψs(x)∥2 ≤ X

(s)} ⊆
Rds

. We denote that U(s) = [u
(s)
1 , · · · ,u(s)

C ], where u
(s)
j =

EX|Y=ej
[ψs(X)] for j ∈ JCK, and Û(s) = [û

(s)
1 , · · · , û(s)

C ] is
the proposed estimator of U(s). For s ∈ {1, 2} and any δ > 0,
when the number of training examples ñ > 2C2∥T−1∥21 log 8C

δ ,
with probability at least 1− δ, we have

∥∥U(s) − Û(s)
∥∥
2
≤ γ(s)

√
2dsC

mink ñk
log

8dsC

δ

+ (ζ(s)∥T−1∥1 + β(s)) ·
√

1

2ñ
log

8C

δ
,

(24)

where ζ(s) = X
(s)√

CξM cond2(M̂)
mink π̂k mink πk

+ 2X
(s)

C
√
C maxk

̂̃πk

mink πk
, β(s) =

X
(s)√

CξM cond2(M)
mink πk

, γ(s) = X
(s)·ξM cond2(M)maxk π̃k

mink πk
, ξM is a

positive constant, and cond2(M), cond2(M̂) are the condition
numbers of M and M̂, respectively. Additionally, the number of
examples for the k-th class is ñk.

Note that the above theorem is derived based on the
clean transition matrix T. However, this matrix should be
estimated and may not be accurate practically, so we further
derive an estimation error bound based on the estimated
transition matrix T̂ as below:

Theorem 2. (Estimation error bounds under noisy T) Let T̂
be the estimated transition matrix. Based on the assumptions in
Theorem 1, if we further assume that I+(T−T̂)T̂−1 is invertible,
and the norm of its inverse matrix is upper-bounded, then for
s ∈ {1, 2} and any δ > 0, when ñ > 2C2∥T−1∥21 log 8C

δ , with
probability at least 1− δ, we have

∥∥U(s) − Û(s)
∥∥
2
≤ γ(s)

√
2dsC

mink ñk
log

8dsC

δ

+ (ζ(s)∥T̂−1∥1+β(s))

√
1

2ñ
log

8C

δ
+O

(∥T−T̂∥1√
ñ

)
,

(25)

where each symbol has the same definition as in Theorem 1.

Remark 3. From the above theorems, we can observe that
when mink ñk → ∞, we have Û(s) → U(s) in probability.
Based on Theorem 1 and simple calculation, we find that
the estimation error bounds of mean and covariance have
the order of O

(√
dC log(dC)/

√
mink ñk +C

√
C logC/

√
ñ
)

and O
(
(d2

√
C log(d2C) + d

√
dC log(dC))/

√
mink ñk +

dC
√
C logC/

√
ñ
)
, respectively, which means the estimation

1. For ∀i ∈ JCK, we have µi = U
(1)
i , and Σi = mat(U

(2)
i ) −

U
(1)
i U

(1)⊤
i , where U(1) and U(2) defined in Theorem 1 correspond

to the matrices consisting of the first- and second-order statistics,
respectively.

2. Suppose that the row-block matrix Bi ∈ Rd2×d consists of d blocks
with size d × d, with an identity matrix only in the i-th block and the
others are all zeros. Then for any matrix Q ∈ Rd×d, the vec(·) operator
is defined as vec(Q) =

∑d
i=1 BiQei, and for any vector q ∈ Rd2 , the

mat(·) operator is defined as mat(q) =
∑d

i=1 B
⊤
i qe⊤i .
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error of our PCSE decreases quickly with the increase of the
numbers of noisy examples (i.e., ñ and ñk). Additionally,
from Theorem 2, we can find that despite the bias existing
in the estimated transition matrix, the estimated value Û(s)

converges to the ground-truth statistic U(s). Note that the
condition ñ > 2C2∥T−1∥21 log(8C/δ) is required in both
theorems. Actually, this condition can be easily achieved
in our implementations. For example, if we set C = 10,
noise rate ϵ = 20%, and confidence 1 − δ = 95%, then the
condition becomes ñ > 3383 = 2C2∥T−1∥21 log(8C/δ).
Remark 4. In Theorem 1, the factor ∥T−1∥1 can be inter-
preted as a constant that captures the overall amount of label
noise. Lower levels of noise are associated with smaller esti-
mation errors. To demonstrate this point, we let I and N be
the identity matrix and the matrix with all elements equal-
ing to 1

C , respectively, where C is the number of classes. Let
τ ∈ [0, 1], we define T = (1 − τ)I + τN. Therefore, τ = 0
represents the noise-free case, and τ = 1 is the noise-only
case. It is easy to verify that T−1 = (1− τ)−1(I− τN) and
∥T−1∥1 = (1 − τ)−1(1 + (1 − 2

C )τ). Since τ = C
C−1ϵ for

symmetric label noise, τ can also be perceived as the noise
level. Therefore, as τ decreases, ∥T−1∥1 also decreases,
which leads to the lower estimation error bound.
Remark 5. Comparing Theorem 2 with Theorem 1, we can
find that with biased or noisy T, the error upper bound
becomes losser than the one with clean T. As we have
discussed in Theorem 2, the bound factor caused by the
biased T is O

(
∥T−T̂∥1/

√
ñ
)
, which will gradually vanish

with the increase of the training sample size ñ.
Based on the above estimation error bounds, the factors

that affect the estimation error can be identified, which are
• The number of categories. Decreasing the number of

categories C will lead to lower estimation error bounds.
• The degree of class imbalance. The estimation error

decreases when the training data is balanced. Since the
balanced training set has a larger mink πk than the imbal-
anced one, we can obtain smaller ζ(s), β(s), and γ(s) for
s ∈ {1, 2}, which leads to lower estimation error bounds.

• The noise level. As explained above, the estimation error
decreases when the level of label noise ∥T−1∥1 is low,
which is consistent with the intuition that cleaner data
naturally leads to better convergence results.

• The dimension of feature. Decreasing dimension of fea-
ture d will lead to smaller estimation error bounds since
low-dimensional data is simpler and is more controllable
than high-dimensional data.

In summary, the above two theorems clearly indicate
that our estimations of per-class statistics have guaranteed
convergence so that they can recover the statistics under
clean distribution. Such convergence is critical for our gen-
erative modeling in Eqs. (11) and (12).

5.2 Relationship between NESC [12] and our PCSE

In addition to identifying the factors that affect esti-
mation errors, we also discover the connection between
our PCSE and NESC [12], which only provides unbiased
estimators of per-class statistics under binary classification.

Now we consider the binary classification problem and
assume that the label space is Ybin = {−1,+1}. The noisy
and clean positive class priors are denoted by π̃ = P (Ỹ =

+1) and π = P (Y = +1), respectively. We denote the
label flip probabilities of the positive and negative classes by
ηP = P (Ỹ = −1|Y = +1) and ηN = P (Ỹ = +1|Y = −1),
respectively. Let µN = EX|Y=−1[X] and µP = EX|Y=+1[X]
be the clean sample means of the negative class and the
positive class, respectively. The contaminated counterparts
are µ̃N = EX|Ỹ=−1[X] and µ̃P = EX|Ỹ=+1[X], respec-
tively. Moreover, we denote σN = EX|Y=−1[vec(XX

⊤)]
and σP = EX|Y=+1[vec(XX

⊤)] as the vectorized clean
second-order statistics, where vec(·) is the vectorization of
the input matrix. The corresponding contaminated coun-
terparts are σ̃N = EX|Ỹ=−1[vec(XX

⊤)] and σ̃P =

EX|Ỹ=+1[vec(XX
⊤)], respectively. The connection between

our PCSE and NESC is established in the following theorem.

Theorem 3. (Connection between PCSE and NESC [12]) For
binary classification, if the label noise is symmetric, i.e., ηP =
ηN = η, then the estimators of PCSE and NESC for per-class
first- and second-order statistics are the same, which are{

[µP ,µN ] = [µ̃P , µ̃N ]S

[σP ,σN ] = [σ̃P , σ̃N ]S
, (26)

where S =

[
(1−π̃)·(1−η)

1−π̃−η
−η(1−π̃)

π̃−η
−π̃·η

1−π̃−η
π̃·(1−η)
π̃−η

]
is the coefficient matrix.

This theorem shows that NESC and our PCSE have the
same estimators of per-class sample mean and covariance
under symmetric label noise. However, for asymmetric label
noise, namely ηP ̸= ηN , the estimators of our PCSE and
NESC are different. In the next section, we will demonstrate
that in the presence of asymmetric label noise, the estima-
tion error of PCSE is usually smaller than that of NESC.
Besides, another advantage of our PCSE over NESC is that
NESC is only applicable to binary classification, while our
PCSE can also handle multi-class classification.

6 EXPERIMENTAL RESULTS

In this section, we show experimental results on vari-
ous datasets to validate the effectiveness of our proposed
method. In detail, we first conduct experiments to reveal
the superior performance of our PCSE on statistic estimation
over other methods, and then verify that our PCSE can boost
the classification performance of many DNNs pre-trained on
the noisy set. Afterwards, we compare our PCSE with exist-
ing state-of-the-art LNL methods on various benchmark and
real-world datasets.

6.1 Algorithm Validation

In this section, we conduct experimental investigations
to comprehensively evaluate the performance of our PCSE,
including the estimation error analysis of the proposed
statistic estimators and the classification performance eval-
uation with various pre-training methods.

In the following analyses, all experiments are conducted
on CIFAR-10 and CIFAR-100 [24]. The CIFAR-10 dataset
contains 60,000 color images across 10 classes, with 6,000
images per class. There are 5,000 training images and 1,000
test images per class. The CIFAR-100 dataset consists of
60,000 color images from 100 classes, with 600 images per
class. There are 500 training images and 100 test images
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Fig. 3. Estimation errors of RoG and our PCSE on per-class mean, covariance and precision matrix. The average error over 3 independent trials
is reported. The first and second rows show the estimation errors of various methods on CIFAR-10 and CIFAR-100, respectively, and the three
columns present the estimation errors on sample mean, covariance and precision matrix, respectively. We use “sym. ϵ” to denote the symmetric
label noise with noise rate ϵ, “asym.” to denote the pairflip label noise and “clean. 0%” to denote the noise-free case. This figure clearly indicates
that our PCSE can obtain more precise estimations of per-class statistics than RoG.

TABLE 2
Comparison of RoG and PCSE when different pre-training methods are adopted. The best two records on each dataset are highlighted in red and
blue, respectively. The “

√
”(“×”) denotes that our PCSE is significantly better (worse) than the others. The average performance improvement of

PCSE over RoG and the average performance improvement of both approaches over their pre-training method are also presented.

Dataset Method clean. 0% sym. 20% sym. 40% sym. 60% asym. 20% asym. 40% avg. improvement
over RoG (%)

avg. improvement over
pre-training method (%)

CIFAR-10

CrossEntropy 94.07 ± 0.13 84.05 ± 0.32
√

67.34 ± 0.58
√

41.14 ± 0.86
√

81.41 ± 0.36
√

59.07 ± 0.79
√

- -
CrossEntropy+RoG [25] 93.99 ± 0.21 87.72 ± 0.12 81.31 ± 0.30 66.50 ± 1.43 89.64 ± 0.47 70.98 ± 0.54

√
- + 10.51

CrossEntropy+PCSE 94.12 ± 0.32 87.89 ± 0.21 82.04 ± 0.31 68.85 ± 1.06 90.02 ± 0.21 78.80 ± 0.74 + 1.93 + 12.44

Co-teaching [18] 94.04 ± 0.36 91.17 ± 0.06
√

85.88 ± 0.21
√

70.25 ± 0.99
√

91.49 ± 0.12
√

70.36 ± 0.38
√

- -
Co-teaching+RoG [25] 94.01 ± 0.16 90.07 ± 0.35

√
85.41 ± 0.44

√
78.47 ± 0.91 91.08 ± 0.41

√
78.92 ± 0.96

√
- + 2.44

Co-teaching+PCSE 94.12 ± 0.17 92.29 ± 0.24 89.86 ± 0.14 80.29 ± 0.93 92.11 ± 0.11 84.78 ± 0.33 + 2.60 + 5.04

JoCoR [44] 94.26 ± 0.32 91.02 ± 0.26
√

89.62 ± 0.59 69.21 ± 1.12
√

89.23 ± 0.26
√

81.83 ± 0.65 - -
JoCoR+RoG [25] 93.73 ± 0.43 91.32 ± 0.34 88.34 ± 0.45

√
75.77 ± 0.89

√
89.65 ± 0.23

√
75.12 ± 0.87

√
- − 0.21

JoCoR+PCSE 94.36 ± 0.39 91.92 ± 0.35 88.97 ± 0.42 79.21 ± 1.54 91.52 ± 0.06 82.43 ± 0.14 + 2.41 + 2.21

ASL [58] 90.46 ± 0.21 89.72 ± 0.20 85.02 ± 0.25
√

76.70 ± 1.15 88.76 ± 1.24 75.43 ± 1.02 - -
ASL+RoG [25] 90.36 ± 0.19 89.98 ± 0.04 86.43 ± 0.32 74.29 ± 2.05 88.65 ± 1.02 66.91 ± 1.21

√
- − 1.58

ASL+PCSE 90.49 ± 0.14 90.17 ± 0.13 86.92 ± 0.20 76.00 ± 1.12 89.65 ± 0.97 75.80 ± 0.87 + 2.07 + 0.49

ROBOT [52] 94.16 ± 0.16 91.43 ± 0.14
√

89.03 ± 0.21 81.44 ± 0.75
√

91.23 ± 0.22 88.81 ± 0.35 - -
ROBOT+RoG [52] 94.00 ± 0.02 91.46 ± 0.26 88.96 ± 1.78 80.71 ± 0.61 90.94 ± 0.60 85.44 ± 0.69 - − 0.77

