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Abstract—The imbalanced semi-supervised learning (SSL) has
emerged as a critical research area due to the prevalence of
class imbalanced and partially labeled data in real-world sce-
narios. As the requirement for data volume increases, naturally
collected datasets inevitably contain out-of-distribution (OOD)
samples. However, the performance of existing imbalanced SSL
methods experiences a marked deterioration with OOD data.
In this article, we propose an imbalanced SSL method called
mixup-O0OD (MOOD) to address this issue. The core idea is to
“turn waste into treasure,” exploring the potential of leveraging
seemingly detrimental OOD data to expand the feature space,
particularly for tail classes. Specifically, we first filter OOD data
from unlabeled data, and then fuse it with labeled data to boost
feature diversity for the tail classes. To avoid feature overlapping
with OOD data, we develop a push-and-pull (PaP) loss to attract
in-distribution (ID) instances toward respective class centroids
while repelling OOD samples from them. Extensive experiments
show that MOOD achieves superior performance compared with
other state-of-the-art methods and exhibits robustness across
data with different imbalanced ratios and OOD proportions.
The source code is available at: https://github.com/xlhuang132/
MOODv2

Index Terms—Feature learning, image classification, long-
tailed learning, semi-supervised learning (SSL).

I. INTRODUCTION

EEP neural networks have been widely used in various
learning tasks due to their outstanding performance.
However, achieving excellent performance often requires a
large amount of labeled and class-balanced data, which can be
expensive in real applications. Given limited labeling budgets,
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the emergence of semi-supervised learning (SSL) provides
feasible solutions to improve model generalization on limited
labeled data with abundant unlabeled data. Recently, repre-
sentative SSL. methods such as pseudolabeling [1], [2], [3],
[4] and consistency regularization [5], [6], [7], [8], [9] have
been proposed to enable the model to make full use of the
information in unlabeled data which can significantly improve
model generalization.

In the typical setting of SSL, it is often assumed that
the data are class balanced, meaning that each class has an
equal number of samples for both labeled and unlabeled data.
However, in naturally collected data, the class distribution
may potentially tend to be long-tailed [10]. One particular
distribution of class imbalance is the long-tailed distribution
[11]. The classes possessing large amounts of data are called
“head” classes, while those with only a few data are referred
to as “tail” classes. When labeled data are long-tailed, the
performance of general SSL methods drops severely because
unlabeled data are also likely to be long-tailed. The imbalanced
unlabeled data mainly helps improving the head classes, while
aggravating the performance degradation of the tail classes.
With increasing attention to applying algorithms to real-world
scenarios, obtaining an imbalanced-robust SSL. model has been
extensively studied [12], [13], [14], [15].

A potential solution to alleviate the imbalanced SSL
problem is to collect more unlabeled data to balance the
overall data distribution. However, naturally collected datasets
inevitably contain out-of-distribution (OOD) samples. In some
cases, unlabeled data are collected separately from the labeled
data, either at different times or places. It may bring OOD
data into unlabeled data because the data distribution may
change. In this case, OOD data, which does not belong to
any class of labeled data, is mixed with in-distribution (ID)
data in unlabeled data. For example, for object detection in
autonomous driving the samples collected in a new scene may
involve undefined classes [16]. Consequently, SSL. methods
will treat OOD samples in the same way as ID samples, equiv-
alent to introduce noisy samples during training. To address
the problem of OOD data, several open-set SSL methods have
been proposed [17], [18], [19], [20]. The common strategy is to
discard filtered OOD samples or reduce their influence during
SSL model training [18], [21]. The consensus behind these
methods is that OOD samples are definitely harmful to model
training. However, such a way ignores the potential value of
OOD samples. Although the label distribution of OOD data
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Fig. 1. (a) Example of long-tailed distribution with OOD data. (b) Comparison
of accuracy for the tail classes among several SSL methods on CIFAR-10-LT
(IF = 100) with different proportions of OOD data in unlabeled data (R).

is out-of-target distribution, the features extracted from them
contain potential benefits for model training.

This article therefore studies the problem of imbalanced
SSL with OOD data, whose application is more general and
realistic. Specifically, we assume that labeled data are long-
tailed, where only a few classes contain a majority of samples,
while a vast number of classes have only a small proportion
of samples. The unlabeled data consist of both ID and OOD
data. The unlabeled ID data are also long-tailed, similar to
the labeled data, while the OOD data do not belong to any
ID class. An example of the distribution of our problem
is illustrated in Fig. 1(a). We also conducted a preliminary
experiment to demonstrate that the performance of existing
SSL methods significantly deteriorates when confronted with
the OOD data. In Fig. 1(b), we show how the accuracy of
the tail classes of the long-tailed CIFAR-10 declines with a
different value R, which represents the proportion of OOD data
in the unlabeled data. It can be observed that the accuracy of
the tail classes for existing SSL. methods drops notably as R
increases, and they even perform worse than the supervised
method that only uses a limited number of labeled data. This
finding confirms the fact that the existence of OOD data in
unlabeled data worsens the generalization performance of the
tail classes.

To address this problem, we propose a novel SSL method,
mixup-OOD (MOOD), which innovatively harnesses the
untapped potential of OOD data in unlabeled data to improve
representation learning for imbalanced data. Instead of dis-
carding the seemingly useless or even detrimental OOD data
as other SSL methods do, MOOD turns waste to treasure
and maximizes the utilization of all OOD data. T2T [22] and
TOOR [23] share a similar idea with our MOOD. T2T incor-
porates OOD samples for backbone training, while TOOR
aims to identify recyclable samples within OOD samples to
enhance model training. Different from these methods, MOOD
specifically contributes to classifier training, differentiating
itself from T2T. Moreover, compared with TOOR, MOOD
can also effectively utilize OOD data that has been identified
as nonrecyclable by TOOR. MOOD filters OOD data out of
unlabeled data using an OOD filter and then fuses them with
labeled data through mixup. The fused data help enhancing
the feature space of its corresponding class. To further expand
the feature space, we propose a specific loss function, push-
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and-pull (PaP) loss, which pushes ID data toward its class
center and pulls OOD data away from ID data. This strategy
diversifies the features of OOD data, leading to expanded
feature spaces for fused samples. With the synergy of OOD
mixup and PaP loss, the feature space of each class achieves
a more balanced state such that the generalization ability of
the model, particularly for the tail classes, is significantly
improved.
Our main contributions can be summarized as follows.

