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Abstract—The high cost of data annotation has become a
major factor restricting the hyperspectral image (HSI) classi-
fication task. To address this issue, domain adaptation (DA)
techniques have been developed to adapt models trained on
abundantly labeled HSIs to those with scarce labels. As a novel
DA paradigm, active DA (ADA) seeks to selectively annotate
informative examples using active learning (AL) techniques under
domain shift scenarios, ultimately enhancing model adaptation
performance. However, current ADA methods require annotating
a relatively large number of target examples, which is impractical
for HSIs. In addition, the target HSIs suffer from class imbalance,
which limits the adaptation performance. To address the above
issues, this article proposes a prototype-guided class-balanced
ADA (PCADA) method for HSI classification. PCADA alternately
aligns the distributions between domains through prototype
guidance and selects the most valuable target examples for
annotation. Specifically, a prototype-guided domain alignment
(PGDA) module is introduced, which generates target prototypes
based on highly confident pseudolabels and aligns the distribu-
tions of two domains. The inconsistency-aware example selection
(IES) module identifies target-specific examples and selects the
most valuable ones for annotation. Furthermore, we propose
a class-balanced self-training (CBST) module that generates
pseudolabels with balanced class distribution to solve the class
imbalance issue in the target domain. The experimental results
conducted on multiple benchmark HSI datasets demonstrate the
superior performance of our proposed method. The code will be
available at: https://github.com/Leap-luohaiyang/PCADA-2025

Index Terms— Active domain adaptation (ADA), class imbal-
ance, hyperspectral image (HSI) classification.

I. INTRODUCTION

YPERSPECTRAL images (HSIs) capture reflectance
across hundreds of narrow and contiguous spectral
bands. The rich spatial-spectral information have led to the
widespread application in various fields, including environ-
mental monitoring [1], mineral exploration [2], agricultural
remote sensing [3], [4], and military surveillance [5], [6].
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HSI classification (HSIC) is a crucial task, which aims to
assign a specific category to each pixel in the HSI. Early HSIC
techniques primarily relied on traditional machine learning
methods, such as k-nearest neighbors [7] and support vector
machines [8]. These approaches utilized only the spectral
information of HSIs while neglecting their spatial context.
To overcome this limitation, spatial-spectral joint features-
based methods [9], [10] significantly improved the classifica-
tion accuracy by incorporating the spatial information of HSIs.
Due to the ability to effectively extract spatial-spectral features
from HSIs and handle fine image classification tasks, deep
learning-based methods [11], [12], [13], [14] have gradually
become mainstream in the field of HSIC. However, deep
learning-based methods usually rely on a large amount of
labeled data for supervision, which is costly. Due to the
complexity and high dimensionality of hyperspectral data,
annotating pixels is both time-consuming and labor-intensive.
Domain adaptation (DA) [15], [16] offers a promising solution
by transferring knowledge from a labeled dataset (i.e., source
domain) to an unlabeled or rarely labeled but related dataset
(i.e., target domain). DA enhances the generalization ability of
the model across varying environments and sensor conditions.
Most studies focus on unsupervised DA (UDA), where no
labels in the target domain are available [17], [18].

The main idea of UDA is to reduce the domain gap between
source and target domains, enabling models trained on the
source domain to perform well on the target domain. In recent
years, many deep UDA methods have achieved promising
results. However, their performance still significantly falls
short of supervised learning methods. In practical scenarios,
it is often feasible to annotate a small number of target
examples to enhance the model performance. However, the
effectiveness of performance improvement largely depends on
which target examples are annotated. Thus, selecting the most
valuable examples from the target domain within a limited
annotation budget has become an increasingly critical issue.

This consideration naturally leads to the exploration of
active learning (AL) [19], [20] techniques. AL improves
the model performance by strategically selecting the most
informative examples for annotation. The core idea is to reduce
the need for extensive labeled data by focusing on examples
that offer the greatest contribution to the learning process.
However, traditional AL methods typically assume that labeled
and unlabeled data share the same distribution. The sampling
strategies are not applicable for UDA scenarios with domain
shifts. Merely using AL and fine-tuning under domain shift
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results in suboptimal performance [21]. In this article, a new
paradigm known as active DA (ADA) [22] has emerged, which
actively selects target examples for annotation in the presence
of domain shift to assist in DA.

The key aspects of ADA involve developing efficient exam-
ple selection strategies to select the most valuable target
examples. The selected target examples should maximize the
transfer performance of the model after annotation. In addi-
tion, it emphasizes effectively utilizing the limited annotated
data to enhance adaptation. However, current ADA methods
typically require annotations for approximately 10% of target
examples [23], [24], [25], and this requirement greatly exceeds
the annotation budget for HSIs. Furthermore, most existing
ADA methods overlook the class distribution discrepancies
between domains. The class distribution of target data is
usually imbalanced in HSIs, where the ratio of majority class
to minority class can reach thousands [26]. Models trained on
such imbalanced data tend to favor the majority class, resulting
in the suboptimal classification performance.

To address the aforementioned issues, we propose a
prototype-guided class-balanced ADA (PCADA) framework
for HSIC. As described in [27], target examples can generally
be divided into two categories: source-like examples, whose
feature distributions are similar to source data, and target-
specific examples, which exhibit unique characteristics of
the target domain. Allocating the annotation budget to
target-specific examples is more beneficial for the model
generalizing to the target domain than annotating source-
like examples. With the consideration above, we design a
pseudolabel selection strategy for source-like examples. This
enables the generation of target prototypes and facilitates
initial domain alignment, guided by the interaction between
source and target prototypes. Afterward, target-specific
examples are manually annotated.

In the example selection stage, we identify target-specific
examples as those where the classifier predicted labels are
inconsistent with the labels of the nearest target proto-
types. In addition, the selected examples which maximize
uncertainty, diversity, and representativeness are encouraged.
Diversity is measured using the combination of the classifier
predicted labels and the labels of the nearest target prototypes
to ensure the variety of “label pairs.” The uncertainty of
each unlabeled target example under the current model is
quantified by the predicted probabilities of the classifier. Given
the limited annotation budget, we maintain a candidate set
comprising the most frequent label combinations and select
examples from each combination that are both uncertain and
representative for annotation. Considering that a small number
of annotated examples often fail to capture the overall distribu-
tion of target data, and the imbalanced class distribution in the
target domain, inspired by [28] and [29], we propose the class-
balanced self-training (CBST) module. It jointly estimates the
class distribution in the target domain using the labels of
annotated examples and the predictions of the classifier, and
samples pseudolabeled examples following a class-balanced
rule for self-training.

