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Inverse Nonnegative Local Coordinate
Factorization for Visual Tracking

Fanghui Liu, Tao Zhou, Chen Gong, Keren Fu, Li Bai, and Jie Yang

Abstract— Recently, nonnegative matrix factorization (NMF)
with part-based representation has been widely used for appear-
ance modeling in visual tracking. Unfortunately, not all the
targets can be successfully decomposed as “parts” unless some
rigorous conditions are satisfied. To avoid this problem, this paper
introduces NMF’s variants into the visual tracking framework
in the view of data clustering for appearance modeling. First,
an initial target appearance model based on NMF is proposed
to describe the target’s appearance with the incorporated local
coordinate factorization constraint, orthogonality of the bases,
and L1,1 norm regularized sparse residual error constraint.
Second, an inverse NMF model is proposed in which each learned
base vector is regarded as a clustering center in a low-dimensional
subspace. Potential target samples (from the foreground) will be
clustered around base vectors, while the candidate samples (from
the background) are very likely to spread irregularly over the
entire clustering space. Such differences can be fully exploited by
the inverse NMF model to produce more discriminative encoding
vectors than the conventional NMF method. Furthermore, incre-
mental updating model is introduced into the tracking framework
for online updating the initial appearance model. Experiments
on object tracking benchmark suggest that our tracker is able
to achieve promising performance when compared with some
state-of-the-art methods in deformation, occlusion, and other
challenging situations.

Index Terms— Local coordinate constraint, inverse nonnegative
matrix factorization, incremental update, visual tracking.

I. INTRODUCTION

V ISUAL tracking is one of the most enduring topics
in computer vision with a wide range of applications,

such as video surveillance, autonomous driving, and robotic

Manuscript received March 7, 2016; revised July 11, 2016 and
December 5, 2016; accepted April 22, 2017. Date of publication April 28,
2017; date of current version August 3, 2018. This work was supported
in part by the National Natural Science Foundation of China under
Grant 61572315, Grant 6151101179, and Grant 61602246, in part by the
863 Plan of China under Grant 2015AA042308, in part by the Royal Soci-
ety/National Natural Science Foundation of China International Exchanges
under Grant IE131664, in part by the China Postdoctoral Science Foundation
under Grant 2016M601597, and in part by the Open Project Program of the
Fujian Provincial Key Laboratory of Information Processing and Intelligent
Control, Minjiang University, under Grant MJUKF201723. This paper was
recommended by Associate Editor Y. Wu. (Corresponding author: Jie Yang.)

F. Liu, T. Zhou, and J. Yang are with the Institute of Image Processing and
Pattern Recognition, Shanghai Jiao Tong University, Shanghai 200240, China
(e-mail: lfhsgre@outlook.com; zhou.tao@sjtu.edu.cn; jieyang@sjtu.edu.cn).

C. Gong is with the School of Computer Science and Engineering, Nanjing
University of Science and Technology, Nanjing 210094, China, and also
with the Fujian Provincial Key Laboratory of Information Processing and
Intelligent Control, Minjiang University, Fuzhou 350108, China (e-mail:
chen.gong@njust.edu.cn).

K. Fu is with the College of Computer Science, Sichuan University,
Chengdu 610065, China (e-mail: fkrsuper@gmail.com).

L. Bai is with the School of Computer Science, University of Nottingham,
Nottingham NG8 1BB, U.K. (e-mail: bai.li@nottingham.ac.uk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2017.2699676

Fig. 1. The learned bases by NMF on (a) CBCL and (b) ORL dataset.
A face in (a) CBCL dataset can be successfully decomposed by the learned
bases with part-based representation (e.g. nose, eye, mouth, etc.). However,
NMF cannot learn these “parts” to represent a face in (b) ORL dataset.

navigation [1], [2]. Although much progress has been made in
the past decades [3]–[5], visual tracking still cannot meet the
requirements of practical applications due to some challenging
factors such as occlusions, shape deformation, etc.

One essential aspect of visual tracking is appearance mod-
elling. According to the adopted appearance model, current
modelling methods are either generative [6], [7] or discrimi-
native [8], [9]. Generative methods aim to find the most similar
candidate to the target by minimizing the reconstruction error,
whilst discriminative methods cast the tracking problem as a
supervised/semi-supervised classification problem [11]–[13] to
separate the foreground target from the background.

As a representative modelling method, nonnegative matrix
factorization (NMF) and its variants have been successfully
applied to visual tracking [14]–[16]. NMF decomposes the
nonnegative data matrix X into the multiplication of two
nonnegative matrices U and V (X ≈ UV), where U is called
base matrix and the columns of V are coefficient vectors. Here
each column of the data matrix X can be represented by a
linear combination of base vectors (i.e. the columns of the base
matrix U). Due to the nonnegative constraints on U and V,
NMF learns a part-based representation for visual tracking, in
which the target can be spatially represented by “parts” (base
vectors) to enhance the representation ability in appearance
modelling. However, Donoho and Stodden [17] point out that
not all the data can be successfully identified as “parts”. Such
decomposition requires additional conditions such as separated
support and factorial sampling, which are not satisfied in
many practical situations. Some example images from [18]
are shown in Fig. 1. We can see that NMF successfully learns
part-based representation on the CBCL face dataset but fails
on the ORL face dataset.
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Fig. 2. Samples spread among 16 base vectors by NMF’s variant from
a perspective of data clustering where these base vectors are regarded as
clustering centers in a subspace. The target samples are clustered around base
vectors, while background samples spread among the space.

Besides, considering that the representation ability of the
traditional NMF methods is limited to linear factorization,
some regularization terms have been incorporated to enhance
the representation ability. Graph regularization [19] is incor-
porated into the conventional NMF, termed GNMF [20].
Guan et al. [18] utilize two different classes of adjacent graphs
for the data matrix to enhance GNMF’s discriminative ability.
The sparsity term (i.e. group sparsity [21], or � 1

2
term [22]) is

added to the objective function to exploit the data structure.
Specifically, to simultaneously take similarity and sparsity
into account, Chen et al. [23] introduce a local coordinate
constraint into the standard NMF that is termed Nonnegative
Local Coordinate Factorization (NLCF).