1) We propose MOOD, a simple but effective imbalanced
SSL method, to address a more realistic SSL problem,
where the distribution is imbalanced and unlabeled data
contain OOD data.

2) We explore the approach of leveraging OOD data to
enhance learning, rather than simply discarding it. It is
accomplished through the fusion of labeled and filtered
OOD data and the implementation of a specifically
designed PaP loss function.

3) We achieve state-of-the-art performance on multiple SSL
benchmarks by significantly improving the performance
of the tail classes without compromising that of the head
classes.

II. RELATED WORKS
A. General SSL Methods

The general SSL methods can be broadly divided into three
categories: consistency regularity, pseudolabeling, and hybrid
methods that combine both. Consistency regularization [5],
[7], [9] encourages the model to output consistent results
for the same input data with different forms of augmen-
tation [24], [25]. Pseudolabeling [1], [26], [27] adopts a
self-training strategy, using the model prediction to assign
pseudolabel unlabeled data for the following supervised train-
ing. Hybrid methods combine both consistency regularization
and pseudolabeling [28], [29], [30], [31], with FixMatch [28],
MixMatch [29], and ReMixMatch [30] being notable exam-
ples. FixMatch requires the prediction of the strong view of
the data to be consistent with the pseudolabel obtained through
the weak view. MixMatch interpolates labeled data as well as
unlabeled data with pseudolabels to improve the generalization
performance. ReMixMatch further improves MixMatch by
aligning the pseudolabels of unlabeled data with the label dis-
tribution of supervised data, thereby improving the consistency
between the two. Building on the principles of consistency
regularization and hybrid methods, SimMatch [32] further
enhances SSL by introducing a similarity-matching mecha-
nism. This approach ensures that similar samples maintain
consistent representations during training, thereby extending
the effectiveness of consistency regularization by emphasizing
the relational structure among unlabeled data points.

It is worth noting that both of these methods assume a
balanced target data distribution and do not account for OOD
samples in the unlabeled data. In more realistic scenarios, data
often has two characteristics: 1) ID data follows a natural long-
tailed distribution and 2) the unlabeled data may contain OOD
data. These characteristics make existing methods vulnerable
to distribution shifts and noisy data, thereby reducing perfor-
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mance. Therefore, further research and development of new
SSL methods are needed to address the challenges in real-
world scenarios.

B. Imbalanced SSL Methods

Imbalanced SSL focuses on improving the model perfor-
mance on tail classes by utilizing unlabeled data to address
the first data characteristic. Some methods aim to construct
balanced classifiers or use auxiliary classifiers to mitigate
the adverse effects of data imbalance on the model. For
instance, DASO [14] is a general framework that can be
easily integrated with other SSL learning models, which
reduces biased predictions by mixing semantic and linear
pseudolabels and introducing a novel semantic alignment loss.
CoSSL [33] is a joint learning framework for imbalanced
SSL, which decouples representation learning and classifier
learning, and tightly couples them through pseudolabel gen-
eration. The representation module provides a momentum
encoder for feature extraction in the other two modules, the
classifier module uses the novel tail-class feature enhancement
(TFE) to generate a balanced classifier, and the pseudola-
bel module uses the momentum encoder and a balanced
classifier generates pseudolabels representing modules. ABC
[34] can utilize the representation layer of the existing SSL
algorithm to learn high-quality representations, and introduce
a single-layer auxiliary balanced classifier to alleviate the
class imbalance problem. Other methods focus on select-
ing unlabeled data, such as CReST [13], which improves
the performance of existing SSL methods on tail classes
by generating high-precision pseudolabels, and incorporates
progressive distribution alignment for adaptive rebalancing,
SaR [12], which is a pseudolabel generation method for
adaptive refinement of soft labels, using the generated soft
pseudolabels as pseudolabels to produce smaller deviations,
thereby obtaining higher quality data for training classifiers.
Recently, CDMAD [35] introduced a debiasing mechanism
that adjusts for class bias during training and testing, allowing
better handling of class distribution mismatches. By measuring
and correcting the classifier’s bias, CDMAD effectively rebal-
ances the model without additional complexity, enhancing its
performance in mismatched scenarios.

However, these imbalanced SSL methods generally assume
that unlabeled data only contains known classes, without con-
sidering the possible existence of OOD data. This assumption
can result in inaccurate pseudolabels when OOD samples are
present, leading to a degradation in model performance. Such
methods may misclassify OOD samples, confusing the model
and ultimately reducing its effectiveness, particularly for tail
classes.

C. Open-Set SSL Methods

Open-set SSL methods are designed to handle OOD samples
for more robust model performance to address the second
data characteristic. To reduce the adverse effects of OOD
samples on the model, some methods aim to identify and
discard OOD samples, while others use the soft labels of

the OOD samples during model training. For example, Open-
Match [18] is enhanced based on FixMatch. It employs the
OVA classifier, utilizes the confidence score of the sample
as an inner layer, and introduces soft consistency regu-
larization, thereby significantly enhancing outlier detection.
IOMatch [36], on the other hand, simplifies this process by
jointly utilizing both inliers and outliers without the need
for a separate outlier detection stage. By treating outliers as
a new class and using a multibinary classifier along with
a closed-set classifier, [OMatch achieves better performance
by leveraging the full set of unlabeled data, avoiding the
risk of incorrectly excluding valuable inliers. MTCF [21]
treats the open-set semi-supervised problem as multitask learn-
ing, including binary classification and general SSL tasks.
Meanwhile, some open-set SSL methods selectively utilize
the unlabeled samples to achieve results that are at least as
good as those achieved using only labeled data. For example,
DS3L [17] selectively uses unlabeled data in a metalearning
manner for training to ensure that model performance will
not be damaged by unlabeled data. AuxMix [37] employs
self-supervised learning generalization features to mask unla-
beled data that is semantically dissimilar to labeled data and
regularizes learning by maximizing the prediction entropy of
different auxiliary samples. ACR [38] can effectively utilize
unlabeled data of unknown class distributions by introducing
the adaptive consistency regularizer to enhance performance.
In addition, DAC [39] constructs multiple prediction heads
with different biases toward the unlabeled distribution within
a single-training process, to detect and suppress OOD samples.

These methods implicitly assume that OOD samples are
detrimental to model training and try to eliminate their nega-
tive influence without considering the potential value of OOD
samples, somehow leading to data waste, as it overlooks the
possibility that OOD samples could provide valuable informa-
tion for improving model robustness and generalization.