The main contributions of this article are summarized as
follows.
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1) We propose a novel ADA method for HSIC, named
PCADA. To the best of the authors’ knowledge, this
work stands as one of the few works that applies ADA
to HSIC while attempting to address the class imbalance
issue. The training pipeline of PCADA follows a pro-
gressive three-stage framework. The first stage performs
initial domain alignment using source-like examples and
learns good representations of target prototypes. In the
second stage, the model is fine-tuned with target-specific
examples annotated by the oracle, improving both DA
and pseudolabel accuracy for the next stage. The third
stage further optimizes the model through a large amount
of high-quality pseudolabeled examples.

We introduce an innovative example selection strategy
that efficiently identifies the most valuable examples
under domain shift. This method is suitable for HSIs,
where annotation budgets are strictly constrained.

We propose a CBST module to tackle the prevalent yet
often overlooked issue of class imbalance in the target
domain. This module mitigates the model bias toward
majority classes while leveraging pseudolabeled target
examples to improve the overall adaptation performance.
Comprehensive experiments demonstrate that our pro-
posed method achieves state-of-the-art performance on
multiple public benchmark datasets.

2)

3)

4)

II. RELATED WORKS
A. Unsupervised Domain Adaptation

Existing UDA methods can be broadly categorized into
three types: instance-based, classifier-based, and feature-based.
Instance-based methods [30], [31] focus on reweighting or
selecting source instances to better align with target dis-
tribution. These methods often involve techniques such as
importance sampling or instance reweighting to reduce domain
discrepancy. Classifier-based methods [32], [33] aim to adapt
the decision boundary of the classifier, allowing models trained
on source data to generalize to the target domain. This can
be achieved by adjusting classifier parameters or employing
ensemble techniques to enhance robustness across domains.

Compared with the above two methods, feature-based
deep UDA methods have received more attention. These
methods focus on aligning the distributions of source and
target domains in the feature space. Among these, adversarial
learning-based UDA methods introduce an adversarial objec-
tive to reduce the distribution discrepancy between source
and target domains. Specifically, the feature extractor and the
domain discriminator engage in an adversarial game and this
iterative process ensures that the feature extractor ultimately
learns domain-invariant feature representations. Notable rep-
resentative methods include domain adversarial training of
neural networks (DANNSs) [34], adversarial discriminative DA
(ADDA) [35], and conditional domain adversarial network
(CDAN) [36]. Some other methods employ adversarial training
between two task-specific classifiers to obtain domain decision
boundaries to drive the alignment of class-level distributions
between domains, such as confident learning-based DA [37],
two-branch attention adversarial DA [38], and unsupervised
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joint adversarial DA [39]. These methods have achieved excel-
lent performance in the cross-domain HSIC.

Another popular branch in the field is the metric
discrepancy-based UDA methods, which focus on directly
optimizing discrepancy metrics to reduce the domain gap.
The essence of these methods lies in designing various metric
paradigms. Common metric paradigms include maximum
mean discrepancy (MMD) [40], correlation alignment
(CORAL) [41], and central moment discrepancy (CMD) [42].
Pioneering works, such as deep adaptation network
(DAN) [43] and joint adaptation network (JAN) [44],
perform domain matching by minimizing variants of MMD,
namely, multikernel MMD and joint MMD. Yan et al. [45]
introduced class-specific auxiliary weights into the original
MMD, proposing a weighted MMD model to address
the issue of DA performance degradation caused by
class weight bias across domains. Sun and Saenko [46]
proposed deep CORAL, which achieves feature alignment
by minimizing the covariance difference between source
and target features. Some studies have expanded upon
these metric discrepancy-based frameworks and applied
them to HSIC tasks, such as topological structure and
semantic information transfer network [47] and discriminative
cooperative alignment [48].

While the above methods primarily rely on single-
granularity alignment, our work reduces multigranularity
domain discrepancies through two alignment mechanisms.
The feature-level domain alignment aims to minimize domain
discrepancies in the overall distribution of examples within
the same category, whereas task-level domain alignment is
designed to optimize domain discrepancies at the individual
example level.

B. Active Learning

AL aims to improve the model performance by select-
ing a small number of informative examples for annotation.
Researchers have explored a variety of criteria for developing
example selection strategies. For example, uncertainty-based
AL methods quantify the uncertainty of model predictions
using metrics, such as prediction confidence [49], entropy [50],
or margin [51], and select those examples for annotation
where the model is most uncertain. The core objective is
to obtain a more precise decision boundary. Representative-
based AL methods aim to select examples that represent
the distribution of unlabeled data, based on the intuition
that once the selected representative examples are annotated,
they can serve as effective substitutes for unlabeled data.
Typical methods include clustering [52] and CoreSet [53].
Diversity-based AL methods tend to select examples that
are different from the former-selected ones, ensuring that
the selected examples cover different areas of the feature
space and capture a comprehensive representation of the data.
Current AL methods typically employ combination strategies
based on multiple criteria, which aims to achieve a tradeoff
between various criteria when selecting examples [54], [55].

However, the above methods are not well-suited for DA
scenarios, as they fail to consider the domain shift between
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labeled and unlabeled data. In our work, we introduce a
novel AL strategy to identify valuable examples under domain
shift and present a simple yet effective label combination
mechanism for selecting diverse and representative examples.

C. Active Domain Adaptation

Unlike semi-supervised DA [56], [57], which passively
relies on randomly annotated target instances, ADA actively
selects the most informative examples using AL strategies
to maximize annotation resource efficiency. ADA was first
introduced by Rai et al. [22] for sentiment analysis in text
data. Its first application in visual tasks, active adversarial
DA (AADA) [21], combines the predictive entropy of the
classifier with the output of the domain discriminator to select
uncertain target examples that are distanced from the source
domain. Submodular subset selection for virtual adversarial
active DA (S?VAADA) [23] introduces a novel submodule
criterion for selecting the most informative example subset
rather than individual example, thus avoiding redundancy.
Clustering uncertainty-weighted embeddings (CLUEs) [58]
performs entropy-weighted k-means clustering to select tar-
get examples that are both uncertain and diverse. Unlike
methods that primarily focus on example uncertainty and
diversity, select-by-distinctive-margin (SDM) [59] explores
target examples similar to potential hard source examples
via a maximum margin loss function. Energy-based ADA
(EADA) [60] demonstrates the feasibility of energy models
in ADA and selects examples based on energy values. Divide-
and-adapt (DiaNA) [27] divides target data into subsets with
different levels of transferable attributes and applies cus-
tomized learning strategies to each subset. Easy-to-hard DA
with human interaction (IEH-DA) [61] incorporates the idea
of curriculum learning and is the first work to apply AL
to cross-domain HSIC task. Nevertheless, the general ADA
methods are not applicable to HSIC due to the need to annotate
a large number of target examples, which motivates our
method. Furthermore, current ADA methods often overlook
the issue of class imbalance in the target domain, which is
particularly prevalent in HSIs. Our proposed PCADA aims to
address these challenges.

