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Abstract
In this paper, we propose a data-adaptive non-parametric kernel learning framework in margin
based kernel methods. In model formulation, given an initial kernel matrix, a data-adaptive matrix
with two constraints is imposed in an entry-wise scheme. Learning this data-adaptive matrix in a
formulation-free strategy enlarges the margin between classes and thus improves the model flexibility.
The introduced two constraints are imposed either exactly (on small data sets) or approximately
(on large data sets) in our model, which provides a controllable trade-off between model flexibility
and complexity with theoretical demonstration. In algorithm optimization, the objective function
of our learning framework is proven to be gradient-Lipschitz continuous. Thereby, kernel and
classifier/regressor learning can be efficiently optimized in a unified framework via Nesterov’s
acceleration. For the scalability issue, we study a decomposition-based approach to our model in the
large sample case. The effectiveness of this approximation is illustrated by both empirical studies
and theoretical guarantees. Experimental results on various classification and regression benchmark
data sets demonstrate that our non-parametric kernel learning framework achieves good performance
when compared with other representative kernel learning based algorithms.
Keywords: support vector machines, non-parametric kernel learning, gradient-Lipschitz continuous

1. Introduction

Kernel methods (Shawe-Taylor and Cristianini, 2000; Schölkopf and Smola, 2003; Steinwart and
Andreas, 2008) have proven to be powerful in a variety of machine learning tasks, e.g., Support Vector
Machines (SVM) for classification (Vapnik, 1995; Suykens et al., 2002), Support Vector Regression
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(SVR) for regression (Drucker et al., 1997), and kernel mean embedding for casual inference
(Mitrovic et al., 2018). They employ a so-called kernel function k : Rd × Rd → R to compute
the similarity between any two samples xi, xj ∈ Rd such that k(xi,xj) = 〈φ(xi), φ(xj)〉H,
where φ : X → H is a non-linear feature map transforming elements of input spaces X into a
reproducing kernel Hilbert space (RKHS) H. Specifically, for a given kernel, the “kernel trick”
allows for optimization in the kernel-associated hypothesis space without explicit representation of
such mapping.

Generally, the performance of kernel methods largely depends on the choice of the kernel.
Traditional kernel methods often adopt a classical kernel, e.g., Gaussian kernel or sigmoid kernel for
characterizing the relationship among data points. Empirical studies suggest that these traditional
kernels are not sufficiently flexible to depict the domain-specific characteristics of data affinities or
relationships. To address such limitation, several routes have been explored. One way is to design
sophisticated kernels on specific tasks such as applying optimal assignment kernels (Kriege et al.,
2016) to graph classification, developing a kernel based on triplet comparisons (Kleindessner and von
Luxburg, 2017), designing the class of tessellated kernels (Colbert and Peet, 2020), or even breaking
the restriction of positive definiteness on kernels (Ong et al., 2004; Schleif and Tino, 2015; Loosli
et al., 2016). Apart from these well-designed kernels, a series of research studies aim to automatically
learn effective and flexible kernels from data, known as learning kernels. Algorithms for learning
kernels can be roughly grouped into two categories: parametric kernel learning and non-parametric
kernel learning.

1.1 Review of Kernel Learning

In parametric kernel learning, the (learned) kernel function k(·, ·) or the kernel matrix K =
[k(xi,xj)]n×n on the training data is assumed to admit a specific parametric form, and then the
relevant parameters are learned according to the given data. The earliest work is proposed by Lanck-
riet et al. (2004), in which they consider training SVM along with optimizing a linear combination
of several pre-given positive semi-definite (PSD) matrices {Kt}st=1 subject to a bounded trace
constraint, i.e.,K =

∑s
t=1 µtKt with tr(K) ≤ c. Specifically, to ensure the learned kernel matrix

to be PSD, one can directly use the constraint K ∈ Sn+ (the cone of n × n positive semi-definite
matrices); or consider a nonnegaitve linear combination of {Kt}st=1, i.e., µt ≥ 0. Based on the
above two schemes, the kernel (matrix) learning is transformed to learn the combination weights.
Accordingly, the parameters in SVM and the weights in their model can be learned by solving a
semi-definite programming optimization problem in a unified framework.

The above parametric kernel learning framework spawns the new field of multiple kernel
learning (MKL) (Bach et al., 2004; Varma and Babu, 2009; Liu et al., 2019). It aims to learn a good
combination of some predefined kernels (or kernel matrices) for rich representations. For example,
the weight vector µ = [µ1, µ2, . . . , µs]

> can be restricted by the conic sum (i.e., µt ≥ 0), the convex
sum (i.e., µt ≥ 0 and

∑s
t=1 µt = 1), or various regularizers such as `1 norm, mixed norm, and

entropy-based formulations, see a survey (Gönen and Alpaydın, 2011). By doing so, MKL would
generate a “broader” kernel to enhance the representation ability for data. Based on the idea of
MKL, there are several representative approaches to learn effective kernels by exploring the data
information, including: i) hierarchical kernel learning (HKL) (Bach, 2008; Jawanpuria et al., 2015)
learns from a set of base kernels assumed to be embedded on a directed acyclic graph; ii) spectral
mixture models (Argyriou et al., 2005; Wilson and Adams, 2013; Jean et al., 2018) aim to learn the
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spectral density of a kernel in a parametric scheme for discovering flexible statistical representations
in data; iii) kernel target alignment (Cristianini et al., 2002; Cortes et al., 2012) seeks for the “best”
kernel matrix by maximizing the similarity betweenK and the ideal kernel yy> with the label vector
y. Here the used ideal kernel can directly recognize the training data with 100% accuracy, and thus
can be used to guide the kernel learning task. Current works on this direction often assume that the
learned kernel matrixK is in a parametric way, e.g., an MKL or mixtures of spectral density form,
see (Lanckriet et al., 2004; Sinha and Duchi, 2016; Li et al., 2019) and references therein.

Instead of assuming specific forms for the learned kernel in parametric kernel learning, nonpara-
metric kernel learning is another way to acquire a positive definite kernel (matrix) in a data-specific
manner. Typical examples include: Lanckriet et al. (2004) directly considerK ∈ Sn+ without extra
parametric forms in their optimization problem, which results in a nonparametric kernel learning
framework. Such nonparametric kernel learning model is further explored by learning a low-rank
kernel matrix (Kulis et al., 2009), imposing the pairwise constraints with side/prior information
(Hoi et al., 2007), or local geometry information (Lu et al., 2009). These non-parametric kernel
learning based problems are usually solved by the standard semi-definite programming or an efficient
saddle-point optimization algorithm (Zhuang et al., 2011). Besides, Jain et al. (2012) investigate
the equivalence between non-parametric kernel learning and Mahalanobis metric learning, and
accordingly propose a non-parametric model seeking for a PSD matrix W in a learned kernel
φ(x)>Wφ(x′) via the LogDet divergence.

1.2 Contributions

In this paper, we propose a Data-Adaptive Nonparametric Kernel (DANK) learning framework
that can be seamlessly embedded to support vector machines (SVM) and support vector regression
(SVR). A low-rank data-adaptive matrix in a suitable solving space is learned to enlarge the margin
between classes and effectively control the model complexity. Further, by virtue of the gradient-
Lipschitz continuous property of the considered objective function, the learning task can be efficiently
solved by a projected gradient method with Nesterov’s acceleration. Different from previous
non-parametric kernel learning models optimized by semi-definite programming, the employed
optimization algorithm in our DANK model is efficient in large scale cases.

To be specific, in our DANK model, a low-rank matrix F ∈ Rn×n in a bounded feasible region
is imposed on a pre-given kernel matrixK in a point-wise strategy, i.e., F �K, where � denotes
the Hadamard product between two matrices. This formulation-free strategy contributes to adequate
model flexibility as a result. The used low-rank constraint and the bounded constraint restrict the
degree of freedom of F , of which the design scheme is independent of the pre-given kernel matrix.
Thereby we can restrict the flexibility of F so as to control the model complexity in a clear way.
Here we take a synthetic classification data set clowns to illustrate this controllable trade-off between
the model complexity and flexibility. The initial kernel matrixK is given by the classical Gaussian
kernel k(xi,xj) = exp(−‖xi − xj‖22/2σ2) with the width σ. Figure 1 shows that, in the left panel,
the baseline SVM with an inappropriate σ = 1 lacks model flexibility and cannot precisely adapt to
the data. However, based on the sameK, by optimizing the adaptive matrix F , our DANK model
shows good flexibility to fit the complex data distribution, leading to a desirable decision surface.
Comparably, in the right panel, even under the condition that σ is well tuned, the baseline SVM
fails to capture the local property of the data (see the brown ellipses). Instead, by learning F , our
DANK model still yields a more accurate boundary than SVM to fit the data points. Specifically, the
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(a) σ = 1 (pre-given) (b) σ = 0.07 (cross validation)

Figure 1: Classification boundaries of SVM (in blue dash line) and our DANK model (in red solid
line) with the Gaussian kernel on the clowns data set under different kernel width values σ.

model complexity is controlled by the introduced low-rank and bounded constraints. We find that,
the generated classification boundary in Figure 1 prohibits locally linearly separable, which avoids
over-fitting by an extremely flexible decision surface (Torr, 2011).

The main contributions of this paper lie in the following three folds:

• In model formulation, we propose a data-adaptive nonparametric kernel learning framework
termed “DANK” to enhance the model flexibility and data adaptivity, which is then seamlessly
embedded to margin based kernel methods (SVM and SVR) for classification and regression
tasks. Specifically, the introduced constraints are demonstrated to be effective on a controllable
trade-off between the model flexibility and complexity;

• In algorithm optimization, the DANK model and the induced classification/regression model
can be formulated as a max-min optimization problem in a unified framework. The related
objective function is proven to be gradient-Lipschitz continuous, and thus can be directly
solved by a projected gradient method with Nesterov’s acceleration;

• In scalability issue, we propose a decomposition based approach to our model by omit-
ting the non-separable low-rank constraint in large sample case. The effectiveness of our
decomposition-based scalable approach is demonstrated by both theoretical and empirical
studies.

Besides, the experimental results on several classification and regression benchmark data sets
demonstrate the effectiveness of the proposed DANK framework over other representative kernel
learning based methods.

This paper shares the basic ideas with our previous conference work (Liu et al., 2018) but is
totally different in model formulation, algorithm optimization, and scaling in large sample cases.
First, in model formulation, we impose an additional low-rank constraint and a bounded constraint on
F , which effectively control the model flexibility with theoretical demonstration. Apart from SVM to
which our DANK model is embedded for classification, the proposed DANK model is also extended
to SVR for regression tasks. Second, we develop a Nesterov’s smooth method to solve the designed
optimization problem, which requires the discussion on its gradient-Lipschitz continuous property.
Third, we conduct a decomposition-based scalable approach on DANK with theoretical guarantees
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and experimental validation for large scale situations. Lastly, we provide more experimental results
on popular benchmarks.

1.3 Notation

We start with notations this paper.
Matrices, vectors and elements: We takeA, a to be a matrix and a vector, of which the entries

are Aij and ai, respectively. Denote In as the n × n identity matrix, 0 as a zero matrix or vector
with the appropriate size, and 1n as the n-dimensional vector of all ones.

Sets: The set {1, 2, · · · , n} is written as [n]. We call {V1,V2, · · · ,Vs} an s-partition of [n] if
V1 ∪ · · · ∪ Vs = [n] and Vp ∩ Vq = ∅ for p 6= q. Let |V| denote the cardinality of the set V . We take
the notation Sn as the set of n× n symmetric matrices and Sn+ as the n× n PSD cone.

Singular value decomposition (SVD): Given a matrix A ∈ Rn×d and its rank r = rank(A),
a (compact) singular value decomposition (SVD) is defined asA = UΣV> =

∑r
i=1 σi(A)uiv

>
i ,

where U , Σ, V are an n× r column-orthogonal matrix, an r × r diagonal matrix with its diagonal
element σi(A), and a d× r column-orthogonal matrix, respectively. IfA is PSD, then U = V . Ac-
cordingly, the singular value soft-thresholding operator is defined as Jτ (A) = UASτ (ΣA)V>A with
the SVD:A = UΣV > and the soft-thresholding operator is Sτ (Aij) = sign(Aij) max(0, |Aij |−τ).