III. PROPOSED METHOD

This article studies SSL from a more realistic perspective.
We consider two factors in real applications that severely
degrade the performance of SSL methods. The first factor is
the natural long-tailed distribution of real-world data, which
can bias SSL models toward the head classes and squeeze
the tail classes space, as shown in Fig. 2(a). The second
factor is the presence of OOD samples in unlabeled data.
Under this circumstance, the OOD samples with the pseu-
dolabels assigned by the SSL methods will introduce noise
and further damage the model performance [40]. In a nutshell,
OOD samples will exacerbate the original long-tailed problem.
Existing SSL methods only address one of these factors. The
imbalanced SSL methods are affected by OOD samples, and
open-set SSL. methods are unable to handle data with natural
long-tailed distributions.

To alleviate the problem that OOD samples will exacer-
bate the original long-tailed problem, we propose MOOD to
enhance the tail classes by leveraging the seemingly detrimen-
tal OOD samples from a unique perspective. The core idea
of MOOD is shown in Fig. 2. In detail, MOOD consists of
two parts: OOD mixup (see Section III-B) and feature space
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Fig. 3. Overview of the proposed MOOD. The blue and gray arrows represent
the loss related to the labeled and unlabeled data, respectively.

expansion (see Section III-C). The OOD mixup increases
feature diversity by fusing OOD information with ID data
based on the class frequency, where the tail classes are fused
with a higher probability. This approach ensures that the tail
classes receive significant attention during model training. The
feature space expansion utilizes a specifically designed PaP
loss, denoted by Ly, to encourage the model to obtain an
unsqueezed feature space. By applying L,,, OOD data are
pushed away from the class center, allowing the fused samples
to contribute significantly to feature space expansion, as shown
in Fig. 2(b). The overall framework of MOOD is shown in
Fig. 3, and the complete algorithm flowchart can be found in
Section III-E.

A. Problem Setting and Notations

In the setting of SSL, we have labeled data Dy, and unlabeled
data Dy. Each sample x in the labeled data D; = {(xl,yl)}l !
is associated with a label yl € {1,...,C}. C is the total
number of known classes. N = Zl  NV; is the total number
of labeled data and N; is the number of samples in class
i. We assume that the classes are imbalanced and sorted in
nonascending order, i.e., N; > N; for i < j. The degree of
class imbalance of a dataset is measured by the imbalance
factor defined as IF = N;/N¢. Unlabeled data Dy = {(x;‘)}f‘;’ 1
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contains M samples without annotation. We assume that the
unlabeled dataset consists of both the ID dataset D; and the
OOD dataset Dy, i.e., Dy = D; U Dy. The samples in D;
follow the same class distribution as Dy, and therefore, IF is
the same for both D, and D;. Samples in Dy belong to classes
other than the known C classes. We aim to learn a model to
effectively learn Dy, and Dy to generalize well under a class-
balanced test criterion. We use a typical deep neural network
model f, e.g., ResNet [41] or wide ResNet [42], including a
feature extractor 6 and a classifier ¢. Given a sample x, the
model predicts it as f(x) = ¢(6(x)).

B. Ood Mixup

Inspired by the commonly adopted strategy for feature space
expansion for long-tailed learning [43], [44], [45], we generate
new training samples by OOD mixup. This augmentation
operation is fundamental and indispensable in MOOD. We first
detect OOD data from unlabeled data by an OOD filter which
is trained on all labeled data and unlabeled data using instance
contrastive learning [46]. In contrast to previous approaches,
such as open-set SSL methods [17], [21], which merely
discard OOD samples, MOOD leverages the information from
detected OOD data. Specifically, MOOD fuses OOD data into
the labeled data to expand the feature space. Specifically,
MOOD leverages the information of the detected OOD data
by fusing them with labeled data to expand the feature space,
instead of simply discarding OOD samples like most open-
set SSL methods. The filtered OOD data D(,, may not be
identical to the ground-truth OOD set Doop due to false
positives and false negatives during OOD filtering. Then, a
labeled sample (x/,y") € D, is randomly fused with an OOD
sample x° € Dy to obtain a fused sample %

F=A+ A =-Dx° (1)

where A controls the fusion ratio of two samples. It should be
noted that the mixup approach used in MOOD differs from
the typical mixup methods [47] in two ways. First, we set
A =max(d’,1 - A") to prevent the labeled sample information
from being dominated by OOD sample information in the
fused sample, where A’ is drawn from a beta distribution
with parameter «. Second, we use y' directly as the label
of the fused sample X. The leveraging OOD data for sample
generation has the advantage of improving feature diversity
while avoiding semantic confusion among known classes.
OOD mixup is applied to all the known classes, not just
the tail classes. Therefore, to prevent the model from being
biased toward the head classes, we incorporate OOD mixup
into a dual-biased sampling branch, which jointly samples data
from reversed class probability distribution P, and the original
class probability distribution P,. Specifically, the reversed
class probability is obtained by P, = (1/2)[p1, p2....,pcl",
where p; = N;/N; and Z are the normalization term. To
enhance the generalization ability of the tail classes, we only
apply OOD mixup to data sampled from P,, thus generating
more fused samples for tail classes. Consequently, the sampled
data in the dual-biased sampling branch for model training
is class-balanced with increased sample diversity. The dual-
biased sampling branch is similar to the bilateral branch in
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BBN [48], with the key difference being that the samples from
P, are fused with the filtered OOD samples.

After sampling from the dual-biased sampling branch and
conducting OOD mixup, the samples are fed into the shared
feature extractor 6 with a classifier ¢. The loss function is
calculated by the sum of losses for both branches

L= B [G@p]+ E [10®.0] @

where I(:,-) is the common cross-entropy loss, f(x) is the
prediction of model to data x, and y is its ground truth.

Regarding leveraging OOD samples, we take two key issues
into account.