III. PROPOSED METHOD

In ADA, we have access to a labeled source domain D; =
{(x!, y)}2, with ng labeled examples, where x! represents
the ith source domain training example and y; € {1,2, ..., C}
denotes the associated labels, with C being the number of class
types, and an unlabeled target domain D, = {x!}i", with n,
unlabeled examples. To facilitate the AL process, we define
two sets within the target domain: D;, = {(x!', y/")}7", stores
the target examples labeled during the example selection pro-
cess, while D,, = {x!'}/, contains the remaining unlabeled
target examples. Initially, D;; is an empty set @, and D,; is
equal to D,. Given a fixed annotation budget B, the example
selection is conducted over R rounds. In each round, » = B/R
examples are selected from D,, and labeled by an oracle.
These examples are then removed from D, and added to Dy,.

Once updated, D; U Dy, is utilized in training. The updated
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Framework of the proposed PCADA method. (a) PGDA: prototype alignment across domains is performed at both the feature level and the task

level to reduce multigranular domain discrepancies. (b) IES: utilizing the disparity between the nearest target prototype and the classifier prediction, the most
representative examples are chosen for annotation from the diverse and uncertain target examples. (c) CBST: by iteratively retraining with the generated
pseudolabels using class-balanced sampling, the class imbalance problem in the target domain is effectively alleviated.

model is subsequently employed in the next round to identify
new target examples for annotation, iteratively improving the
model performance.

As illustrated in Fig. 1, our proposed PCADA method
consists of three parts: prototype-guided domain alignment
(PGDA) module, inconsistency-aware example selection (IES)
module, and CBST module. The PGDA module employs
two alignment mechanisms to mitigate multigranular domain
discrepancies, ensuring robust distribution alignment between
domains. The IES module selects uncertain and diverse
target examples based on the inconsistency between the
prototype-based labels and the classifier predicted labels. The
CBST module generates pseudolabels with balanced class
distribution by sampling varying proportions of examples from
each class, which addresses class imbalance within the target
domain. Finally, we summarize the entire algorithm process.

A. Backbone Network

The backbone network consists of a feature extractor G and
a classifier . The feature extractor G processes HSI patches
from both source and target domains, encoding them into a
common feature space. The common feature space is designed
to ensure the features are both domain invariant and class
discriminative. The classifier F projects the high-dimensional
features generated by G into the probability space

=
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Fig. 2. Network architecture of the feature extractor. The upper network
(spectral branch) is used to extract the spectral features of the input HSI
patch, and the lower network (spatial branch) is used to extract the spatial
features of the input HSI patch. Finally, the spatial and spectral features are
concatenated to obtain the spatial-spectral features.
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corresponding to each class. It serves for the supervised
classification of source examples and for generating
pseudolabels for unlabeled target examples.

The detailed architecture of the feature extractor G is shown
in Fig. 2. It is built upon the dual-channel residual network
(DCRN) architecture [62], which has demonstrated promising
performance in a previous cross-domain HSIC task [63].
The entire network mainly consists of three components.
The spatial feature extraction branch is designed to extract
spatial features from the input data, while the spectral feature
extraction branch is dedicated to extract spectral features. The
spatial-spectral feature fusion module then concatenates the
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outputs of both branches to form the final comprehensive
spatial-spectral feature representation. An example utilizing
the input data with shape & x h x d is employed to illustrate
the network architecture, where 7 x h represents the patch
size and d is the number of bands in HSI.

The classifier F is a fully connected layer. The backbone
network is first trained in a fully supervised manner to
accurately classify source examples

Ly = Zﬁce x)). ¥ (1)

where L (-, -) is the cross-entropy loss.

B. Prototype-Guided Domain Alignment

The purpose of the PGDA module is to initially align the
distributions between source and target domains, guided by
the prototypes from both domains. In addition, it aims to
learn effective feature representations of target prototypes to
facilitate subsequent example selection.

1) Acquisition of Prototypes: Using the labels of source
data, the prototype of the cth class in the source domain can
be calculated as follows:

=— Z v 2)

e o
where n} is the number of source examples belonging to
class ¢ and V‘Zl_ denotes the [,-normalized feature of the ith
example among all the source examples labeled c.

In order to effectively identify source-like examples and
assign high-confidence pseudolabels to them, we design a
pseudolabel selection strategy that integrates information from
individual examples, prototypes, and classifier predictions.
Specifically, the first pseudolabel of each target example can
be obtained from the output of the classifier, which can be
expressed as follows:

$i1 = arg max F(G(x;)). (3)

Subsequently, we allocate 1 + K additional possible pseu-
dolabels to each target example. The first pseudolabel is
derived from the nearest source prototype, while the remaining
K pseudolabels are determined by the K nearest source
examples. The consistency of these pseudolabels is utilized
to evaluate the confidence of each target example, resulting in

L 9, =%, j=23...Q2+K
Xi = 1 . ] (4)
0, otherwise

where x; = 1 indicates that target example X; is a source-like
target example and its pseudolabel is highly confident.
By retaining such examples, we can obtain a set of target
examples with high-confidence pseudolabels, denoted by D, =
{(x}, )}/, Then, the prototype of the cth class in the target
domain can be calculated as follows:

] &
t_ t
o= -5 E A ®)
¢ i=1
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where n' is the number of target examples with a pseudolabel
of ¢ and v, denotes the /r-normalized feature of the ith
example among all the target examples pseudolabeled as c.

2) Feature-Level Prototype Alignment: In the feature space,
we aim for examples and prototypes of the same class to be
closely aligned, regardless of their domain labels. This ensures
that the learned features are both domain invariant and class
discriminative.

To learn compact feature representations within each class,
inspired by [64], we minimize the total distance between
each example and the prototypes of its corresponding class
in both source and target domains. Formally, the feature-level
prototype alignment loss is defined as follows:

1 g Ny
2 2
Lipa = n—(} v = 2+ D v = u;;uQ)
S \i=1 i=1

1 [& 2 i 2
ta DIV = my I+ DIV =m0 | (©)
j=1 j=1

where v; denotes the /,-normalized feature of the ith source
example and V’j denotes the /;-normalized feature of the jth
example among all the pseudolabeled target examples.

3) Task-Level Prototype Alignment: While the feature-level
prototype alignment only emphasizes the similarity of fea-
ture distributions across domains, it does not consider the
relationship between prototypes and example classifications.
Even without relying on a parametric classifier, the class of an
example can be inferred based on its distance to the prototypes.
Specifically, for a given source/target example X;, the class
probability distribution P} predicted by target prototypes can
be obtained by applying the distances between x; and the
target prototype of each class to the softmax function. The
cth element of P! represents the probability of x; belonging
to class ¢

P, = p(y = clx) = — o
, S ()

=1

)

where v; denotes the /,-normalized feature of x; and d(-, -)
represents the Euclidean distance metric. The predicted prob-
ability distribution Pj of source prototypes for each example
can be obtained in a similar manner.