Matrix norms: We use four matrix norms in this paper

Frobenius norm: ‖A‖F =
√∑

i,j A
2
ij =

√∑
i σ

2
i (A) .

Spectral norm: ‖A‖2 = max
‖x‖2=1

‖Ax‖2 = σmax(A) ≤ ‖A‖F.

Nuclear norm: ‖A‖∗ =
∑

i σi(A).
Any square matrix satisfies tr(A) ≤ ‖A‖∗. If A is PSD, then we have tr(A) = ‖A‖∗ and
‖A‖2 = λmax(A), where λmax(A) denotes the largest eigenvalue ofA.

1.4 Paper Organization

The paper is organized as follows. In Section 2, we introduce the proposed DANK model
embedded in SVM, mainly on the model formulation in Section 2.1, benefits of the introduced
constraints in Section 2.2, and out-of-sample extensions in Section 2.3. The model optimization is
presented in Section 3: Section 3.1 studies the gradient-Lipschitz continuous property and Section 3.2
applies Nesterov’s smooth optimization method to solve our model. Scalability of our nonparametric
kernel model is addressed in Section 4. Besides, in Section 5, we extend our DANK model to SVR
for regression. The experimental results on popular benchmark data sets are presented in Section 6.
Section 7 concludes the entire paper. Proofs are provided in the Appendices.

2. The DANK Model in SVM

In this section, we incorporate the proposed DANK model into SVM for classification, discuss
benefits of the introduced constraints, and extend it to test data for out-of-sample extension. Denote
X ⊆ Rd as a compact metric space, and Y = {−1, 1} as the label space, we assume that a sample
set Z = {(xi, yi)}ni=1 is drawn from a non-degenerate Borel probability measure ρ on X × Y .
We focus on binary classification problems for the ease of description and it can be extended to
multi-classification tasks.
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2.1 Model Formulation

We begin with the SVM formulation and then introduce our DANK model in SVM. The hard-
margin SVM aims to learn a linear classifier f(x;w, b) = sign(w>x+ b) ∈ {−1,+1} with w and
b that determine the decision hyperplane. This is conducted by maximizing the distance between
the nearest training samples of the two classes (a.k.a the margin γ = 1/‖w‖2), as this way reduces
the model generalization error (Vapnik, 1995). While the data are not linearly separable in most
practical settings, the hard-margin SVM is subsequently extended to a soft-margin SVM with an
implicit mapping φ(·) for a non-linear decision hyperplane. Mathematically, the soft-margin SVM
aims to maximize the margin γ (or minimize ‖w‖22) and minimize the slack penalty

∑n
i=1 ξi with

the following formulation

min
w,b,ξ

1

2
‖w‖22 + C

n∑
i=1

ξi

s.t. yi(w>φ(xi) + b) ≥ 1− ξi, ξi ≥ 0, i = 1, 2, · · · , n ,
(1)

where ξ = [ξ1, ξ2, · · · , ξn]> is the slack variable and C is the balance parameter. As illustrated by
Vapnik (1995), the dual form of problem (1) is given by

max
α∈A

1>α− 1

2
α>Y KY α , (2)

where Y = diag(y) is the label matrix, K = [k(xi,xj)]n×n is the (pre-given) Gram matrix
satisfying k(xi,xj) = 〈φ(xi), φ(xj)〉H, and the constraint set is given by A = {α ∈ Rn : α>y =
0, 0 ≤ α ≤ C1}. Without loss of generality, we assume that the kernel function is bounded, i.e.,
κ := supx,x′∈X |k(x,x′)|.

Theoretical results on learning kernels, mainly on multiple kernel learning (Srebro and Ben-
David, 2006; Hussain and Shawe Taylor, 2011) demonstrate that, to achieve a tight bound of the
estimation error (namely the gap between empirical error and expected error), a learned SVM
classifier is better to admit a large margin γ, and to effectively control the complexity of the
hypothesis space. Despite that the above theoretical results on multiple kernel learning cannot be
directly applied to non-parametric kernel learning models as the learned kernel is sample-dependent
and implicit, their results are able to motivate us to design our non-parametric model. On one hand,
an adaptive matrix F is introduced into problem (2) to increase the margin γ; on the other hand, two
constraints are considered to control the model complexity. Mathematically, our DANK model is

min
F∈Sn+

max
α∈A

1>α− 1

2
α>Y

(
F�K

)
Y α

s.t. ‖F − 11>‖2F ≤ R2, rank(F ) < r ,

(3)

where R refers to the bounded region size, rank(F ) denotes the rank of F , and r ≤ n is a given
integer. The constraint F ∈ Sn+ is given to ensure that the learned kernel matrix F �K is still a
PSD one.1 Since we do not specify the parametric form of F , we can obtain a nonparametric kernel
matrix F �K and thus our DNAK model is nonparametric. Due to the non-convexity of the used

1. It is admitted by Schur Product Theorem (Styan, 1973) which relates positive semi-definite matrices to the Hadamard
product.
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rank constraint in problem (3), we consider the nuclear norm ‖ · ‖∗ instead, which is the best convex
lower bound of the non-convex rank function (Recht et al., 2010) and can be minimized efficiently.
Accordingly, we relax the constrained optimization problem in Eq. (3) to a unconstrained problem
by absorbing the two original constraints to the objective function. Moreover, following the min-max
approach (Boyd and Vandenberghe, 2004), problem (3) can be reformulated as

max
α∈A

min
F∈Sn+

1>α− 1

2
α>Y

(
F �K

)
Y α+ η‖F − 11>‖2F + τη‖F ‖∗ , (4)

where η, τ are two regularization parameters. Here we denote ‖F−11>‖2F as the centering regularizer.
In problem (4), the inner minimization problem with respect to F is a convex conic programming,
and the outer maximization problem is a point-wise minimum of concave quadratic functions of
α. As a consequence, problem (4) is convex, and strong duality holds by Slater’s condition (Boyd
and Vandenberghe, 2004). The optimal values of the primal and dual form of kernel learning based
SVM problems will be equal. Accordingly, when we learn the kernel matrix in problem (4), the
objective function value of its primal problem would decrease, which in turn enlarges the margin γ
for increasing model flexibility. The introduced two regularizers in Eq. (4) are beneficial to control
the model complexity. We briefly explain this here and detail in the next subsection. Intuitively
speaking, when F is chosen as the all-one matrix, the DANK model in Eq. (4) degenerates to a
standard SVM problem. The considered low-rank regularizer forces F to be endowed with the
low-rank structure enjoyed by the all-one matrix. The introduced centering regularizer restricts the
adaptive matrix F to vary around the all-one matrix in a small range. This scheme is also able to
prevent F from dropping to a trivial solution F = 0n×n. By the above two regularizers, we can
effectively restrict the complexity of F , and further to control the complexity of the whole model.

2.2 Benefits of the Used Constraints

In this subsection, we aim to demonstrate two merits of the introduced constraints/regularizers.
First, although the hard constraints are substituted by two regularizers in Eq. (4), the optimal solution
F ∗ of our unconstrained optimization problem can be still restricted in a bounded set F . This
property will be beneficial to control the model complexity. Second, we elucidate that the learned
kernel matrix exhibits a fast eigenvalue decay by the used constraints/regularizers, which would be
helpful to achieve good generalization properties.

2.2.1 THE BOUNDEDNESS OF THE OPTIMAL SOLUTION

For notational simplicity, we denote the objective function in Eq. (4) as

H(α,F ) = 1>α− 1

2
α>Y

(
F �K

)
Y α+ η‖F − 11>‖2F + τη‖F ‖∗ ,

of which the optimal solution (α∗,F ∗) is a saddle point of H(α,F ) due to the property of the
max-min problem (4). It is easy to check H(α,F ∗) ≤ H(α∗,F ∗) ≤ H(α∗,F ) for any feasible α
and F . Further, we define the following function

h(α) := H(α,F ∗) = min
F∈Sn+

H(α,F ) , (5)

which is concave since h(·) is the minimum of a sequence of concave functions. The optimal solution
F ∗ of problem (4) can be restricted in a bounded set F by the following Lemma.
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Lemma 1 Problem (4) admits the following equivalent formulation such that F can be optimized in
a bounded region

max
α∈A

min
F∈Sn+

H(α,F ) = max
α∈A

min
F∈F

H(α,F )︸ ︷︷ ︸
,h(α)

, (6)

where the feasible region on F is defined by F :=
{
F ∈ Sn+ : λmax(F ) ≤ n− τ

2 + nC2

4η λmax(K)
}

as a nonempty subset of Sn+.

Proof The key of the proof is to obtain the optimal solution F ∗ over Sn+, i.e., F ∗ = argmin
F∈Sn+

H(α,F )

in problem (4). By virtue of the following expression2

1

2
α>Y

(
F�K

)
Y α = tr

[
diag(α>Y )K diag(α>Y )F

]
,

and denote
Γ ≡ Γ(α) :=

1

4η
diag(α>Y )K diag(α>Y ) , (7)

then finding F ∗ is equivalent to consider the following problem

F ∗ := argmin
F∈Sn+

−2tr
[
ηΓ(α)F

]
+ η‖F − 11>‖2F + τη‖F ‖∗ , (8)

where we omit the irrelevant term 1>α independent of the optimization variable F in problem (4).
Further, due to the independence of Γ(α) on F , problem (8) can be reformulated as

F ∗ = argmin
F∈Sn+

‖F − 11> − Γ(α)‖2F + τ‖F ‖∗ . (9)

Note that the regularization parameter η is implicitly included in Γ(α). Following (Cai et al., 2010),
we can directly obtain the optimal solution of problem (9) with

F ∗ ≡ F (α) = J τ
2
(11> + Γ(α)) ,

where we use the singular value thresholding operator J τ
2
(·) as the proximity operator associated

with the nuclear norm, refer to Theorem 2.1 in (Cai et al., 2010) for details. Based on its closed-form,
λmax(F ∗) can be upper bounded by

λmax(F ∗) = λmax

(
J τ

2

(
11>+Γ(α)

))
=λmax

(
11>+Γ(α)

)
− τ

2

≤ λmax(11>)+
1

4η
λmax

(
diag(α>Y )K diag(α>Y )

)
− τ

2

= n+
1

4η

∥∥∥diag(α>Y )K diag(α>Y )
∥∥∥

2
− τ

2

≤ n+
1

4η

∥∥diag(α>Y )
∥∥2

2

∥∥K∥∥
2
− τ

2

≤ n− τ

2
+
nC2

4η
λmax(K) ,

(10)

2. We use the formula x>A�By = tr(DxADyB
>) withDx = diag(x) andDy = diag(y).
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(a) σ = 1 (b) σ = 0.07 by cross validation

Figure 2: Entries of F ∗ in our DANK model with the Gaussian kernel on the clowns data set.

where the first inequality uses the property of maximum eigenvalues, i.e., λmax(A+B) ≤ λmax(A)+
λmax(B) for anyA,B ∈ Sn+, and the last inequality admits by ‖α‖22 ≤ nC2.

Remark: The centering regularizer η‖F − 11>‖2F in our DANK model requires that the adaptive
matrix F ∈ F is expected to slightly vary around the all-one matrix, so each element in [Γ(α)]ij
cannot be significantly larger than 1. To this end, recall Eq. (7) and problem (9), the regularizer
parameter η is chosen as η ∈ O(n) to ensure tr[Γ(α)] to be in the same order with tr(11>) ∈ O(n).

Lemma 1 gives the upper spectral bound of F ∗, which demonstrates that the feasible region F
is a subset of the PSD cone Sn+. In this case, we can directly solve F in the subset F ⊆ Sn+ instead
of the entire PSD cone Sn+, which makes it possible to seek for a good trade-off between the model
flexibility and complexity. Figure 2 experimentally validates the effectiveness of the introduced
constraints. We find that F ∗ is of low-rank and its entries range from 0.9 to 1.1 in a small region.
Therefore, such small fluctuation on F ∗ and its low-rank structure effectively control the model
complexity.