1) How Are Ood Samples Filtered From Dy?: One key
step in OOD mixup is to obtain the filtered OOD set D(,p.
To avoid the influence of data imbalance in the label space,
we adopt the nearest neighbor-based OOD detection approach
[49]. First, we obtain a pretrained model using the unsuper-
vised contrastive learning method with InfoNCE loss [50]
on all available data D = D, JDy. The training loss is
formulated as follows:

|D|
1 exp(z; -2'/Th)
Lunswp = — | =< E log 3)
o <|D| i=1 Z_l,zl],#i exp (Zi'zj/Tl))

where 7’ belongs to the positive pair set of the ith sample.
Then, we compute the distance to the kth nearest neighbor in
the low-dimensional embedding space between unlabeled and
labeled data and use a threshold-based criterion to distinguish
ID and OOD data in the unlabeled data. To do this, we use the
normalized low-dimensional embedding z = z(x)/||z(x)||, for
OOD filtering. Let Z; = {z,-}f‘i , be the normalized embedding
set of labeled data. For an unlabeled data point x, with
embedding z,, we calculate the Euclidean distances ||z, —z;||»,
where z; € Z;. We identify x, as ID sample if ||z, —zwll> < 7,
and as an OOD sample otherwise. Here, z(, is the embedding
of its kth nearest neighbor, and 7 is the distance threshold
chosen as in [49]. Finally, we obtain the filtered ID dataset
D and filtered OOD dataset Dg,,. The complete algorithm
of the OOD filter is shown in Section III-E. The filtered OOD
samples are leveraged to be fused with labeled data, and the
filtered ID samples are utilized in other loss functions (as
described in Sections III-C and III-D). More results on the
accuracy of the OOD filter are presented in Section I'V-E. The
backbone architecture of the OOD filter is based on ResNet-
34, which is the same architecture used by the standard SSL
model.

2) Why Are Labeled Data Fused With Filtered Ood Data
Instead of All Unlabeled Data?: The unlabeled data contain
both ID and OOD data, and the ID data share the same
semantics as labeled data. Directly fusing unlabeled data with
data sampled from P, can expand the feature space of tail
classes, but it can seriously harm the performance of other
classes, particularly the head classes. Instead, leveraging OOD
data for data fusion can expand the feature spaces of the tail
classes without affecting other classes or causing semantic
confusion. In Section IV-D, we conduct ablation experiments
to compare the numerical results between fusing with all
unlabeled data and fusing with only the filtered OOD data,

which supports our hypothesis. The idea of utilizing OOD data
for feature space enhancement is also discussed in [51] and
[52]. OpenMix [52] integrates the labeled data from known
categories with pseudolabeled data from unknown categories
to establish learning relationships, facilitating the identification
of novel classes in open-world scenarios. The key difference
between MOOD and OpenMix lies in their treatment of OOD
data. MOOD does not focus on the specific classification
information of OOD data but rather on its contribution to the
feature space of tail classes. In contrast, OpenMix aims to
identify new classes and incorporate them through the label
fusion to assist in model training. However, the OOD mixup
approach differs from these methods in that it fuses OOD
data with labeled data to particularly help tail classes for
imbalanced SSL.

C. Feature Space Expansion

Fusing with OOD data increases sample diversity, which
helps expand the feature space for tail classes without causing
semantic confusion among classes. However, during model
training, if the features of the OOD data gradually overlap
with labeled data, the features of the fused data for tail
classes may still be compressed, which undermines the goal
of expanding the feature space for these classes. To address
this issue, we propose a feature space expansion mechanism to
further expand the feature space of the tail classes. Specifically,
we encourage the filtered OOD data to be far away from
all class centers, allowing the fused data to be distributed
around the labeled data to achieve the feature space expansion.
Conversely, we encourage the filtered ID data and labeled data
to be close to their corresponding class centers. To implement
the feature space expansion, we propose a loss function called
PaP loss, formulated as follows:

Dyl

1 exp (Vi p15,/T1)
Lyp=-|==) log —
pap D | ; ch,zl’#yi exp (V,~ ~ﬂj/T1)

Dol

1 exp (v; - V;/T>)
+ log
Dyl I:Z] Z]C:l exp (V,« ~yj/T2)

where D} = D | D; contains all labeled data and filtered ID
data. The corresponding label j; is used to denote the ground-
truth label y; for labeled data or the pseudolabel J; assigned
for filtered ID data. The dot represents the inner product of
vectors. T and T, are the temperature scaling factors. v; =
g(0(x;)) is used to represent the low-dimensional feature for
the ith sample projected by a projector g, a two-layer neural
network. V; is the feature of the strong augmented version of
the ith filtered OOD sample. We use p; to represent the class
center of the jth class. To obtain a stable class center, we
follow [14] to update y; by calculating the mean feature of
the related memory bank.

The two terms in PaP loss address two perspectives to
achieve the goal of better feature space expansion. The first
term pulls all filtered ID data and labeled data closer to
their corresponding class center. The second term pushes the
filtered OOD data away from all class centers. Meanwhile,

“4)
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we encourage the distance between the features of different
augmented versions of each OOD sample to become smaller.
When OOD samples are pushed away from the class centers
by Lp.p, the feature space of the tail classes can be further
expanded through the OOD mixup mechanism. OOD mixup
and PaP loss work together and form the core of MOOD.

D. Overall Training Objective

We adopt the cross-entropy loss to utilize supervised infor-
mation and the proposed PaP loss to constrain the optimization
of the feature extractor. The filtered ID data in unlabeled
data are used to impose consistent regular constraints on the
model similar to FixMatch [28]. Specifically, we first generate
a corresponding pseudolabel for each filtered unlabeled ID
data. To obtain pseudolabel, we compute the predicted class
distribution of the weakly augmented version of the unlabeled
data point x;: ¢; = f(a(x;)), and use y; = argmax(g;) as its
pseudolabel. Then, we train the model to produce predicted
class distribution § = f(A(x;)) of its strongly augmented
version and constrain it to be consistent with the pseudolabels
y by

1Dyl

— > 1(max(q;) > DH G f(A () (5)
i=1

Leons = D/
A

where 7 is a hyperparameter denoting the threshold and 1
is the indicator function. H is simply the cross-entropy loss
as same as FixMatch. It measures the difference between the
pseudolabel generated from the weakly augmented input and
the prediction from the strongly augmented input. The overall
training objective function consists of three terms

Llotal = Ldual + /lconchons + /lpaprap (6)

where Acons and Apep are both hyperparameters, indicating the
weight of each loss item.

E. Algorithm Flowchart

The complete pseudocode of MOQOD is shown in Algorithm
1. The OOD data detected by an OOD filter are fused with
labeled data by mixup, and then fed into the dual-biased
sampling branch for joint training with three loss functions.
The blue and gray arrows represent the loss related to the
labeled and unlabeled data, respectively. The complete training
pseudocode for the OOD filter is shown in Algorithm 2.
The OOD filter’s backbone architecture is based on ResNet-
34, which has been trained using a self-supervised learning
approach. The OOD samples are detected based on a threshold
value.