In addition, we incorporate the novel alignment mechanism
proposed in [65], namely, task-level prototype alignment,
to minimize the domain discrepancies. This is achieved by
constraining the predicted probability distributions of cross-
domain prototypes for each example are consistent. The core
idea is that when the distributions of two domains are well
aligned, the predicted probability distributions of cross-domain
prototypes for the same example should be similar.

KL divergence is used to measure the difference between
the probability distributions predicted by prototypes from dif-
ferent domains for the same example. The task-level prototype
alignment loss is defined as fOIIOWS'

1
L I S t - S t
ta = - Z D1 (P!, PY) + Z DxL(P5.P))  (8)
x; €Dy x,eD,
where Dgp(-,-) denotes the symmetric pairwise KL

divergence.
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C. Inconsistency-Aware Example Selection

During the example selection stage, we aim to select the
most informative target examples for annotation. To achieve
this, we first assign a prototype-based label to each unlabeled
target example according to target prototypes. Subsequently,
the target-specific examples in the target domain are identified
based on the inconsistency between the classifier predicted
labels and the prototype-based labels. Finally, we propose
to comprehensively consider the uncertainty, diversity, and
representativeness to choose the most valuable examples for
annotation.

1) Prototype-Based Label: As introduced in the task-level
prototype alignment section of the PGDA module, for an
example x; € D,,, its prototype-based classification probabil-
ity P! can be obtained through (7). Then, its prototype-based
label y(x;) can be formulated as follows:

o ,
y(xi) argcgg%]P,- )

2) Target-Specific Example Identification: We propose to
exploit the inconsistency between the classifier predicted labels
and the prototype-based labels to identify target-specific exam-
ples, the effectiveness of which has been demonstrated in [27].
However, different from using source prototypes in [27],
we suggest utilizing the target prototypes obtained in the
PGDA module. Since target prototypes contain more target
domain-specific information, they can more effectively iden-
tify target-specific examples than source prototypes. Formally,
the classifier predicted label y(x;) for an example Xx; can
be obtained as described in (3). The set of target-specific
examples can be expressed as follows:

Dy = {X; € D | (%) # ¥ (X0} (10)

3) Example Selection: For a query example x € D,
we define the combination of its classifier predicted label
and prototype-based label as the label pair for that example,
denoted by (y(x), y(x)). Intuitively, selecting examples with
different label pairs can better ensure the diversity of selected
examples. Furthermore, the more examples a label pair con-
tains, the greater the improvement in the transfer performance
of the model attributed to annotating examples belonging to
that label pair. Considering the annotation budget in each
round, we designate the top b label pairs with the highest
example counts as the candidate label pair set P.y. From Pgq,
one example from each label pair is selected for annotation.
Specifically, for each label pair in P.4, we first identify the
subset of examples with the highest uncertainty and then select
the example best that represents the distribution of that subset
for annotation.

We use BvSB [66] to measure the uncertainty of examples,
quantifying the difference between the top two predicted class
probabilities. Specifically, this criterion is defined as follows:

Y

where Pg(x) denotes the highest class prediction probability
of example x and Psg(x) denotes the second-highest class
prediction probability of example x. We select the top n%

BvsB(x) = P3(x) — Psp(X)
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of examples with the lowest BvSB values in each label pair
to constitute the uncertain subset for that label pair.

Let X, be the uncertain subset of examples with label
pair p. The example that best represents the data distribution
of & should minimize the statistical distance between itself

and X'}, Inspired by [24], we employ the squared MMD [67]
as a measure of the statistical distance between the example
x and X in the feature space, which is formally given by

MMD? (x, X%) = k(G(x), G(x))
2
> kG, G(x)

u
|45 X €N

> k(Gx).6(x)))

x,,x,»eX;

_I_

: (12)
|Xu 2

where k(x,x) = exp(—(|x — x||?/206?)) denotes the radial
basis function (RBF) kernel. It should be noted that, except
for the first round, subsequent rounds may select label pairs
that have been selected in previous rounds. To ensure diversity
across rounds, the statistical distance between the currently
selected example and the set of previously selected examples
with the same label pair is maximized. Thus, the representa-
tiveness and diversity of the example can be comprehensively
measured as follows:

RAD(x, X}/, X7) = MMD?(x, X}/) — MMD?(x, X))

2

= Y kG, Gx))
|X,,|Z

x,-eXp’

e > kG, G(xi))

P X; €X'}l

> k(G G(x;))

x,-,x‘,veX;;

S kG, G(x;)) (13)

x,»,xjeXl’,

+ -
E7LE
1
EAE

where & 1/7 denotes the set of all examples with label pair p that
were selected in previous rounds. When X; = (J, we retain
only the term MMD?(x, X »)- The overall process of the IES
module is described by the pseudocode in Algorithm 1.

D. Class-Balanced Self-Training

Annotating a small number of valuable target examples can
effectively assist DA. However, these examples often fail to
fully reflect the overall target distribution. In addition, the
imbalanced class distribution in the target domain can lead to
preferential adaptation toward the majority class. Therefore,
in this module, we first estimate the frequency of each class
in the target domain. Then, based on the class frequencies and
the pseudolabels predicted by the classifier, we perform CBST
to fully utilize target data while addressing the class imbalance
issue in the target domain.

1) Class Frequency Estimation: We estimate the frequency
of each class in the target domain through D;; and D,,.
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Algorithm 1 IES

Input: Dy, D,,, the annotation budget for each round b,
the proportion of the most uncertain examples
selected from each label pair 7, the set of label
pairs have been selected P

Output: D, D,,, the target examples selected in each

round X,

1 Calculate the classifier predicted labels and the
prototype-based labels of each example in D,; according
to Eq. (3) and Eq. (9)

2 D,s; < select the set of target-specific examples from D,,
according to Eq. (10)

3 P;s < obtain the set of label pairs for the examples in
Dy

4 P.q < select the top b label pairs from P;; with the
highest example counts

5 for label pair p in P.y do

6 X, < select the examples with label pair p from Dy,

7 X;’, <« select the examples with label pair p that

were selected in previous rounds from Dj;

8 Vx € X, compute BvSB(x) (Eq. (11)) to serve as

measure of uncertainty

9 X < select n% of BvSB with the lowest values

10 Vx € X;, compute RAD(x, X", Xl/,) (Eq. (13)) to

serve as measure of representativeness and diversity

11 x;, < select RAD with the lowest value

12 X <~ X U x;

13 end

14 P <«—PUPy

15 D/, < D/, @] Xr

16 Dy < Dy \ &,

The number of examples in D;, belonging to class ¢ can be
directly calculated

ne= Yy, Iyi=c)

(Xi,yi)€Dy

(14)

where [[(-) denotes the indicator function. For D,;, we compute
the number of examples per class in a weighted manner based
on the predicted probability