2.2.2 FAST EIGENVALUE DECAY

In the above subsection, we have theoretically and experimentally validated the boundedness of
the optimal solution F ∗, and thus this property is beneficial to control the model complexity. In this
subsection, we elucidate that the introduced constraints/regularizers result in a fast eigenvalue decay
of the learned kernel (matrix), which would be helpful to achieve good prediction performance.3

Denote the learned kernel matrix as K̃ ≡ K̃(α) = F �K, the learned kernel as k̃, and its
associated RKHS as H̃. In fact, the eigenvalue decay of K̃ is leveraged to characterize the “size” of
H̃. For example, a fast eigenvalue decay of a kernel matrix implies that functions in the associated
RKHS are smooth, and thus achieving a good prediction performance (Bach, 2013). To this end, we
need to control the complexity of H̃ for a fast eigenvalue decay of K̃. This can be achieved by the
introduced two constraints/regularizers in our DANK model.
i) the low-rank structure: According to rank(K̃) ≤ rank(F )rank(K), see Theorem 3.2 in (Styan,

3. It appears non-trivial to obtain rigorous analysis on generalization properties of non-parametric kernel learning as the
learned kernel is sample-dependent and implicit.
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1973), the rank of the learned kernel matrix K̃ mainly depends on the pre-given kernel matrixK as
the introduced low-rank constraint on F yields rank(F ) � n. Accordingly, we can obtain a low
rank matrix K̃ if the pre-given kernel matrixK is of low rank. Here, the low rank property ofK,
i.e., the finite non-zero eigenvalues ofK, implies a fast eigenvalue decay ofK, which holds by the
following two common cases: (1) the geometric/exponential decay with λi(K) ∝ nR0e−ai (r0 and
a are some constants); (2) the polynomial decay with λi(K) ∝ nR0i

−b with b > 1. Under these two
cases, the learned kernel matrix K̃ is able to exhibit a fast eigenvalue decay, which would lead to a
good prediction performance (Bach, 2013), or a tight estimation error bound (Liu and Liao, 2015).
ii) the bounded constraint: The introduced centering regularizer ‖F − 11>‖2F would restrict F to
vary around the all-one matrix in a small region, so F can be decomposed into F := 11>+E, where
E is regarded as a perturbation matrix with small residual error, i.e., ‖E‖F is small. According
to Hoffman-Wielandt inequality (Hoffman and Wielandt, 2003) in matrix perturbation theory, we
have

∑n
i=1

[
λi(F )− λi(11>)

]2 ≤ ‖E‖2F. Since the rank-one matrix 11> has only one non-zero
eigenvalue with λ1(11>) = n, and its remaining eigenvalues are zero, we have [λ1(F ) − n]2 +∑n

i=2[λi(F )]2 ≤ ‖E‖2F. Roughly speaking, eigenvalues of F can be well approximated by a
rank-one matrix 11> to some extent. That means, the centering regularizer could also bring the
low-rank property on F , which is useful to control the complexity of the solving space. Additionally,
in the light of this, we omit the exact low-rank constraint/regularizer in the large-sample case due to
its inseparable property. In this case, the learned F still exhibits a relative low-rank structure, see
Section 4 for details.

Based on the above analyses, we elucidate that, on one hand, the introduced low-rank regularizer
and the centering regularizer ensure that F can be optimized in a bounded region in our unconstrained
optimization problem. On the other hand, the used constraints/regularizers are beneficial to achieve a
fast eigenvalue decay of the learned kernel (matrix) for good prediction performance.

2.3 Out-of-sample Extension

In our DANK model, the learned kernel (matrix) is non-parametric, so it is unknown for test
data. This is a so-called out-of-sample extension problem (Bengio et al., 2004; Fanuel et al., 2017;
Pan et al., 2017), which extensively exists in non-parametric kernel learning (Lu et al., 2009; Zhuang
et al., 2011; Liu et al., 2018), metric learning (Kulis, 2013; Jain et al., 2017), and nonlinear manifold
learning (Xie et al., 2013). To address this issue, we develop a simple but effective technique, i.e.,
the reciprocal nearest neighbor scheme, to establish the learned kernel (matrix) for test data.

Given the optimal F ∗ on training data, the test data {x′i}mi=1, and the initial kernel matrix for
test data K ′ = [k(xi,x

′
j)]n×m, we aim to establish the adaptive matrix F ′ for test data by the

reciprocal nearest neighbor scheme. Formally, we first construct the similarity matrixM between
the training data and the test data based on the nearest neighbor scheme. The used distance to find the
nearest neighbor is the standard ‖xi − xj‖2 metric in the d-dimensional Euclidean space. Assuming
that x′j is the r-th nearest neighbor of xi in the set of {x′t}mt=1, denoted as x′j = NNr(xi, {x′t}mt=1).
Meanwhile xi is the s-th nearest neighbor of x′j in {xt}nt=1, denoted as xi = NNs(x

′
j , {xt}nt=1),

then the similarity matrixM ∈ Rn×m is defined by

Mij =
1

rs
, if x′j = NNr

(
xi, {x′t}mt=1

)
∧ xi = NNs

(
x′j , {xt}nt=1

)
, ∀i ∈ [n], j ∈ [m] , (11)

and thusMj = [M1j ,M2j , · · · ,Mnj ]
> ∈ Rn describes the relationship between x′j and the training

data {xi}ni=1. This is a much stronger and more robust indicator of similarity than the simple and

10
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unidirectional nearest neighborhood relationship, since it takes into account the local densities of
vectors around xi and x′j . This reciprocal nearest scheme has been extensively applied to computer
vision, such as image retrieval (Qin et al., 2011) and person re-identification (Zhong et al., 2017;
Zheng et al., 2012). Accordingly, F ′ is given by

F ′j ← F ∗j∗ , if j∗ = argmax
t

{M1j ,M2j , · · · ,Mtj , · · · ,Mnj} ∀t ∈ [n] ,

That is to say, if xj∗ is the “optimal” reciprocal nearest neighbor of x′j among the training data set
{xt}nt=1, the j∗-th column of F ∗ is assigned to the j-th column of F ′. By doing so, F ∗ results in a
flexible kernel matrix F ′ �K ′ for test data. Admittedly, we would be faced with the inconsistency
if we directly extend the training kernel to the test kernel in this way. However, in our model, F is
designed to vary in a small range with low-rank structure, and is expected to smoothly vary between
any two neighboring data points in F , so the extension to F ′ on test data by this scheme is reasonable.
Further, we attempt to provide some theoretical justification for this scheme as follows.

Mathematically, ifx andx′ are the reciprocal nearest neighbor pair, we expect that ‖ϕ>(x)ϕ(x′j)−
ϕ>(x′)ϕ(x′j)‖22 is small on the test data {x′j}mj=1, where ϕ is the learned implicit feature mapping
such that FijKij = 〈ϕ(xi), ϕ(xj)〉H̃ on the training data. Balcan et al. (2006) demonstrate that, in
the presence of a large margin γ, a kernel function can also be viewed as a mapping from the input
space X into an Õ(1/γ2) space.

Proposition 2 (Balcan et al., 2006) Given 0 < ε ≤ 1, the margin γ and the implicit mapping ϕ(·) in
SVM, then with probability at least 1−δ, let d′ be a positive integer such that d′ ≥ d0 = O( 1

γ2
log 1

εδ ),
for any x ∈ {xi}ni=1 ⊂ Rd and x′ ∈ {x′i}mj=1 ⊂ Rd with d ≥ d′, we have

(1− ε)‖x− x′‖22 ≤ ‖ϕ(x)− ϕ(x′)‖22 ≤ (1 + ε)‖x− x′‖22 ,

where the mapping ϕ is a random projection following with the Gaussian distribution or the uniform
distribution.

Remark: If the learned k̃ in our DANK model is sub-Gaussian, the above bounds can be achieved
(Shi et al., 2012). Note that the sub-Gaussian kernel assumption is mild as demonstrated by Dao et al.
(2017). Regarding to d′, we choose the lower bound d = d′ = d0 = O( 1

γ2
log 1

εδ ), which can be
achieved by the margin γ = 1/‖w‖2 and ‖w‖22 ∈ O(d).

Based on the above analysis, given the “optimal” reciprocal nearest neighbor pair (x,x′), for
any test data point x′j with j ∈ [m], we have

‖ϕ>(x)ϕ(x′j)− ϕ>(x′)ϕ(x′j)‖22 ≤ ‖ϕ(x)− ϕ(x′)‖22‖ϕ>(x′j)ϕ(x′j)‖2
≤ ‖ϕ>(x′j)ϕ(x′j)‖2︸ ︷︷ ︸

effected by F �K for x′j

(1 + ε) ‖x− x′‖22︸ ︷︷ ︸
small

≤ C̃(1 + ε)‖x− x′‖22 ,

(12)

where C̃ is some constant as the learned kernel is bounded. As a result, we can obtain a small
‖ϕ>(x)ϕ(x′j)−ϕ>(x′)ϕ(x′j)‖22 if ‖x−x′‖22 is small, which is beneficial to out-of-sample extensions.
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2.4 Connections to Other Models

Our non-parametric kernel learning framework in fact covers several typical models.
Kernel with multiple layers: A kernel with l layers in deep architectures (Cho and Saul, 2009)

is defined as
k(l)(xi,xj) =

〈
φ(l)
(
· · ·φ(1)(xi)

)
, φ(l)

(
· · ·φ(1)(xj)

)〉
,

which computes the inner product between two data points xi and xj after l successive applications
of the nonlinear mapping φ(·). For example, the two layer composition of Gaussian kernel can be
formulated as

k(2)(xi,xj) = 〈φ(2)(φ(1)(xi)), φ
(2)(φ(1)(xj))〉 = e−

1
σ2 exp

(
k(xi,xj)

σ2

)
. (13)

We observe that the nested kernel in Eq. (13) can be decomposed into a fixed Gaussian kernel
k(xi,xj) and a nonlinear pairwise function g(xi,xj) such that k(2)(xi,xj) := g(xi,xj)k(xi,xj),
which is actually associated with the data-adaptive matrix F = [g(xi,xj)]n×n. That means, using
a single kernel as well as a nonlinear pairwise layer could achieve a comparable and even better
model flexibility when compared to the two-layer kernel framework. Learning the nonlinear pairwise
function g(·, ·) by the matrix F is an interpolation problem, which is also related to interpolation
learning (Hastie et al., 2019; Bartlett et al., 2020). Further, recent deep kernel architectures (Wilson
et al., 2016; Mairal, 2016; Chen et al., 2020) bridge neural networks and kernel methods and achieve
promising performance on various tasks. This will motivate us to design a multi-layer version of
our DANK model, in which the parameters can be optimized in a layer-by-layer way in the training
process. We leave this to future work.

Hyper-parameter learning: In our model, the entry in the kernel matrix is learned from the
data, and thus Gaussian kernels with flexible variances (Ying and Zhou, 2007) can be linked to
our framework. Besides, based on the Schönberg’s representation theorem (Wendland, 2004), we
consider our DANK model in a distribution view (Khuzani et al., 2020)

k̃(xi,xj) =

∫ ∞
0

e−ξ‖xi−xj‖
2
2µ(dξ) ≈ 1

D

D∑
r=1

e−ξr‖xi−xj‖
2
2 , (14)

where µ is an implicit non-negative Borel measure with {ξr}Dr=1 ∼ µ(·) that corresponds to the
data-adaptive matrix F .

3. Algorithm for DANK Model in SVM

Extra-gradient based methods can be directly applied to solve the max-min problem (4), and
have been shown to exhibit an O(1/t) convergence rate (Nemirovski, 2004), where t is the iteration
number. Further, to accelerate the convergence rate, this section investigates the gradient-Lipschitz
continuity of h(α) in Eq. (5). Based on this, we introduce the Nesterov’s smooth optimization
method (Nesterov, 2005) that requires ∇h(α) Lipschitz continuous to solve problem (4), that is
shown to achieve O(1/t2) convergence rate.

3.1 Gradient-Lipschitz Continuity of DANK in SVM

To prove the gradient-Lipschitz continuity of h(α), we need the following lemma.

12



LEARNING DATA-ADAPTIVE NONPARAMETRIC KERNELS

Lemma 3 Under the same condition in Lemma 1, for any α1, α2 ∈ A, we have

∥∥F (α1)− F (α2)
∥∥

F
≤
‖K‖F

(
‖α1‖2 + ‖α2‖2

)
4η

∥∥α1 −α2

∥∥
2
,

where F (α1) = J τ
2

(
11> + Γ(α1)

)
and F (α2) = J τ

2

(
11> + Γ(α2)

)
.