IV. EXPERIMENTS

In Section IV-A, we introduce the experimental datasets,
comparison methods, and training details. In Section IV-B,
we conduct experiments to assess the efficacy of MOOD on
multiple benchmark datasets and compare it with relevant
state-of-the-art methods. In Section IV-C, we demonstrate the
exceptional performance of MOOD in learning tail class fea-
tures by visualizing the features extracted from the backbone.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Algorithm 1 Proposed MOOD Algorithm
Input: Labeled data D;, unlabeled data Dy, original class
probability distribution P,, reversed class probability dis-
tribution P,, feature extractor 6, classifier ¢, projector g,
total epochs E, [ iterations per epoch and learning rate r.
Output: Feature extractor 6, classifier ¢.
1. Initialize feature extractor 0, classifier ¢ and projector g;
2: Dy, Djop < detect_ood(Dy, Dy);
3: for each epoch r =1,2,...,E do
4: for each iteration i =1,2,...,1 do

5: ¥ « mixup(xhop, (x,y) ~ P,);
6: x « concat((x,y) ~ P,, X);

7: compute L, by Eq. (6);

8: update 0, ¢, g by Ly and r;
9: end for

10: end for

Algorithm 2 Algorithm of Detecting OOD Data

Input: Labeled data D;, unlabeled data Dy, feature extractor
0, projector g, the k-th nearest neighbor, distance per-
centile threshold 7, total epochs E, [ iterations per epoch
and learning rate r.

Output: Detected OOD data Dy, and ID data Dy,.

1: Initialize feature extractor 8 and projector g;
2: for each epoch t =1,2,...,E do

3 for each iteration i = 1,2,...,1 do

4 (x) ~ DL VU Dy;

5: x', x"” « transform(x);

6 compute Lyusp by Eq. (3);

7 update 6, g by Lyuep and r;

8 end for

9: end for

10: Z;,Zy < extract(d, g);

11: Dist;, Dist, < distance(Z;, Z,, k);

12: Dist] « sort(Dist;);

13: obtain distance threshold by 7 and Dist;;
14: Dgop» Dip < compare(Dist,, 1);

In Section IV-D, we conduct detailed experiments on the
contribution of each component of MOOD. In Section IV-E,
we evaluate the performance of OOD filters, confirming that
using the OOD filter directly will lead to the information
loss, while MOOD maximizes the utilization of unlabeled
data. In Section IV-F, we investigate the influence of different
backbones on MOOD.

A. Experimental Settings

1) Comparison Methods: We compare the proposed
MOOD with several related methods, including: 1) a super-
vised method using the cross-entropy function as the loss;
2) general SSL methods FixMatch [28] and MixMatch [29];
3) imbalanced SSL methods CReST [13] and DASO [14]; and
4) open-set SSL methods MTCF [21] and OpenMatch [18].

2) Imbalanced Datasets With Ood Data: We conduct SSL
experiments by configuring both the labeled data and the
unlabeled ID data to follow the same long-tailed distribution,
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TABLE I

COMPARISON OF AVERAGE ACCURACY (%) WITH THE STANDARD SSL METHODS AND THE IMBALANCED SSL METHODS ON CIFAR-10-LT AND
CIFAR-100-LT WITH A DIFFERENT IF. BOLD VALUES ARE THE BEST AND UNDER-LINED VALUES COME NEXT. THE SAME CONVENTION
APPLIES TO THE SUBSEQUENT TABLES

Average Accuracy (%)

Tail Accuracy (%)

R 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
IF 50 100 50 100
MixMatch  70.78  68.05 6539 6585 59.69 60.13 53.68 4930 48.62 5040 33.00 36.90
FixMatch 7283  69.66 63.32 6826 61.48 57.81 59.65 53.83 4440 51.00 3995 33.80
CIFAR-10 CReST 7437 69.69 62.84 6570 61.62 5293 65.15 53.60 43.12 49.63 4130 23.85
DASO 76.57 73.57 6894 7149 66.18 064.89 67.62 6245 56.85 61.00 5020 47.35
MOOD 7835 7849 7517 7471 73.74 69.16 7528 72.83 65.65 6522 6425 59.52
IF 20 30 20 30
MixMatch  37.33 3743 3521 3596 33.61 3273 20.17 1940 19.09 14.00 14.57 14.66
FixMatch  36.89 37.01 30.62 36.74 31.81 2824 1697 17.14 10.86 1586 13.23 10.86
CIFAR-100 CReST 31.63 30.13 29.17 29.68 27.19 2552 1651 1346 1346 1091 931 8.63
DASO 40.65 39.69 36.61 37.85 36.52 3271 2037 1857 17.80 1686 1443 11.89
MOOD 40.98 3894 37.59 3695 3695 3615 2929 2646 2346 2243 24.09 19.37
—e— Supervised FixMatch =% MixMatch A- DASO  —#- CReST -m- MOOD (ours)
| . - Py 70 Th= ¢ == === .l. [T -
% k""‘ﬁﬂﬂ*—” 68 1 N, 6014, =
5, 9010 B S . N\ s L Tt | 1
S 881 \'\-*__.:fﬁn'ﬁ 866 Ao - N4 @ 5018y y C— bt
;86- s_‘64.‘_._I‘;-_’-.:g-t,.!---.n___o_,'. ; .\\;.\. ..... A
O O 62 > g O 40 S .
O 84 o r” . Q So
< g <t 60 N < N ==
80 581 < ~ 30 ~.
. . . s6.L) . 3 | | »
0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
R R R
(a) (b) ©

Fig. 4. Average accuracy (%) of three groups. (a) Head, (b) medium, and (c) tail. The experiments are conducted on CIFAR-10-LT with different values of

R, IF = 100 and S8 = 30%. The backbone is ResNet-34.

with the inclusion of OOD samples in the unlabeled data.
CIFAR-10/100 [53] and SVHN [54] are used as the in-
distribution dataset, which is commonly adopted in the SSL
literature [28]. We split a total of 5000 samples (500 samples
per class for CIFAR-10/SVHN and 50 samples per class for
CIFAR-100) from the original training dataset as validation
data, while the original test dataset is used for testing, and
further split the remaining training data (45 000 for CIFAR-
10/100 and 68 357 for SVHN) into labeled and unlabeled data.
We randomly select 8 = 10% and 8 = 30% of samples from
training data to create the labeled set, and randomly discard
training images per class according to the imbalance factor IF.
IF takes the value from the set [20, 30, 50, 100]. Specifically,
we denote N; and M) as the number of head class samples
in labeled data and unlabeled ID data, N; = (IF)"“"1/¢-D . N,
and the same for M;, while Ny = 1500 and M; = 3000 for
CIFAR-10/SVHN with 8 = 30% labeled data and Ny = 50 and
M, = 400 for CIFAR-100 with g = 10% labeled data. Tiny
ImageNet [55] is used as the OOD dataset, which contains

10 000 test images from 200 classes. We use R to control
the proportion of OOD samples to unlabeled samples, where
the total amount of unlabeled data is fixed, and we randomly
replace the original unlabeled ID samples with OOD samples
according to R.