> I(5i = )8 (FG X))

(X; «}A’:)E'Dul

15)

Nyt e =

where 8.(a) = (e*/> ;e*) denotes the cth element in
the softmax output of a C-dimensional vector a. Then, the
frequency of each class in the target domain can be estimated
as follows:

nlt,c + ﬁut,c
ni + Zc ﬁut,c .
2) Self-Training With Class-Balanced Sampling: We select
a subset Dy, C D, with balanced class distribution for self-
training. In choosing D, we follow a class-balanced rule: the
less frequent a class c is, the higher the sampling proportion

for the examples predicted as class c. Specifically, we sample
ratio p of the examples from the least frequent class to include

Je= (16)
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into D.,. The sampling ratios for other classes are defined as

follows:
B <minc<fc>)A
Pec = 7 o

where min.(f.) denotes the frequency of the least frequent
class. For each class, we select the most confident examples.
Using Dy, we can conduct CBST by optimizing the following
loss function:

7)

1

Loy =
¢ |ch|

> Le(FGx), $i).

(%i.5:)€Dey

(18)

E. Training Pipeline

The overall training pipeline of our proposed PCADA
method consists of three stages, which are illustrated with
pseudocode in Algorithm 2. The first stage is UDA, during
which the feature extractor and the classifier are trained
through the classification loss of the source domain and the
prototype alignment loss

min £ + o (Lipa + Lipa) (19)
0g.0F

where o is the tradeoff parameter and 6g and 6r are the
parameters of G and F, respectively.

After M epochs, we enter the second stage, i.e., ADA.
During this stage, we select a portion of target examples
for annotation by an oracle, as described in the IES module.
The annotated target examples can enhance the performance
of the classifier through the classification loss and further
align the feature distributions between domains using the
feature-level prototype alignment loss

ni

1
L= 3 La(F(O()). o)

i=1
1 n ) ny 5
I _ it s it .t
‘Cfpa - i, Zl ”Vi ”'yl{r ”2 + Z] ”Vj Il:ylgr ||2 . 21
i= i=

Therefore, at this stage, we additionally minimize the two
losses mentioned above

(20)

. t It
QIQII,IGI; ‘Ccls + Ol‘Cfpa‘

(22)

After H epochs come to the third stage. As outlined in the
CBST module, during this stage, we conduct CBST using a
subset D, selected from D;, with the optimization objective
being

min y L.
99,9fy ¢

(23)

IV. EXPERIMENTS AND ANALYSIS

In this section, we first present the experimental results on
six HSI datasets to evaluate the effectiveness of the proposed
PCADA method, using overall accuracy (OA), average accu-
racy (AA), and the kappa coefficient as performance metrics.
Next, we provide a sensitivity analysis of the hyperparameters.
Finally, ablation studies are conducted to demonstrate the
effectiveness of each module.
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Algorithm 2 Training Pipeline of PCADA

Input: D, D,, D), =@, D,, = D;, the total annotation
budget B, the total annotation round R, the total
epoch number &£, the epoch number to start
example selection M, the epoch number to start
CBST H, hyperparameters «, n, A, p, ¥

Output: The parameters g of the feature extractor G

and O£ of the classifier F

1 Randomly initialize the parameters 6g of the feature
extractor G and O£ of the classifier F

2 for epoch=1 to € do
Update 6g, 0 with Dy, D, via Eq. (19)
if epoch > M then

if example selection is needed then

‘ Update Dy, D, via Algorithm 1

Update 6g, 07 with D;, via Eq. (22)
if epoch > 'H then
9 | Update 6g, 67 with D, via Eq. (23)

Background Trees

Fig. 3. False-color images and ground-truth maps of Pavia Univer-
sity and Pavia Center datasets. (a) False-color image of Pavia University.
(b) Ground-truth map of Pavia University. (c) False-color image of Pavia
Center. (d) Ground-truth map of Pavia Center.

A. Dataset Description

1) Pavia University and Pavia Center: Both datasets were
captured by the reflective optics system imaging spectrome-
ter (ROSIS) sensor during a flight campaign over Pavia in
northern Italy. Due to differences in regional locations, there
exists a domain shift between the two datasets. The Pavia
University dataset covers an area of 610 x 610 pixels and
contains 103 spectral bands, while the Pavia Center dataset
covers an area of 1096 x 1096 pixels and contains 102 spectral
bands. After removing some examples with no information,
Pavia University consists of 610 x 315 pixels, and Pavia
Center consists of 1096 x 715 pixels. In addition, to ensure the
two datasets that have the same number of spectral bands, the
last band of Pavia University was discarded. The false-color
representations and ground-truth maps of both datasets are
shown in Fig. 3.

2) Houston2013 and Houston2018: The two datasets cover
the same place on the University of Houston campus. However,
due to differences in acquisition times and sensors, there are
domain discrepancies between them. The wavelength range of
both datasets spans from 380 to 1050 nm. The Houston2013
dataset has 144 spectral bands; the Houston2018 dataset has
48 spectral bands. To match the number of spectral bands

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

Fig. 4. False-color images and ground-truth maps of Houston2013 and Hous-
ton2018 datasets. (a) False-color images of Houston2013. (b) Ground-truth
map Houston2013. (c) False-color images of Houston2018. (d) Ground-truth
maps of Houston2018.

Fig. 5. False-color images and ground-truth maps of Shanghai and
Hangzhou datasets. (a) False-color image of Shanghai. (b) Ground-truth map
of Shanghai. (c) False-color image of Hangzhou. (d) Ground-truth map of
Hangzhou.

TABLE I

NUMBER OF EXAMPLES IN EACH CLASS FOR PAVIA
UNIVERSITY AND PAVIA CENTER DATASETS

Class Number of Examples
No Name Pavia University Pavia Center
’ (Source) (Target)
1 Trees 3064 7598
2 Asphalt 6631 9248
3 Bricks 3682 2685
4 Bitumen 1330 7287
5 Shadows 947 2863
6 Meadows 18649 3090
7 Bare Soil 5029 6584
Total 39332 39355

and spatial locations of the Houston2018 dataset, we averaged
every three bands of the Houston2013 dataset and chose
the overlapping areas of the two datasets. The false-color
representations and ground-truth maps of both datasets are
shown in Fig. 4.

3) Shanghai and Hangzhou: The Shanghai and Hangzhou
datasets were captured by the EO-1 Hyperion hyperspectral
sensor, which retains 198 bands after removing the bad
bands. The image size of the Shanghai dataset is 1600 x
230 pixels, and the image size of the Hangzhou dataset is
590 x 230 pixels. The three shared land cover classes between
the two datasets are water, ground/buildings, and plants. The
false-color representations and ground-truth maps of both
datasets are shown in Fig. 5.

Taking the six HSI datasets, we formulated three DA tasks,
which are delineated as follows.