ROBOT+PCSE 94.12 ± 0.12 91.86 ± 0.14 89.40 ± 1.34 81.70 ± 0.40 91.56 ± 0.03 89.03 ± 3.57 + 1.03 + 0.26

CIFAR-100

CrossEntropy 72.62 ± 0.23 58.04 ± 0.11
√

41.40 ± 0.95
√

21.75 ± 1.00
√

60.02 ± 0.33
√

42.22 ± 0.68
√

- -
CrossEntropy+RoG [25] 70.69 ± 0.22

√
60.98 ± 0.20

√
52.96 ± 0.86 37.59 ± 1.43 65.21 ± 0.54 56.28 ± 0.75 - + 7.94

CrossEntropy+PCSE 72.71 ± 0.34 61.55 ± 0.19 53.91 ± 1.02 39.13 ± 1.05 65.47 ± 0.52 56.65 ± 0.43 + 0.95 + 8.89

Co-teaching [18] 72.82 ± 0.18 × 64.18 ± 0.33
√

58.32 ± 1.05
√

44.01 ± 0.51
√

64.87 ± 0.62 51.60 ± 0.56 - -
Co-teaching+RoG [25] 69.57 ± 0.41

√
63.12 ± 0.61

√
58.24 ± 1.24

√
44.13 ± 0.80

√
63.68 ± 0.58 52.50 ± 0.41 - − 0.76

Co-teaching+PCSE 72.33 ± 0.44 66.90 ± 0.55 59.49 ± 1.01 46.95 ± 0.92 65.33 ± 0.49 52.94 ± 0.65 + 2.12 + 1.36

JoCoR [44] 71.00 ± 0.08 × 63.19 ± 0.21
√

56.51 ± 0.40
√

44.47 ± 3.68 64.69 ± 0.85 50.88 ± 0.77 - -
JoCoR+RoG [25] 68.08 ± 0.13

√
64.07 ± 0.31

√
57.79 ± 0.52 47.28 ± 3.15 64.07 ± 1.02 54.08 ± 0.92 - + 0.77

JoCoR+PCSE 69.94 ± 0.21 65.64 ± 0.28 58.77 ± 0.49 49.10 ± 3.21 65.54 ± 0.54 54.64 ± 1.32 + 1.38 + 2.15

ASL [58] 72.19 ± 0.05 68.65 ± 0.43 62.16 ± 0.29
√

51.31 ± 0.54
√

63.43 ± 0.46 42.50 ± 0.35 - -
ASL+RoG [25] 70.68 ± 0.35

√
67.83 ± 0.40 61.86 ± 0.31 52.96 ± 0.40 61.01 ± 0.58

√
43.72 ± 0.95 - − 0.36

ASL+PCSE 72.28 ± 0.23 68.72 ± 0.35 63.00 ± 0.15 53.24 ± 0.25 63.61 ± 0.42 43.03 ± 0.43 + 0.97 + 0.61

ROBOT [52] 76.25 ± 0.08 72.29 ± 0.14 67.22 ± 0.46 59.51 ± 0.05
√

70.94 ± 0.50 57.06 ± 0.43
√

- -
ROBOT+RoG [52] 75.42 ± 0.06

√
71.57 ± 0.18

√
67.42 ± 0.33 59.20 ± 0.72 71.69 ± 0.40 60.31 ± 0.44

√
- − 0.39

ROBOT+PCSE 76.32 ± 0.07 72.46 ± 0.04 67.74 ± 0.14 59.95 ± 0.14 71.91 ± 0.33 64.59 ± 1.62 + 1.23 + 1.62

for each class. Both fine-grained and coarse-grained labels
are provided for each example in CIFAR-100. Here we adopt
the fine-grained labels throughout all experiments. Since the
original labels in CIFAR-10 and CIFAR-100 are noise-free, we
consider injecting synthetic label noise to simulate different
noise settings. Here we follow [9], [15] and investigate two

types of label noise, namely: 1) symmetric label noise with
noise rate ϵ ∈ {20%, 40%, 60%} (denoted as “sym. ϵ” here-
inafter), which means that for each example, we uniformly
select a label different from its ground-truth label with
probability ϵ/(C − 1); and 2) pairflip label noise with noise
rate ϵ ∈ {20%, 40%} (denoted as “asym. ϵ” hereinafter),
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which means that the label of each class is flipped into the
next class circularly with probability ϵ. We also consider the
noise-free case, which is denoted by “clean. 0%”.

6.1.1 Estimation Error Analysis

Since the statistic estimation is crucial in our proposed
method, we start by investigating the estimation errors of
per-class statistics (i.e., mean and covariance matrix) gener-
ated by RoG [25] and our PCSE on CIFAR-10 and CIFAR-100
datasets, because RoG is also based on statistic estimation as
mentioned in Section 3.2. Moreover, as we use the inverse
of covariance matrix (a.k.a. precision matrix) for estimating
the clean class posterior (see Eq. (11)), we also investigate
the estimation error of our method on precision matrix. To
investigate the estimation errors of these statistics, we utilize
the following metrics for the mean µ, covariance Σ, and
precision matrix Σ−1, respectively, which are:

Errorµ = 1
C

∑
l∈L

∑
c

∥∥µ(l)
c − µ̂

(l)
c

∥∥
2

ErrorΣ = 1
d2

∑
l∈L

∑
i,j

∣∣Σ(l)
ij − Σ̂

(l)
ij

∣∣
ErrorΣ−1 = 1

d2

∑
l∈L

∑
i,j

∣∣(Σ(l))−1
ij − (Σ̂(l))−1

ij

∣∣ , (27)

where µ̂
(l)
c and Σ̂(l) are the estimated noise-free statistics

while µ
(l)
c and Σ(l) are the corresponding ground-truth

values calculated with clean labels.
The estimation errors of per-class statistics for RoG and

our proposed PCSE on CIFAR-10 and CIFAR-100 are shown
in Fig. 3. As depicted in this figure, our PCSE consistently
obtains lower estimation errors on CIFAR-10 than RoG. For
example, PCSE achieves a striking reduction of 50% to
90% in the estimation errors of covariance matrices when
compared with RoG (see Fig. 3(b)). A remarkable reduction
in the estimation errors of the precision matrices can also
be observed in Fig. 3(c), where the estimation errors of
our PCSE are 50 to 100 times smaller than those of RoG.
On CIFAR-100, our PCSE achieves a similar result to that
on CIFAR-10, with slightly improved estimations of sample
means over RoG. However, PCSE significantly outperforms
RoG in estimating the precision matrix. To summarize, the
results on the estimation errors clearly indicate that our
PCSE can obtain more accurate estimations of mean, co-
variance, and precision matrix than RoG. The comparison of
estimation errors on binary classification datasets is deferred
to the supplementary material.

6.1.2 Experiments with Various Pre-training Methods

In this subsection, we show that PCSE can boost the
classification performance of a pre-trained DNN regardless
of whether it is a label-noise-robust method. To this end, we
consider different pre-training methods, including CrossEn-
tropy (which directly minimizes the conventional cross-
entropy loss), Co-teaching [18], JoCoR [44], ASL [58], and
ROBOT [52]. Here, CrossEntropy is a non-robust method
while others are specifically designed robust methods for
handling label noise. In detail, Co-teaching is a powerful
sample selection based method, ASL is the state-of-the-art
LNL method based on robust loss function design, and
ROBOT is the state-of-the-art method for the estimation of
transition matrices. Besides, JoCoR is a hybrid method that
combines sample selection with consistency regularization.

For all these methods, the optimal hyperparameters rec-
ommended in their original papers are adopted in all of
our experiments. For example, in Co-teaching, the selection
ratio R(T ) is set to 1 − ϵ · min{T/10, 1} for a given noise
rate ϵ at the T -th epoch. Here we use “CrossEntropy+RoG”
and “CrossEntropy+PCSE” to denote that the pre-training
method is CrossEntropy and the post-processing methods
are RoG and PCSE, respectively. The same naming rule
holds for other pre-training methods.

The experimental results on CIFAR-10 and CIFAR-100
with different pre-training methods (i.e., CrossEntropy, Co-
teaching [18], JoCoR [44]) are shown in Table 2, where
the average performance improvement of PCSE and RoG
over their corresponding pre-training method is also pre-
sented. In this table, we find that PCSE greatly boosts
the classification performance of pre-trained DNNs when
the pre-training method is CrossEntropy (i.e., non-robust
pre-training method). Specifically, on CIFAR-10 dataset,
PCSE improves the classification accuracy of a DNN pre-
trained with vanilla Cross-Entropy loss by 12.57%. The
corresponding improvement on CIFAR-100 dataset is 8.89%.
Additionally, we identify that RoG underperforms the pre-
training methods in some cases while our PCSE consistently
outperforms the adopted pre-training methods. Besides,
the proposed method surpasses RoG in all scenarios (see
the penultimate column of Table 2). We conjecture that
it is attributed to the significant improvement of PCSE
over RoG in estimating some key statistics (see Fig. 3).
In Table 2, we can observe that in noise-free cases (i.e.,
clean. 0%), the post-processing sometimes leads to de-
graded performance. To explain this phenomenon, we use
ϕv(·) = ϕL ◦ ϕL−1 · · · ◦ ϕ1(·) ∈ Rd and fW(ϕv(·)) =[

exp(w⊤
1 ϕv(·))∑

j exp(w⊤
j ϕv(·))

,
exp(w⊤

2 ϕv(·))∑
j exp(w⊤

j ϕv(·))
, · · · , exp(w⊤

Cϕv(·))∑
j exp(w⊤

j ϕv(·))

]
∈RC

to denote the feature extractor and the classifier, parameter-
ized by v and W = [w1,w2, · · · ,wC ], respectively. In the
noise-free case, since ỹ = y, the pre-training actually solves
the following problem:

(W∗,v∗)∈argmin
W,v

g(W,v)=E(x,y)∼S [L(fW(ϕv(x)),y)] ,

(28)
where W∗ and v∗ are the optimal parameters, and L
is a loss function. In post-processing, we fix v∗ and re-
place W∗ with W′ ∈ CW = {W |wi = Aui,A ≻
0,ui ∈ Rd}, which imposes more constraints on W. Sup-
pose that W∗∗ ∈ argminW∈CW

g(W,v∗), and we have
g(W∗,v∗) < g(W∗∗,v∗). Since W′ is an element in CW, we
have g(W∗∗,v∗) ≤ g(W′,v∗), and thereby g(W∗,v∗) <
g(W′,v∗). Since g(·, ·) is a surrogate loss for the error
rate, this reveals that the post-processing can lead to the
degraded performance in the noise-free case. Notably, such
phenomenon also exists in [25] as well.

6.2 Comparison with Other Existing Methods

In this section, we conduct experimental investigations
to demonstrate the superior performance of our proposed
PCSE to state-of-the-art methods in dealing with noisy
labels. Specifically, we conduct intensive experiments on
a variety of datasets, including twelve UCI benchmark
datasets [2] (Section 6.2.1), two synthetic noisy datasets (Sec-
tion 6.2.2), and five real-world noisy datasets (Section 6.2.3).
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Our experiments provide a comprehensive validation of the
model generalizability of PCSE.

6.2.1 Experiments on Binary UCI Benchmark Datasets

In line with previous studies [15], [33], we start by con-
ducting experiments on twelve benchmark datasets regard-
ing binary classification from UCI machine learning reposi-
tory [2], including Breast cancer, Heart, Diabetes, German, Im-
age3. Experiments on additional seven UCI datasets (namely,
GammaTele, Banana, Ringnorm, Splice, Thyroid, Twonorm, and
Waveform) can be found in the supplementary material. A
brief introduction of the datasets is presented in Table 3,
which contains some essential configurations such as the
number of examples n, the feature dimensionality d, the
number of positive examples n+, and the number of neg-
ative examples n−. The features for each dataset have been
normalized and standardized.

Subsequently, we compare our PCSE with other existing
LNL methods in terms of classification accuracy on the
popular UCI benchmark datasets. In our experiments, we
use five-fold cross-validation for model selection. Note that
training and cross-validation are conducted on the noisy
training set in our settings. To stably simulate a given noise
rate, we repeat each experiment three times with different
random seeds. The average test accuracy and the standard
deviation over the trials are recorded. Besides, the paired t-
test with a significance level of 0.1 is employed to examine
whether our algorithm is significantly better or worse than
the compared methods. Following the previous work [15],
[33], we choose three pairs of label flip rates, namely
(ηP , ηN ) = (0.2, 0.2), (ηP , ηN ) = (0.4, 0.4), and (ηP , ηN ) =
(0.3, 0.1), where the first two cases correspond to symmetric
label noise while the last one represents asymmetric label
noise. Additionally, we test whether our method can handle
the noise-free case by considering (ηP , ηN ) = (0.0, 0.0).

The compared methods are CrossEntropy introduced
in Section 6.1.2, GCE [57], LDMI [50], Co-teaching [18],
CEGE [16], CWD [15], ULE [33], RoG [25], MC-LDCE [9],
ASL [58], ROBOT [52], NESC [12], and our PCSE. Here, Co-
teaching is a representative sample selection based method;
GCE, LDMI, ULE, and ASL are typical methods based on
robust loss functions; CEGE, ROBOT, CWD, and MC-LDCE
are competitive statistic estimation based methods, where
the latter two are highly related to our PCSE in that they
are both proposed to estimate the centroid of the dataset.
Besides, RoG and NESC are both proposed to estimate
class-wise mean and covariance, and the former is specif-
ically designed as a post-processing approach. Therefore,
by including the above methods, we can comprehensively
compare our method with various different types of exist-
ing methods. The experimental settings for the compared
methods are deferred to the supplementary material. It
is worth noting that the main differences between RoG,
NESC, and PCSE lie in the estimators of the sample mean
and covariance, so the comparison of their accuracies can
directly reflect the estimation quality.

The classification results of all compared methods on five
adopted UCI benchmark datasets are recorded in Table 4,
where our PCSE ranks among the top two in most cases.