3) Implementation Details: We employ ResNet-34 [41] as
our backbone architecture. Experiments related to different
backbone architectures can be found in Section IV-F. Each
compared method is trained for 250 000 iterations during stan-
dard training, with validation performed every 500 iterations.
For CIFAR-10 and SVHN, we set the batch size of labeled
data to 64 and the batch size of unlabeled data to 128. For
CIFAR-100, the batch size of labeled data and unlabeled data
is set to 16 and 32, respectively. We use the SGD optimizer
with a basic learning rate of 0.03, momentum of 0.9, and
weight decay of le™. The temperature scaling factor 7; and
T3 in Ly, are set to 0.1 and 0.007, respectively. The threshold
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Fig. 5. t-SNE visualization of feature space of CIFAR-10-LT testing set, trained on CIFAR-10-LT with IF = 100 and R = 0.5. Ellipses show the feature space
area of the tail classes 9 and 10. The red and black ellipses represent the clusters of correctly classified and ground-truth samples, respectively. (a) Supervised.

(b) FixMatch. (c) MixMatch. (d) CReST. (e) DASO. (f) MOOD (ours).

TABLE I

COMPARISONS WITH THE OPEN-SET SSL METHODS ON CIFAR-10 AND
CIFAR-100 BOTH WITH TINYIMAGENET AS OOD DATA

Dataset CIFAR-10 (/F =100) CIFAR-100 (I F = 100)
R 0.25 0.50 0.75 0.25 0.50 0.75
Supervised 62.25 25.61
OpenMatch  64.96 62.29 60.74 29.47 28.71 26.29
MTCF 5831 57.58 5757 31.04 3141 29.78
MOOD 7471 7374 69.16 3443 3255 32.29
TABLE IIT
ACCURACY (%) ON SVHN UNDER DIFFERENT R WITH FIXED IF = 100
AND 8 = 30%
Dataset SVHN
R 0.25 0.50 0.75
Supervised 84.54
MixMatch 85.66 85.13 84.74
FixMatch 88.33 87.33 85.95
CReST 88.24 86.48 85.95
DASO 88.10 84.07 84.80
MOOD (ours) 88.23 87.41 87.23

T in Leons 1 set 10 0.95. Acons and Apqp in (6) are set to 1.0 and
0.2, respectively.

4) Evaluation Criteria: In the experiments, our per-
formance evaluation refers to the standard protocol [28],
measuring average top-1 accuracy (%) for each class. In
addition, we categorize the classes of the ID dataset into three
groups (head, medium, and tail) according to the number of
samples in each class, with {3, 3, 4}, {3, 3, 4}, and {30, 35,
35} for CIFAR-10, SVHN, and CIFAR-100, respectively. We
then compare the average accuracy of each group to further
evaluate the performance of our method.

B. Numerical Results

To demonstrate the robustness of MOOD to the data imbal-
ance factor and the proportion of OOD samples in unlabeled
data, we compare the performance of MOOD and other
methods on CIFAR-10, CIFAR-100, and SVHN datasets under
different combinations of IF and R.

Fig. 6. t-SNE visualization of ablation experiments on CIFAR-10-LT testing
set with IF = 100 and R = 0.5. (a) w. DB. (b) w. FU. (c) w. FO. (d) w. PaP.

TABLE IV

INFLUENCE OF THE HYPERPARAMETERS A; AND A CONTROLS THE
WEIGHT OF THE PAP LOSS AND THE OOD Mixup L0OSS. EXPERI-
MENTS ARE CONDUCTED WITH 8 = 30%, IF 100 AND R 0.5 FOR
CIFAR-10. * INDICATES THE DEFAULT SETTING

(a) Influence of Ao with fixed A\; = 1.0

A2 0.025 005 0.1 0.2 0.3
Accuracy (%) 707  71.0 703 705 63.5
(b) Influence of A\ with fixed Ao = 0.1
A1 05 075 1.0 125 15
Accuracy (%) 664 673 703 69.7 694

The results of average accuracy and tail group accu-
racy are presented in Table I, showcasing the robustness
of our method across various combinations of IF and R.
Our approach exhibits superior performance on tail classes,
surpassing DASO by margins of 7.66%, 10.38%, 8.8%, 4.22%,
14.05%, and 12.17% in different settings of CIFAR-10. Sim-
ilarly, for various configurations of CIFAR-100, our method
outperforms DASO by 8.92%, 7.89%, 5.66%, 5.57%, 9.66%,
and 7.48%.

Moreover, Fig. 4 shows the average accuracy of three groups
under different values of R with a fixed IF = 100 on CIFAR-
10. We can observe that the performance of the head classes
does not necessarily decrease with the increase of R, while
the performance of the tail classes deteriorates and even some
falls below the level of the supervised method. This illustrates
that more OOD samples worsen the performance of the tail
classes for other methods and that our method can mitigate
this situation. The above results indicate that MOOD is more
robust to complex real-world scenarios and more effective in
addressing the challenge of recognizing the tail classes.

The performance comparison with the open-set SSL method
(MTCF [21] and OpenMatch [18]) on the CIFAR-100 is
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TABLE V
RESULTS OF ABLATION EXPERIMENTS ON CIFAR-10-LT UNDER THE SETTING OF IF = 100 AND R = 0.5
Component 8 =10% B8 =30%
ID DB FU FO PaP Head Medium Tail Acc.(%) Head Medium Tail Acc.(%)
1 - - - - 90.47 41.43 18.45 46.95 90.93 71.23 37.85 63.79
2 v - - - 80.37 37.23 21.83 44.01 85.93 58.93 46.52 62.07
3 v v - - 86.27 31.73 36.48 49.99 83.70 62.87 63.90 69.53
4 v - v - 75.77 44.83 35.08 50.21 90.73 68.63 59.27 71.52
5 v - v v 82.23 64.50 39.25 59.72 90.57 69.57 64.25 73.74
shown in Table II. We control the distribution of the dataset TABLE VI

by setting different R with a fixed IF = 100. Although
the performances of MTCF and OpenMatch do not show
a significant drop under a different R compared with other
methods, the overall performances of these two methods are
much lower than others due to their failure to address the
data imbalance problem.