Based on the above discussion, we argue that part-based
representation in NMF is not suitable for visual tracking, and
attempt to illustrate it from the clustering viewpoint [24], [25].
Therein, base vectors understood as the centroids of clusters
in U represent latent semantic information of the original data
in a subspace. In visual tracking, these base vectors can be
regarded as data (the target) cluster centroids from different
cues in a low-dimensional space. Fig. 2 demonstrates that
positive candidates sampled around the potential target are
similar to the base vectors, so they are located around the base
vectors. In contrast, the negative candidates corresponding to
background regions may spread among the clustering space.
Therefore, this difference between positive and negative can-
didates for clustering can be effectively exploited to separate
the target from the background. The main contributions of this
paper are as follows:

1) NLCF is introduced to appearance modelling for visual
tracking. Some additional constraints (the base orthog-
onality and the L1,1 norm regularization) are imposed
on U and error matrix E, respectively, which helps to
obtain a robust appearance model.

2) An inverse NMF representation that is called inverse
NLCF (inv-NLCF) is proposed to produce discriminative
feature vectors, leading to strong discriminative ability
between the target and the background.

3) An incremental learning scheme is proposed for online
updating the target appearance.

This paper is the extended version of our previous
work [26]. The tracker described here differs from [26] in sev-
eral aspects. Firstly, we introduce local coordinate constraint,
orthogonality constraint and sparse error term in the appear-
ance model, and then the corresponding algorithm is designed
solve such problem. Second, the accelerated proximal gradi-
ent (APG) [27] in the inverse NLCF model is replaced by
the multiplicative updating rule for the optimization problem.
Thirdly, we design an incremental update rules for the appear-
ance model. Lastly, we provide more experimental results on
Object Tracking Benchmark (OTB) dataset, and also present
parameter analysis, and computational complexity analysis.

II. RELATED WORKS

Since most NMF based trackers belong to generative meth-
ods, here we will mainly review some representative generative
trackers including sparse representation based trackers and
subspace learning based methods.

1) Sparse Representation Based Trackers: Sparse represen-
tation has been introduced into visual tracking with demon-
strated success [28], [29]. The fundamental assumption is that
a candidate can be represented by a sparse linear representation
of target templates, where the coefficients can be solved via a
constrained �1 minimization problem. Wang et al. [6] propose
an online robust nonnegative dictionary learning algorithm
based on �1 tracker [30] for updating the object appearance.
Subsequently, local sparse representation [31] and structured
sparse representation [28] are introduced into visual tracking
framework. In [32], the dual group structures of both candi-
date samples and dictionary templates are formulated as the
sparse representation problem at group level. Besides, reverse
sparse representation formulation [33] is proposed to seek for
discriminative weight for each candidate sample.

2) Subspace Learning Based Trackers: Generative trackers
commonly use subspace learning (eg. PCA, NMF, tensor) for
appearance modelling. The assumption is that the target lies
in a low-dimensional space. The incremental PCA subspace
representation [34] is adopted to learn and update the target
appearance in visual tracking. The assumptions of sparse error
and trivial templates are used in [35] to reduce the sensitivity
to partial occlusion and also enhance the robustness of the
appearance model. In [36], multiple linear and nonlinear sub-
spaces are learned to better model the nonlinear relationship
of different appearances conveyed by single object.

Some representative NMF based works include the
Orthogonal Projective Nonnegative Matrix Factori-
zation (OPNMF) [15], Constrained Incremental Nonnegative
Matrix Factorization (CINMF) [37], and Constraint Online
Nonnegative Matrix Factorization (CONMF) with sparsity
constraint and smooth constraint [14]. These generative
methods, employ NMF with different constraints (e.g. sparsity
constraint, graph-based regularization) for appearance
modelling. Different from above three generative methods,
in [16], NMF serves as a method for feature extraction. After
solving the nonnegative encoding vectors vi based on U,
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Fig. 3. Flowchart of the proposed tracker.

a Naive Bayes classifier is trained to distinguish the target
from the background.

III. THE NEW APPEARANCE MODEL AND ITS

INCREMENTAL UPDATE

The flowchart of the proposed tracking method is shown in
Fig. 3. It contains three main models: the initial appearance
model, the inverse NLCF model, and the incremental updating
model. The details are explained as follows.

A simple tracker (e.g. IVT [34]) is used to initialize the
tracking process at the first m frames to collect a certain
amount of target patches represented in graysacle values. Each
image patch is normalized to 32× 32 pixels and then stacked
to a vector in our tracker. The patch near the tracking result
is sampled as a positive template Ti

p ∈ R
M (M = 1024);

while the patch far away from the tracked target is taken
as a negative template Ti

n ∈ R
M . This forms the positive

template set Tpos = [T1
p,T2

p, · · · ,TN
p ] ∈ R

M×N (or called
the initial data matrix X), and the negative template set
Tneg = [T1

n,T2
n, · · · ,Tr

n] ∈ R
M×r constituting the back-

ground, where N and r are the number of positive templates
and negative templates, respectively. The positive template
set Tpos is decomposed into the base matrix U ∈ R

M×K

and coefficient matrix V ∈ R
K×N by using NMF variants

in the initial appearance model, where K is the number of
base vectors. After the mth frame, S new candidate patches
are sampled via the particle filter framework [38], forming
Y1:S = {y1, y2, . . . , yS} ∈ R

M×S , where each particle yi

denotes a candidate sample.
The proposed inv-NLCF model is regarded as a feature

coder, which encodes base matrix U by positive templates Tpos

and negative templates Tneg respectively. The corresponding
encoding vectors in Cpos and Cneg are then fed into SVM
classifier for training. Each row of C corresponding to a
candidate forms an encoding vector, which is classified as tar-
get (positive) or background (negative) by SVM classifier. The
tracking result is delivered to our incremental updating model
every ten frames to dynamically update the base matrix U,
the newly coefficient vector in V, and the latest error vector
in E for appearance model.

The initial appearance model is based on the traditional
NMF with two additional constraints. In the following sub-
sections, we mainly introduce the initial appearance model
and its incremental updating model.