3. These datasets are available at http://theoval.cmp.uea.ac.uk/
matlab which have already been preprocessed.

TABLE 3
Properties of five adopted UCI Benchmark datasets.

Datasets n d n+ n−

Breast cancer 263 9 77 186
Heart 270 13 120 150

Diabetes 768 8 268 500
German 1000 20 300 700
Image 2086 18 1188 898

Under symmetric label noise, NESC has the same unbiased
estimators as our PCSE, so the classification results are the
same for the two methods when ηP = ηN , which provides
evidence for the correctness of Theorem 3. However, under
asymmetric label noise, our proposed method shows signif-
icantly better results than NESC in four out of five datasets,
which can be attributed to the reduction in estimation errors
of per-class statistics. For the average accuracy over all five
datasets under different label flip rates, our PCSE achieves
a record of 77.3%, which leads the second and third best
methods by a margin of 0.6% and 2.7%, respectively. To
summarize, the results in Table 4 clearly verify the robust-
ness and discriminativeness of our PCSE over other baseline
methods in dealing with label noise.

Subsequently, the commonly used Friedman test [7] is
employed as the statistical test to analyze the relative per-
formance among the compared approaches. Here, the test is
applied individually for each of the four noise rates, namely
(ηP , ηN ) = (0.0, 0.0), (0.2, 0.2), (0.3, 0.1), and (0.4, 0.4). The
Friedman statistic FF for the four noise rates are 58.19, 70.29,
48.82, and 68.96, respectively, and the corresponding critical
value (at 0.1 significance level) is 3.08 (with 13 algorithms
and 12 datasets). Therefore, these algorithms are distin-
guishable in performance. Finally, the post-hoc Nemenyi
test is adopted to illustrate the relative performance among
approaches, and PCSE is regarded as the control method.
The performance of our PCSE is significantly better than
another approach if the corresponding average ranks differ
by at least the Critical Difference (CD). Fig. 4 shows the
CD diagrams, where the average rank of each algorithm
is marked along the axis. In this figure, every compared
algorithm whose average rank is within one CD to that
of PCSE is interconnected to each other with a bold wavy
line. It can be observed that PCSE achieves the best aver-
age rank among all cases, and the performance of PCSE
is significantly better than RoG in all cases. In Fig. 4(c),
PCSE surpasses most of the compared algorithms, including
NESC. In summary, the CD diagrams suggest that our
method achieves more precise estimations of statistics than
RoG and NESC under binary classification scenarios.

6.2.2 Experiments on Synthetic Multi-Class Datasets

To further evaluate the efficacy of PCSE in multi-class
classification, we conduct experiments on two standard
benchmark datasets, namely CIFAR-10 and CIFAR-100 [24].

The baseline methods in this section include the previ-
ously used CrossEntropy, GCE, Co-teaching, LDMI, CWD,
RoG, MC-LDCE, ASL, and ROBOT, where ROBOT is
adopted as the pre-training method for our PCSE. Here
CEGE, ULE, and NESC are not compared as they can only
handle binary classification. The backbone network em-

http://theoval.cmp.uea.ac.uk/matlab
http://theoval.cmp.uea.ac.uk/matlab
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TABLE 4
Comparison of various approaches on five UCI benchmark datasets. The best two records on each dataset are highlighted in red and blue,

respectively. The “
√

”(“×”) denotes that our PCSE is significantly better (worse) than the corresponding compared method revealed by the paired
t-test with significance level 0.1.

Dataset (ηP , ηN ) CrossEntropy GCE [57] LDMI [50] Co-teaching [18] CEGE [16] CWD [15] ULE [33] RoG [25] MC-LDCE [9] ASL [58] ROBOT [52] NESC [12] PCSE

Breast cancer

(0.0, 0.0) 73.7 ± 0.7
√

72.4 ± 0.8
√

74.4 ± 1.2 73.2 ± 0.6
√

73.5 ± 0.4
√

73.6 ± 0.2 73.7 ± 0.2
√

72.7 ± 0.4
√

70.0 ± 1.2
√

70.9 ± 1.5 70.7 ± 2.3 75.9 ± 1.1 75.9 ± 1.1
(0.2, 0.2) 67.2 ± 0.4

√
70.3 ± 1.1 70.4 ± 0.6

√
61.1 ± 1.1

√
69.8 ± 1.2 70.3 ± 0.6

√
71.2 ± 0.8 66.5 ± 0.8

√
67.3 ± 3.0 68.0 ± 3.7

√
66.1 ± 5.0 71.8 ± 0.2 71.8 ± 0.2

(0.3, 0.1) 70.0 ± 1.3
√

71.5 ± 1.6 70.1 ± 2.4
√

70.7 ± 0.0 70.4 ± 2.7
√

68.7 ± 2.0
√

71.5 ± 1.4 70.1 ± 2.3 70.3 ± 1.3
√

71.1 ± 0.5 69.3 ± 1.8 69.7 ± 1.5
√

72.3 ± 1.8
(0.4, 0.4) 56.0 ± 2.1

√
66.7 ± 3.5 59.5 ± 5.1

√
54.9 ± 1.0

√
60.6 ± 4.8

√
61.1 ± 5.7

√
62.7 ± 4.2 59.7 ± 1.7

√
56.6 ± 4.2

√
58.0 ± 11.3 57.4 ± 4.3

√
70.9 ± 2.9 70.9 ± 2.9

Heart

(0.0, 0.0) 83.7 ± 0.9
√

83.6 ± 0.7
√

83.8 ± 1.1 83.2 ± 0.5
√

83.1 ± 1.0
√

83.5 ± 1.8 83.2 ± 1.0
√

84.8 ± 0.5
√

80.4 ± 0.8
√

82.5 ± 1.8
√

81.9 ± 1.8
√

87.3 ± 0.7 87.3 ± 0.7
(0.2, 0.2) 74.3 ± 3.9

√
78.0 ± 2.4 76.7 ± 1.8 68.2 ± 2.2

√
75.5 ± 0.5 75.9 ± 2.2

√
75.4 ± 2.4 74.8 ± 1.2 76.1 ± 1.5 77.4 ± 3.2 78.5 ± 3.7 80.0 ± 4.1 80.0 ± 4.1

(0.3, 0.1) 73.1 ± 1.2
√

78.4 ± 3.6 75.8 ± 1.6
√

72.0 ± 3.2
√

72.5 ± 2.5
√

75.8 ± 1.1
√

74.2 ± 1.6
√

77.4 ± 0.0
√

73.5 ± 2.3
√

75.4 ± 5.1 75.1 ± 6.4 75.7 ± 5.8 81.7 ± 1.8
(0.4, 0.4) 57.0 ± 2.3 62.0 ± 3.6 63.1 ± 7.5 54.9 ± 2.0 58.3 ± 4.1 62.7 ± 5.2

√
59.2 ± 3.7 61.1 ± 2.1

√
56.6 ± 12.3 60.3 ± 5.7

√
62.7 ± 7.0 65.9 ± 5.6 65.9 ± 5.6

Diabetis

(0.0, 0.0) 76.3 ± 0.4
√

76.4 ± 0.2
√

77.0 ± 0.3
√

75.9 ± 0.6
√

76.6 ± 0.4 77.1 ± 0.2 76.7 ± 0.0
√

76.4 ± 1.4 75.6 ± 0.6
√

75.4 ± 0.2
√

76.6 ± 0.7
√

78.3 ± 0.6 78.3 ± 0.6
(0.2, 0.2) 70.1 ± 0.2

√
74.7 ± 0.7 74.1 ± 0.8 64.6 ± 1.8

√
74.5 ± 1.5

√
74.6 ± 0.5 73.6 ± 3.2 70.5 ± 2.9

√
73.1 ± 2.0 70.5 ± 3.9

√
73.8 ± 1.7

√
75.8 ± 1.4 75.8 ± 1.4

(0.3, 0.1) 69.7 ± 1.8
√

74.0 ± 0.9
√

74.1 ± 1.3
√

69.8 ± 0.9
√

74.3 ± 1.0
√

74.5 ± 0.9
√

73.9 ± 0.4
√

69.9 ± 1.1
√

71.5 ± 1.9 68.0 ± 1.7
√

72.4 ± 3.3 73.6 ± 0.8
√

75.3 ± 0.8
(0.4, 0.4) 60.7 ± 2.3

√
66.0 ± 0.2

√
64.7 ± 1.4 54.7 ± 1.2

√
65.6 ± 0.5

√
65.7 ± 1.8 63.7 ± 1.5

√
63.6 ± 2.9 62.2 ± 4.2 65.6 ± 0.8

√
66.5 ± 0.4

√
68.5 ± 0.6 68.5 ± 0.6

German

(0.0, 0.0) 75.3 ± 0.5
√

75.9 ± 0.6
√

75.3 ± 0.8 76.0 ± 0.2 76.0 ± 0.4
√

75.1 ± 0.4
√

75.5 ± 0.1
√

73.7 ± 1.2
√

75.7 ± 0.9 72.4 ± 0.3
√

74.1 ± 0.5
√

77.7 ± 0.9 77.7 ± 0.9
(0.2, 0.2) 66.6 ± 3.1 70.8 ± 0.9

√
71.2 ± 0.7

√
63.4 ± 0.8

√
72.3 ± 0.8 71.0 ± 0.8

√
71.8 ± 0.8 69.7 ± 0.4

√
71.4 ± 1.4 70.7 ± 0.5

√
69.5 ± 1.4

√
72.9 ± 0.6 72.9 ± 0.6

(0.3, 0.1) 68.6 ± 2.9
√

73.1 ± 0.5 71.6 ± 1.4
√

72.2 ± 0.3 71.0 ± 2.0 71.7 ± 1.5
√

72.1 ± 1.4
√

70.2 ± 2.0 72.5 ± 0.5 70.3 ± 0.4
√

68.7 ± 0.2
√

71.9 ± 0.4
√

73.5 ± 0.9
(0.4, 0.4) 59.0 ± 3.0

√
62.1 ± 1.0

√
66.4 ± 0.8

√
53.1 ± 1.8

√
65.2 ± 2.1

√
67.4 ± 3.4 65.3 ± 1.1

√
64.2 ± 3.0 60.4 ± 2.5

√
67.3 ± 1.4 63.1 ± 0.7

√
69.3 ± 0.5 69.3 ± 0.5

Image

(0.0, 0.0) 94.2 ± 0.8 94.4 ± 0.7 94.3 ± 1.4 90.9 ± 0.8
√

95.3 ± 0.2 95.3 ± 0.1 95.8 ± 0.4× 90.9 ± 0.8
√

90.5 ± 0.6
√

89.5 ± 0.8
√

94.4 ± 0.4 94.2 ± 0.8 94.2 ± 0.8
(0.2, 0.2) 87.0 ± 2.2 82.3 ± 13.4 87.0 ± 1.5 76.2 ± 0.5

√
90.8 ± 0.1 86.1 ± 4.5 88.7 ± 2.9 84.0 ± 4.2 87.4 ± 1.4

√
82.7 ± 2.0

√
88.9 ± 1.3 90.5 ± 0.4 90.5 ± 0.4

(0.3, 0.1) 82.9 ± 4.2 87.2 ± 3.6 87.0 ± 0.6
√

74.5 ± 0.7
√

87.9 ± 0.6
√

87.4 ± 0.7
√

86.1 ± 1.9 82.3 ± 3.1
√

83.4 ± 1.6
√

74.1 ± 1.7
√

85.5 ± 3.1 88.3 ± 0.5
√

89.8 ± 0.1
(0.4, 0.4) 65.9 ± 3.2

√
66.2 ± 16.4 72.8 ± 7.5 56.5 ± 0.5

√
71.8 ± 2.3 74.0 ± 0.6 75.4 ± 0.6 66.0 ± 2.0 73.8 ± 3.2 66.6 ± 2.2 70.4 ± 6.4

√
74.9 ± 5.2 74.9 ± 5.2

Average 71.6 74.3 74.5 68.3 74.2 74.6 74.5 72.4 72.4 71.8 73.3 76.7 77.3

TABLE 5
Comparison of various approaches on CIFAR-10 and CIFAR-100 datasets. The best two records on each dataset are highlighted in red and blue,
respectively. The “

√
”(“×”) denotes that our PCSE is significantly better (worse) than the corresponding compared method revealed by the paired

t-test with significance level 0.05.