Proof The proofs can be found in Appendix A.1.

Formally, based on Lemmas 1 and 3, we present the following theorem.

Theorem 4 The function h(α) in Eq. (5) is gradient-Lipschitz continuous, i.e.

‖∇h(α1)−∇h(α2)‖2 ≤ L‖α1 −α2‖2, ∀α1,α2 ∈ A ,

where the Lipschitz constant is L = κ
(
n+ 3nC2‖K‖F/4η

)
with κ := supx,x′∈X |k(x,x′)|.

Proof The proofs can be found in Appendix A.2.

The above theoretical analyses demonstrate that∇h(α) is Lipschitz continuous, which provides a
justification for utilizing a smooth optimization Nesterov’s acceleration method to solve problem (4)
with faster convergence.

3.2 Nesterov’s Smooth Optimization Method

Here we introduce a projected gradient algorithm with Nesterov’s acceleration to solve the
optimization problem (4). Nesterov (2005) proposes an optimal scheme for smooth optimization
minx∈Q g(x), where g(·) is a convex gradient-Lipschitz continuous function over a closed convex
set Q. Introducing a continuous and strongly convex function denoted as proxy-function d(x) on Q,
the first-order projected gradient method with Nesterov’s acceleration can then be used to solve this
problem. In our model, we aim to solve the following convex problem

max
α∈A

h(α) , (15)

where h(α) is concave and gradient-Lipschitz continuous with the Lipschitz constant L in Theorem 4.
Here the proxy-function is defined as d(α) = 1

2‖α−α0‖22 with α0 ∈ A. The first-order Nesterov’s
smooth optimization method for solving problem (4) is summarized in Algorithm 1.

The key steps of Nesterov’s acceleration are characterized by Lines 6, 7, and 8 in Algorithm 1.
To be specific, according to Nesterov (2005), at the t-th iteration, we need to solve the following
problem

β(t) = argmin
α∈A

L

2
‖α−α0‖22 +

t∑
i=0

i+ 1

2

[
h(α(i)) +

〈
∇h(α(i)),α−α(i)

〉]
, (16)

which is equivalent to

β(t) = argmin
α∈A

‖α−α0‖22 +
2

L

t∑
i=0

i+ 1

2
∇h>(α(i))α ,
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Algorithm 1: Projected gradient method with Nesterov’s acceleration for problem (4)
Input: The kernel matrixK, the label matrix Y , and the Lipschitz constant in Theorem 4
Output: The optimal α∗

1 Set the stopping criteria tmax = 2000 and ε = 10−4.
2 Initialize t = 0 and α(0) ∈ A := 0.
3 Repeat
4 Compute F (α(t)) = J τ

2

(
11> + Γ(α(t))

)
;

5 Compute ∇h(α(t)) = 1− Y
(
F (α(t))�K

)
Y α(t) ;

6 Compute θ(t) =PA
(
α(t) + 1

L∇h(α(t))
)

;

7 Compute β(t) =PA
(
α(0)− 1

2L

∑t
i=0(i+ 1)∇h(α(i))

)
;

8 Set α(t+1) = t+1
t+3θ

(t) + 2
t+3β

(t);
9 t := t+ 1;

10 Until t ≥ tmax or ‖α(t) −α(t−1)‖2 ≤ ε;

where we omit the irrelevant terms h(α(i)) and∇h>(α(i))α(i) that are independent of the optimiza-
tion variable α in Eq. (16). Accordingly, the above problem is further reformulated as

β(t) = argmin
α∈A

∥∥∥α−α0 +
1

2L

t∑
i=0

(i+ 1)∇h(α(i))
∥∥∥2

2
,

of which the optimal solution is β(t) = PA
(
α0− 1

2L

∑t
i=0(i+ 1)∇h(α(i))

)
as outlined in Line 7 in

Algorithm 1, where PA(α) is a projection operator that projects α over the set A. A quick note on
projection onto the feasible set A = {α ∈ Rn : α>y = 0, 0 ≤ α ≤ C1}: it typically suffices in
practice to use the alternating projection algorithm (Von Neumann, 1949). Since the feasible set A is
the intersection of a hyperplane and a hypercube, both of them admit a simple projection step. To be
specific, first clip α to [0, C], and then project on the hyperplane α← α− y>α

n y. The convergence
rate of the alternating projection algorithm is shown to be linear (Von Neumann, 1949) and thus it is
very efficient.

It can be noticed that when Lines 6, 7, and 8 in Algorithm 1 are replaced by

α(t+1) =PA
(
α(t) +

1

L
∇h(α(t))

)
(17)

with the Lipschitz constant L = n − τ
2 + nC2

4η λmax(K) derived from Lemma 1, the Nesterov’s
smooth method degenerates to a standard projected gradient method. The convergence of the
Nesterov smoothing optimization algorithm is pointed out by Theorem 2 in (Nesterov, 2005)

h(α∗)− h(β(t)) ≤ 8L‖α0 −α∗‖2

(t+ 1)(t+ 2)
,

where α∗ is the optimal solution of Eq. (15). Note that, in general, Algorithm 1 cannot guarantee
{h(α(t)) : t ∈ N} and {h(β(t)) : t ∈ N} to be monotonely increasing during the maximization
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process. Nevertheless, such algorithm can be modified to obtain a monotone sequence with replacing
Line 6 in Algorithm 1 by

θ̃(t) = PA
(
α(t) +

1

L
∇h(α(t))

)
,

θ(t) = argmax
α

h(α), α ∈ {θ(t−1), θ̃(t),α(t)} .

The Nesterov’s smooth optimization method takes O(
√
L/ε) to find an ε-optimal solution,

which is better than the standard projected gradient method with the complexity O(L/ε).

4. DANK in Large Scale Case

Scalability in kernel methods is a vital issue which often limits their applications in large data
sets (Rahimi and Recht, 2007; Wang et al., 2016; Liu et al., 2020), especially for nonparametric
kernel learning optimized by semi-definite programming. Hence, in this section, we take our DANK
model embedded in SVM as an example to study our kernel approximation approach. The presented
results in this section are also suitable to other nonparametric kernel learning based algorithms.

To consider the scalability of our DANK model embedded in SVM in large-scale situations,
problem (4) is reformulate as

max
α

min
F∈Sn+

H(α,F ) = 1>α− 1

2
α>Y

(
F �K

)
Y α+ η‖F − 11>‖2F

s.t. 0 ≤ α ≤ C1 .

(18)

where the bias term b is usually omitted in the large scale issue (Keerthi et al., 2006; Hsieh et al.,
2014; Lian and Fan, 2017). Besides, we have to omit the low-rank regularizer on F due to its
inseparable property, which is reasonable based on the rapid decaying spectra of the kernel matrix
(Smola and Schölkopf, 2000). Specifically, in Section 2.2.2, we have demonstrated that F would
exhibit the low-rank property as well by the centering regularizer ‖F −11>‖2F. Furthermore, we will
experimentally verify that dropping the low-rank term in large-scale problems has no much sacrifice
for the accuracy in Section 6.2.2.

In our decomposition-based scalable approach, we divide the data into small subsets by k-means,
and then solve each subset independently and efficiently. Such similar scheme also exists in (Hsieh
et al., 2014; Zhang et al., 2013; Si et al., 2017). To be specific, we firstly partition the data into
v subsets {V1,V2, . . . ,Vv}, and then solve the respective sub-problems independently with the
following formulation

max
α(c)

min
F (c,c)∈S|Vc|+

1>α(c)+η‖F (c,c) − 11>‖2F −
1

2
α(c)>Y (c,c)

(
F (c,c) �K(c,c)

)
Y (c,c)α(c)

s.t. 0 ≤ α(c) ≤ C1, ∀ c = 1, 2, . . . , v ,

(19)

where |Vc| denotes the number of data points in Vc. Suppose that (ᾱ(c), F̄ (c,c)) is the optimal solution
of the c-th subproblem, the approximation solution (ᾱ, F̄ ) to the whole problem is concatenated by
ᾱ = [ᾱ(1), ᾱ(2), . . . , ᾱ(v)] and F̄ = diag(F̄ (1,1), F̄ (2,2), . . . , F̄ (v,v)), where F̄ is a block-diagonal
matrix. In the next, we study the decomposition-based scalable approach in the following two aspects.

15



LIU, HUANG, GONG, YANG AND LI

First, the objective function value H(ᾱ,F̄ ) in Eq. (18) is close to H(α∗,F ∗). Second, if xi is not a
support vector of the subproblem, it will also be a non-support vector of the whole problem under
some conditions. To prove the above three propositions, we need the following lemma that links the
subproblems to the whole problem.

Lemma 5 Given the optimal solution (ᾱ(c), F̄ (c,c)) of problem (19) with c ∈ {1, 2, · · · , v}, by con-
catenating ᾱ = [ᾱ(1), ᾱ(2), . . . , ᾱ(v)] and F̄ = diag(F̄ (1,1), F̄ (2,2), . . . , F̄ (v,v)), the approximation
solution (ᾱ, F̄ ) to the whole problem is the optimal solution of the following problem

max
α

min
F∈Sn+

H̄(α,F ) , 1>α− 1

2
α>Y

(
F � K̄

)
Y α+ η‖F − 11>‖2F

s.t. 0 ≤ α ≤ C1 ,

(20)

with the kernel K̄ defined by
K̄ij = I(π(xi), π(xj))Kij ,

where π(xi) is the cluster that xi belongs to, and I(a, b) = 1 iff a = b, and I(a, b) = 0 otherwise.

Proof The proofs can be found in Appendix B.1.

Based on the above lemma, we are ready to investigate the difference between H(α∗,F ∗) and
H(ᾱ,F̄ ) as follows.

Theorem 6 Denote (α∗,F ∗) and (ᾱ, F̄ ) as the optimal solutions of problem (4) and problem (20),
respectively. Suppose that each element in F ∗ and F̄ satisfies 0 < B1 ≤ max{F ∗ij , F̄ij} ≤ B2, with
B = B2 −B1, we have ∣∣H(α∗,F ∗)−H(ᾱ,F̄ )

∣∣ ≤ 1

2
BC2Q(π) ,

with Q(π) =
∑n

i,j:π(xi)6=π(xj)
|k(xi,xj)|, where {π(x1), π(x2), · · · , π(xn)} is the partition indi-

cator and C is the balance parameter in SVM.

Proof The proofs can be found in Appendix B.2.

Remark: Q(π) actually consists of the off-diagonal values of the kernel matrixK if we rearrange
the training data in a clustering order. It depends on the data distribution, the number of clusters
v, and the kernel type. Intuitively, if the clusters are nicely shaped (e.g. Gaussian) and well-
separated, then the kernel matrix may be approximately block-diagonal. In this case, Q(π) would
be small. Let we examine two extreme cases of v. If v = 1, i.e., only one cluster, we have
Q(π) = 0; If v = n, i.e., each data point is grouped into a cluster, then Q(π) can be upper bounded
by Q(π) ≤

∑n
i,j |k(xi,xj)|. In practical clustering algorithms, v is often chosen to be much

smaller than n, i.e., v � n, and thus we can obtain a small Q(π). In fact, it appears non-trivial
to quantitatively analyze the relationship between Q(π) and v, so we experimentally study this
relationship in Section 6.2.4.

Besides, in SVM, we also concern about the relationship of support/non-support vectors between
the subproblems and the whole problem. Accordingly, we present the following theorem to explain
this issue.
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Theorem 7 Under the same condition of Theorem 6 with an additional bounded assumption κ :=
supx,x′∈X |k(x,x′)|, suppose that xi is not a support vector of the subproblem, i.e., ᾱi = 0, xi will
also not be a support vector of the whole problem i.e., αi = 0, under the following condition(

∇αH̄(ᾱ, F̄ )
)
i
≤−(B+B2)C

(
‖K̄i‖1+κ

)
≤ −(B +B2)C (‖K‖1 + κ) , (21)

where K̄i denotes the i-th column of the kernel matrix K̄.

Proof The proofs can be found in Appendix B.3.