A. The Conventional NMF and Its Variants: A Review

Some conventional NMF methods are briefly summarized
here for the ease of explanations for the proposed new method.
NLCF method incorporates a coordinate coding constraint [39]
into the conventional NMF, namely:

Q=
N∑

i=1

μ

K∑

k=1

vki‖uk − xi‖22=μ
N∑

i=1

‖(xi 1�− U)�1/2
i ‖2F, (1)

where U = [u1,u2, . . . ,uK ] ∈ R
M×K , V =

[v1, v2, . . . , vK ] ∈ R
K×N , �i ∈ R

K×K is a diagonal matrix
with the j th diagonal element defined by v j j , and μ is the
regularization parameter. The notation 1 ∈ R

K denotes the
all-one vector. The columns of the base matrix U can be
considered as a set of anchor points, and thus each data point
in the original space can be linearly represented by only a
few anchor points [23]. Therefore, minimizing Eq. (1) requires
that the new coordinate of xi regarding uk to be one if xi is
sufficiently close to the anchor point uk .

Besides, to discover the intrinsic geometrical structure in a
manifold space, graph based regularizer is incorporated into
NLCF’s objective function, that is:

O=‖X−UV‖2F+λtr(VLV�)+μ
N∑

i=1

‖(xi 1�−U)�1/2
i ‖2F, (2)

where λ is graph-based regularization parameter. The graph
Laplacian matrix is L = D−W, where D is a diagonal matrix
with Dii =∑

j Wi j and W is the weight matrix:

Wij =
⎧
⎨

⎩
e−
‖xi−x j ‖2

σ2 if xi ∈Nk(x j ) or x j ∈ Nk(xi );
0 otherwise.

(3)

In Eq. (3), Nk(xi ) denotes the k nearest neighbors of xi , and
σ is the kernel width to be tuned. By such two regularization
terms, NLCF not only considers the similarity between a
data point and the learned base vector, but also maximally
guarantees the sparsity.

B. The Initial Appearance Model

Based on NLCF, two additional measures including base
orthogonality constraint and L1,1 norm regularization are used
to improve data representation ability in the appearance model.

1) Constraints: Rather than using the �2 orthogonal con-
straint UU� = I, we use another form described in [42]:

∑

i �= j

u�i u j = tr(UOU�), O = Ī− I, (4)

where Ī signifies the matrix whose elements are all one. The
derivation details are presented in Appendix. A. Minimizing
Eq. (4) aims to enforce the inner product of two base vectors<
ui ,u j >= u�i u j (i �= j) to be as small as possible in different
positions. Compared to the conventional orthogonal constraint
UU� = I, we do not need to guarantee that the base matrix
is orthogonal.

In addition, the residual error ‖X − UV‖2F plays an impor-
tant role in appearance modelling. In IVT [34], the error is
assumed to obey Gaussian distribution with zero mean and
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small variance. In [35], the error is regarded as sparse noise.
We form this residual error as an error matrix E incorporated
into our objective function. To measure the sparsity of the
error matrix E in appearance model, we introduce the mixed
norm L p,q [43] defined by:

‖E‖p,q =
{∑

j

(∑

i

|Eij |p
) q

p
} 1

q

. (5)

In our model, we use ‖E‖1,1 =∑
j
∑

i |Eij | to obtain a sparse
error matrix. Compared to the �1 norm, the L1,1 norm imposes
column-wise (or row-wise) �1 norm. By incorporating above
two regularization terms in Eqs. (4), (5), the new objective
function is:

O(U,V,E)=‖X−UV−E‖2F+λtr(VLV�)+β‖E‖1,1
+μ

N∑

i=1

∥∥(xi 1�−U)�1/2
i

∥∥2
F+γ tr(UOU�), (6)

where γ and β are corresponding regularization parameters.
Note that Eq. (6) is not convex in both U, V and E, but is
convex with respect to each of these three variables. Therefore,
the optimal solution can be obtained by iteratively updating
one variable with the other two fixed.

2) Iteration Rules: The updating rules here are similar to
those in the conventional NMF updating rules in [44]. Given
the optimal solution of E, denoted as Eopt , the updating rules
for U and V are:

ut+1
j k ← ut

jk
(μ+ 1)(X̄V�) j k

(UVV� + μUH+ γUO) j k

v t+1
ki ← v t

ki
2((μ+ 1)U�X+ λVW)ki

(2U�UV+ μG+ μF+ 2λVD)ki
, (7)

where X̄ = X − Eopt , and H is the diagonal matrix, entries
of which are row sums of V. The matrix G is defined as
G = (g, g, . . . , g)� ∈ R

K×N , where g = diag(X�X) ∈ R
N .

Likewise, F = (f, f, . . . , f) ∈ R
K×N with the definition of f =

diag(UT U) ∈ R
K . The detailed derivations for iteration rules

are given in Appendix. B. After several iterations, U and V
will jointly converge to a stationary point (Uopt ,Vopt ). When
Uopt and Vopt are obtained, Eq. (6) degenerates to:

O(E) = ‖X̂− E‖2F + β‖E‖1,1, (8)

where X̂ = X−Uopt Vopt . The optimal problem is equivalent
to O(E) � 1

2‖X̂−E‖2F+ β
2 ‖E‖1,1. Therefore Eopt is obtained

by the soft-threshold operator Sλ [45]:

Eopt = S β
2
(X̂) = sign(x̂i j ) ·max(0, |x̂i j | − β

2
). (9)

The entire optimization is summarized in Algorithm 1,
in which the base matrix U determines the data representation
ability.

C. Incremental Learning Model

The traditional updating rules are used in many applications
such as document analysis [46] and face recognition [20].
However, it is not applicable to visual tracking because of the

Algorithm 1 Algorithm for the Initial Appearance Model

Input: data matrix X ∈ R
M×N , 1 ≤ K ≤ min{M, N},

related regularization parameters: λ, μ, γ and β
Output: base matrix U ∈ R

M×K , coefficient matrix
V ∈ R

K×N , and error matrix E ∈ R
M×N

1 Set: stopping error ε.
2 Construct the weight matrix W by using Eq. (3) and the

Laplacian matrix L = D−W.
3 Initialize i = 0, U,V and E with random positive values.
4 Repeat
5 Update Ui+1 and Vi+1 by Eq. (7);
6 Update Ei+1 by Eq. (9);
7 i := i + 1;

8 Until ‖U
i+1−Ui‖F
‖Ui‖F ≤ ε;

unaffordable computational and storage costs. An incremental
updating scheme is therefore proposed based on [47] and [48].
The assumption behind the incremental NMF (INMF) is
that the previous coefficient matrix V has no effect on the
incremental process when a new sample x is added, namely:
[X, x] ≈ U × [V, v]. In our method, we propose another
assumption that the previous error matrix E does not change
during the incremental process except when a new sample
arrives, namely: x = Uv + e. In other words, incremental
updating scheme can be used for v and e, whilst U needs to
be recalculated entirely.