Dataset Noise setting CrossEntropy Co-teaching [18] LDMI [50] GCE [57] CWD [15] RoG [25] MC-LDCE [9] ASL [58] ROBOT [52] PCSE

CIFAR-10

clean. 0% 94.07 ± 0.13 94.04 ± 0.36 94.42 ± 0.07 90.28 ± 0.06
√

94.08 ± 0.13 94.01 ± 0.16 93.99 ± 0.08 90.46 ± 0.21
√

94.16 ± 0.16 94.12 ± 0.12
sym. 20% 84.05 ± 0.32

√
91.17 ± 0.06

√
87.81 ± 0.20

√
88.43 ± 0.04

√
88.77 ± 0.56

√
90.07 ± 0.35

√
88.16 ± 0.38

√
89.72 ± 0.20

√
91.43 ± 0.14

√
91.86 ± 0.14

sym. 40% 67.34 ± 0.58
√

85.88 ± 0.21
√

83.59 ± 0.47
√

84.94 ± 0.21
√

84.04 ± 0.10
√

85.41 ± 0.44
√

84.35 ± 0.41
√

85.14 ± 0.25
√

89.03 ± 0.21
√

89.40 ± 1.34
sym. 60% 41.14 ± 0.86

√
70.25 ± 0.99

√
71.76 ± 0.54

√
74.52 ± 0.31

√
75.75 ± 0.82

√
78.47 ± 0.91

√
75.85 ± 0.50

√
76.70 ± 1.15

√
81.44 ± 0.75 81.70 ± 0.40

asym. 20% 81.41 ± 0.36
√

91.49 ± 0.12
√

89.96 ± 0.28
√

88.10 ± 0.33
√

88.89 ± 0.16
√

91.08 ± 0.41
√

88.77 ± 0.44
√

89.38 ± 1.24
√

91.23 ± 0.22
√

91.56 ± 0.03
asym. 40% 59.07 ± 0.79

√
70.36 ± 0.38

√
83.36 ± 2.25 73.12 ± 1.12

√
83.66 ± 0.54 78.92 ± 0.96

√
81.35 ± 0.26

√
75.43 ± 1.02

√
88.81 ± 0.35 89.03 ± 3.57

CIFAR-100

clean. 0% 72.62 ± 0.23
√

72.82 ± 0.18
√

72.12 ± 0.06
√

54.76 ± 0.92
√

70.00 ± 0.27
√

69.57 ± 0.41
√

69.14 ± 0.04
√

72.19 ± 0.05
√

76.25 ± 0.08 76.32 ± 0.07
sym. 20% 58.04 ± 0.11

√
64.18 ± 0.33

√
58.94 ± 0.66

√
52.41 ± 0.68

√
59.64 ± 2.10

√
63.12 ± 0.61

√
54.90 ± 0.28

√
68.65 ± 0.43

√
72.29 ± 0.14 72.46 ± 0.04

sym. 40% 41.40 ± 0.95
√

58.32 ± 1.05
√

47.86 ± 0.82
√

44.81 ± 1.04
√

48.05 ± 1.14
√

58.24 ± 1.24
√

50.63 ± 0.20
√

62.16 ± 0.29
√

67.22 ± 0.46 67.74 ± 0.14
sym. 60% 21.75 ± 1.00

√
44.01 ± 0.51

√
36.74 ± 0.21

√
35.34 ± 1.54

√
35.04 ± 1.48

√
44.13 ± 0.80

√
36.35 ± 1.05

√
51.31 ± 0.54

√
59.51 ± 0.05

√
59.95 ± 0.14

asym. 20% 60.02 ± 0.33
√

64.87 ± 0.62
√

59.77 ± 0.29
√

50.40 ± 0.09
√

58.00 ± 1.06
√

63.68 ± 0.58
√

60.22 ± 0.56
√

63.43 ± 0.46
√

70.94 ± 0.50 71.91 ± 0.33
asym. 40% 42.22 ± 0.68

√
51.60 ± 0.56

√
42.72 ± 0.12

√
38.91 ± 1.66

√
39.39 ± 2.54

√
52.50 ± 0.41

√
40.02 ± 0.36

√
42.50 ± 0.35

√
57.06 ± 0.43

√
64.59 ± 1.62

ployed by all compared methods is ResNet-18 [20]. For RoG
and our PCSE, we adopt Co-teaching as the pre-training
method, and the features used for model inference are from
the penultimate layer of the network in Co-teaching.

The experimental results on CIFAR-10 and CIFAR-100
are shown in Table 5. For each trial of every approach, the
average test accuracy over the last five epochs is recorded,
and the mean value of the averaged test accuracy over three
independent trials as well as the standard deviation are
reported. We can clearly observe that our proposed PCSE
method achieves better or comparable performance than
the other baseline methods on both datasets in all noisy
scenarios. For example, our PCSE outperforms Co-teaching
by 3.98% under sym. 40% label noise on CIFAR-10. Similarly,
on CIFAR-100, our PCSE surpasses RoG by 2.82% under
sym. 60% label noise. Notably, our PCSE outperforms RoG
across all types and levels of label noise.

6.2.3 Experiments on Real-World Multi-Class Datasets

To further evaluate the effectiveness of our PCSE in
tackling real-world label noise, we conduct the experiments
on five practical noisy datasets, namely
• CIFAR-10N [45]. This dataset contains the images from

the original CIFAR-10 dataset [24], and the labels are pro-
vided by crowd-sourced annotators. There are five noisy
label sets in this dataset, namely “Random1”, “Random2”,
“Random3”, “Aggre”, and “Worse”.

• CIFAR-100N [45]. The collection process of this dataset is
similar to that of CIFAR-10N. Each image in CIFAR-100N

contains a coarse label and a fine label given by a human
annotator, among which the fine labels for all images are
adopted in our experiments.

• Animal-10N [40]. This dataset contains 55,000 images of 10
different animals, where 50,000 images are used for train-
ing, and the remaining 5,000 for testing. Since this dataset
intentionally collects some pairs of visually confusing
animals such as “cat” vs. “lynx” and “chimpanzee” vs.
“orangutan”, labeling errors would be naturally brought
in during the annotation process.

• Clothing-1M [48]. This dataset contains 1 million clothing
images belonging to 14 classes. Since the data is directly
crawled from several online shopping websites, and the
labels are automatically generated according to surround-
ing texts of these images, this dataset inevitably contains
label noise.

• WebVision [28]. This dataset contains more than 2.4 mil-
lion images crawled from the Flickr website and Google
Images search. The same 1,000 concepts as the ILSVRC12
dataset [8] are used for querying images. Due to the po-
tential mismatch between the searched images and their
corresponding concepts, label noise naturally exists.

For CIFAR-10N and CIFAR-100N, our adopted baseline
methods and the corresponding experimental settings are
the same as those on CIFAR-10 and CIFAR-100. Detailed
results are shown in Table 6, which reveals that our PCSE
surpasses the baseline methods or achieves a similar per-
formance. For example, PCSE surpasses CWD and MC-
LDCE by 2.42% and 2.63%, respectively on CIFAR-10N-
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Fig. 4. Comparison of PCSE (the control algorithm) against twelve baseline methods with the Nemenyi test on the UCI benchmark datasets.
Algorithms not connected with PCSE in the CD diagram are significantly inferior to PCSE (CD=4.8917 at 0.1 significance level).

TABLE 6
Comparison of mean test accuracy (%) of various methods on CIFAR-10N and CIFAR-100N datasets. The best two records on each dataset are

highlighted in red and blue, respectively.

Dataset CrossEntropy GCE [57] Co-teaching [18] LDMI [50] CWD [15] RoG [25] MC-LDCE [9] ASL [58] ROBOT [52] PCSE

CIFAR-10N-Aggre 87.77 ± 0.38 87.85 ± 0.70 91.20 ± 0.13 89.43 ± 0.11 89.60 ± 0.04 91.35 ± 0.07 89.39 ± 0.05 90.01 ± 0.37 91.35 ± 0.03 92.02 ± 0.13
CIFAR-10N-Random1 85.02 ± 0.65 87.61 ± 0.28 90.33 ± 0.13 87.27 ± 0.33 87.89 ± 0.33 90.48 ± 0.25 87.56 ± 0.53 88.68 ± 0.28 90.46 ± 0.18 91.19 ± 0.21
CIFAR-10N-Random2 86.46 ± 1.79 87.70 ± 0.56 90.30 ± 0.17 86.96 ± 0.21 87.56 ± 0.17 90.76 ± 0.18 87.51 ± 0.48 88.12 ± 0.21 90.37 ± 0.15 91.21 ± 0.14
CIFAR-10N-Random3 85.16 ± 0.61 87.58 ± 0.29 90.15 ± 0.18 87.11 ± 0.39 87.50 ± 0.19 90.37 ± 0.23 87.19 ± 0.33 88.81 ± 0.71 90.31 ± 0.21 91.13 ± 0.04

CIFAR-10N-Worse 77.69 ± 1.55 80.66 ± 0.35 83.83 ± 0.13 80.36 ± 0.19 80.43 ± 0.42 84.99 ± 0.11 79.84 ± 0.26 79.23 ± 0.70 84.05 ± 0.33 85.81 ± 0.20
CIFAR-100N 55.50 ± 0.66 56.73 ± 0.30 58.73 ± 0.26 50.54 ± 0.41 51.31 ± 1.46 58.49 ± 0.26 52.39 ± 0.73 58.17 ± 0.73 61.25± 0.26 59.75 ± 0.47

TABLE 7
Comparison of mean test accuracy (%) of various approaches on Animal-10N and Clothing-1M. The best two records on each dataset are

highlighted in red and blue, respectively.

Dataset Backbone CrossEntropy GCE [57] Co-teaching [18] LDMI [50] CWD [15] RoG [25] MC-LDCE [9] ASL [58] ROBOT [52] PCSE

Animal-10N VGG-19 79.42 76.21 83.06 80.62 82.52 83.28 81.20 77.70 83.52 83.82
ResNet-18 81.71 81.17 84.86 82.46 83.48 85.04 84.30 82.56 84.68 85.48

Clothing-1M ResNet-50 68.94 69.19 71.04 70.22 70.41 70.98 69.87 70.73 71.06 71.37

Aggre, which implies that estimating per-class statistics is
more effective than estimating a single global centroid in
handling label noise.

For Animal-10N, due to the prevalent use of ResNet-
18 [20] and VGG-19 [39] as backbone networks in previous
research [13], [40], we conducted experiments by using
both types of networks to exclude the influence of dif-
ferent network architectures to the final performance. For
all experiments, the batch size is set to 128, the learning
rate is set to 0.001, and the Adam optimizer [23] with
default parameters is used for model training. For Clothing-
1M, ResNet-50 [20] is adopted as backbone network, as
commonly used in [15] and [27]. For fairness of comparison,
here we do not include the clean validation set in Clothing-
1M during training. Other experimental settings are the
same as those in [27]. The experimental results are presented
in Table 7, which reveals that on Animal-10N and Clothing-
1M, our PCSE outperforms all the compared methods when
different types of backbone networks are employed.

For WebVision, ResNet-50 [20] is adopted as backbone
network, and the other experimental settings are the same
as [58]. In line with prior studies [27], [58], examples from
the first 50 classes of the google image subset are used
for training, and both validation sets from WebVision and

1 2 3 4 5 6 7 8 9 10

PCSE
ROBOT

RoG
Co-teaching

ASL

CrossEntropy
GCE
LDMI

MC-LDCE
CWD

Fig. 5. Comparison of PCSE (the control algorithm) against seven
baseline methods with the Nemenyi test on the real-world datasets.
Algorithms not connected with PCSE in the CD diagram are significantly
inferior to PCSE (CD = 4.1672 at 0.1 significance level).

ILSVRC12 are adopted for evaluation. We pre-train the net-
work with Co-teaching for 100 epochs. The initial learning
rate is set as 0.001 and is reduced by a factor of 10 after 50
epochs. The experimental results are provided in Table 8,
which suggest that our PCSE can efficiently handle large-
scale noisy datasets.

Furthermore, the Friedman test [7] and the Nemenyi test
are also adopted for performance comparison. The Fried-
man statistic FF and the corresponding critical value (at 0.1
significance level) are 63.00 and 2.92, respectively (with 10
algorithms and 9 datasets). Therefore, These methods are
distinguishable in performance. Subsequently, the post-hoc
Nemenyi test is conducted, and PCSE is regarded as the
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TABLE 8
Comparison of various approaches on WebVision. Both validation sets from WebVision and ILSVRC12 are adopted for evaluation, and test

accuracies (%) are reported. The best two records on each dataset are highlighted in red and blue, respectively.

Validation set CrossEntropy GCE [57] Co-teaching [18] LDMI [50] CWD [15] RoG [25] MC-LDCE [9] ASL [58] ROBOT [52] PCSE

WebVision 66.76 61.36 69.60 69.72 67.72 67.68 67.80 66.68 68.24 70.48
ILSVRC12 62.64 59.96 65.28 65.52 64.52 64.24 65.88 64.12 65.20 67.72

TABLE 9
Comparisons of running time (h). Experiments on CIFAR-10N, CIFAR-100N, and Animal-10N were conducted on a single Tesla V100 GPU, while
experiments on Clothing-1M and WebVision were conducted on four Tesla V100 GPUs. The running time on CIFAR-10N is the averaged value

over five label sets.

Dataset CrossEntropy GCE [57] Co-teaching [18] LDMI [50] CWD [15] RoG [25] MC-LDCE [9] ASL [58] ROBOT [52] PCSE / Post-Process

CIFAR-10N 0.89 1.67 0.81 0.80 0.87 1.75 1.05 0.90 1.69 1.72 / 0.05
CIFAR-100N 0.90 1.68 0.82 0.85 0.91 1.73 1.35 0.91 1.66 1.71 / 0.03
Animal-10N 2.76 4.96 2.74 2.82 2.83 5.04 3.39 2.61 3.44 5.03 / 0.07
Clothing-1M 4.32 8.80 4.44 4.12 4.14 9.17 5.56 4.80 21.08 9.12 / 0.32
WebVision 4.14 7.75 4.15 4.20 4.29 8.33 4.45 3.47 14.89 8.24 / 0.49

control method. Fig. 5 shows the CD diagram. As illustrated
in this figure, PCSE achieves the best average rank, and the
performance of PCSE is significantly different from CWD
and MC-LDCE, suggesting that local statistics within each
class are more beneficial than a single global statistic in
handling label noise.

In a word, the classification results on real-world noisy
datasets clearly verify that PCSE is also effective in handling
multi-class classification tasks with real-world label noise.

6.3 Comparisons of Running Time

In this section, we provide detailed comparisons of the
running times of various methods. The experiments were
conducted on the five real-world datasets. Besides, the ex-
perimental settings are the same as those in Section 6.2.2.
We list the running time comparisons in Table 9. From this
table, we can observe that the time consumed by our post-
processing (after pre-training) is just few minutes on CIFAR-
10N and CIFAR-100N. Moreover, on Clothing-1M, the post-
processing of PCSE only consumes an additional 4% of the
training time, which is negligible in practical applications.

7 CONCLUSION AND FUTURE WORK

In this paper, we proposed a new method termed “Per-
Class statistic estimation” (PCSE) to deal with multi-class
label noise learning. Specifically, PCSE establishes the quan-
titative relationship between the per-class noisy first- and
second-order statistics and the corresponding clean ones.
The estimated statistics are further utilized to build a gen-
erative classifier for clean label inference. The advantages of
our PCSE are three-fold:

• Generality. Our PCSE can be considered as a general
post-processing strategy that can boost the classification
performance of many DNNs pre-trained on the noisy
training set. Additionally, it can handle both binary and
multi-class classification problems.