Remark: Eq. (21) is a sufficient condition and can be expressed as

1− nB2κC ≤
(
∇αH̄(ᾱ, F̄ )

)
i
≤ −(B +B2)C

(
‖K̄i‖1 + κ

)
,

where the first inequality admits inf
(
∇αH̄(ᾱ, F̄ )

)
i

= inf
(

1−
∑n

j=1 yiyjF̄ijK̄ijᾱj

)
= 1 −

nB2κC. So if we assume that
(
∇αH̄(ᾱ, F̄ )

)
i

of non-support vectors is uniformly distributed

over the range [1−nκB2C, 0], then nearly 1− (B+B2)C(‖K̄i‖1+κ)
nB2κC−1 ≈ 1− c√

n
of the total non-support

vectors can be directly recognized, where c is some constant. That means, the screening proportion
of non-support vectors is (1− c/

√
n) ∗ 100%, at a certain O(n−1/2) rate. If

(
∇αH̄(ᾱ, F̄ )

)
i

follows
with some heavy-tailed distributions over the range [1 − nκB2C, 0], the recognized rate would
decrease. And specifically, we will experimentally check that our screening condition is reasonable
in Section 6.2.4.

5. DANK Model in SVR

In this section, we incorporate the DANK model into SVR and also develop the Nesterov’s
smooth optimization algorithm to solve it. Here the label space is Y ⊆ R for regression.

Similar to DANK in SVM revealed by problem (4), we incorporate the DANK model into SVR
with the ε-insensitive loss, namely

max
α̂,α̌

min
F∈Sn+

−1

2
(α̂− α̌)>

(
F �K

)
(α̂− α̌) + (α̂− α̌)>y

− ε(α̂+ α̌)>1 +η‖F−11>‖2F+τη‖F ‖∗
s.t. 0 ≤ α̂, α̌ ≤ C, (α̂− α̌)>y = 0 ,

(22)

where the dual variable is α = α̂ − α̌. The objective function in problem (22) is denoted as
H(α̂, α̌,F ). Further, we define the following function

h(α̂, α̌) , H(α̂, α̌,F ∗) = min
F∈Sn+

H(α̂, α̌,F ) , (23)

where h(α̂, α̌) can be obtained by solving the following problem

min
F∈Sn+

‖F − 11> − Γ(α̂, α̌)‖2F + τ‖F ‖∗ , (24)
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with Γ(α̂, α̌) = 1
4η diag(α̂ − α̌)>K diag(α̂ − α̌). The optimal solution of Eq. (24) is F ∗ =

J τ
2
(11> + Γ(α̂, α̌)). We can easily check that Lemma 1 is also applicable to problem (23)

h(α̂, α̌) = min
F∈B

H(α̂, α̌,F ) .

Similar to Lemma 3, in our DANK model embedded in SVR, ‖Γ(α̂1, α̌1)− Γ(α̂2, α̌2)‖2 can
be bounded by the following lemma.

Lemma 8 For any α̂1, α̌1, α̂2, α̌2 ∈ A, we have∥∥F (α̂1, α̌1)− F (α̂2, α̌2)
∥∥

F
≤ ‖Γ(α̂1, α̌1)− Γ(α̂2, α̌2)‖F

≤ ‖K‖
4η

∥∥α̂1 − α̌1 + α̂2 − α̌2

∥∥
2

∥∥α̂1 − α̌1 − α̂2 + α̌2

∥∥
2
,

where F (α̂1, α̌1)) = J τ
2

(
11> + Γ(α̂1, α̌1)

)
and F (α̂2, α̌2) = J τ

2

(
11> + Γ(α̂2, α̌2)

)
.

The proof of Lemma 8 is similar to that of Lemma 3, and here we omit the detailed proof. Next we
present the partial derivative of h(α̂, α̌) regarding to α̂ and α̌.

Proposition 9 The objective function h(α̂, α̌) with two variables defined by Eq. (23) is differentiable
and its partial derivatives are given by

∂h(α̂, α̌)

∂α̂
= −εI − (α̂− α̌)F �K + y ,

∂h(α̂, α̌)

∂α̌
= −εI − (α̂− α̌)F �K − y .

(25)

Formally, h(α̂, α̌) is proven to be gradient-Lipschitz continuous by the following theorem.

Theorem 10 The function h(α̂, α̌) with its partial derivatives in Eq. (25) is gradient-Lipschitz
continuous, i.e., for any α̂1, α̌1, α̂2, α̌2 ∈ A, let the concentration vectors be α̃1 = [α̂>1 , α̌

>
1 ]> and

α̃2 = [α̂>2 , α̌
>
2 ]>, and the partial derivatives be

∇α̃1
h(α̂1, α̌1)=

[(∂h(α̂, α̌1)

∂α̂

∣∣
α̂=α̂1

)>
,
(∂h(α̂1, α̌)

∂α̌

∣∣
α̌=α̌1

)>]>
,

∇α̃2
h(α̂2, α̌2)=

[(∂h(α̂, α̌2)

∂α̂

∣∣
α̂=α̂2

)>
,
(∂h(α̂2, α̌)

∂α̌

∣∣
α̌=α̌2

)>]>
,

we have

‖∇α̃1
h(α̂1, α̌1)−∇α̃2

h(α̂2,α̌2)‖2≤2L
(
‖α̂2 − α̂1‖2 + ‖α̌2 − α̌1‖2

)
.

where the Lipschitz constant is L = 2κ
(
n+ 9nC2‖K‖F

4η

)
.

Proof The proofs can be found in Appendix A.3.

Based on the gradient-Lipschitz continuity of h(α̂, α̌) demonstrated by Theorem 10, we are
ready to present the first-order Nesterov’s smooth optimization method for problem (22). The smooth
optimization algorithm is summarized in Algorithm 2.
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Algorithm 2: Projected gradient method with Nesterov’s acceleration for problem (22)
Input: The kernel matrixK, the label matrix Y , and the Lipschitz constant L derved in

Theorem 10
Output: The optimal α∗

1 Set the stopping criteria tmax = 2000 and ε = 10−4.
2 Initialize t = 0 and α̂(0), α̌(0) ∈ A := 0.
3 Repeat
4 Compute F (α̂(t), α̌(t)) = J τ

2

(
11> + Γ(α̂(t), α̌(t))

)
;

5 Compute ∂h/∂α̂ and ∂h/∂α̌ by Eq. (25), and concentrate them as
∇h(α̂(t), α̌(t)) = [(∂h/∂α̂)>, (∂h/∂α̌)>]> ;

6 Compute θ(t) =PA
(

[α̂(t)>, α̌(t)>]> + 1
2L∇h(α̂(t), α̌(t))

)
;

7 Compute β(t) =PA
(
[α̂(0)>, α̌(0)>]>− 1

4L

∑t
i=0(i+ 1)∇h(α̂(i), α̌(i))

)
;

8 Set [α̂(t+1)>, α̌(t+1)>]> = t+1
t+3θ

(t) + 2
t+3β

(t);
9 Set α(t+1) = α̂(t+1) − α̌(t+1) and t := t+ 1;

10 Until t ≥ tmax or ‖α(t) −α(t−1)‖2 ≤ ε;

6. Experimental Results

This section evaluates the performance of our DANK model in comparison with several rep-
resentative kernel learning algorithms on classification and regression benchmark data sets. All
the experiments implemented in MATLAB are conducted on a Workstation with an Intelr Xeonr

E5-2695 CPU (2.30 GHz) and 64GB RAM. The source code of our DANK model in Algorithm 1
can be found in http://www.lfhsgre.org.

6.1 Classification Tasks

We conduct experiments on the UCI Machine Learning Repository with small scale data sets, 4

and three large data sets including EEG, ijcnn1 and covtype.5 Besides, we also compare these
methods on the CIFAR-10 database for image classification.6

6.1.1 CLASSIFICATION RESULTS ON UCI DATABASE

Ten small data sets from the UCI database are used to evaluate our DANK model embedded in
SVM. Here we describe experimental settings and the compared algorithms as follows.
Experimental Settings: Table 2 lists a brief description of these ten data sets including the number
of training data n and the feature dimension d. After normalizing the data to [0, 1]d by a min-
max scaler, we randomly pick half of the data for training and the rest for test except for monks1,
monks2, and monks3. In these three data sets, both training and test data have been provided. The
Gaussian kernel k(xi,xj) = exp(−‖xi − xj‖22/2σ2) is chosen as the initial kernel in our model.
The kernel width σ and the balance parameter C are tuned by 5-fold cross validation on a grid of

4. https://archive.ics.uci.edu/ml/datasets.html
5. All datasets are available at https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/
6. https://www.cs.toronto.edu/˜kriz/cifar.html
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Table 1: Comparison results with two baselines in terms of classification accuracy (mean±std. deviation %)
on ten UCI data sets. The best performance is highlighted in bold. The classification accuracy on the training
data is presented by italic, and does not participate in ranking. Notation “•” indicates that our DANK method
is significantly better than other baseline methods via paired t-test at the 5% significance level.

Data set (d, n) MKL-uniform SVM-CV DANK

Training Test Training Test Training Test

diabetic (19, 1151) 83.5±14.2 61.9±8.5 80.7±3.9 73.0±1.7 87.0±1.9 81.2±1.4•
heart (13, 270) 95.8±4.3 82.1±2.9 88.9±3.0 81.9±2.4 94.3±1.7 87.9±2.9•

monks1 (6, 124) 99.3±1.3 79.0±2.8 90.3±0.0 81.4±0.0 100.0±0.0 83.6±1.5•
monks2 (6, 169) 100.0±0.0 84.4±0.1 100.0±0.0 85.8±1.4 100.0±0.0 86.7±0.9
monks3 (6, 122) 99.6±1.3 90.8±0.6 96.2±1.5 93.0±1.2 97.2±1.8 93.0±0.9

sonar (60, 208) 100.0±0.0 80.8±3.7 99.9±0.3 85.3±3.1 100.0±0.0 87.0±2.7•
spect (21, 80) 93.8±0.0 79.8±0.3 87.0±3.7 73.1±3.2 93.4±4.1 78.9±3.2
glass (9, 214) 93.4±6.0 53.0±7.0 77.1±6.9 69.8±2.0 89.7±6.1 74.5±1.3•

fertility (9, 100) 99.0±1.4 85.6±3.0 94.4±5.3 85.2±1.7 97.3±3.3 87.6±2.3•
wine (13, 178) 100.0±0.0 96.0±3.8 99.5±1.0 94.7±1.5 99.5±1.0 96.4±2.0

points, i.e., σ = [2−5, 2−4, . . . , 25] and C = [2−5, 2−4, . . . , 25]. To avoid additional cross validation,
we manually set the penalty parameter τ to 0.01. The regularization parameter η is fixed to ‖α‖22
obtained by SVM. The experiments are conducted 10 times on these ten data sets.
Compared Methods: We include the following kernel learning based algorithms:

• BMKL (Gonen, 2012): A multiple kernel learning algorithm uses Bayesian approach to
ensemble the Gaussian kernels with ten different kernel widths and the polynomial kernels
with three different degrees.

• LogDet (Jain et al., 2012): A nonparametric kernel learning approach aims to learn a PSD
matrixW in a learned kernel φ(x)>Wφ(x′) with the LogDet divergence.

• RF (Sinha and Duchi, 2016): A kernel alignment based learning framework creates randomized
features, and then solves a simple optimization problem to select a subset. Finally, the kernel
is learned from the optimized features by target alignment.

• KNPL (Liu et al., 2018): This nonparametric kernel learning framework is given by our
conference version, which shares the initial ideas about learning in a data-adaptive scheme
via a pair-wise way. But this work does not consider the bounded constraint and the low-rank
structure on F , and utilizes an alternating iterative algorithm to solve the corresponding
semi-definite programming.

• MKL-uniform: It is a multiple kernel learning algorithm with uniform weights, and serves
as a baseline. It uses 11 equal-weighted Gaussian kernels with the kernel width σ =
[2−5, 2−4, . . . , 25], respectively. This setting avoids tuning the kernel width σ but the balance
parameter C is still tuned by 5-fold cross validation.

• SVM-CV: The SVM classifier with cross validation serves as a baseline.
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Table 2: Comparison results of several representative kernel learning based algorithms in terms of test
accuracy on ten UCI dataaset. The best performance is highlighted in bold. Notation “•” indicates that
the data-adaptive based algorithm (KNPL or DANK) is significantly better than other representative kernel
learning methods via paired t-test at the 5% significance level.