4) Pavia Task: The Pavia University dataset is considered as
the source domain, and the Pavia Center dataset is considered
as the target domain. Seven shared classes are selected for the
task, and the number of examples in each class is listed in
Table 1.

5) Houston Task: The Houston2013 dataset serves as the
source domain, and the Houston2018 dataset serves as the
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TABLE I

NUMBER OF EXAMPLES IN EACH CLASS FOR HOUSTON2013
AND HOUSTON2018 DATASETS

Class Number of Examples
No Name Houston2013 Houston2018
) (Source) (Target)
1 Grass healthy 345 1353
2 Grass stressed 365 4888
3 Trees 365 2766
4 Water 285 22
5 Residential buildings 319 5347
6 Non-residential buildings 408 32459
7 Road 443 6365
Total 2530 53200
TABLE III
NUMBER OF EXAMPLES IN EACH CLASS FOR SHANGHAI
AND HANGZHOU DATASETS
Class Number of Examples
Shanghai Hangzhou
No. Name (Source) (Target)
1 Water 123123 18043
2 Land/Building 161689 77450
3 Plant 83188 40207
Total 368000 135700

target domain. Seven common classes are chosen from two
datasets to conduct this task, which are presented in Table II.
6) Shanghai—Hangzhou Task: The Shanghai dataset is used
as the source domain, and the Hangzhou dataset is used as
the target domain. Three common classes in both datasets are
considered in this task, which are detailed in Table III.

B. Experimental Setting

To evaluate the effectiveness of the proposed PCADA
method, we compare it with eight other methods, includ-
ing four ADA methods, AADA [21], SDM [59], label
distribution matching through density-aware active sampling
(LAMDA) [24], local context-aware ADA (LADA) [25],
three UDA methods proposed for HSIC, contrastive learning
based on category matching for DA (CLCM) [68], classwise
prototype-guided alignment network (CPGAN) [69], masked
self-distillation DA (MSDA) [70], and a semi-supervised DA
method integrated with AL for HSIC and IEH-DA [61].

In the experiments, we selected 180 examples from each
class in the source domain and used all the target examples
for training. In addition, to eliminate the impact of random
sampling, all experiments were repeated ten times, and the
average results were taken as the final outcome.

For the four compared ADA methods, the annotation bud-
get B for the Pavia task is set to 30, while for the Houston and
Shanghai—Hangzhou tasks, B is set to 40. In addition, follow-
ing the settings from the original papers, the number of anno-
tation rounds R is fixed at 5 for all tasks. Since these methods
were originally designed for natural images, we adjusted their
hyperparameters to optimize their performance on HSI data.
For the three UDA methods, to ensure fairness, we randomly
selected 30 labeled target examples for the Pavia task and
40 labeled target examples for the Houston and Shanghai—
Hangzhou tasks, using them in training. For IEH-DA,
we ensure that the total number of examples ultimately labeled
in each task remains consistent with other methods. As these
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UDA methods were originally proposed for HSI, we did not
modify their parameters for datasets shared with their original
studies. For tasks involving datasets not used in their works,
we tuned their hyperparameters accordingly.

For our proposed method, we ensure that the annotation
budgets for each task are consistent with those of the cor-
responding tasks in the compared ADA methods, and the
annotation budget b for each round is fixed at 5. We set
the total number of epochs as 100. During the training
process, we used the stochastic gradient descent optimizer
for backpropagation, with a weight decay of 0.0005 and a
momentum of 0.9. For the Pavia task, the learning rate is set
to 0.001, while for the Houston and Shanghai—-Hangzhou tasks,
the learning rates are set to 0.01 and 0.0003, respectively.
o is set to 1 in all three tasks. Following [63], the patch
sizeis set as 9 x 9, 7 x 7, and 1 x 1 in three tasks. The
parameters in the CBST module are configured as follows:
for the Houston task, p = 1, A = 0.3, and y = 0.01; for
the Pavia task, p = 0.5, A = 0, and y = 0.03; and for the
Shanghai—-Hangzhou task, p = 0.5, A = 0, and y = 0.005.
Also, batch-level-balanced sampling is further integrated into
the CBST module to approximate a balanced class distribution
within each mini-batch. Consistent with [71], we set K in (4)
to 3. 202 of the RBF kernel in (12) is set equal to the feature
dimension, which is 288 for our model. Moreover, M and
‘H are established as 40 and 75, respectively. Following [72],
[73], and [74], the hyperparameters were determined through
the validation set.

C. Experimental Results

Table IV shows the experimental results of different meth-
ods on the Pavia task. It can be observed that among the
compared ADA methods, AADA achieves an accuracy of
around 85%. This method relies solely on a hybrid infor-
mativeness criterion that combines the predictive entropy of
the classifier with the output of the domain discriminator for
example selection. In contrast, SDM and LADA implement
more effective example selection strategies. SDM focuses on
hard examples, while LADA leverages local context to guide
its example selection. Consequently, SDM and LADA achieve
accuracies of 89.49% and 91.25%, respectively. In addition,
among the compared DA methods proposed for HSIC, IEH-
DA demonstrates the most outstanding performance, with
its accuracy exceeding 93%. In IEH-DA, the target exam-
ples are used in a way from easy to hard, which forms
a curriculum sequence for orderly model training, and the
“hard” examples with high informativity are annotated to
provide supervision information for adaptation. Notably, our
PCADA method achieves optimal results on all three eval-
vation metrics and has the highest classification accuracy
for the third category. Compared with IEH-DA, PCADA
improves OA, AA, and kappa coefficient by 1.56%, 1.99%,
and 1.89%, respectively. Furthermore, PCADA is the only
method that exceeds 90% classification accuracy for each cate-
gory. Fig. 6 shows the classification maps obtained from all the
methods.

Due to different acquisition years and sensors of the
datasets, there is a significant domain gap between the source
and target domains in the Houston task. Furthermore, the class
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TABLE IV
CLASSIFICATION RESULTS (MEAN £ STANDARD DEVIATION) ON THE PAVIA TASK

Class No Methods
AADA [21] SDM [59] LAMDA [24] LADA [25] CLCM [68] CPGAN [69] MSDA [70] IEH-DA [61] PCADA

1 84.42 86.65 95.97 86.64 91.88 91.92 93.44 95.19 94.12

2 94.16 98.20 98.61 93.70 98.24 97.76 98.49 99.34 98.05

3 83.79 68.51 66.59 63.00 77.94 88.54 79.92 87.75 91.99

4 70.98 81.98 86.13 92.56 76.50 83.70 83.87 87.86 90.69

5 98.81 95.43 99.77 99.75 97.51 99.83 99.84 100.00 98.49

6 89.66 92.31 87.40 97.11 92.79 94.93 86.47 90.20 95.06

7 78.62 93.48 96.57 96.75 95.25 90.38 96.95 90.65 96.51
OA 84.67£2.92  89.49+1.68 92.47+1.50 91.25+1.81  90.62+4.09 92.09+0.96 92.4440.98 93.50+0.52 95.06+0.57
AA 85.78+£2.01  88.08+2.49 90.15+3.36 89.93+2.53  90.01+3.16 92.44+1.06 91.28+1.85 93.00+0.83 94.99+0.94
Kappa 81.74+3.39  87.361+2.01 90.90+1.83 89.48+2.17 88.6944.97 90.52+1.15 90.90+1.19 92.1740.63 94.06+0.68

| Bitumen Shadows | |

Fig. 6. Classification maps for the Pavia task. (a) Ground truth. (b) AADA. (c) SDM. (d) LAMDA. (e) LADA. (f) CLCM. (g) CPGAN. (h) MSDA.
(i) IEH-DA. (j) PCADA.