The experimental results on SVHN are shown in Table III,
which demonstrates the competitive performance of our
MOOD on SVHN. N; and M; are set to 1500 and 3000,
respectively. When the ratio of OOD samples is high, our
method exhibits comparable performance to other methods;
while the number of OOD samples increases, our method
exhibits its robustness.

C. Visualized Results

In order to better observe the feature space learned by
each method, we use t-SNE to visualize the high-dimensional
feature space before the classification layer. Fig. 5 shows
the t-SNE visualization of the feature space about CIFAR-
10 testing set. To depict the feature space of the tail classes,
we employ ellipses with two colors to encompass the corre-
sponding data clusters. The red ellipses cover the clusters of
correctly classified tail class samples, while the black ellipses
cover the ground-truth tail class samples. The feature space
generalization of the tail classes can thus be evaluated by
the overlap between two ellipses. By comparing the overlaps
between red and black ellipses, we find that the overlaps of the
compared methods are quite small, indicating squeezed feature
space. In contrast, the feature space overlap of MOOD is much
larger, demonstrating significant performance improvement in
tail classes. In addition, the feature space of each class in
Fig. 5(f) tends to stretch outwards, further supporting our idea
that the feature space of the tail classes expands outwards
rather than squeezing the feature space of other classes inward
due to OOD samples.

D. Ablation Experiments

We conduct hyperparameter ablation on A; and A;. As
shown in Table IV, the results remain stable across a range
of values, indicating that our method is not sensitive to the
exact choice of hyperparameters. We further present ablation
experiments on four major components of MOOD, namely,
dual-biased sampling branch (DB), fusing labeled data with
unlabeled data (FU), fusing labeled data with filtered unlabeled

ACCURACY (%) OF DIFFERENT FEATURE LOSSES, PCL, CCL, AND ICL. 8
Is SET TO 30%, IF 100 AND R 0.5 FOR CIFAR-10. As FOR CIFAR-100,
IF Is SET TO 50 AND R 0.5

Dataset CIFAR-10 CIFAR-100

Group Head Med. Tail Acc. Head Med. Tail Acc.

PCL 8720 64.77 4827 64.90 51.37 27.34 11.63 27.10

CCL 89.70 67.00 40.40 63.17 49.13 27.94 11.86 28.67

ICL  80.90 62.00 53.20 64.15 43.53 19.77 10.69 23.26

PAP  90.57 69.57 64.25 73.74 48.33 30.71 11.57 29.30
TABLE VII

RESULTS ABOUT THE OOD FILTER WITH RESNET 34 AS THE BACKBONE
AND CORRESPONDING ACCURACY UNDER DIFFERENT R SETTINGS
WITH FIXED IF = 100 AND 8 = 30% ON CIFAR-10. THIS TABLE
PRESENTS THE TPR AND TNR OF THE OOD FILTER

IF 50 100

Dataset
R 025 050 075 0.25 0.50 0.75
CIFAR-10 TPR 94.09 93.53 9299 94.09 93.53 92.99
TNR 99.76 100.00 100.00 99.76 100.00 100.00
CIFAR-100 TPR 94.00 94.23 95.09 94.65 9537 95.04

TNR 99.75 99.92 100.00 99.11 100.00 99.95

TABLE VIII

COMPARISON OF FILTER-1 [49] BASED ON NEAREST NEIGHBORS AND
FILTER-2 [56] BASED ON COMPACT FEATURE REPRESENTATION,
UNDER DIFFERENT THRESHOLDS R ON CIFAR-10 WITH IF =
50, USING RESNET-34 AS THE BACKBONE. WE REPORT TPR,
TNR, AND CLASSIFICATION ACCURACY (AcCC. %)

Method R TPR TNR Acc
0.25 94.09 99.76 78.35

Filter-1 0.50 93.53 100.00  78.49
0.75 9299 100.00 75.17
0.25 95.62 80.85 73.56

Filter-2  0.50  96.28 89.40 74.35
0.75 97.24 89.48 70.99

OOD data (FO), and the PaP loss item (PaP). In addition
to the overall average accuracy, we evaluate the respective
average results of the three groups. As shown in Table V,
Experiment ID-1 presents the baseline model without any
modification, which performs well on the head classes but
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TABLE IX

COMPARISON OF AVERAGE ACCURACY (%) AND TAIL ACCURACY (%) WITH THE SSL METHODS WITH OOD FILTER ON CIFAR-10-LT WITH 8 = 30%.
WE HIGHLIGHT THE PERFORMANCE IMPROVEMENT IN BLUE WHEN COMPARING IT WITH THE RESULTS WITHOUT AN OOD FILTER, WHILE THE
PERFORMANCE DEGRADATION IS HIGHLIGHTED IN RED