Data set LogDet BMKL RF KNPL DANK

diabetic 78.7±1.8 74.9±0.4 72.3±0.8 81.9±1.7• 81.2±1.4•
heart 80.6±3.5 85.6±0.8 79.1±2.4 87.4±3.9• 87.9±2.9•

monks1 86.6±0.2 78.9±2.5 84.4±0.9 83.3±3.3 83.6±1.5
monks2 85.9±1.2 82.1±1.3 73.6±1.1 83.3±1.6 86.7±0.9
monks3 94.0±1.3 94.0±1.0 93.7±0.6 88.7±1.2 93.0±0.9

sonar 84.1±2.2 84.8±0.6 80.5±3.1 85.8±2.8 87.0±2.7•
spect 79.6±3.7 78.8±0.8 76.0±2.7 79.7±4.8 78.9±3.2
glass 71.2±1.0 68.2±4.6 68.2±2.2 72.4±2.3 74.5±1.3•

fertility 86.2±1.1 84.4±1.6 84.4±4.3 85.6±3.8 87.6±2.3•
wine 96.1±1.8 95.0±2.8 95.1±1.1 96.1±2.0 96.4±2.0

Experimental Results: We first evaluate the proposed DANK model with two baselines: MKL-
uniform and SVM-CV in terms of classification accuracy on the training and test data in Table 1, and
then compare DANK with other representative kernel learning based algorithms in Table 2.

In Table 1, MKL-uniform sometimes performs the best on the training data, but fails to generalize
on the test data in most cases. In general, it is inferior to SVM-CV and our DANK model in terms of
the test accuracy. Directly enlarging the solving space without any constraint would increase model
flexibility but is easy to be over-fitting. Compared with the baseline SVM-CV, the proposed DANK
model achieves a good trade-off between model flexibility and complexity. Training accuracy on
diabetic, heart, monks1, spect, and glass indicates the effectiveness of our data adaptive scheme
on increasing the model flexibility. Accordingly, this strategy is helpful for our model to achieve
noticeable improvements on the test data. On the monks2, sonar, and wine data sets, SVM-CV has
already obtained nearly 100% accuracy on the training data, which indicates that the model flexibility
is sufficient. In this case, it is difficult for our DANK method to achieve a huge improvement on
these data sets, and accordingly the performance margins are about 0%∼2%. Table 2 reports the
test accuracy of typical kernel learning based algorithms. We also apply the paired t-test at the
5% significance level to investigate whether the data-adaptive approaches (KNPL and DANK) are
significantly better than other methods. It can be found that, compared with representative kernel
learning based algorithms including LogDet, BMKL, and RF, the proposed DANK model yields
favorable performance.

In general, the improvements on the classification accuracy demonstrate the effectiveness of our
data adaptive scheme, and accordingly our model has good adaptivity to the training and test data.

6.1.2 RESULTS ON LARGE-SCALE DATA SETS

To validate our decomposition scheme on large scale situations, we consider three large data
sets including EEG, ijcnn1, and covtype for comparisons. Table 3 reports the data set statistics (i.e.,
the feature dimension d, the number of training samples, and the number of test data) and parameter
settings including the balance parameter C, the kernel width σ, and the number of clusters. Table 4
presents the test accuracy and training time of various compared algorithms including LogDet,
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Table 3: Large-sample data set statistics and parameter settings.

data sets d #training #test C 1/2σ2 #clusters

EEG 14 7,490 7,490 32 100 5
ijcnn1 22 49,990 91,701 32 2 50

covtype 54 464,810 116,202 32 32 200

Table 4: Comparison of test accuracy and training time of all the compared algorithms on several large data sets.
The rank of F in our DANK model is also given in bold.

Method SVM-SMO LogDet BMKL RF DANK

Data set Setting exact exact scalable exact scalable exact exact(rank.) scalable(rank.)

EEG
acc.(%) 95.9 95.9 95.2 94.5 94.1 80.1 96.7(36) 96.3(142)

time(sec.) 8.6 211.6 24.6 1426.3 124.5 2.4 473.6 39.8

ijcnn1
acc.(%) 96.5 97.9 97.4 98.5 97.7 93.0 98.9(342) 98.4(1788)

time(sec.) 112.4 8472.3 78.1 109967 1916.9 25.0 28548 571.7

covtype
acc.(%) 96.1 ×1 96.4 × 91.2 79.1 × 97.1

time(sec.) 3972.5 × 5021.4 × 94632 364.5 × 7534.2
1 These methods attempt to directly solve the optimization problem on covtype but fail due to the memory limit.

BMKL, our DANK method, SVM-SMO (Platt, 1998) (the cache is set to 5000) and RF conducted in
the following two settings.

In the first setting (“exact”), we attempt to directly test these algorithms over the entire training
data. Experimental results indicate that, without the decomposition-based scalable approach, our
DANK method achieves the best test accuracy with 96.7% sand 98.9% on EEG and ijcnn1, respec-
tively. However, under this setting, LogDet, BMKL, and our method fail to deal with an extreme
large data set covtype due to the memory limit except SVM-SMO and RF.

In the second setting (“scalable”), we incorporate our kernel approximation scheme into LogDet,
BMKL, and DANK evaluated on the three large data sets. Experimental results show that, by such
decomposition-based scalable approach, we can speed up the above three kernel learning methods.
For example, when compared with the direct solution of the optimization problem in the “exact”
setting, LogDet, BMKL, and DANK equipped with kernel approximation speed up about 100x, 50x,
and 50x on ijcnn1, respectively. More importantly, on these three data sets, our DANK method
using the approximation scheme still performs better than SVM-SMO on the test accuracy, which
demonstrates the effectiveness of the proposed non-parametric kernel learning framework.

Results in above two settings show that, our DANK method achieves promising test accuracy
no matter whether the kernel approximation scheme is incorporated or not. Moreover, such approxi-
mation scheme makes BMKL, LogDet, and our DANK method feasible to large data sets with huge
speedup in terms of computational efficiency.

6.1.3 RESULTS ON CIFAR-10 DATA SET

In this section, we test our model on a representative data set CIFAR-10 (Krizhevsky and Hinton,
2009) for natural image classification task. This data set contains 60,000 color images with the size of
32× 32× 3 in 10 categories, of which 50,000 images are used for training and the rest are for testing.
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DANK KNPL VGG16 SVM-CV RF BMKL LogDet
80

85

90

95

92.68
91.72

90.87
90.35

87.56

90.55
91.47

A
cc

ur
ac

y(
%

)

classification accuracy

Figure 3: Performance of the compared algorithms on CIFAR-10 data set.

In our experiment, each color image is represented by the feature extracted from a convolutional
neural network, i.e., VGG16 with batch normalization (Ioffe and Szegedy, 2015) pre-trained on
ImageNet (Deng et al., 2009). Then we fine-tune this pre-trained VGG16 model on the CIFAR10
data set with 240 epochs and a min-batch size of 64. The learning rate starts from 0.1 and then is
divided by 10 at the 120-th, 160-th, and 200-th epoch. After that, for each image, a 4096 dimensional
feature vector is obtained according to the output of the first fully-connected layer in this fine-tuned
neural network.

Figure 3 shows the test accuracy (mean±std. deviation %) of the compared algorithms averaged
in ten trials. The original VGG16 model with the softmax classifier achieves 90.87±0.54% on the
test accuracy. Using the extracted 4096-D feature vectors, kernel learning based algorithms equipped
with the initial Gaussian kernel are tuned by 5-fold cross validation on a grid of points, i.e., σ =
[0.001, 0.01, 0.1, 1] and C = [1, 10, 20, 30, 40, 50, 80, 100]. In terms of classification performance,
SVM-CV, BMKL, LogDet, and KNPL obtain 90.35±0.18%, 90.55±0.58%, 91.47±0.44%, and
91.72±0.52% accuracy on the test data, respectively. Comparably, our DANK model achieves
promising classification accuracy with 92.68±0.41%. More importantly, it outperforms SVM-CV
with an accuracy margin of 2.33%, and is statistically significant better than the other methods via
paired t-test at the 5% significance level. The improvement over SVM-CV on the test accuracy
demonstrates that our DANK method equipped with the introduced kernel adjustment strategy is
able to enhance the model flexibility, and thus achieves good performance.

6.2 Analysis and Validation for Theoretical Results

In this subsection, we experimentally validate the effectiveness of the used Nesterov’s smooth
optimization method, the rationality of dropping out the low-rank regularizer in the large sample
case, the robustness of τ via parameter sensitivity analysis, and the tight bound of our theoretical
results.

6.2.1 CONVERGENCE EXPERIMENTS

To investigate the effectiveness of the used Nesterov’s smooth optimization method, we conduct
a convergence experiment on the heart data set.

In Figure 4(a), we plot the objective function value H(α,F ) versus iteration by the standard
projected gradient method (in blue dashed line) and its Nesterov’s acceleration (in red solid line),
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(a) H(α,F ) (b) ‖α(t) −α(t−1)‖2

Figure 4: Comparison between projected gradient method and our Nesterov’s acceleration on the
heart data set.

Table 5: Influence of the low-rank constraint with different values of τ on test classification accuracy. Notation
“•” indicates that test accuracy by this setting τ is statistical different from that of the current setting τ = 0.01
via paired t-test at the 5% significance level. The rank of F in our DANK model is also given in bold.

τ 0 0.001 0.01 0.1 1

diabetic 78.1±1.2 (340)• 81.1±1.2 (10) 81.2±1.4 (5) 81.2±1.2 (2) 81.1±1.2 (2)
heart 84.9±2.2 (109)• 87.3±2.2 (5) 87.9±2.9 (3) 86.5±2.5 (2)• 85.4±2.8 (1)•

monks1 82.1±1.3 (68)• 82.5±1.4 (15)• 83.6±1.5 (6) 83.2±1.4 (2) 81.7±1.3 (1)•
monks2 85.5±0.8 (68)• 86.2±0.7 (13)• 86.7±0.9 (4) 86.4±0.8 (2) 86.0±0.9 (2)•
monks3 90.2±1.3 (61)• 92.8±1.0 (8) 93.0±0.9 (4) 93.3±1.1 (2) 92.8±1.1 (1)

sonar 84.0±2.4 (81)• 85.2±2.4 (32)• 87.0±2.7 (17) 87.4±2.6 (7) 86.8±2.3 (3)•
spect 78.2±2.6 (15) 78.4±2.8 (8) 78.9±3.2 (6) 78.4±2.8 (3) 76.4±2.5 (2)•
glass 72.3±1.1 (34)• 73.7±1.4 (14)• 74.5±1.3 (8) 73.3±1.2 (3)• 71.4±1.5 (2)•

fertility 86.8±2.1 (29)• 87.1±2.2 (11) 87.6±2.3 (5) 87.3±2.1 (3) 87.2±2.2 (2)
wine 96.1±2.0 (5) 96.2±1.9 (3) 96.4±2.0 (2) 96.3±2.0 (2) 96.3±2.0 (2)

respectively. One can see that the developed first-order Nesterov’s smooth optimization method
converges faster than the projected gradient method, so the feasibility of employing Nesterov’s
acceleration for solving problem (4) is verified. Besides, to further illustrate the convergence of
{α(t)}∞t=0, we plot ‖α(t) − α(t−1)‖2 versus iteration in Figure 4(b). We find that the sequence
{α(t)}∞t=0 yielded by the Nesterov’s acceleration algorithm significantly decays in the first 500
iterations, which leads to a fast convergence to the optimal solution. Hence, compared with projected
gradient method, the Nesterov’s smooth optimization method is able to efficiently solve the targeted
convex optimization problem in this paper.

6.2.2 VALIDATION FOR THE LOW-RANK CONSTRAINT

Due to the inseparable property of the low-rank constraint, we omit the low-rank regularizer
on F for efficient optimization in the large sample case. Here we experimentally specialize in the
influence of ‖F ‖∗ on the test classification accuracy in both small and large data sets.