TABLE V
CLASSIFICATION RESULTS (MEAN £ STANDARD DEVIATION) ON THE HOUSTON TASK

Class No Methods
AADA [21] SDM [59] LAMDA [24] LADA [25] CLCM [68] CPGAN [69] MSDA [70] IEH-DA [61] PCADA

1 71.97 43.81 43.44 4391 52.95 61.86 59.65 80.24 63.41

2 78.15 88.27 84.52 87.48 86.63 83.42 88.97 70.66 86.35

3 69.72 70.31 75.34 79.14 67.26 67.15 67.61 74.56 74.97

4 7591 73.64 55.45 74.09 71.36 17.73 80.91 68.69 84.55

5 70.21 78.78 86.57 93.59 85.96 85.61 92.53 78.27 83.91

6 51.78 86.48 84.30 70.16 84.03 80.54 81.69 86.99 88.30

7 69.29 75.52 77.95 85.90 70.17 53.72 72.27 69.81 79.05
OA 59.61+£7.13  82.63+1.42 82.27+2.17 75.7943.02  81.13+£1.58 76.91£2.19 81.03+1.59 81.74+3.66 85.24+2.01
AA 69.58+4.78  73.83+5.18 72.514£5.50 76.3242.68  74.05£2.74 64.29+3.38 77.66+2.01 75.60+3.88 80.08+1.72
Kappa 45.954+6.32  71.644+2.21 71.8343.06 64.4443.68  69.84+2.14 63.26+3.34 70.2542.00 70.03£5.33 76.03+2.67

distribution in the target domain is extremely imbalanced. compared with other methods. The experimental results
These factors make the Houston task particularly challenging. of various methods on the Houston task are presented in
Nevertheless, our method still produces superior performance Table V. ADA methods that can more effectively select
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Background

Grass healthy

Fig. 7.
(i) IEH-DA. (j) PCADA.
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Residential

Vi buildings

Classification maps for the Houston task. (a) Ground truth. (b) AADA. (c) SDM. (d) LAMDA. (e) LADA. (f) CLCM. (g) CPGAN. (h) MSDA.

TABLE VI
CLASSIFICATION RESULTS (MEAN £ STANDARD DEVIATION) ON THE SHANGHAI-HANGZHOU TASK

Class No Methods
AADA [21] SDM [59] LAMDA [24] LADA [25] CLCM [68] CPGAN [69] MSDA [70] IEH-DA [61] PCADA

1 98.68 97.95 97.56 99.13 96.73 99.77 96.57 92.76 96.06

2 60.54 91.65 97.32 90.23 95.79 84.37 95.04 89.48 98.64

3 85.54 91.41 84.62 88.08 76.29 89.73 86.69 91.88 91.22
OA 73.0245.26  92.41+£1.05 93.5940.74 90.77+£2.88  90.14+1.55 88.01+2.98 92.77+1.66 90.63+1.70 96.10+1.33
AA 81.58+£3.99  93.67+0.76 93.17£1.03 92.48+2.54  89.60+1.62 91.29+2.30 92.76+1.46 91.38+0.85 95.30+1.75
Kappa 58.49+7.21  86.87+1.71 88.57+1.38 84.24+4.78  82.26+2.83 79.95+4.79 87.26+£2.93 83.76+2.68 93.03+2.46

informative examples, such as SDM, LAMDA, and LADA,
still outperform AADA, which designs example selection
strategies based on simple criteria. Both CLCM and MSDA are
impressive, with their accuracies reaching approximately 81%.
CLCM aligns the discriminative features between domains
through cross-domain contrastive learning. MSDA reduces
domain differences through adversarial training between the
two classifiers and integrates masked self-distillation into DA
to enhance feature discriminability. In contrast, our method
achieves the best classification performance on the fourth
and sixth categories and obtains the best performance with
an accuracy of 85.24%. The classification maps of different
methods are presented in Fig. 7.

As shown in Table VI, for the Shanghai—-Hangzhou task,
LAMDA achieves the best performance among the compared

ADA methods. In particular, LAMDA seeks target examples
that best approximate the entire target distribution as well
as being representative, diverse, and uncertain. The selected
examples are utilized not only for supervised learning but
also for matching the label distribution between domains.
Our method exhibits a superiority of 8.09% compared with
CPGAN, which also employs a prototype learning approach.
In addition, our method exhibits a higher AA and kappa
coefficient, achieving an impressive AA of 95.30% and an
outstanding kappa coefficient of 93.03%. Fig. 8 displays the
classification maps on the Shanghai-Hangzhou task.
However, we observe that PCADA does not achieve optimal
performance in some categories compared with the baseline
methods. For the ADA methods in the baseline, this phe-
nomenon can be largely attributed to the distribution of the
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Fig. 8.
(h) MSDA. (i) IEH-DA. (j) PCADA.

Plant

Classification maps for the Shanghai-Hangzhou task. (a) Ground truth. (b) AADA. (c) SDM. (d) LAMDA. (e) LADA. (f) CLCM. (g) CPGAN.
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Fig. 9. Sensitivity analysis of the hyperparameter. (a) «. (b) 1. (c) y.

annotated examples. Specifically, the prediction accuracy of
individual categories shows a strong positive correlation with
the number of annotated examples in those categories. For
instance, on the Pavia task, PCADA underperforms LADA
in the fourth and sixth categories. This can be explained
by the fact that LADA assigned relatively more annota-
tions to target examples to these two categories, leading
to better performance in these categories. Furthermore, the
baseline methods typically apply uniform training strategies to
both majority and minority classes. Consequently, the model
inevitably develops bias toward majority classes, resulting
in the misclassification of examples that originally belonged
to minority classes, particularly in distinguishing spectrally
similar categories. In contrast, our method prioritizes bal-
anced predictive accuracy across all classes. While this design
improves overall fairness in classification, it may introduce
marginal performance degradation for some majority classes
as a deliberate tradeoff.