In the incremental updating model, Xt+1 = [Xt , x], Vt+1 =
[Vt , v], Et+1 = [Et , e], where Ut+1, Wt+1, and Dt+1
are the corresponding matrices when the (t + 1)-th sam-
ple arrives. Therefore, the corresponding objective function
Ot+1(Ut+1, v, e) is rewritten as:

Ot+1=‖Xt+1−Ut+1Vt+1 − Et+1‖2F + β‖Et+1‖1,1
+ λtr

(
Vt+1Lt+1V�t+1

)
+ γ tr

(
Ut+1OU�t+1

)

+μ
t+1∑

i=1

∥∥∥
(

xi 1� − Ut+1

)
�

1/2
i

∥∥∥
2

F
. (10)

1) Incremental Updating Rules for Ut+1: Given Et+1 and
Vt+1, X̄t+1 = Xt+1 − Et+1, Eq. (10) is equivalent to the
following formulation:

Ot+1(Ut+1)=
∥∥X̄t+1−Ut+1Vt+1

∥∥2
F+γ tr

(
Ut+1OU�t+1

)

+μ
t+1∑

i=1

∥∥∥
(

x̄i 1�−Ut+1

)
�

1/2
i

∥∥∥
2

F
. (11)

Let 	 = [ψpq ] be a Lagrange multiplier for the nonnegative
constraint on Ut+1, then the related Lagrange function is
LUt+1 = Ot+1(Ut+1) + tr(	Ut+1). The partial derivative of
LU with respect to Ut+1 is therefore computed as:

∂LU

∂Ut+1
=−2

(
X̄t+1 − Ut+1Vt+1

)
V�t+1 + 	

+ γUt+1

(
O+O�

)
+μ

t+1∑

i=1

(
−2x̄i1��i+2Ut+1�i

)
.

(12)
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(Ut+1)pq ← (Ut+1)pq · [(μ+ 1)(X̄t V�t + x̄v�)]pq

[Ut+1Vt V�t + Ut+1vv� + μUt+1Ht + Ut+1 diag(v)+ γ1Ut+1(O+O�)]pq
(13)

v j ← v j ·
[(μ+ 1)U�t+1x̄ − μ11x̄�x̄ + λVt (Wt+1):,t+1 + λvwend ] j

[U�t+1Ut+1v + λVt (Dt+1):,t+1 + λvdend + μ1 diag(U�t+1Ut+1)] j
(14)

By using the Karush-Kuhn-Tucker (KKT) condition, Xt+1 =
[Xt , x] and Vt+1 = [Vt , v], the updating rule for Ut+1 is
formulated as Eq. (13), as shown at the top of this page,
where γ1 = 1

2γ .
2) Incremental Updating Rules for v: It is nontrivial to

update v involved with �i . After the factorization operation
on ‖ · ‖F and V, and also omitting some irrelevant terms
(more details are provided in Appendix. C), Eq. (10) can be
transformed to:

Ot+1(v)=‖x̄−Ut+1v‖22+2λv�Vt (Lt+1):,t+1+μx̄�x̄1�v

+ λv�vt lend−2μv�U�t+1x̄+μv�diag(U�t+1Ut+1).

(15)

where x̄ = x − e, (Lt+1):,t+1 represents the (t + 1)th column
of the Laplacian matrix L, and lend = (Lt+1)t+1,t+1 denotes
the element of L in the last row and last column. Let φ j be a
Lagrange multiplier for the nonnegative constraint on v, then
the relevant Lagrange function is Lv = Ot+1(v) + T r(φv).
Hence the partial derivative of Lv with respect to v is:

∂Lv

∂v
=−2(μ+1)U�t+1x + μ1x�x + 2U�t+1Ut+1v + φ
+ 2λVt (Lt+1):,t+1+2λv�vt lend + μdiag(U�t+1Ut+1).

(16)

By using the KKT condition, the updating rule for v is
formulated in Eq. (14), as shown at the top of this page, where
μ1 = 1

2μ.
3) Incremental Updating Rules for e: Given Ut+1 and v,

by defining x̂ = x−Ut+1v, the incremental objective function
Eq. (10) with respect to e is converted to:

Ot+1(e) = ‖x̂ − e‖22 + β‖e‖1. (17)

We omit the derivation of the incremental updating scheme
on e, as it is the same as the updating of E in Eq. (9). The
completed incremental updating scheme for our incremental
learning model is shown in Algorithm 2.

The convergence of the three iterative models can be easily
proved in the similar way as in [14], [18], [20], [23], and [48].

IV. THE INVERSE NLCF MODEL

In this section, we will analyse the inv-NMF/inv-NLCF
model1 from data clustering viewpoint. Compared to the
conventional NMF, the base matrix U in inv-NMF model
is spanned by the candidates Y, namely, U ≈ YC. Each
column ci in C denotes the coefficients of a certain base vector
ui projected by all candidates. Each row c(i) in C corresponds
to the responses of one candidate on the base matrix U, which

1The main difference between these two models is that the inv-NLCF model
incorporates the local coordinate constraint while the inverse NMF does not.

Algorithm 2 Algorithm for Incremental Updating Model

Input: the new data matrix Xt+1 = [Xt , x] ∈ R
M×(t+1),

base matrix Ut ∈ R
M×K , coefficient matrix

Vt ∈ R
K×t , error matrix Et ∈ R

M×t , and the
corresponding parameters

Output: base matrix Ut+1 ∈ R
M×K , coefficient matrix

Vt+1 = [Vt , v] ∈ R
K×(t+1), and error matrix

Et+1 = [Et , e] ∈ R
M×(t+1)

1 Set: stopping error ε.
2 Construct the weight matrix Wt+1 by using Eq. (3) and

the Laplacian matrix Lt+1 = Dt+1 −Wt+1.
3 Initialize i = 0 and calculate γ1, Ht and wend .
4 Repeat
5 Update Ui+1

t+1 by Eq. (13);
6 Update vi+1 by Eq. (14);
7 Update ei+1 by Eq. (9);
8 i := i + 1;

9 Until
‖Ui+1

t+1−Ui
t+1‖F

‖Ui
t+1‖F

≤ ε;

can be regarded as discriminative feature for classification in
visual tracking. Specifically, if the data points are similar to
each other (or they are from the same class) as shown in Fig. 2,
these base vectors will manifest clustering property in different
cues, rather than an oversimplified projection (i.e. PCA) in a
low-dimensional space.