Regarding to the small sample case, Table 5 reports the classification accuracy and the rank of F
under different values of τ on these ten data sets appeared in Section 6.1.1. Compared to our model
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with τ = 0.01, the setting without the low-rank regularizer (i.e., τ = 0) loses about 1%∼3% accuracy
on most data sets with statistical difference except for the spect and wine data sets. On these two data
sets, we find that, although the low-rank regularizer is not considered, the learned F still exhibits the
low-rank structure, which effectively controls the model flexibility and complexity. Accordingly, our
model without the low-rank constraint performs well on the two data sets. However, in the remaining
data sets, the rank of F significantly increases if we drop out the low-rank regularizer. In this case,
the solving space of our model could be extreme large, which would lead to over-fitting. Besides, the
learned F might be sophisticated, therefore, it is not easily extended to F ′ for test data by the simple
nearest neighbor scheme. Hence, results in Table 5 indicates that the low-rank constraint is important
in small-sample data sets.

In terms of large sample case, according to Table 4, our DANK model with the “exact” solution
achieves 96.7% and 98.9% accuracy on the EEG and ijcnn1 data set, respectively. In contrast, after
omitting the low-rank regularizer ‖F ‖∗, the test accuracy of our model in the “scalable” setting
decreases to 96.3% and 98.4%, respectively. More importantly, we find that, without the low-rank
constraint, the rank of F increases from 36 (in the “exact” setting) to 142 (in the “scalable” setting)
on the EEG data set with 7,490 training samples. This tendency also exhibits on the ijcnn1 data
set with 49,900 training samples. The rank of F on this data set increases from rank(F ) = 342 to
rank(F ) = 1788. So the above results indicate that dropping the low-rank constraint leads to a slight
decrease on the test accuracy; while the rank of F is indeed raising but is still much smaller than n.
In the next, we explain the reason why our model still obtains a relative low-rank matrix F in the
large sample case. On one hand, the regularization parameter η is chosen as η := ‖α‖22 ∈ O(n) in
our experiment. This would be an extreme large value in large sample data sets, resulting in a strong
regularization term η‖F − 11>‖F. Therefore, F varies around the all-one matrix in a small bounded
region and thus shows a low-rank effect to some extent. On the other hand, the used Gaussian
kernel inherits the rapid decaying spectra (Smola and Schölkopf, 2000), e.g., the exponential decay
λi ∝ ne−ai with a > 0 as illustrated by Bach (2013). As discussed in Section 2.2.2, when the
Gaussian kernel is chosen as the initial one, the used centering regularizer is helpful to obtain a
relative low-rank kernel matrix K̃. Based on the above analysis, in large sample case, using the
centering regularizer η‖F − 11>‖F could be an alternative choice for the low-rank property if we
have to drop ‖F ‖∗.

From above observations and analyses, we conclude that the low-rank constraint in our model
is important for small-sample cases. In large-sample data sets, due to the separability requirement,
our DANK model has to drop the low-rank constraint, and thus achieving a slight decrease on
the final classification accuracy. Nevertheless, the employed centering regularizer restricts F to a
small bounded region around the all-one matrix, which would be an alternative choice to seek for a
low-rank matrix F̄ .

6.2.3 PARAMETER SENSITIVITY ANALYSIS

The above subsection demonstrates the importance of the low-rank regularizer in our DNAK
model on small sample case, so here we need to investigate the parameter sensitivity of τ to the test
accuracy on these data sets.

Table 5 reports the classification accuracy with τ in {0, 0.001, 0.01, 0.1, 1}. We find that, when
τ is changed from 0 to 0.01, the rank of F rapidly decreases, which implies that the model flexibility
is effectively controlled. The test accuracy yielded by our DANK model is accordingly improved
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(a) ijcnn1 (b) covtype (c) non-support vectors

Figure 5: Experimental validation of the derived bounds in Theorem 6 and 7.

under this range. When τ further increases to τ = 0.1, there is no statistical significance found
between τ = 0.01 and τ = 0.1 except on the heart and glass data sets in terms of classification
accuracy. Furthermore, if τ increases to 1, F exhibits an extremely low-ranking structure. In this
case, our model with τ = 1 is not flexible enough to fit the data, and thus is inferior to the setting of
τ = 0.01 on most data sets.

Based on the above observations, our DANK model is robust to the variations of τ ranging from
0.01 to 0.1, so it can be easily tuned and we suggest τ = 0.01 for practical use.

6.2.4 VALIDATION FOR OUR DERIVED BOUNDS

Here we show that the derived bounds in Theorem 6 and 7 are tight in practice.

We firstly study the relationship between Q(π) and v in our model as shown in Figure 5. In our
experiments, we randomly select 2,000 samples from the ijcnn1 and covtype data set, and then group
them into v = 2, 3, · · · , 10 clusters, respectively. It can be observed that Q(π) almost increases
linearly with v on these two data sets, which shows consistency with theoretical results in (Giraud
and Verzelen, 2019) to some extent. Further, if we consider more clusters, such as v = 100, 200, · · ·
(in practice, this situation is rare in clustering algorithms with only 2,000 samples but over 100
clusters), Q(π) would increase slowly to approach to the upper bound Q(K) :=

∑n
i,j=1 |Kij |.

In Figure 5(c), we validate that the derived condition in Theorem 7 is useful for screening
non-support vectors. We follow with the above experimental setting with v = 10, and obtain the
approximation solution (ᾱ, F̄ ). Then we compute the gradient

(
∇αH̄(ᾱ, F̄ )

)
i

associated with
each sample and plot the support vectors (in green) and non-support vectors (in blue) as shown
in Figure 5(c). Under the condition of the condition (21) in Theorem 7, the non-support vectors
that satisfy

(
∇αH̄(ᾱ, F̄ )

)
i
≤ (B+B2)C

(
‖K̄i‖1+κ

)
= 442.3 can be directly recognized as non-

support vectors (marked in red) without solving the optimization problem. We find that in the total of
#SVs=214 (the number of support vectors) and #non-SVs=1786 (the number of non-support vectors),
there are 723 non-support vectors recognized by our Theorem 7. That means, over 40% non-support
vectors can be picked out, which demonstrates the effectiveness of our derived bound/condition in
Theorem 7.
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6.3 Regression

This section focuses on the proposed DANK model embedded in SVR for regression tasks. We
firstly conduct the experiments on several synthetic data sets, to examine the performance of our
method on recovering 1-D and 2-D test functions. Then we evaluate our model with representative
regression algorithms on real-world UCI data sets.7 The used evaluation metric here is relative mean
square error (RMSE) between the learned regression function ĝ(x) and the target label y over n data
points

RMSE =

∑n
i=1

(
ĝ(xi)− yi

)2∑n
i=1

(
yi − E(y)

)2 .
6.3.1 SYNTHETIC DATA

Here we test the approximation performance of our method on 1-D and 2-D test functions
compared with a baseline, the SVR with Gaussian kernel. The representative 1-D step function is
defined by

g(s, w, a, x) =

(
tanh

(
ax
w − ab

x
wc −

a
2

)
2 tanh

(
a
2

) +
1

2
+
⌊ x
w

⌋)
s ,

where s is the step hight, w is the period, and a controls the smoothness of the function g. In our
experiment, s, w and a are set to 3, 2 and 0.05, respectively. We plot the step function on [−5, 5]
as shown in Figure 6(a). One can see that the approximation function generated by SVR-CV (blue
dashed line) yields a larger deviation than that of our DANK model (red solid line). To be specific,
the RMSE of SVR is 0.013, while our DANK model achieves a promising approximation error with
a value of 0.004.

Apart from the 1-D function, we use a 2-D test function to test SVR-CV and the proposed
DANK model. The 2-D test function (Cherkassky et al., 1996) g(u, v) ∈ [−0.5, 0.5]× [−0.5, 0.5] is
established as

g(u, v) = 42.659
(

0.1 + (u− 0.5)
(
g1(u, v) + 0.05

))
,

where g1(u, v) is defined by

g1(u, v)=(u− 0.5)4− 10(u− 0.5)2(v− 0.5)2+ 5(v− 0.5)4 .

We uniformly sample 400 data points by g(u, v) as shown in Figure 6(b), and then use SVR-CV and
DANK to learn a regression function from the sampled data. The regression results by SVR-CV and
our DANK model are shown in Figure 6(c) and Figure 6(d), respectively. Intuitively, when we focus
on the upwarp of the original function, our method is more similar to the test function than SVR-CV.
In terms of RMSE, the error of our method for regressing the test function is 0.007, which is lower
than that of SVR-CV with 0.042.

6.3.2 REGRESSION RESULTS ON UCI DATA SETS

We compare the proposed DANK model with other representative regression algorithms on
eight data sets from the UCI database. Gonen (2012) extend BMKL to regression tasks, and thus we
include it for comparisons. Apart from SVR-CV and BMKL, the Nadaraya-Watson (NW) estimator

7. The data sets are available at http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/
binary.html
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DANK

(a) recovering a step function (b) a 2-D function

(c) recovered by SVR-CV (d) recovered by DANK

Figure 6: Approximation for 1-D and 2-D functions by SVR-CV and our DANK model.

Table 6: Comparison results of various methods on UCI regression data sets in terms of RMSE
(mean±std. deviation). The best performance is highlighted in bold. The RMSE on the training data
is presented by italic, and does not participate in ranking. Notation “•” indicates that the method is
significantly better than other methods via paired t-test at the 5% significance level.

Data set (d, n) BMKL NW SVR-CV DANK

Test Test Training Test Training Test

bodyfat (14, 252) 0.101±0.065 0.097±0.010 0.007±0.000 0.101±0.002 0.008±0.000 0.091±0.013
pyrim (27, 74) 0.512±0.115 0.604±0.115 0.013±0.010 0.678±0.255 0.007±0.004 0.457±0.143•
space (6, 3107) 0.248±0.107 0.308±0.004 0.226±0.144 0.261±0.112 0.106±0.067 0.202±0.114•

triazines (60, 186) 0.725±0.124 0.885±0.039 0.113±0.084 0.815±0.206 0.009±0.012 0.734±0.128
cpusmall (12, 8912) 0.133±0.004 0.037±0.009 0.037±0.004 0.104±0.002 0.001±0.000 0.114±0.003
housing (13, 506) 0.286±0.027 0.177±0.015• 0.085±0.049 0.267±0.023 0.069±0.013 0.218±0.013

mg (6, 1385) 0.297±0.013 0.294±0.010 0.163±0.076 0.407±0.118 0.134±0.055 0.303±0.058
mpg (7, 392) 0.187±0.014 0.182±0.012 0.095±0.087 0.193±0.006 0.061±0.010 0.173±0.008•

with metric learning (Noh et al., 2017) is also taken into comparison. The remaining experimental
settings follow with the classification tasks on the UCI database illustrated in Section 6.1.1.

Table 6 lists a brief statistics of these eight data sets, and reports the average prediction
accuracy and standard deviation of every compared algorithm. Moreover, we present the regression
performance of our DANK model and SVR-CV on the training data to show their respective model
flexibilities. We find that, the proposed DANK model exhibits more encouraging performance than
SVR-CV in terms of the RMSE on the training and test data. From the results on four data sets
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including bodyfat, pyrim, space, and mpg, we observe that our method statistically achieves the
best prediction performance. On the remaining data sets, our DANK model achieves comparable
performance with BMKL and NW.

7. Conclusion

In this work, we propose an effective data-adaptive strategy to enhance the model flexibility
for nonparametric kernel learning based algorithms. In our DANK model, a multiplicative scale
factor for each entry of the Gram matrix can be learned from the data, leading to an improved data-
adaptive kernel. As a result of such data-driven scheme, the model flexibility of our DANK model
embedded in SVM (for classification) and SVR (for regression) is demonstrated by the experiments
on synthetic and real data sets. Besides, by introducing the low-rank constraint/regularizer and the
bounded constraint/regularizer into our model, the learned kernel (matrix) exhibits a fast eigenvalue
decay, which would be helpful to obtain good generalization properties. Accordingly, the used
constraints/regularizers are able to provide a controllable trade-off between model flexibility and
complexity. Furthermore, our DANK model can be learned in an one-stage process with O(1/t2)
convergence rate due to the studied gradient-Lipschitz continuous property, where t is the iteration
number. That means, we can simultaneously train the SVM or SVR along with optimizing the data-
adaptive matrix by a projected gradient method with Nesterov’s acceleration. In addition, we develop
a decomposed-based scalable approach to make our DANK model feasible to large data sets, of
which the effectiveness has been verified by both experimental results and theoretical demonstration.