(b) ©

D. Parameter Sensitivity Analysis

In the proposed method, there are five critical hyperparame-
ters that need to be tuned, namely, «, 1, p, A, and y. @ controls
the weights of the feature-level prototype alignment loss and
the task-level prototype alignment loss in the PGDA module,
while n adjusts the size of the uncertain subset for each label
pair in the IES module. p, A, and y pertain to the CBST
module, where p and A control the sampling ratio from each
category, and y regulates the weight of the cross-entropy loss.
We adjusted each hyperparameter individually while keeping
all other hyperparameters constant.

We tested six different values for «, specifically 0.5, 0.6, 0.7,
0.8, 0.9, and 1. Fig. 9(a) illustrates the trend of OA for each
task as o« varies. It can be observed that all three tasks reach
their maximum OA when « is set to 1, which is consistent
with the parameter setting in [65]. For 5, we selected five
values within the range of 10-30 for testing. As shown in
Fig. 9(b), a smaller n appears to yield more promising results.
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Fig. 10. Sensitivity analysis of the hyperparameters p and A on different tasks. (a) Pavia. (b) Houston. (c) Shanghai—-Hangzhou.

TABLE VII
ABLATION RESULTS OF THE PROPOSED METHOD WITH DIFFERENT MODULES

Method PGDA IES CBST Pavia Task Houston Task Shanghai-Hangzhou Task

OA AA Kappa OA AA Kappa OA AA Kappa

PCADA w/o PGDA v v 93.19 9325 91.83 81.03 79.18 7032 93.85 93.01 89.00
PCADA w/o CBST v v 9449 9433 9337 8352 7688 7351 9595 9527 9278
PCADA w/o IES w/o CBST v 80.47 8043 7649 7020 7132 5695 88.15 89.70  79.42
PCADA w/o IES w/ CBST v v 86.30 8736 8359  70.55 7134 5729 8846 8931 79.67
PCADA v v v 95.06 9499 94.06 8524 80.08 76.03 96.10 9530  93.03

Consequently, we choose a relatively small n for all three
tasks.

We tested six different values for y, specifically 0.005,
0.007, 0.009, 0.01, 0.03, and 0.05. Fig. 9(c) shows how OA
varies as y is modified. The experiments indicate that y has
a minor impact on the classification results for the Pavia task,
with optimal performance observed at y set to 0.03. In the
Houston task, OA reaches its maximum at y valued at 0.01,
after which it begins to decline. In the Shanghai—-Hangzhou
task, OA decreases with an increase of y. Therefore, we set y
to 0.005 for this task.

We varied p in the range of 0.3-1 and A in the range
of 0-0.3, and then observed the fluctuations in classification
performance caused by different combinations on the three
tasks. As shown in Fig. 10(a), the performance on the Pavia
task fluctuates smoothly across different combinations, with
the best performance observed at p = 0.5 and A = 0.
In Fig. 10(b), we find that the performance on the Houston
task varies between 78% and 85% across most combinations,
with the best performance occurring when p = 1 and A = 0.3.
For the Shanghai—-Hangzhou task, the performance exhibits a
more complex variation with changes in the combinations of
p and ), as observed from Fig. 10(c). Ultimately, the best
classification result is achieved at p = 0.5 and A\ = 0.

E. Ablation Study

To further verify the effectiveness of each module of
PCADA, we conducted a series of ablation studies. The
corresponding results are recorded in Table VII, where the
check mark (v') indicates that the module is included in
the experiment.

1) PCADA Without PGDA: In this case, the framework fails
to utilize prototypes to perform multigranular alignment of
distributions between domains and instead relies solely on the
supervised loss for source examples and the selected target
examples for optimization. It can be seen that the evaluation
metrics for the three tasks decrease to varying degrees.

2) PCADA Without IES: Under the experimental condition
where the active selection and annotation of target examples
are removed, the evaluation metrics across all three tasks show
significant degradation, with a drop exceeding that observed
when removing the other two modules. This clearly demon-
strates the crucial importance of the IES module. The IES
module is essential because it provides target domain-specific
information: when the selected examples are misclassified by
the classifier, the annotation information effectively corrects
the errors, allowing the model to generate more discriminative
features, particularly between confusing categories. In addi-
tion, since the examples selected by IES typically exhibit
high uncertainty, the annotation information help the model
establish a more refined decision boundary. In conclusion,
the IES module is a critical component for enhancing the
generalization capability of the model in the target domain.

3) PCADA Without CBST: This condition removes the
CBST part during the later stages of training. It can be
observed that in the Houston task, which has an extremely
imbalanced example size of each category in its target domain,
OA decreases by 1.72%, kappa decreases by 2.52%, and AA
shows a more pronounced decrease of 3.2%. The evaluation
metrics of the other two tasks also decline.

In addition, we also compared the performance difference
between using and not using the CBST module in the absence
of any annotated target examples to explore the effectiveness
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Fig. 11. Performance comparison under different annotation budgets. (a) Pavia. (b) Houston. (c¢) Shanghai-Hangzhou.

of the CBST module in UDA. The hyperparameters in the
CBST module were tuned accordingly to achieve the best per-
formance in this case. As shown in Table VII, the CBST mod-
ule remains effective when the target domain is unsupervised.
However, on the Houston task and the Shanghai-Hangzhou
task, the improvement from the CBST module is relatively
limited. This is mainly due to the lack of supervision infor-
mation of the target domain, which leads to a decrease in
the accuracy of pseudolabels in the later training stages, thus
limiting the effect of self-training. For this reason, we perform
CBST after example selection. With this design, the annotated
target examples can improve the reliability of pseudolabels,
enabling the CBST module to have a greater impact.

F. Varying Annotation Budget

We selected several well-performing baseline methods,
including SDM, LAMDA, LADA, and MSDA, and compared
their performance with PCADA under different annotation
budgets. As shown in Fig. 11, as the budget increases, PCADA
performs better on each task and consistently outperforms the
compared methods, which means that our method is applicable
to different budgets. More importantly, even with a small
annotation budget, PCADA still shows relatively impressive
performance, which fully demonstrates its ability to effectively
and continuously select the most valuable examples.

V. CONCLUSION

In this article, we propose an ADA framework named
PCADA for HSIC. In PCADA, the PGDA module assigns
high-confidence pseudolabels to source-like examples and
generates target prototypes. Guided by the interaction between
source and target prototypes, the distributions of two domains
are initially aligned. In the subsequent training phase, the
IES module evaluates uncertainty and representativeness to
annotate diverse target-specific examples, ensuring that the
selected target examples are the most valuable despite domain
shift. In addition, a CBST module is introduced, which
samples highly confident pseudolabeled target examples in
a class-balanced manner to address the issue of imbalanced
class distribution in the target domain. The effectiveness of
our method is validated through experiments conducted on
multiple benchmark HSI datasets.
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