A. Inverse NMF Versus NMF
In the conventional NMF for feature coding [16], a candi-

date y is represented by a linear combination of base vectors
U with the nonnegative coefficient vector v. These coefficient
vectors can be regarded as the discriminative features for
different candidates. However, this operation renders that when
the base vectors are used to represent a “bad” candidate (i.e.
the background region), the reconstruction error (‖y − Uv‖22)
would be large. In this case, the coefficient vector v cannot
accurately represent the candidate. As shown in Fig. 4, a bad
candidate is represented by these base vectors with relatively
similar encoding coefficients, which means that the encoding
coefficients are not discriminative enough to distinguish good
candidates from the bad one.

Comparably, the goal of the inverse NMF model is not to
reconstruct a base vector by all candidates with the corre-
sponding column vector ci . Instead, it aims to generate each
row c(i) of C as a feature vector, which can be regarded as a
probability that one candidate projects on the base matrix U.
As shown in Fig. 4, the encoding coefficients for a “good”
candidate denote that this candidate resembles some base
vectors with high response values, while a “bad” candidate has
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Fig. 4. Encoding coefficients obtained by NMF and inv-NMF feature coder.
In NMF coding scheme, the encoding coefficients for a “good” candidate or
a “bad” candidate are similar and thus lacking discriminative ability. In our
inv-NMF coding scheme, a “good” candidate distributes near a base vector,
which indicates that this candidate resembles certain base vectors with high
response values. Whilst a “bad” candidate spreads over the whole space, and
has extremely low response values to all these base vectors.

extremely low response values to all these base vectors. Such
difference of responses for various candidates can be fully
exploited to produce discriminative feature vectors, which help
to separate the target from the background.

B. Inverse NMF Versus Reverse Sparse Representation

Compared with the reverse sparsity theory in [7] and [33],
the encoding vector c(i) in our method has more distinct
advantages with the following two merits.

First, rather than directly using the templates in inverse
sparse representation, our NMF based method can explicitly
capture information in different cues.

Second, from the perspective of data clustering, if Y con-
tains a set of good candidates (i.e. similar to the target), these
good candidates will spread among the base vectors as shown
in Fig. 4. In this case, a few nonzero coefficients in c(i) are
obtained, as base vectors can be easily represented by their
good neighbouring candidates. As a result, the sparsity of
our method is naturally guaranteed without any additional
sparsity constraint. For bad candidates, they are incoherent in
the subspace spanned by base vectors. There is no definite
relationship between the background and the target repre-
sentation U. If Y contains a set of bad candidates sampled
from the background, it is difficult for these bad candidates
to represent base vectors accurately and sparsely. As a result,
these corresponding coefficient vectors do not hold the sparsity
property as that in the positive sample case. By exploiting
this difference between the candidates in the target and the
background, the base matrix U can be mapped onto the
associated coefficient vectors. The resulting coefficient vectors
are used as discriminative features to separate the target from
the background.

C. Identifying Candidates in Inv-NLCF Model

The local coordinate constraint is incorporated into the
inverse NMF method, which helps to preserve the similarity

of coefficient vectors. We estimate the positive coefficient
vector Cpos using the target patches Tpos as base vectors,
namely:

min
Cpos
‖U−TposCpos‖2F+ζ

K∑

k=1

∥∥(uk1�−Tpos)�
1/2
k

∥∥2

s.t . Cpos ≥ 0, (18)

where 1 ∈ R
N and �k ∈ R

N×N is a diagonal matrix spanned
by the kth column of Cpos . Similarly, we can easily derive
the formula for estimating Cneg from the negative templates
Tneg , which is:

min
Cneg
‖U−TnegCneg‖2F+τ

K∑

k=1

∥∥(uk1�−Tneg)ϒ
1/2
k

∥∥2
F

s.t . Cneg ≥ 0, (19)

where ϒk ∈ R
r×r is a diagonal matrix spanned by the kth

column of Cneg . For training process, each row of Cpos and
Cneg corresponding to a positive and a negative feature vector,
is sent to SVM classifier for training process. For testing
process, the candidates Y are sampled at each frame, and then
are used to estimate the coefficient matrix C by solving the
following constrained optimization problem:

min
C
‖U − YC‖2F + ζ

K∑

k=1

∥∥(uk1� − Y)�1/2
k

∥∥2
F

s.t . C ≥ 0, (20)

where ζ is regularization parameter and �k ∈ R
S×S is a

diagonal matrix spanned by the kth column of C.
Note that the objective function in Eqs. (18), (19) and (20)

with respect to Cpos , Cneg and C are convex functions w.r.t.
the variables to be optimized. Therefore, there are many off-
the-shelf methods for solving this constraint linear quadratic
programming problem, such as interior point method, and
APG [27]. To seek for the unified solving algorithm frame-
work, we still use the similar updating rule for V in NLCF
shown in Eq. (2). For example, each element in the feature
vectors C with respect to candidates Y is obtained by:

ct+1
sk ← ct

sk
2(ζ + 1)(Y�U)sk

(2Y�YC+ ζG1 + ζF1)sk
, (21)

where G1 = (f, f, . . . , f)� ∈ R
S×K . Similarly, the column

vector is defined as f1 = diag(Y�Y) ∈ R
S , and F1 =

(f1, f1, . . . , f1) ∈ R
S×K . After several iterations, the optimal

C (also includes Cpos and Cneg) is obtained. Subsequently,
the SVM classifier is employed to assign the encoding feature
vector c(i) to the target or the background.

V. NLCF VARIANTS IN TRACKING FRAMEWORK

In this section, we incorporate the above models into our
tracking framework.