Extending our work to the case of deep kernel framework is an exciting avenue for future
research, not limited to the “shallow” kernel. When extending to a multi-layer framework, we could
optimize the parameters in a layer-by-layer way during the training process.

Acknowledgments

This work was partly supported by National Key Research Development Project (No.2018AAA0100702),
the National Natural Science Foundation of China (NSFC, No.61876107, U1803261, 61977046,
61973162), Committee of Science and Technology, Shanghai, China (No. 19510711200), the Fun-
damental Research Funds for the Central Universities (No: 30920032202), CCF-Tencent Open
Fund (No: RAGR20200101), and the “Young Elite Scientists Sponsorship Program” by CAST (No:
2018QNRC001).
We thank Prof. Johan A.K. Suykens for some helpful suggestions on this paper. Jie Yang and Xiaolin
Huang are corresponding authors.

A. Proofs for Gradient-Lipschitz Continuity

A.1 Proofs of Lemma 3

Proof Since J τ
2

is non-expansive (Ma et al., 2011), i.e., for any Ω1 and Ω2

‖J τ
2
(Ω1)− J τ

2
(Ω2)‖F ≤ ‖Ω1 −Ω2‖F ,
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with Ω1 := 11> + Γ(α1) and Ω2 := 11> + Γ(α2). Thereby, we have∥∥F (α1)− F (α2)
∥∥

F
≤
∥∥Γ(α1)− Γ(α2)

∥∥
F

=
1

4η

∥∥∥diag
(
α1

>Y
)
Kdiag

(
α1

>Y
)
−diag

(
α2

>Y
)
Kdiag

(
α2

>Y
)∥∥∥

F

=
1

4η

∥∥∥ diag
(
α1

>Y +α2
>Y

)
K diag

(
α1

>Y −α2
>Y

)∥∥∥
F

≤ 1

4η
‖K‖F

∥∥∥diag
(
α1

>Y +α2
>Y
)∥∥∥

F

∥∥∥diag
(
α1

>Y −α2
>Y

)∥∥∥
F

≤ ‖K‖F

4η

∥∥α1 +α2

∥∥
2

∥∥α1 −α2

∥∥
2
,

which yields the desired result.

A.2 Proofs of Theorem 4

For notational simplicity, denote the shortcut F1 for F (α1) and F2 for F (α2). We will use
them in the subsequent proof.
Proof The gradient of h(α) in Eq. (5) is computed as

∇h(α) = 1− Y
(
F (α)�K

)
Y α . (26)

It is obvious that F (α) is unique over the compact set F . Hence, according to the differentiable
property of the optimal value function (Penot, 2004), for any α1, α2 ∈ A, from the representation of
∇h(α) in Eq. (26), the function h(α) is proven to be gradient-Lipschitz continuous

‖∇h(α1)−∇h(α2)‖2 =
∥∥Y (F1 �K

)
Y α1 − Y

(
F2 �K

)
Y α2

∥∥
2

=
∥∥Y (F1−F2

)
�KY α1−Y

(
F2 �K

)
Y
(
α2−α1

)∥∥
2

≤
∥∥Y (F1 − F2

)
�KY α1

∥∥
2

+
∥∥Y (F2 �K

)
Y
(
α2 −α1

)∥∥
2

≤
∥∥(F1 − F2

)
�K

∥∥
2
‖α1‖2 +

∥∥F2 �K
∥∥

2
‖α1 −α2‖2

≤κ
∥∥F1 − F2

∥∥
F
‖α1‖2 + κ‖F2‖2‖α1 −α2‖2

≤ κ‖K‖F
4η

‖α1‖2
(
‖α1‖2 + ‖α2‖2

)
‖α1 −α2‖2 + κλmax(F2)‖α1 −α2‖2

≤κ
(
n+

3nC2‖K‖F
4η

)
‖α1 −α2‖2 ,

(27)

where the third inequality holds by ‖A � B‖2 ≤ ‖A‖2 maxij |Bij | when B is PSD (Johnson,
1990). The fourth equality admits due to Lemma 3 and F2 ∈ F . The last equality is achieved by
0 ≤ α ≤ C, ‖α‖22 ≤ nC2 and Lemma 1. Hence, we conclude the proof.
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A.3 Proofs of Theorem 10

Proof For any α̂1, α̌1, α̂2, α̌2 ∈ A, from the representation of ∇α̂h(α̂, α̌) in Proposition 9, we
have∥∥∥∂h(α̂, α̌1)

∂α̂

∣∣
α̂=α̂1

− ∂h(α̂, α̌2)

∂α̂

∣∣
α̂=α̂2

∥∥∥
2
=
∥∥(F1−F2

)
�K

(
α̂1−α̌1

)
−
(
F2 �K

)(
α̂2−α̌2−α̂1+α̌1

)∥∥
2

≤ κ
∥∥F1 − F2

∥∥
F
‖α̂1 − α̌1‖2 + κ‖F2‖2‖α̂2 − α̌2 − α̂1 + α̌1‖2

≤ κ
(
‖K‖F

4η
‖α̂1 − α̌1‖2‖α̂2 − α̌2 + α̂1 − α̌1‖2 + λmax(F2)

)
‖α̂2 − α̌2 − α̂1 + α̌1‖2

≤ κ
(

8nC2‖K‖F
4η

+ n+
nC2

4η
λmax(K)

)(
‖α̂2 − α̂1‖2 + ‖α̌2 − α̌1‖2

)
≤ κ

(
n+

9nC2‖K‖F
4η

)(
‖α̂2 − α̂1‖2 + ‖α̌2 − α̌1‖2

)
.

(28)

Similarly,
∥∥∥∂h(α̂1,α̌)

∂α̌

∣∣
α̌=α̌1
− ∂h(α̂2,α̌)

∂α̌

∣∣
α̌=α̌2

∥∥∥
2

can also be bounded. Combining these two inequalities,
we have

‖∇α̃1h(α̂1,α̌1)−∇α̃2h(α̂2,α̌2)‖2 ≤
∥∥∥∂h(α̂, α̌1)

∂α̂

∣∣
α̂=α̂1

− ∂h(α̂, α̌2)

∂α̂

∣∣
α̂=α̂2

∥∥∥
2

+
∥∥∥∂h(α̂1, α̌)

∂α̌

∣∣
α̌=α̌1

− ∂h(α̂2, α̌)

∂α̌

∣∣
α̌=α̌2

∥∥∥
2

≤ 2L
(
‖α̂2−α̂1‖2+‖α̌2−α̌1‖2

)
,

(29)

which completes the proof.

B. Proofs in Large Scale Situations

B.1 Proofs of Lemma 5

Proof The quadratic term with respect to α in Eq. (18) can be decomposed into

α>Y
(
F � K̄

)
Yα=

v∑
c=1

α(c)>Y (c,c)
(
F (c,c) �K(c,c)

)
Y (c,c)α(c) ,

and ‖F − 11>‖2F can be expressed as

‖F − 11>‖2F =
n∑

i,j=1

(Fij − 1)2 =
v∑
c=1

‖F (c,c) − 11>‖2F + Const ,

where the constant is the sum of non-block-diagonal elements of F̄ , and it does not affect the solution
of Eq. (20). Specifically, the positive semi-definiteness on F̄ (c,c) with c = 1, 2, . . . , v still guarantees
that the whole matrix F̄ is PSD. Besides, the constraint in Eq. (20) is also decomposable, so the
subproblems are separable and independent. As a result, the concatenation of their optimal solutions
yields the optimal solution of Eq. (20).
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B.2 Proofs of Theorem 6

Proof Denote the objective function in Eq. (20) with the Gram matrix K̄ as H̄(α,F ), its optimal
solution (ᾱ, F̄ ) is indeed a saddle point due to the max-min problem in Eq. (20). It is easy to check
H̄(α, F̄ ) ≤ H̄(ᾱ, F̄ ) ≤ H̄(ᾱ,F ) for any feasible α and F .

Defining H(α∗,F ∗) and H̄(α∗,F ∗), we can easily obtain

H̄(α∗,F ∗)−H(α∗,F ∗)=
1

2

n∑
i,j:π(xi)6=π(xj)

α∗iα
∗
jyiyjF

∗
ijKij , (30)

with F ∗ij := F ∗(xi,xj). Similarly, we have

H̄(ᾱ,F ∗)−H(ᾱ,F ∗)=
1

2

n∑
i,j:π(xi)6=π(xj)

ᾱiᾱjyiyjF
∗
ijKij .

Therefore, combining above equations, the upper bound of H(α∗,F ∗)−H(ᾱ, F̄ ) can be derived
by

H(α∗,F ∗) ≤ H̄(ᾱ,F ∗)− 1

2

n∑
i,j:π(xi)6=π(xj)

α∗iα
∗
jyiyjF

∗
ijKij

=H(ᾱ,F ∗)− 1

2

n∑
i,j:π(xi) 6=π(xj)

(
α∗iα

∗
j − ᾱiᾱj

)
yiyjF

∗
ijKij

≤H(ᾱ, F̄ )− 1

2

n∑
i,j:π(xi) 6=π(xj)

(
α∗iα

∗
j − ᾱiᾱj

)
yiyjF

∗
ijKij

≤H(ᾱ, F̄ ) +
1

2
BC2Q(π) ,

where the first inequality holds by H̄(α∗,F ∗) ≤ H̄(ᾱ,F ∗) and Eq. (30). The second inequality
admits by H(ᾱ,F ∗) ≤ H(ᾱ, F̄ ). Similarly, H(α∗,F ∗)−H(ᾱ, F̄ ) is lower bounded by

H(α∗,F ∗) = H̄(α∗,F ∗)− 1

2

n∑
i,j:π(xi)6=π(xj)

α∗iα
∗
jyiyjF

∗
ijKij

≥ H̄(α∗, F̄ )− 1

2

n∑
i,j:π(xi)6=π(xj)

α∗iα
∗
jyiyjF

∗
ijKij

= H(α∗, F̄ ) +
1

2

n∑
i,j:π(xi)6=π(xj)

α∗iα
∗
jyiyj(F̄ij − F ∗ij)Kij

≥ H(ᾱ, F̄ ) +
1

2

n∑
i,j:π(xi)6=π(xj)

α∗iα
∗
jyiyj(F̄ij − F ∗ij)Kij

≥ H(ᾱ, F̄ )− 1

2
BC2Q(π) ,

which concludes the proof that
∣∣H(α∗,F ∗)−H(ᾱ,F̄ )

∣∣ ≤ 1
2BC

2Q(π).
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B.3 Proofs of Theorem 7

Proof We decompose∇αH(α∗,F ∗) into(
∇αH(α∗,F ∗)

)
i

=
(
∇αH̄(ᾱ, F̄ )

)
i
+
(
Y (F ∗ � K̄)Y ∆α

)
i
+
(
Y (∆F � K̄)Y ᾱ

)
i

−
n∑

j:π(xi) 6=π(xj)

α∗jyiyjF
∗
ijKij

≤
(
∇αH̄(ᾱ, F̄ )

)
i
+B2κC+(B2−B1)κC +B2C‖K̄i‖1

≤
(
∇αH̄(ᾱ, F̄ )

)
i
+B2C‖K̄i‖1 + (B+B2)κC

≤
(
∇αH̄(ᾱ, F̄ )

)
i
+ (B +B2)C(‖K‖1 + κ) ,

whereKi denotes the i-th column of the kernel matrixK. We require
(
∇αH(α∗,F ∗)

)
i
≤ 0 when

ᾱi = 0. To this end, we need the right-hand of the above inequality is smaller than zero. As a result,
we can conclude that αi = 0 from the optimality condition of problem (18).
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Matthäus Kleindessner and Ulrike von Luxburg. Kernel functions based on triplet comparisons. In
Proceedings of Advances in Neural Information Processing Systems, pages 6810–6820, 2017.

Nils M. Kriege, Pierre Louis Giscard, and Richard C. Wilson. On valid optimal assignment kernels
and applications to graph classification. In Proceedings of Advances in Neural Information
Processing Systems, pages 1623–1631, 2016.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009.

Brian Kulis. Metric learning: a survey. Foundations and Trends in Machine Learning, 5(4), 2013.
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