• Reliability. Our proposed estimators of per-class statis-
tics have theoretically guaranteed convergence, and the
precision of the estimation on some key statistics has been
empirically demonstrated.

• Practicability. Our proposed estimators do not rely on the
error-prone clean sample selection process. Besides, our

PCSE algorithm does not contain any tuning hyperpa-
rameters. Therefore, it can be easily implemented under
various practical scenarios.

Due to the above reasons, our method has shown superior
performance to various state-of-the-art LNL approaches on
typical benchmark and real-world datasets.

In the future, we intend to study the problem of statistic
estimation under instance-dependent label noise, where the
label flipping process relies on not only the specific class but
also the feature of instance.
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1 PROOF OF LEMMA 1
Proof. First of all, we derive the elements of M. The (i, j)-th element of M is denoted as Mij , which is obviously non-
negative. For any k ∈ JCK, we have

Mkk =
C∑

i,j=1

1{(i ̸= k ∧ j ̸= k ∧ i ̸= j) ∨ (i = j)}πiTij , (1)

and for any k,m ∈ JCK with k ̸= m, we have

Mkm = πkTkm + πmTmk. (2)

Next, we consider the symmetric label noise. For any k ∈ JCK, we have

Mkk −
C∑

m=1,m̸=k

Mkm =
C∑

i,j=1

1 {(i ̸= k ∧ j ̸= k ∧ i ̸= j) ∨ (i = j)} · πiTij −
C∑

m=1,m̸=k

(πkTkm + πmTmk)

= (1− ϵ) + (1− πk)
C − 2

C − 1
ϵ− ϵ

C − 1
[1 + (C − 2)πk]

=
1

C − 1
· [(C − 1)− ϵ · (2 + (2C − 4)πk)]

≥ 1

C − 1
·
[
(C − 1)− ϵ ·

(
2 + (2C − 4)max

k
πk

)]
> 0,

(3)

where the last inequality holds because we assume that ϵ < min
{

C−1
maxi∈JCK πi(2C−4)+2 ,

C−1
C

}
. As a result, M is a strictly

diagonally dominant matrix [11]. Therefore, M is invertible under symmetric label noise.
For asymmetric label noise with uniform prior, when ϵ < 1

2 , the transition matrix T is diagonally dominant. For any
k ∈ JCK, we have

Mkk −
C∑

m=1,m ̸=k

Mkm =
C∑

i,j=1

1{(i ̸= k ∧ j ̸= k ∧ i ̸= j) ∨ (i = j)} · πiTij −
C∑

m=1,m ̸=k

(πkTkm + πmTmk)

=
C∑
i=1

πiTii +
∑

i ̸=j,i ̸=k,j ̸=k

πiTij −
∑
m̸=k

(πkTkm + πmTmk)

=
1

C

C∑
i=1

Tii +
1

C

∑
i ̸=j,i ̸=k,j ̸=k

Tij −
1

C

∑
m ̸=k

(Tkm + Tmk).

(4)

We also have that for any i, k ∈ JCK with k ̸= i, Tii >
∑

k ̸=i Tik ≥ Tik. Therefore, we have 1
C

∑
i ̸=k Tii >

1
C

∑
m ̸=k Tmk,

and 1
CTkk >

1
C

∑
m ̸=k Tkm. Additionally, 1

C

∑
i ̸=j,i ̸=k,j ̸=k Tij > 0, then for any k ∈ JCK, we have Mkk −

∑
m ̸=kMkm > 0.

Consequently, M is strictly diagonally dominant, and thus it is invertible. Therefore, Lemma 1 is proved.

2 VERIFICATION OF THE TWO ASSUMPTIONS

Sufficiently Scattered Assumption. Let the clean class posterior P(Y |X) = [P (Y = e1|X), P (Y = e2|X), · · · , P (Y =
eC |X)]⊤ ∈ [0, 1]C and H = [P(Y |X = x1), · · · ,P(Y |X = xm)], where {xi}mi=1 is the set of all the instances. There are
two aspects/conditions to be verified, namely

1) Q ⊆ cone{H}, where Q = {v ∈ RC |v⊤1 ≥
√
C − 1∥v∥2} and cone{H} is the convex cone combined by the

column vectors of H.
2) cone{H} ̸⊆ cone{U} for any unitary matrix U ∈ RC×C that is not a permutation matrix.

For the convenience of presentation and discussion, we set the number of categories C = 3, and then P(Y |X) ∈ [0, 1]3. To
validate the existence of the vector set H, we leverage training examples from three kinds of vehicles (namely, “airplane”,
“automobile”, and “ship”) in CIFAR-10 as the training set for our setting. Since we only need to verify whether the clean
posterior satisfies the above two conditions, the label noise is not injected to the training set. Here, naive training with
cross-entropy loss is adopted for sake of its simplicity. Moreover, to avoid overfitting, we only use the training set to fit
the posterior distribution, and then we use the test examples from the test set of CIFAR-10 to verify the two conditions
mentioned above.

Since the probability simplex formed by P(Y |X) in 3-dimensional space is a plane, we can restrict our study to this
plane instead of the whole 3-dimensional space. To achieve this point, we project the simplex S = {v = [v1, v2, v3]

⊤ |v⊤1 =
1, vi ≥ 0,∀i ∈ {1, 2, 3}} to a 2-dimensional space. An illustration of the Sufficiently Scattered Assumption is provided in
Fig. 1, where all the test examples constitute H in Fig. 1(b), and 15 randomly selected test examples constitute H in Fig. 1(c).

We justify the two conditions in this assumption by calculating their respective probabilities of occurrence, and the
experimental results are provided in Table 1. For the first condition, we calculate the ratio of areas, namely r1 = |Q ∩
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Fig. 1. Illustration of the Sufficiently Scattered Assumption by assuming that C = 3 and the viewers are facing the 3-dimensional simplex from the
positive orthant. The data points belong to three kinds of vehicles in CIFAR-10 [13]. In (a), a total of 3000 test examples are plotted (1000 examples
for each class); the shaded area is formed by the columns of the permutation matrix; the green and orange triangles are formed by unitary matrices;
and the purple circle corresponds to the space Q. In (b), the convex hull formed by the data points is represented by the dashed line. In (c), a total
of 15 examples are plotted, with 5 examples per class, and the anchor points are missing for the second and third classes.

cone{H}|/|Q|, to explore the proportion of elements in Q that is covered by cone{H}. Through computation, we find
that r1 > 99.8% for the case in Fig. 1(b) and that r1 > 99.1% for the case in Fig. 1(c). Therefore, the first condition
holds almost surely. For the second condition, the discretization technique is utilized to enumerate the possible unitary
matrices. Specifically, we set θi = −π

6 + i
M [π2 − (−π

6 )] with i ∈ {0, 1, 2, · · · ,M − 1}, where M is the total number of
triangles/unitary matrices. With this approximation, the error is 2π

3·M . We set M = 1000, and then the approximation error
is about 0.002. Through computation, we identify that the only Q(i) that satisfies this condition is [e1, e2, e3], which is
exactly the permutation matrix. There are a total of 1,000 cases in our computation, and with approximation error 2π

3000 ,
the only unitary matrix that satisfies the second condition is the permutation matrix. Since we can obtain such results in
both cases of Fig. 1(b) and Fig. 1(c), the second condition can be satisfied even when a small number of examples are
investigated, i.e., m is quite small in the assumption.

Combining the justifications of the two conditions, we conclude that the Sufficiently Scattered Assumption can be easily
satisfied in practice.
Invertibility of the noise transition matrix T. This assumption is widely adopted in literature [5], [19], [25]. Next, we
provide more evidences to show its rationality.

1) According to [1] (Lemma 1) and [18], the binary classification task (with label noise) is learnable only under the
condition ηP + ηN < 1, where ηP and ηN are the label flip probabilities (defined in Section 5.2). This condition is
equivalent to the invertibility of T under binary classification scenarios.

2) For any instance x, we have P(Ỹ |X = x) = T⊤P(Y |X = x). Suppose that T is not invertible, given any noisy
posterior P(Ỹ |X = x), the clean posterior P(Y |X = x) is not unique (if it exists). Therefore, we cannot identify
the unique clean posterior distribution even if the precise noisy posterior distribution is provided. Therefore,
the invertibility is required to ensure the identifiability of both T and P(Y |X = x), as also assumed in [15]
(Definition 4).

3) In practical datasets, it is reasonable to anticipate that the noise transition matrix is diagonally dominant. For
instance, in early work [3] and recent work [2], P (Ỹ = ei |Y = ei) > 0.5 is assumed for ∀i ∈ {1, 2, · · · , C}.
We further take the human annotated noisy dataset CIFAR-10N-worst for example, which contains the worst-case
annotations. In its (estimated) noise transition matrix (we can find it in the “Observations” tag at http://noisylabels.
com/), the diagonal element is significantly larger than the off-diagonal elements in each row. To name a few, in
the first and second rows, the diagonal elements (0.65 and 0.59, respectively) surpass the corresponding second
highest off-diagonal elements (0.08 and 0.25), thereby establishing their dominance and ensuring the invertibility
of the transition matrix T.

In summary, the second assumption is a necessity and it can be easily satisfied in practice.

3 EXTENSION OF PCSE TO CLASS-CONDITIONAL MULTI-LABEL NOISE

In this section, we briefly show that the proposed PCSE method can potentially be applied to the learning with multi-label
noise problem. Before this, we formally define the problem of Class-Conditional Multi-label Noise (CCMN for short).

http://noisylabels.com/
http://noisylabels.com/
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TABLE 1
Verification results of the Sufficiently Scattered Assumption.

Figure Condition Probability Approximation error

Fig. 1(b)
(|H| = 3000)

Q ⊆ cone{H} 99.8% 0

cone{H} ̸⊆ cone{U} 100% 2π/3000

Fig. 1(c)
(|H| = 15)

Q ⊆ cone{H} 99.1% 0

cone{H} ̸⊆ cone{U} 100% 2π/3000

For any instance x ∈ X , we follow [20] and denote by Y ′ = {−1,+1}C the label space. For any given label y ∈ Y ′,
we use yj to denote the j-th element of y. In our setting, yj = 1 indicates the j-th label is a true label for the instance x,
while yj = −1 indicates the opposite. Since we are tackling the multi-label classification problem,

∑C
j=1 1{yj = 1} ≥ 1

holds for any instance x. Let S = {(xi,yi)}ni=1 be the given training dataset drawn i.i.d. according to the true distribution
D. In the CCMN framework, the true label y can be flipped into the noisy one, namely ỹ. The flipping process follows a
class-conditional noise model as: P (ỹj = −1|yj = +1) = ρj+1, P (ỹj = +1|yj = −1) = ρj−1, and ∀j ∈ JCK, ρj+1 + ρj−1 < 1.
With such a contamination process, the noisy distribution is denoted by D̃, and the noisy dataset based on S is denoted by
S̃ = {(xi, ỹi)}ni=1. In the following, we use ỹij to denote the j-th element of ỹi.

Now, we elaborate on the calibration method of the pre-trained classifier for the CCMN setting based on PCSE. From
a high-level point of view, we decompose the CCMN problem into several independent binary classification problems
(as previous research did [20]) and calibrate the classifier for each class by leveraging the PCSE method. Suppose that
the pre-trained classifier for the j-th class is denoted by fj(x) = w⊤

j ϕ(x) + bj , where wj ∈ Rd and ϕ(x) ∈ Rd are the
parameters and learned feature representation for x, respectively. Besides, d denotes the feature dimensionality. Let

Tj =

[
1− ρj−1 ρj−1

ρj+1 1− ρj+1

]
(5)

be the label transition matrix for the j-th class, whose (i, k)-th element is denoted by T j
ik. Then, we can obtain the coefficient

matrix Mj for the j-th class, which is given by

Mj =
∑

i∈{0,1}

∑
k∈{0,1}

πj
iT

j
ikKi→k, (6)

where πj
0 = P (yj = −1) and πj

1 = P (yj = +1) are the class priors, Ki→k is the 2-dimensional permutation matrix formed
by switching the i-th and k-th rows of the 2-dimensional identity matrix. With such a coefficient matrix, we can readily
obtain the estimators for the mean and covariance of the j-th class (by leveraging the similar derivation in PCSE). We denote
such estimators by µj

−1,µ
j
+1 and Σj

−1,Σ
j
+1, respectively, where the subscripts +1 and −1 correspond to the positive and

negative labels, respectively. Therefore, the overall covariance matrix for the j-th class is denoted by Σj = πj
0Σ

j
−1+π

j
1Σ

j
+1.

Subsequently, the generative classifier based on ϕ(x) is given by f ′j(x) = w′
j
⊤
ϕ(x) + b′j , where w′

j = Σj(µj
+1 − µj

−1)

b′j = − 1
2µ

j
+1(Σ

j)−1µj
+1 +

1
2µ

j
−1(Σ

j)−1µj
−1 + log

πj
1

πj
0

. (7)

Based on this calibrated classifier, the predicted label of the j-th class for an instance x is ŷj = 2 · 1{f ′j(x) > 0} − 1.
Therefore, we justify that our PCSE can be potentially applied to the CCMN problem. However, there are some difficulties
in practical implementation. We have listed some tough points as follows:

1) The accurate estimation of the noise rates {ρj−1}Cj=1 and {ρj+1}Cj=1 is a hard task, since anchor points may be
missing for multi-label datasets and the accurate estimations of those noisy posterior probabilities are intrinsically
hard.

2) The examples with yj = +1 and yj = −1, ∀j ∈ {1, 2, · · · , C} may not follow the unimodal Gaussian distribution,
and the assumption that examples for the j-th class follow the Gaussian distribution for all j ∈ {1, 2, · · · , C} may
not hold necessarily, since the distributions for all the classes can be highly entangled. For example, we suppose
that the examples with yj = +1 follow the unimodal Gaussian distribution, and then some of the examples with
yj = +1 may also have yk = +1 or yk = −1 for some k. In this case, the features may be indistinguishable for
the k-th class. However, the pre-trained feature space always shows clustering properties (i.e., distinguishable for
different classes), which possibly lead to a contradiction.