A. Particle Filter in Visual Tracking Framework

Generally, particle filter is based on the theory of Bayesian
inference. The rationale behind particle filter is to estimate the
posterior distribution p(zt |Y1:t ) by a finite set of randomly
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sampled particles. Given some observed image patches at the
tth frame Y1:t = {y1, y2, . . . , yt−1}, the state of the target zt

2

can be recursively estimated as follows:

p(zt |Y1:t ) ∝ p(yt |zt )

∫
p(zt |zt−1)p(xt−1|Y1:t−1)dx, (22)

where p(zt |zt−1) is a motion model depicting state transition
between two consecutive frames, subject to Gaussian distrib-
ution with mean zt−1 and variance σ 2. The optimal state at
tth frame is then obtained by maximizing the approximate
posterior probability:

z∗t = argmax
zt

p(yt |zt )p(zt |zt−1). (23)

In our proposed observation model, the observation likelihood
can be measured by the reconstruction error of each observed
image patch, namely:

p(yi
t |zi

t ) ∝ exp(−‖yi
t − Uvi

t‖22), ∀i. (24)

To make our algorithm more robust, a coarse-to-fine search
scheme for the optimal candidate is proposed. After obtaining
Y+ and Y−, we do not simply choose the candidate with
the highest classification confidence value as our tracking
result.3 The observation likelihood can be measured by the
reconstruction error of positive candidates Y+ (noting that the
time index t is omitted for simplicity):

p(y+i |zi ) = argmax
j

exp(−‖y+i − Uv j‖22), ∀ j, (25)

where y+i represents the i th positive candidate from Y+,
and v j denotes the j th column of coefficient matrix V. The
optimal state z∗ from the positive samples Y+ with the
minimal reconstruct error is chosen as the tracking result. Such
searching scheme incorporates the merit of generative methods
into the discriminative classification problem.

For incremental updating in visual tracking, every ten frame,
the tracking result closest to the mean value of these ten results
is chosen as the newly added sample x∗ into X. Note that, to
ensure the dimension of X unchanged to save memory space,
we discard the element in X closest to x∗. By our incremental
updating model, the base matrix U is totally updated. The
corresponding coefficient vector v∗ and error vector e∗ are
updated while the remaining vectors are kept unchanged with
details in Algorithm 2. Finally, we summarize the proposed
tracker in Algorithm 3 below.

VI. EXPERIMENTS

In this section, we test the proposed tracker on the Object
Tracking Benchmark (OTB) [1] with 29 trackers and 51 video
sequences. Besides, SST [28] based on sparsity theory is
also compared. Experiments including parameter analysis and
computational complexity analysis are also further provided.

Setup: Our tracker was implemented in MATLAB on a
PC with Intel Xeon E5506 CPU (2.13 GHz) and 24 GB

2The state zt = [px , py , θ, s, α, φ] represents translation on X, Y direction,
rotation angle, scale, aspect ratio, and skew respectively.

3In our experiments, statistical results show that the number of Y+ accounts
for about 10% of the whole Y.

Algorithm 3 Algorithm for the Proposed Tracker

1 for t = 1 to m do
2 Use a simple tracker;
3 Extract samples Tpos and Tneg in t th frame;
4 end
5 Obtain the data matrix X and the initial appearance

model by Algorithm 1.
6 for t = m + 1 to the end of the sequence do
7 S particles Y1:S are sampled;
8 Inverse NLCF: obtain encoding vectors in each row of

Cpos , Cneg and C by Eq. (21);
9 Train a SVM classifier by Cpos , Cneg , and then

conduct classification on the encoding vector C;
10 for each positive particle y+i do
11 Compute their likelihood by Eq. (25);
12 end
13 Choose x∗t with the minimal reconstruction error;
14 Update: for each 10 frames do
15 Choose the best tracking result x∗m∗ and then

replace x∗;
16 Recalculate W and D by Eq. (3);
17 Employ the incremental scheme in Algorithm 2

after the updated X is obtained;
18 end
19 end

memory. The following parameters were used for our tests: the
graph-regularized parameter was set to λ = 1; the number of
initial positive templates and the negative templates were N =
140 and r = 280, respectively; the number of base vectors
was K = 16; the corresponding regularization parameters in
Eq. (6) were μ = 0.001, γ = 0.001 and β = 1; the local
coordinate regularization parameter in Eq. (18) and Eq. (20)
were ζ = 0.1;

A. Qualitative Evaluation

1) Evaluation Metrics: Similar to [1], two evaluation meth-
ods are used in one pass evaluation (OPE): precision plot
and success plot. They show the percentage of success-
fully tracked frames measured by two widely used metrics:
mean center location error (CLE) and Pascal VOC Over-
lap Ratio (VOR) [49]. Small CLE value indicates accurate
and good tracking result. The overlap ratio measures the
overlapping rate between the tracked bounding box and the

ground truth box, which is defined as e = area(RT∩RG )
area(RT∪RG )

, where

RT and RG are the areas of the tracked and ground truth boxes,
respectively.

To rank these trackers, two types of ranking metrics are
provided in [1]. One is the Area Under the Curve (AUC)
metric for the success plot, and the other is the representative
precision score at threshold of 20 pixels for the precision plot.

2) Overall Performance: We show the overall performance
of OPE for our tracker and compare it with some other state-
of-the-arts (ranked within top 10) as shown in Fig. 5. The
top 5 trackers on success plot include SCM [38], SST [28],
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TABLE I

AVERAGE CENTER LOCATION ERRORS (CLE) AND AVERAGE VOC OVERLAP RATIO (VOR) OF VARIOUS ALGORITHMS FROM OTB WITH 51 TASKS.
THE FIRST, SECOND AND THIRD BEST SCORES ARE HIGHLIGHTED BY BOLD, UNDERLINE AND Italic, RESPECTIVELY

Fig. 5. Plots of OPE. The performance score for each tracker is shown in
the legend. For each figure, the top 10 trackers are presented for clarity.

Struck [50], TLD [51] and our method. It can be observed
that our method ranks first on the success plot and precision
plot. The satisfactory performance is largely dependent on the
accurate appearance model and discriminative feature vectors
generated by the inv-NLCF model in our method.

Besides, in Tab. I, we also give the corresponding results
(CLE and VOR) of recent state-of-the-art methods including
correlation filter based trackers MUSTER [3], CFLB [53],
KCF [8] and CN [54]; ensemble based trackers MEEM [4] and
IMT [52]. Moreover, we compare the extended version of the
proposed method with HOG feature. Among these trackers, the
top three trackers are MUSTER, MEEM, and our method (with
HOG feature) respectively. By comparing with the two best
existing trackers MUSTer and MEEM, we see that our tracker
still has room for improvement. For example, the proposed
method can combine short-term and long-term templates to
obtain better performance.