Dataset CIFAR-10 (Average Accuracy, %) CIFAR-10 (Tail Accuracy, %)
IF 50 100 50 100
R 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
MixMatch 71.84 7534 7289 67.69 66.61 66.78 5690  66.33 60.75 47777 4240 45.43
1xMate +1.06 +7.29 +7.5 +1.84  +6.92 +6.65 +3.22 +17.03 +12.13 -2.63 +9.4 +8.53
FixMatch 76.42 7597 7337 69.78 7039  66.52 6552  66.85 6342  50.87  56.05 50.45
xMate +3.59 +6.31 +10.05 +1.52 +8.91 +8.71  +5.87 +13.02 +19.02 -0.13 +16.1 +16.65
CReST 74.44  74.07 7191 7031 69.64 63.58 62.70  62.70 60.40  53.00 51.77 46.50
e +0.07 +4.38 +9.07 +4.61 +8.02 +10.65 -245 +9.1 +17.28 +3.37 +1047 +22.65
DASO 77.09 75.14  72.89 7251 69.57 6627 69.10 68.67 64.42 5853 56.23 43.30
+0.52  +1.57 +395 +1.02 +3.39 +1.38 +1.48 +6.22 +7.57 -2.47 +6.03 -4.05
MOOD 7835 7849 7517 7471 73.74 69.16 75.28 72.83 65.65 6522 64.25 59.52
TABLE X
RESULTS ON CIFAR-10 (IF = 100) AND CIFAR-100 (IF = 50) USING WIDE RESNET WITH 8 = 10%
R=0.25 R=0.50 R=0.75
Dataset Method
Head Tail Avg. Head Tail Avg. Head Tail Avg.
FixMatch 92.77 33.65 61.56 89.80 31.55 59.05 87.33 27.02 52.60
ABC 91.83 26.85 56.69 87.80 22.45 51.44 82.77 13.70 43.59
CIFAR-10 CReST 92.73 33.85 60.76 92.20 23.50 57.55 88.57 23.15 51.95
DASO 91.90 30.35 59.76 90.93 27.57 57.21 86.87 20.32 50.54
MOOD 83.53 46.20 62.58 76.03 49.83 61.01 78.33 31.35 51.20
FixMatch 59.37 343 28.59 57.53 3.80 27.12 47.37 2.60 23.05
ABC 57.83 6.11 27.12 54.43 7.43 26.08 39.03 1.83 17.96
CIFAR-100 CReST 49.10 3.34 22.90 46.77 3.37 22.08 43.30 1.89 19.60
DASO 62.10 1.91 26.29 58.40 1.49 24.18 55.13 1.17 22.96
MOOD 52.40 12.71 31.36 48.33 11.57 29.30 47.17 9.97 26.33

poorly on the tail classes. Experiment ID-2 incorporates the
dual-biased sampling branch to increase the frequency of tail
class samples, resulting in improved performance for the tail
classes. Experiment ID-3 leverages unlabeled data for the
mixup, which greatly improves the tail class performance but
reduces head class performance by up to 7% compared with
Experiment ID-1. We argue that fusing with all unlabeled
data, which contains more head class samples, causes the
feature space of head classes to shrink and their performance
to degrade, while the diversity of tail classes increases. These
results confirm our hypothesis regarding issue (2) as described
in Section III-B. Experiment ID-4 only leverages filtered OOD
samples for mixup, resulting in improved performance for tail
classes. This suggests that incorporating OOD samples for
mixup can enhance the diversity of tail classes. In Experiment
ID-5, we introduce the PaP loss term into the training process,
which further improves the performance of tail classes with
maintaining the performance of the head class. These ablation
experiments demonstrate the effectiveness of each module in
our method and verify the significant contribution of the OOD
mixup combined with the PaP loss term to the tail classes

feature space. To further validate the advantage of using
OOD data, we compare MOOD with a variant that replaces
OOD mixup with standard oversampling. Compared with
standard oversampling (64.96% overall/52.83% tail), MOOD
achieves significantly higher accuracy (73.74%/64.25%). This
is because oversampling fails to introduce semantic diversity at
the feature level, while OOD-based mixup enriches tail-class
representations through distributional variation. Moreover, we
visualize the features extracted by the feature extractor on
CIFAR-10 testing set for the ablation experiments in Fig. 6.
The feature space of each class shown in Fig. 6(d) becomes
more compact and tends to extend outward compared with
other figures.

Our PaP loss exhibits a similar structure to the conventional
contrastive loss. In order to illustrate the difference between
the PAP loss, the instance contrastive loss (ICL) [46], the
prototype contrastive loss (PCL) [57], and the class-aware
contrastive loss (CCL) [20], we conducted a feature loss
difference experiment. The experimental results are shown in
Table VI. From the results, it is evident that the PAP loss
offers better assistance to the tail classes and significantly
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improves the model’s performance compared with the ICL,
PCL, and CCL losses. This finding highlights the effectiveness
and superiority of the PAP loss in addressing the challenges
posed by tail classes in the given experiments.

E. Evaluation of Ood Filter

We conduct experiments to evaluate the performance of the
OOD filter, and the results are presented in Table VII. The
table displays the true negative rate (TNR) and true positive
rate (TPR) of the OOD filter with a different R at a fixed IF =
100. The results demonstrate that the OOD filter is effective in
recognizing ID samples and the performance of the OOD filter
is a bottleneck of MOOD. To further evaluate the robustness of
MOOD under different OOD filtering strategies, We evaluate
the impact of an alternative OOD filter [56] under the IF =
50 setting on the CIFAR10 dataset. As shown in Table VIII,
although the filter change leads to slight performance drops,
our method still achieves SOTA results. In future work, we will
consider improving OOD filter performance to further improve
MOOD.

In addition, in order to ensure fairness in the experiments,
we also evaluated the performance of other methods when
utilizing an OOD filter. The results of this comparison are
presented in Table IX. The overall performance of these
methods is improved a lot, while the tail performance deteri-
orates. For example, in the case of IF = 100 and R = 0.75,
the performance of CReST on the tail classes improved by
22.65%. Even compared with the other methods employing
OOD filtering, our method still exhibits superior performance.
After using the OOD filter, the average results of the model are
improved, but for some methods like DASO, the performance
of the tail class decreases. This is because some unlabeled tail
samples are misclassified as OOD data and are filtered out.
Whereas simply filtering out OOD samples can only produce
suboptimal results for tail classes, our method offers a more
effective approach for tail class optimization.

FE. Influence of Different Model Backbones

The experiments compared with wide ResNet [42] as back-
bone can be found in Table X. The labeled data account
for 10% of the entire training dataset. The results obtained
by different networks as the backbone are similar, indicating
that our method is insensitive to the backbone. When the
proportion of OOD samples is larger, our model is more robust
than other methods.

V. CONCLUSION

In this article, we propose MOOD, an imbalanced SSL
method to deal with the challenges under more realistic sce-
narios. We fully exploit the potential of seemingly detrimental
OOD data to improve the model robustness. The dual-biased
sampling branch with OOD mixup provides an equal opportu-
nity for all classes to learn with sample diversity. Meanwhile,
we introduce the PaP loss to encourage the model to learn
a more balanced and none-squeezed feature space, improving
the overall performance of the model. Experimental results on
SSL benchmarks demonstrate the effectiveness of the MOOD,

achieving state-of-the-art performance. In future work, we plan
to explore ways to further study imbalanced SSL with OOD
data, considering the potential impact of domain transfer that
has not been considered yet.
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