3) The appearances of some classes in multi-label datasets may be less frequent, and some of the binary problems
may have imbalanced data. In our analysis (Sectioin 5.1 of the revised manuscript), more severe the class imbalance
is, the larger the error upper bound will be. Therefore, it is still unclear that the final estimation can exactly recover
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the true mean & covariance.

4 PROOF OF THEOREM 1
Proof. First of all, we assume that the ground-truth transition matrix T is given. Since

∣∣ 1
ñ1{ỹi = ek} − 1

ñ1{ỹ
′
i = ek}

∣∣ ≤ 1
ñ

for any pair of (ỹi, ỹ
′
i), by using McDiarmid’s inequality [16], for any k ∈ JCK and any ϵ > 0, we have

P
(∣∣∣̂̃πk − π̃k

∣∣∣ ≥ ϵ
)
≤ 2 exp

(
−2ñϵ2

)
. (8)

For the multi-dimensional case, we have

P
({

∃k ∈ JCK :
∣∣∣̂̃πk − π̃k

∣∣∣ ≥ ϵ
})

≤ 2C exp
(
−2ñϵ2

)
. (9)

Then by negation, we have
P
({

∀k ∈ JCK :
∣∣∣̂̃πk − π̃k

∣∣∣ ≤ ϵ
})

≥ 1− 2C exp
(
−2ñϵ2

)
. (10)

We denote the estimated noisy class prior and the ground-truth noisy class prior by ̂̃π =
[̂̃π1, ̂̃π2, · · · , ̂̃πC

]⊤
and π̃ =

[π̃1, π̃2, · · · , π̃C ]⊤, respectively. Besides, we use ∥v∥∞ to denote the ℓ∞-norm of a vector v, which is defined as ∥v∥∞ =
maxi |vi| with vi being the i-th element of v. Then Eq. (10) implies that for any δ > 0 with probability at least 1 − δ, we
have ∥∥̂̃π − π̃

∥∥
∞ ≤

√
1

2ñ
log

2C

δ
. (11)

Now we consider the estimation error of the clean class prior π = [π1, π2, · · · , πC ]⊤. We also denote its estimated value by
π̂ = [π̂1, π̂2, · · · , π̂C ]⊤. Then, for any δ > 0, with probability at least 1− δ, we have

∥π̂ − π∥∞ ≤
∥∥(T⊤)−1

∥∥
∞

∥∥̂̃π − π̃
∥∥
∞ ≤

∥∥T−1
∥∥
1

√
1

2ñ
log

2C

δ
, (12)

where we have ∥A∥∞ = maxi ∥Ai·∥1, and ∥A∥1 = maxi ∥A·i∥1 for a matrix A. Here Ai· represents the i-th row of the
matrix A, and A·i stands for the i-th column of the matrix A. The last inequality in Eq. (12) holds because

∥∥(T⊤)−1
∥∥
∞ =∥∥T−1

∥∥
1
.

Since the analysis of the first- and second-order statistics is similar, here we only prove the case of first-order statistics,
and the case of second-order statistics holds in the same way. For brevity, we omit the superscript “(1)” in X

(1)
, ũ(1)

k and
other symbols related to the first-order statistics. Moreover, we use ψ to denote ψ1. We define ̂̃uk = 1

ñk

∑
i∈JnK,ỹi=ek

ψ(xi)

and ũk = EX|Ỹ=ek
[ψ(X)] for any k ∈ JCK. Besides, we denote Ũ = [ũ1, ũ2, · · · , ũC ] and ̂̃

U =
[̂̃u1, ̂̃u2, · · · , ̂̃uC

]
.

Next, we bound the estimation error of the noisy first-order statistics, namely
∥∥ ̂̃U − Ũ

∥∥
2
. By leveraging the McDiarmid’s

inequality [16], for any δ > 0 and k ∈ JCK, with probability at least 1− δ, we have

P
(∥∥̂̃uk − ũk

∥∥
∞ ≥ ϵ

)
≤ 2d exp

(
− ñkϵ

2

2X
2

)
≤ 2d exp

(
−mink ñkϵ

2

2X
2

)
. (13)

Then by using the union bound inequality, we have that for any ϵ > 0,

P
({

∃k ∈ JCK :
∥∥̂̃uk − ũk

∥∥
∞ ≥ ϵ

})
≤

C∑
k=1

P
(∥∥̂̃uk − ũk

∥∥
∞ ≥ ϵ

)
≤ 2dC exp

(
−mink ñkϵ

2

2X
2

)
, (14)

which implies that

P
(∥∥ ̂̃U− Ũ

∥∥
max

≤ ϵ
)
= P

({
∀k ∈ JCK :

∥∥̂̃uk − ũk

∥∥
∞ ≤ ϵ

})
≥ 1− 2dC exp

(
−mink ñkϵ

2

2X
2

)
, (15)

where
∥∥ ̂̃U− Ũ

∥∥
max

= maxi,j
∣∣ ̂̃Uij − Ũij

∣∣. Therefore, for any δ > 0, with probability at least 1− δ, we have

∥∥ ̂̃U− Ũ
∥∥
2
≤

√
dC

∥∥ ̂̃U− Ũ
∥∥
max

≤ X
√
dC

√
2

mink ñk
log

2dC

δ
. (16)

Subsequently, we bound the estimation error of each diagonal matrix. We first investigate the estimation error bound
of Λ−1 = diag(π)−1. Let Λ̂−1 = diag(π̂)−1, and then for any δ > 0, with probability at least 1− δ, we have∥∥Λ̂−1 −Λ−1

∥∥
2
≤ ∥π − π̂∥∞

mini π̂i mini πi
≤ ∥T−1∥1

mini π̂i mini πi

√
1

2ñ
log

2C

δ
. (17)
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Next, we consider the estimation error bound of Λ̃ = diag(π̃). We further denote ̂̃
Λ = diag

(̂̃π). Then, for any δ > 0,
with probability at least 1− δ, we have ∥∥ ̂̃Λ− Λ̃

∥∥
2
≤

∥∥̂̃π − π̃
∥∥
∞ ≤

√
1

2ñ
log

2C

δ
. (18)

We denote the estimation error of M by δM = M̂−M, where M̂ is the estimated value of M. Since for any permutation
matrix, its maximum singular value is 1, we have ∥Ki→j∥2 = 1 for ∀i, j ∈ JCK, then

∥∥M− M̂
∥∥
2
=

∥∥∥∥∥∥
C∑

i,j=1

πiTijKi→j −
C∑

i,j=1

π̂iTijKi→j

∥∥∥∥∥∥
2

≤
C∑

i,j=1

|πi − π̂i| · Tij · ∥Ki→j∥2

=
C∑
i=1

|πi − π̂i|
C∑

j=1

Tij

= ∥π − π̂∥1.

(19)

Therefore, for any δ > 0, with probability at least 1− δ, we have

∥δM∥2 = ∥M− M̂∥2 ≤ ∥π − π̂∥1 ≤ C∥π − π̂∥∞ ≤ ∥T−1∥1 · C
√

1

2ñ
log

2C

δ
. (20)

If we further assume ñ > 2 · C2∥T−1∥21 log 2C
δ , then we have 1− ∥T−1∥1 · C

√
1
2ñ log 2C

δ > 1
2 for any δ > 0. Therefore, by

using the estimation error of the inverse of a matrix, with probability at least 1− δ, we have∥∥M̂−1 −M−1
∥∥
2
≤ ∥δM∥2

1− ∥δM∥2

≤
∥T−1∥1 · C

√
1
2ñ log 2C

δ

1− ∥T−1∥1 · C
√

1
2ñ log 2C

δ

≤ 2∥T−1∥1 · C
√

1

2ñ
log

2C

δ
.

(21)

Subsequently, we derive the bounds of norms for each matrix. For the matrix M, we have ∥M̂∥2 ≤ 1 and ∥M∥2 ≤ 1.
Since ∥M∥2 > maxk,mMkm, and 0 < Mkm < 2 for any k,m ∈ JCK, maxk,mMkm always exists. Therefore, we denote
max{ 1

maxk,m Mkm
, 1

maxk,m M̂km
} by ξM , which is a positive constant. Since ∥M∥2 ≥ ∥M∥max = maxk,mMkm, we can

respectively bound the norms of M̂−1 and M−1 by

∥∥M̂−1
∥∥
2
=

cond2(M̂)

∥M̂∥2
≤ ξM · cond2(M̂), (22)

and ∥∥M−1
∥∥
2
=

cond2(M)

∥M∥2
≤ ξM · cond2(M). (23)

Additionally, we can bound the diagonal matrices and the estimated noisy statistics by{
∥Λ̃∥2 = ∥π̃∥∞ = maxi π̃i ≤ 1,
∥Λ−1∥2 = 1

mini πi
,

(24)

and ∥∥ ̂̃U∥∥
2
≤

∥∥ ̂̃U∥∥
F
=

√√√√√∑
i

∥∥∥∥∥ 1

ñi

∑
j

ψ(x
(i)
j )

∥∥∥∥∥
2

2

≤
√
C ·X, (25)

respectively, where x
(i)
j is an example for the i-th class, ñi is the number of examples for the i-th class, and ∥U∥F =√∑

i,j U
2
ij for a matrix U with Uij being the (i, j)-th element of U.
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Now we can bound the estimation error of the clean statistic by∥∥U− Û
∥∥
2
=

∥∥ŨΛ̃M−1Λ−1 − ̂̃
U

̂̃
ΛM̂−1Λ̂−1

∥∥
2

≤
∥∥ŨΛ̃M−1Λ−1 − ̂̃

UΛ̃M−1Λ−1 +
̂̃
UΛ̃M−1Λ−1 − ̂̃

U
̂̃
ΛM̂−1Λ̂−1

∥∥
2

≤
∥∥ ̂̃U− Ũ

∥∥
2

∥∥Λ̃∥∥
2

∥∥M−1
∥∥
2

∥∥Λ−1
∥∥
2
+

∥∥ ̂̃UΛ̃M−1Λ−1 − ̂̃
U

̂̃
ΛM̂−1Λ̂−1

∥∥
2

≤
∥∥ ̂̃U− Ũ

∥∥
2

∥∥Λ̃∥∥
2

∥∥M−1
∥∥
2

∥∥Λ−1
∥∥
2
+

∥∥ ̂̃U∥∥
2

∥∥Λ̃M−1Λ−1 − ̂̃
ΛM̂−1Λ̂−1

∥∥
2
.

(26)

For
∥∥Λ̃M−1Λ−1 − ̂̃

ΛM̂−1Λ̂−1
∥∥
2

, we have∥∥Λ̃M−1Λ−1 − ̂̃
ΛM̂−1Λ̂−1

∥∥
2

=
∥∥ ̂̃ΛM̂−1Λ̂−1 − ̂̃

ΛM−1Λ−1 +
̂̃
ΛM−1Λ−1 − Λ̃M−1Λ−1

∥∥
2

≤
∥∥ ̂̃Λ∥∥

2

∥∥M̂−1Λ̂−1 −M−1Λ−1
∥∥
2
+

∥∥ ̂̃Λ− Λ̃
∥∥
2

∥∥M−1Λ−1
∥∥
2

≤
∥∥ ̂̃Λ∥∥

2

∥∥M̂−1Λ̂−1 −M−1Λ−1
∥∥
2
+

∥∥ ̂̃Λ− Λ̃
∥∥
2

∥∥M−1
∥∥
2

∥∥Λ−1
∥∥
2
.

(27)

To bound
∥∥M̂−1Λ̂−1 −M−1Λ−1

∥∥
2
, we have∥∥M̂−1Λ̂−1 −M−1Λ−1

∥∥
2

=
∥∥M̂−1Λ̂−1 − M̂−1Λ−1 + M̂−1Λ−1 −M−1Λ−1

∥∥
2

≤
∥∥M̂−1Λ̂−1 − M̂−1Λ−1

∥∥
2
+

∥∥M̂−1Λ−1 −M−1Λ−1
∥∥
2

≤
∥∥M̂−1

∥∥
2

∥∥Λ̂−1 −Λ−1
∥∥
2
+

∥∥M̂−1 −M−1
∥∥
2

∥∥Λ−1
∥∥
2
.

(28)

By combining Eqs. (26)-(28), we can derive∥∥U− Û
∥∥
2
=

∥∥ŨΛ̃M−1Λ−1 − ̂̃
U

̂̃
ΛM̂−1Λ̂−1

∥∥
2

≤
∥∥ ̂̃U− Ũ

∥∥
2

∥∥Λ̃∥∥
2

∥∥M−1
∥∥
2

∥∥Λ−1
∥∥
2
+

∥∥ ̂̃U∥∥
2

∥∥ ̂̃Λ∥∥
2

∥∥M̂−1
∥∥
2

∥∥Λ̂−1 −Λ−1
∥∥
2

+
∥∥ ̂̃U∥∥

2

∥∥ ̂̃Λ∥∥
2

∥∥M̂−1 −M−1
∥∥
2

∥∥Λ−1
∥∥
2
+

∥∥ ̂̃U∥∥
2

∥∥ ̂̃Λ− Λ̃
∥∥
2

∥∥M−1
∥∥
2

∥∥Λ−1
∥∥
2
.