3) Attribute Based Performance Analysis: Each sequence
in OTB [1] is annotated with eleven attributes that indicate
which challenging factors are included. In Fig. 6, we present
the top 10 trackers on success plots and precision plots in
terms of four main attributes. On Deformation, our method
outperforms the other methods and obtains 12% improvements
on the precision plot than the second best tracker. This is
mainly due to the accurate appearance model in the NMF
variants. On Occlusion, the proposed tracker achieves the top
level performance in the precision plot and the success plot.
On the remaining attributes, our method also yields promising
performance.

4) Qualitative Evaluation: Fig. 7 shows a qualitative
comparison of our tracker with four baseline methods on
16 extremely challenging videos. We see that IVT, ASLA and
Struck often lose the target completely when it suffers from
severe occlusions (e.g. SUV and Jogging.2) expect our method
and SCM. However, SCM often fails to track the object

with pose variations (e.g. Basketball and Singer2), background
clutters (e.g. Freeman4). Apart from SCM, most tracker are
also not able to accurately predict the location of the target
when abrupt motion (Deer) and motion blur (Jumming) occurs.
In contrast, our tracker effectively tackles the above challeng-
ing factors such as occlusions, shape deformation, undesirable
illuminations, and motion blur, etc.

B. Key Component Validation
Above comparisons have shown that our tracker is superior

to other existing methods, and this section studies the effect
of every key component in our algorithm, and see how these
components contributes to improving the performance.

1) Influence of Different Feature Coding Methods: We qua-
ntitatively analyse the influence of four feature coding model
(our inv-NLCF model, NMF, reverse sparse representation
based tracker IST [7], and sparse representation) in Tab. I.
They are named as “Ours (Gray)”, “NMF”, IST [7] and
“sparse” respectively. In “NMF” method, the inverse NMF
representation is substituted by the conventional NMF method
that is used in our inv-NLCF model. To verify the importance
of locality coding methods, “sparse” method is proposed,
which does not consider local coordinate coding constraint.
In the appearance model and inv-NLCF model, the locality
constraint is replaced by a L1,1 norm for sparse representation
in Eq. (6), Eq. (18), Eq. (19), and Eq. (20). In terms of average
CLE and average VOR, our method based on inverse NMF
representation outperforms standard NMF for coding owing to
the more discriminative feature. Compared to inverse sparse
representation, the proposed inverse NMF model provides a
justification for natural sparsity property.

Besides, we analyze the coarse-to-fine search to verify the
effectiveness of the inverse NMF coding scheme. As men-
tioned before, a coarse-to-fine search scheme is proposed
to obtain the optimal candidate, which chooses a positive
candidate with the minimal reconstruction error. Here, we only
use SVM classifier to choose the optimal candidate with the
highest classification confidence, which serves as a coarse
search scheme (termed as “Classification”). Compared to the
proposed method, the “Classification” method shows a slight
decline in tracking performance in terms of CLE and VOR
as shown in the last column of Tab. I. Although this scheme
may not obtain an optimal candidate, it still guarantees a sub-
optimal candidate as demonstrated.

2) Influence of Different Constraints: We quantitatively
show the influence of different regularization terms on
OTB tracking results in Fig. 8. When β is set to zero, the initial
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Fig. 6. Success plots and precision plots of OPE on four main attributes (Deformation, Occlusion, Background Clutter, and Out-of-plane Rotation).

Fig. 7. Representative frames in the tracking results. The subfigures from top to bottom, left to right are sequences: Soccer, Freeman4, Freeman1, and
Skating1; Jogging.2, Couple, Basketball, and Lemming; Singer2, Subway, David3, and Jumping; David, Boy, Deer, and Suv.

appearance model overlooks the sparse error constraint, named
as “No error” method. Its success rate degenerates about
8.1% when compared to the proposed method. Without NLCF
constraint (“No NLCF”) in the initial appearance model, the
success rate drops to 44.5%. When ζ (“No inv-NLCF”) is not
taken into consideration by inv-NLCF model, the success rate
is as low as 44.3%. This result is similar to that in the initial
appearance model without μ. The success rate decreases to
43.1% (λ = 0) in “No graph” method and 43.4% (γ = 0) in
“No orth” method respectively.

Among these five regularization terms, sparse error con-
straint mostly affects the tracking results. The second-ranked
constraint is orthogonality constraint with a reduction of 7.7%.
The remaining three constraints also decreases the final track-
ing results, with specific values from 50.8% to around 44%.

C. Convergence and Computational Complexity Analysis

We show the convergence curves of different NMF variants
for the initial appearance model. These curves have been

Fig. 8. Plots of OPE. The success plot and precision plot of our proposed
tracker versus different regularization terms, where “No graph” is associated
with λ, “No error” is with respect to β, “No NLCF” is with μ, and “No orth”
relates to γ in Eq. (6). ζ is the regularization parameter in inv-NLCF model
associated to “No inv-NLCF”.

averaged on 51 sequences on OTB as shown in Fig. 9(a).
Compared with the conventional NMF and GNMF, the pro-
posed method achieves higher accuracy precision with less
iterations to reach steady state. In Fig. 9(b), we give a
comparison between NMF and NLCF in inverse NLCF model.
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Fig. 9. Objective values versus iteration numbers for NMF variants in (a) the
initial appearance model and (b) the inverse NLCF model, where the stopping
error is set to 10−5, and the maximal iteration time is fixed to 1000.

Fig. 10. Two failed tracking cases: Bolt (the left); MotorRolling (the right).

These two iteration curves have been respectively averaged on
the corresponding curves at each frame in Car4 sequences.
Compared to NMF (ζ = 0 in Eq. (20)), NLCF obtains a
smaller residual error and also needs fewer iterations (about
300 iterations). Next we will analyze the computational com-
plexity of the proposed method involved with the initial
appearance model and the inv-NLCF model.

For the initial appearance model, suppose that the mul-
tiplicative updates stop after t iterations, the total cost for
NLCF is O(t M N K ) demonstrated in [20] and [23]. Besides,
the graph regularizer needs O(pN2 M) to construct the
p-nearest neighbour graph. Therefore the overall time cost for
graph-based NLCF is O(t M N K + pN2 M). Based on this,
the orthogonality constraint is introduced into our appearance
model. Although this term increases M K 2 fladd (a floating-
point addition), M K 2 flmlt (a floating-point multiplication)
and M N fladd on X̂, the computational complexity still
remains unchanged. And also, the introduced sparse error
constraint in Eq. (9) incurs O(M K ) due to the computational
complexity of shrinkage operation. Finally, the overall compu-
tational complexity of our proposed initial appearance model
is O(t (M N K +M K )+ pN2 M). Likewise, the computational
complexity for our inv-NLCF model is the same as that of
NLCF algorithm, namely O(t M N K ).

D. Failure Cases

As shown in our experiments, the proposed method can
address these factors including deformation, occlusion, out-of-
plane rotation and other attributes. However, our method may
fail if the object is affected by drastic appearance variations,
and abrupt motion, especially when the target undergoes strong
illumination and background clutters as shown in Fig. 10.

In Bolt sequence, due to the appearance variations and fast
motion of Bolt (i.e. the runner), it is difficult to accurately pre-
dict the location of Bolt. In MotorRolling sequence, when the
motorcyclist undergoes illumination variation and background
clutters, the corresponding feature vectors lack discriminative
ability to separate the target from the background. From this

point of view, the proposed method can still be improved to
handle some extreme cases.

VII. CONCLUSION

This paper introduces the new inv-NLCF model for visual
tracking from the viewpoint of data clustering. It combines
merits of generative tracking methods and discriminative meth-
ods to learn an accurate appearance model and discriminative
encoding vectors. Such two scheme help our tracker yield
enhanced discriminant ability, and thus effectively separates
the target from the background during the tracking process.
Quantitative and qualitative comparisons on OTB have demon-
strated the effectiveness and robustness of the proposed
tracker.

APPENDIX A
THE BASE ORTHOGONALITY CONSTRAINT

We define U = [u1,u1, . . . ,un] ∈ R
m×n , and expand the

j th dominant element of UOU� in Eq. (4), which leads to:

(UOU�) j j=u j1

n∑

i �=1

u j i + u j2

n∑

i �=2

u j i + · · · + u jn

n∑

i �=n

u j i .

(26)

Then we seek for the relationship between tr(UOU�) and∑
i �= j u�i u j by expanding tr(UOU�), and arrive at:

tr(UOU�) =
m∑

k=1

(UOU�)kk =
n∑

j=1

u1 j

n∑

i �= j

u1i

+
n∑

j=1

u2 j

n∑

i �= j

u2i + · · · +
n∑

j=1

umj

n∑

i �= j

umi

=
m∑

k=1

n∑

j=1

ukj

n∑

i �= j

uki =
m∑

k=1

n∑

i=1

uki

n∑

j �=i

ukj

= u�1
n∑

j �=1

u j + u�2
n∑

j �=2

u j + · · · + u�n
n∑

j �=n

u j

=
n∑

i �= j

u�i u j . (27)

APPENDIX B
ITERATION RULES FOR THE INITIAL APPEARANCE MODEL

We first omit the irrelevant term with respect to E, and
Eq. (6) is rewritten as:

O(U,V) = ‖X̄− UV‖2F + λtr(VLV�)

+μ
N∑

i=1

‖(xi 1� − U)�1/2
i ‖2F + γ tr(UOU�).

(28)

Let ψ j k and φki be Lagrange multipliers for nonnegative
constraints uik ≥ 0 and vki ≥ 0, respectively, and define the
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matrix (	) j k = ψ j k and (�)ki = φki , then the Lagrange
function L is:

L = tr(	U�+X̄X̄�+UVV�U�−2X̄V�U�+γUOU�)

tr(�V)+tr

(
μ

N∑

i=1

(x̄i 1��i x̄�i − 2x̄i 1��i U�+U��iU)

)
.

(29)

The partial derivatives of L with respect to U and V are:

∂L
∂U
= 2UVV� − 2X̄V� + μ

N∑

i=1

(−2x̄i1��i

+ 2U�i )+ 2γUO+	
∂L
∂V
= 2U�VV− 2UX̄+ μ(G− 2UX̄+ F)+ 2λVD+�,

(30)

where G and F have been defined as mentioned in
Section.III-B. By using the KKT conditions and some straight-
forward algebraic manipulations, we can obtain the following
updating rules:

ut+1
j k ← ut

jk
μ(X̄V� + μ∑N

i=1 x̄i 1��i ) j k

(UVV� + μ∑N
i=1 U�i + γUO) j k

v t+1
ki ← v t

ki
2((μ+ 1)U�X̄+ λVW)ki

(2U�UV + μG+ μF+ 2λVD)ki
. (31)

Note that
∑N

i=1 x̄i1��i = X̄V� and
∑N

i=1 U�i = UH,
we see that Eq. (31) can be exactly rewritten as Eq. (7).

APPENDIX C
THE OBJECTIVE FUNCTION OF

INCREMENTAL UPDATE ON v

To tackle the incremental update on v, Eq. (10) should be
expanded on V and v. By omitting the terms in Eq. (10)
irrelevant to V and v, we have:

Ōt+1 =
∥∥X̄t − Ut+1Vt

∥∥2
F + λtr

(
Vt+1Lt+1V�t+1

)

+‖x − Ut+1v‖22 + μ
t∑

i=1

∥∥∥
(

x̄i 1� − Ut+1

)
�

1/2
i

∥∥∥
2

F

+μ‖(x1� − Ut+1)�
1/2
t+1‖2F, (32)

where X̄t+1 = Xt+1 − Et+1. After expanding
λtr(Vt+1Lt+1V�t+1) and making some mathematical
rearrangements, we have:

tr(Vt+1Lt+1V�t+1)

=
r∑

l=1

t∑

i=1

t∑

j=1

(Vt )li (Lt+1)i j (V�t ) j l

+ 2v�Vt (Lt+1):,t+1 + v�v(Lt+1)t+1,t+1. (33)

After preserving the terms related to v and dropping the other
terms, Eq. (32) is simplified to the following formulation:

Ft+1 = ‖x − Ut+1v‖22 + 2v�Vt (Lt+1):,t+1

+ v�v(Lt+1)t+1,t+1 + μ
∥∥(x1� − Ut+1)�

1/2
t+1

∥∥2
F.

(34)

By using ‖A‖2F = tr(A�A) and tr(ABC) = tr(BCA) =
tr(CAB), Eq. (34) is rewritten as:

Ft+1 = ‖x − Ut+1v‖22 + μx�x1�v + μv�diag(U�t+1Ut+1)

+ 2λv�Vt (Lt+1):,t+1 + λv�v(Lt+1)t+1,t+1

− 2μvU�t+1x, (35)

which is exactly what we seek in Eq. (15).
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