(29)

By recalling the upper bounds of matrix norms and the upper bounds of estimation errors for different terms, we obtain
that the following inequalities hold with probability at least 1− δ, respectively, which are

1).
∥∥ ̂̃U− Ũ

∥∥
2

∥∥Λ̃∥∥
2

∥∥M−1
∥∥
2

∥∥Λ−1
∥∥
2
≤ X

√
dC

√
2

mini ñi
log 2dC

δ · ξMcond2(M) · maxi π̃i

mini πi
;

2).
∥∥ ̂̃U∥∥

2

∥∥ ̂̃Λ∥∥
2

∥∥M̂−1
∥∥
2

∥∥Λ̂−1 −Λ−1
∥∥
2
≤

√
CX · ξMcond2(M̂) ·

∥∥T−1
∥∥

1

mini π̂i mini πi

√
1
2ñ log 2C

δ ;

3).
∥∥ ̂̃U∥∥

2

∥∥ ̂̃Λ∥∥
2

∥∥M̂−1 −M−1
∥∥
2

∥∥Λ−1
∥∥
2
≤ C

√
CX maxi

̂̃πi

mini πi
· 2

∥∥T−1
∥∥
1

√
1
2ñ log 2C

δ ;

4).
∥∥ ̂̃U∥∥

2

∥∥ ̂̃Λ− Λ̃
∥∥
2

∥∥M−1
∥∥
2

∥∥Λ−1
∥∥
2
≤

√
CX ·

√
1
2ñ log 2C

δ · ξMcond2(M) · 1
mini πi

.

Now we define the following constants:
ζ = X

√
CξM cond2(M̂)

mini π̂i mini πi
+ 2XC

√
C maxi

̂̃πi

mini πi

β = X
√
CξM cond2(M)
mini πi

γ = X·ξM cond2(M)maxi π̃i

mini πi

. (30)

Then by combining Eqs. (29) and the upper bounds for each terms, with probability at least 1− δ, we have

∥∥U− Û
∥∥
2
≤ γ

√
2dC

mink ñk
log

8dC

δ
+ (ζ∥T−1∥1 + β) ·

√
1

2ñ
log

8C

δ
. (31)

Therefore, for s = 1 (the first-order statistics) or s = 2 (the second-order statistics), if ñ > 2C2∥T−1∥21 log 8C
δ , with

probability at least 1− δ, we have

∥∥U(s) − Û(s)
∥∥
2
≤ γ(s)

√
2dsC

mink ñk
log

8dsC

δ
+ (ζ(s)∥T−1∥1 + β(s)) ·

√
1

2ñ
log

8C

δ
. (32)

Therefore, we complete the proof.
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5 PROOF OF THEOREM 2
Proof. Now we consider the estimation error on the transition matrix T. The estimated transition matrix is denoted by T̂.
Let ∆T = T− T̂, then we can get T = T̂+∆T. By using the Woodbury identity and the triangle inequality, we have

∥T−1∥1 = ∥(T̂+∆T)−1∥1
= ∥T̂−1 − T̂−1(I+∆TT̂−1)−1∆TT̂−1∥1
≤ ∥T̂−1∥1 + ∥T̂−1∥21 · ∥(I+∆TT̂−1)−1∥1 · ∥∆T∥1.

(33)

Then we substitute this inequality into Eq. (32). Since we assume that I + (T − T̂)T̂−1 is invertible, and the norm of its
inverse matrix is upper bounded, this theorem can be proved readily, namely for any δ > 0 and s ∈ {1, 2}, with probability
at least 1− δ, we have

∥∥U(s) − Û(s)
∥∥
2
≤ γ(s)

√
2dsC

mink ñk
log

8dsC

δ
+ (ζ(s)∥T̂−1∥1 + β(s)) ·

√
1

2ñ
log

8C

δ
+O

(∥T− T̂∥1√
ñ

)
. (34)

Therefore, the proof is completed.

6 PROOF OF THEOREM 3
Proof. First of all, we consider the symmetric label noise. We recall the estimators of NESC provided in [6], namely{

[µP ,µN ] = [µ̃P , µ̃N ]S

[σP ,σN ] = [σ̃P , σ̃N ]S
, (35)

where S =

[
(1−π̃)·(1−η)

1−π̃−η
−η(1−π̃)

π̃−η
−π̃·η

1−π̃−η
π̃·(1−η)
π̃−η

]
is the coefficient matrix. Now we need to derive the coefficient matrix of our PCSE. By

simple calculation, we have

M =
C∑
i=1

πi

C∑
j=1

TijKi→j =

[
1− η η
η 1− η

]
. (36)

Since π̃ = (1− 2η)π + η, we have

Λ̃M−1Λ−1 =

[
1− π̃ 0
0 π̃

] [
1− η η
η 1− η

]−1 [
1− π 0
0 π

]−1

=
1

1− 2η

[
1− π̃ 0
0 π̃

] [
1− η −η
−η 1− η

] [
1− π 0
0 π

]−1

=

[
1−π̃
1−π · 1−η

1−2η
(1−π̃)(−η)
π(1−2η)

π̃(−η)
(1−π)(1−2η)

π̃(1−η)
π(1−2η)

]
.

(37)

Since π = π̃−η
1−2η and 1− π = 1−η−π̃

1−2η , we have

Λ̃M−1Λ−1 =

[
(1−π̃)·(1−η)

1−π̃−η
−η(1−π̃)

π̃−η
−π̃·η

1−π̃−η
π̃·(1−η)
π̃−η

]
= S. (38)

Therefore, our estimation is given by

U = [µP ,µN ] = ŨΛ̃M−1Λ−1 = [µ̃P , µ̃N ]S. (39)

which is the same as the estimation result of NESC. For the second-order statistics, we can derive the same formulation as
NESC, which is given by

[σP ,σN ] = [σ̃P , σ̃N ]S. (40)

Therefore, PCSE and NESC have the same estimators of per-class sample mean and covariance under symmetric label
noise.

For asymmetric label noise, our estimation has the form [µP ,µN ] = [µ̃P , µ̃N ]S′, where S′ = [S′
ij ] ∈ R2×2 is the

coefficient matrix. Its elements are 

S′
00 = (1−π̃)(1−ηP−ηN )[1−ηN−π(ηP−ηN )]

[1−2ηN−2π(ηP−ηN )](1−π̃−ηP )

S′
01 = (1−π̃)(1−ηP−ηN )[−ηN−π(ηP−ηN )]

[1−2ηN−2π(ηP−ηN )](π̃−ηN )

S′
10 = π̃(1−ηP−ηN )[−ηN−π(ηP−ηN )]

[1−2ηN−2π(ηP−ηN )](1−π̃−ηN )

S′
11 = π̃(1−ηP−ηN )[1−ηN−π(ηP−ηN )]

[1−2ηN−2π(ηP−ηN )](π̃−ηN )

. (41)
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TABLE 2
Properties of seven additional UCI Benchmark datasets.

Datasets n d n+ n−

GammaTele 19020 10 12332 6688
Banana 5300 2 2376 2924

Ringnorm 7400 20 3664 3736
Splice 2991 60 1344 1647

Thyroid 215 5 65 150
Twonorm 7400 20 3703 3697
Waveform 5000 21 1647 3353

Here π and π̃ are two scalars, and they have the relationship π = (1− ηP − ηN )π̃ + ηN .
By contrast, the estimation of NESC has the form [µP ,µN ] = [µ̃P , µ̃N ]S′′, where S′′ = [S′′

ij ] ∈ R2×2 is the coefficient
matrix. This matrix can be expressed analytically as

S′′ =

[
(1−π̃)(1−ηP )

1−π̃−ηP

(1−π̃)(−ηN )
π̃−ηN

−π̃ηP

1−π̃−ηP

π̃(1−ηN )
π̃−ηN

]
. (42)

We find that S′ ̸= S′′, so for asymmetric label noise, the estimators of NESC and our PCSE for the first-order statistics are
different. For the second-order statistics, we can draw such conclusion in the same manner.

7 ADDITIONAL EXPERIMENTS

7.1 Experimental Settings under Binary Classification
In this section, we elaborate on the experimental settings for various baseline methods under binary classification.
Specifically, the compared methods are CrossEntropy introduced in Section 6.1.2, GCE [23], LDMI [21], Co-teaching [9],
CEGE [8], CWD [7], ULE [17], RoG [14], MC-LDCE [4], ASL [24], ROBOT [22], NESC [6], and our PCSE. For some methods
that require label flip rates, such as CEGE, CWD, ULE, MC-LDCE, ROBOT, NESC, and our PCSE, we directly provide
them with the real values of ηP and ηN . For all methods, we adopt the same three-layer MLP as the backbone network,
where the number of nodes in the input layer is the same as the feature dimensionality d, and the number of nodes in the
output layer is set to 2. The number of nodes in the hidden layer is decided as ⌈2/3× (d+ 2)⌉ (⌈·⌉ is the ceiling function)
as recommended in [10] and [7] to achieve satisfactory performance. For LDMI, according to the official implementation1,
we pre-train the MLP with the vanilla Cross-Entropy loss and fine-tune the network with the DMI loss. For ULE, the
logistic loss is leveraged to construct an unbiased loss function. For GCE, the hyperparameter q for the negative Box-Cox
transformation is set to 0.7, as recommended by [23]. Additionally, for CEGE and CWD, the commonly used squared loss
function is adopted to build the unbiased loss function. For ASL, the NCE+AGCE loss is used, and the hyperparameters
a, q, α, and β is set to 1, 0.9, 1, and 1, respectively. For ROBOT, the forward loss is adopted, and the RCE loss is used
in the outer loop, as recommended in the original paper. For NESC, since this method is originally proposed to estimate
label flip rates, here we combine its estimation results with the generative classifier deployed in RoG for model inference.
For RoG, NESC, and our PCSE, the adopted pre-training method is CrossEntropy, since it is easy to implement and our
PCSE can already obtain satisfactory performance with this non-robust pre-training method. The hidden-layer features
extracted from the pre-trained network are used to calculate the sample means and covariance matrices. After that, the
sample means and covariance matrices are further utilized in the label inference process. The Adam optimizer [12] with
default parameters is employed for network training in all experiments. We select the learning rate via searching the grid
{0.1, 0.01, 0.001}.

7.2 Additional experiments on UCI benchmark datasets
In our main paper, five UCI datasets have been adopted for the evaluation of our method under binary label noise. To
confirm the effectiveness of the proposed method, more datasets in UCI benchmark repository are included here for further
empirical evaluation. The seven adopted additional benchmark datasets regarding binary classification include GammaTele,
Banana, Ringnorm, Splice, Thyroid, Twonorm, and Waveform2. A brief introduction of the datasets is presented in Table 2,
which contains some essential configurations such as the number of examples n, the feature dimensionality d, the number
of positive examples n+, and the number of negative examples n−. The features for each dataset have been normalized
and standardized.

The experiments on seven adopted UCI datasets are provided in Table 3. As shown in this table, our method surpasses
other compared approaches in most cases. For the average accuracy over all the datasets under different label flip rates,
our PCSE achieves a record of 82.0%, which leads the second and third best methods by a margin of 0.4% and 1.8%,
respectively. To summarize, the results in Table 3 clearly verify the robustness and discriminativeness of our PCSE over
other baseline methods in dealing with label noise.



10

TABLE 3
Comparison of various approaches on seven UCI benchmark datasets. The best two records on each dataset are highlighted in red and blue,

respectively. The “
√

”(“×”) denotes that our PCSE is significantly better (worse) than the corresponding compared method revealed by the paired
t-test with significance level 0.1.

Dataset (ηP , ηN ) CrossEntropy GCE [23] LDMI [21] Co-teaching [9] CEGE [8] CWD [7] ULE [17] RoG [14] MC-LDCE [4] ASL [24] ROBOT [22] NESC [6] PCSE

GammaTele

(0.0, 0.0) 84.9 ± 0.2 67.4 ± 1.9
√

84.9 ± 0.2 80.2 ± 1.0
√

83.6 ± 0.2
√

83.4 ± 0.3
√

85.2 ± 0.1 85.0 ± 0.1 83.6 ± 0.6
√

81.9 ± 0.7
√

84.8 ± 0.8 85.0 ± 0.3 85.0 ± 0.3
(0.2, 0.2) 81.5 ± 0.5

√
75.0 ± 2.2

√
82.6 ± 0.3 63.2 ± 0.9

√
82.6 ± 0.7 81.4 ± 0.2

√
82.2 ± 0.7

√
83.0 ± 0.5

√
81.9 ± 1.1 74.4 ± 3.1

√
81.6 ± 0.3

√
83.3 ± 0.4 83.3 ± 0.4

(0.3, 0.1) 79.0 ± 1.5
√

79.1 ± 2.3 81.0 ± 1.6 69.2 ± 1.0
√

78.4 ± 1.7
√

77.7 ± 0.8
√

81.0 ± 0.6
√

82.6 ± 0.4 78.2 ± 0.7
√

74.2 ± 2.1
√

79.7 ± 0.4
√

81.9 ± 0.2
√

82.9 ± 0.2
(0.4, 0.4) 62.7 ± 3.4

√
71.3 ± 3.3 64.5 ± 3.4 51.6 ± 0.9

√
72.4 ± 1.9 68.5 ± 3.9 65.3 ± 6.2 63.1 ± 4.0

√
74.8 ± 1.9 67.5 ± 3.2 70.0 ± 2.8 72.9 ± 1.8 72.9 ± 1.8

Banana

(0.0, 0.0) 71.9 ± 1.4 64.7 ± 3.6
√

71.4 ± 1.4
√

72.4 ± 2.9 71.7 ± 2.0 71.2 ± 2.8 73.0 ± 2.9 61.3 ± 1.5 70.8 ± 1.0
√

67.3 ± 3.0 64.3 ± 3.7 73.8 ± 2.4 73.8 ± 2.4
(0.2, 0.2) 64.7 ± 1.7

√
67.7 ± 5.9 65.2 ± 2.1 55.7 ± 1.5

√
67.6 ± 4.3 65.8 ± 2.3 65.5 ± 2.0 56.8 ± 3.6 62.4 ± 2.1

√
64.0 ± 1.7 64.9 ± 1.3 65.8 ± 1.7 65.8 ± 1.7

(0.3, 0.1) 64.4 ± 1.8
√

64.1 ± 0.5
√

63.9 ± 1.6 65.1 ± 2.6 59.1 ± 6.2 63.7 ± 4.6 63.8 ± 3.4 60.7 ± 1.2
√

64.2 ± 1.8
√

55.8 ± 0.9
√

60.1 ± 3.3
√

58.5 ± 2.2
√

65.9 ± 1.2
(0.4, 0.4) 50.5 ± 3.3 54.7 ± 2.0 54.3 ± 2.1 50.0 ± 1.4

√
55.0 ± 0.5 52.1 ± 3.1 54.8 ± 1.3 52.5 ± 1.8

√
55.0 ± 0.5 54.5 ± 1.2 55.5 ± 1.7 56.5 ± 0.8 56.5 ± 0.8

Ringnorm

(0.0, 0.0) 93.4 ± 0.3 92.6 ± 0.2
√

92.9 ± 0.7 92.8 ± 0.4 63.0 ± 1.2
√

91.4 ± 1.5 92.5 ± 0.8 89.3 ± 0.3
√

91.2 ± 0.9
√

88.6 ± 0.8
√

92.3 ± 0.4
√

93.5 ± 0.1 93.5 ± 0.1
(0.2, 0.2) 85.6 ± 1.9 64.0 ± 3.9

√
84.1 ± 1.3

√
74.9 ± 0.3

√
62.7 ± 2.2

√
85.1 ± 2.8 85.3 ± 3.2 83.6 ± 1.8 87.4 ± 2.6 81.9 ± 2.1

√
84.7 ± 2.6

√
87.7 ± 1.7 87.7 ± 1.7

(0.3, 0.1) 80.8 ± 0.8
√

60.6 ± 14.3 80.3 ± 1.8
√

74.9 ± 0.6
√

58.5 ± 2.1
√

82.0 ± 1.2 79.4 ± 0.4
√

84.8 ± 0.6 82.2 ± 0.6
√

73.2 ± 0.6
√

81.2 ± 2.5 84.8 ± 0.4 84.7 ± 0.5
(0.4, 0.4) 57.7 ± 5.8

√
73.6 ± 4.1 64.0 ± 3.8

√
54.7 ± 0.9

√
63.5 ± 1.6

√
71.9 ± 2.1 65.2 ± 2.1

√
69.7 ± 4.0 72.8 ± 3.6

√
64.1 ± 7.2

√
73.9 ± 1.2 73.9 ± 3.4 73.9 ± 3.4

Splice

(0.0, 0.0) 89.1 ± 0.6 62.1 ± 9.9
√

88.8 ± 0.3 88.5 ± 0.2 87.2 ± 1.4 75.6 ± 3.8
√

88.9 ± 0.4 89.3 ± 0.4 70.2 ± 4.7
√

73.1 ± 2.0
√

88.1 ± 0.9
√

89.3 ± 0.5 89.3 ± 0.5
(0.2, 0.2) 79.5 ± 0.1

√
58.0 ± 4.1

√
79.9 ± 0.9

√
70.3 ± 1.1

√
80.1 ± 1.2 62.9 ± 4.2

√
79.8 ± 1.3

√
81.8 ± 0.2 70.3 ± 4.8

√
67.8 ± 1.1

√
82.0 ± 0.4 82.6 ± 0.4 82.6 ± 0.4

(0.3, 0.1) 75.0 ± 3.3
√

57.2 ± 2.9
√

77.5 ± 1.1
√

71.2 ± 1.4
√

76.5 ± 1.7
√

60.5 ± 0.6
√

77.0 ± 2.5
√

80.1 ± 2.1 62.0 ± 2.4
√

57.7 ± 0.5
√

75.3 ± 3.4
√

80.1 ± 2.5 80.5 ± 1.9
(0.4, 0.4) 56.7 ± 2.3 54.1 ± 0.8 53.9 ± 2.3 54.0 ± 1.0 59.3 ± 4.6 54.0 ± 0.9 49.3 ± 2.8

√
57.2 ± 2.9 58.6 ± 4.0 52.8 ± 3.6

√
55.7 ± 3.4 57.3 ± 1.8 57.3 ± 1.8

Thyroid

(0.0, 0.0) 92.3 ± 0.8 89.6 ± 2.6 91.6 ± 1.3 90.1 ± 1.1
√

89.0 ± 0.6
√

83.4 ± 0.9
√

92.2 ± 0.7 91.6 ± 2.7 86.2 ± 3.8 88.1 ± 1.6
√

90.3 ± 2.7 93.1 ± 0.6 93.1 ± 0.6
(0.2, 0.2) 91.2 ± 1.3

√
86.5 ± 1.4

√
88.1 ± 1.2 72.2 ± 2.2

√
87.0 ± 1.7

√
84.2 ± 2.6

√
87.3 ± 1.9 79.5 ± 6.6

√
83.5 ± 1.7

√
89.0 ± 0.9 88.9 ± 2.4 91.6 ± 1.4 91.6 ± 1.4

(0.3, 0.1) 83.0 ± 0.8
√

81.9 ± 2.1
√

80.0 ± 3.1
√

75.2 ± 2.1
√

81.9 ± 2.1
√

78.0 ± 3.8
√

83.3 ± 2.7 83.3 ± 1.4
√

78.1 ± 3.0
√

79.7 ± 3.1
√

85.7 ± 1.8 87.4 ± 1.7 87.8 ± 0.6
(0.4, 0.4) 73.9 ± 4.6 73.2 ± 4.7 73.5 ± 2.9 52.1 ± 2.3

√
74.4 ± 4.4 71.1 ± 0.3 70.7 ± 6.4 67.7 ± 1.5 74.8 ± 6.5 76.2 ± 6.0 70.4 ± 7.4 69.3 ± 5.9 69.3 ± 5.9

Twonorm

(0.0, 0.0) 97.5 ± 0.1× 93.7 ± 3.4 97.5 ± 0.1× 97.5 ± 0.0× 96.0 ± 1.9 97.7 ± 0.0× 97.5 ± 0.1× 86.5 ± 4.5 97.8 ± 0.1× 96.7 ± 0.4× 96.9 ± 0.9× 90.8 ± 3.0 90.8 ± 3.0
(0.2, 0.2) 92.9 ± 0.4 85.0 ± 6.7 88.8 ± 5.3 78.3 ± 0.2

√
91.0 ± 4.0 94.7 ± 0.2 93.5 ± 0.9 89.7 ± 0.1 93.4 ± 0.0 94.1 ± 1.8 94.6 ± 1.7 92.1 ± 4.4 92.1 ± 4.4

(0.3, 0.1) 90.1 ± 3.3 77.0 ± 13.5 89.6 ± 5.2 78.2 ± 0.3
√

88.6 ± 5.3 91.2 ± 3.5 90.9 ± 3.4 89.2 ± 0.3 92.0 ± 3.1 89.5 ± 3.6 88.8 ± 1.9 89.5 ± 0.4 92.3 ± 1.8
(0.4, 0.4) 83.8 ± 5.7 84.9 ± 2.9 86.3 ± 4.3 57.3 ± 1.3

√
82.0 ± 0.4

√
85.8 ± 4.2 83.5 ± 2.8 85.4 ± 2.7 86.2 ± 4.3 84.6 ± 2.4 82.7 ± 3.0 87.3 ± 0.3 87.3 ± 0.3

Waveform

(0.0, 0.0) 90.0 ± 0.6 75.0 ± 4.6
√

90.5 ± 0.2
√

90.4 ± 0.2 90.6 ± 0.3 90.2 ± 0.6 89.0 ± 1.9 90.7 ± 0.2
√

90.1 ± 0.1
√

89.4 ± 0.5
√

90.8 ± 0.2
√

91.0 ± 0.1 91.0 ± 0.1
(0.2, 0.2) 87.9 ± 0.3

√
67.1 ± 0.0

√
88.9 ± 0.4

√
73.9 ± 0.4

√
89.2 ± 0.7 89.7 ± 0.4 89.5 ± 0.2

√
89.9 ± 0.6

√
88.6 ± 0.4

√
86.5 ± 0.5

√
90.3 ± 0.5 90.5 ± 0.4 90.5 ± 0.4

(0.3, 0.1) 87.2 ± 1.4
√

68.6 ± 2.1
√

87.3 ± 1.2
√

77.3 ± 0.4
√

87.5 ± 0.8
√

86.5 ± 1.2
√

87.0 ± 0.2
√

89.6 ± 1.1 85.0 ± 0.7
√

83.9 ± 1.7
√

89.0 ± 0.7
√

89.9 ± 0.1 90.2 ± 0.2
(0.4, 0.4) 79.2 ± 0.6

√
81.7 ± 0.7

√
80.0 ± 1.8

√
56.0 ± 0.7

√
80.4 ± 1.3

√
79.8 ± 4.9 75.8 ± 1.3

√
83.2 ± 1.7

√
82.2 ± 0.9 69.5 ± 2.8

√
82.1 ± 1.4

√
85.1 ± 0.9 85.1 ± 0.9

Average 79.5 72.5 79.7 71.0 77.1 77.8 79.6 78.8 78.7 75.9 80.2 81.6 82.0

(0.0,0.0) (0.2,0.2) (0.1,0.3) (0.3,0.3)

(a)
0.0

0.5

1.0

1.5

2.0

2.5

Mean

0.00
0.18 0.25

0.54

0.00
0.18

0.40
0.54

0.46

1.54

1.84

2.40
Breast cancer

(0.0,0.0) (0.2,0.2) (0.1,0.3) (0.3,0.3)

(f)
0.00

0.02

0.04

0.06

0.08

0.10

Covariance

0.000

0.025 0.026

0.069

0.000

0.025

0.068 0.069

0.050

0.087 0.089

0.097

(0.0,0.0) (0.2,0.2) (0.1,0.3) (0.3,0.3)

(k)
0.0

0.5

1.0

1.5

2.0

2.5

Precision
Matrix
        

0.000

1.060
0.857

1.441

0.000

1.060
1.170

1.441
1.635

2.319

2.621
2.429

(0.0,0.0) (0.2,0.2) (0.1,0.3) (0.3,0.3)

(b)
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.00 0.05 0.05
0.14

0.00 0.05 0.08
0.14

0.36

1.02

1.32

1.57
Diabetis

(0.0,0.0) (0.2,0.2) (0.1,0.3) (0.3,0.3)

(g)
0.00

0.02

0.04

0.06

0.08

0.10

0.000

0.011 0.011

0.029

0.000

0.011

0.065

0.029

0.095
0.101

0.108 0.106

(0.0,0.0) (0.2,0.2) (0.1,0.3) (0.3,0.3)

(l)
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.000

0.184 0.201

0.411

0.000

0.184

0.771

0.411

1.286
1.385

1.516
1.446

(0.0,0.0) (0.2,0.2) (0.1,0.3) (0.3,0.3)

(c)
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.00
0.10 0.12

0.36

0.00
0.10

0.19

0.36

1.19

1.35
1.45

1.66
German

(0.0,0.0) (0.2,0.2) (0.1,0.3) (0.3,0.3)

(h)
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.000

0.009 0.009

0.027

0.000

0.009

0.034

0.027

0.036

0.042 0.043 0.043

(0.0,0.0) (0.2,0.2) (0.1,0.3) (0.3,0.3)

(m)
0.0

0.5

1.0

1.5

2.0

0.000

0.353
0.460

0.965

0.000

0.353
0.485

0.965

2.312 2.288 2.246 2.253

(0.0,0.0) (0.2,0.2) (0.1,0.3) (0.3,0.3)

(d)
0.00

0.25

0.50
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Fig. 2. Comparison of NESC, RoG and our PCSE on per-class mean, covariance and precision matrix estimation. The x-axis in each figure
shows various pairs of (ηP , ηN ). The first, second and third rows show the average estimation errors of mean, covariance, and precision matrix,
respectively. Each column displays the results on a specific dataset. This figure clearly illustrates that our PCSE is able to achieve more precise
estimations of per-class statistics than NESC and RoG on binary classification datasets.
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7.3 Estimation Error Analysis under Binary Classification
To further evaluate the statistic estimation performance of our PCSE on the adopted UCI benchmark datasets, we compare
the estimation results of our method on each binary dataset with those generated by two existing methods, including
NESC [6] and RoG [14], as they are representative LNL methods relying on statistic estimation. Specifically, we evaluate
the estimation errors of sample mean, covariance, and precision matrix on four pairs of label flip rates: (ηP , ηN ) = (0.0, 0.0),
(ηP , ηN ) = (0.2, 0.2), (ηP , ηN ) = (0.3, 0.3), and (ηP , ηN ) = (0.1, 0.3), where the first pair corresponds to the noise-free
case, while the second and third pairs stand for the symmetric label noise. The last one corresponds to the asymmetric label
noise. The adopted evaluation metrics for per-class statistics are the same as Eq (27) in the original paper. Here the original
features (instead of the features output by a DNN) of each dataset are used to calculate the statistics under the evaluation
metrics. The average estimation errors over ten independent trials are recorded for evaluation. Notably, for NESC and
PCSE, the actual noise rates ηP and ηN are used in their unbiased estimators.

The estimation errors of various methods on five UCI benchmark datasets are shown in Fig. 2, where the first,
second, and third rows correspond to the estimation results of mean, covariance, and precision matrix, respectively. In
this figure, we identify that in the cases of symmetric label noise, our PCSE indeed obtains the same results as NESC on
the estimation of both per-class mean and covariance, which confirms the theoretical findings in Theorem 3. Moreover,
under asymmetric label noise, our PCSE performs slightly better than NESC in terms of per-class mean estimation and
consistently outperforms NESC in covariance estimation across all datasets. Additionally, on the estimation of precision
matrix, our PCSE obtains smaller estimation errors than NESC and RoG. These results justify that our proposed estimators
can obtain more precise estimations than NESC. It is worth noting that both PCSE and NESC outperform RoG on each
dataset, which suggests that RoG often produces biased estimations on mean and covariance due to the sample selection
process. Since our PCSE does not involve sample selection and it further takes into account the pairwise label flip rates, it
can successfully obtain more precise estimations than RoG and NESC.
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