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Abstract

Federated Semi-Supervised Learning (FSSL) aims to lever-
age unlabeled data across clients with limited labeled data
to train a global model with strong generalization ability.
Most FSSL methods rely on consistency regularization with
pseudo-labels, converting predictions from local or global
models into hard pseudo-labels as supervisory signals. How-
ever, we discover that the quality of pseudo-label is largely
deteriorated by data heterogeneity, an intrinsic facet of
federated learning. In this paper, we study the problem
of FSSL in-depth and show that (1) heterogeneity exacer-
bates pseudo-label mismatches, further degrading model
performance and convergence, and (2) local and global
models’ predictive tendencies diverge as heterogeneity in-
creases. Motivated by these findings, we propose a simple
and effective method called Semi-supervised Aggregation
for Globally-Enhanced Ensemble (SAGE), that can flexibly
correct pseudo-labels based on confidence discrepancies.
This strategy effectively mitigates performance degradation
caused by incorrect pseudo-labels and enhances consen-
sus between local and global models. Experimental results
demonstrate that SAGE outperforms existing FSSL methods
in both performance and convergence. Our code is available
at https://github.com/Jay-Codeman/SAGE.

1. Introduction

The rapid proliferation of mobile devices and the Internet of
Things (IoT) has led to unprecedented growth in distributed
data [10, 25]. This shift has created a pressing need for
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(a) Pseudo-labeling accuracy. (b) Test accuracy.

Figure 1. Pseudo-labeling accuracy and test accuracy under
varying levels of heterogeneity (smaller « indicates greater het-
erogeneity). In each communication round, all clients are trained
using FedSGD [29] for one local epoch. From (a), we observe
that as heterogeneity increases, pseudo-labeling accuracy declines.
In (b), the performance gap between SGD-FSSL and Centralized
FixMatch indicates the degradation caused by heterogeneity. We
observe that when incorrect pseudo-labels are removed, SGD-FSSL
can reach the level of centralized performance. In short, (a) and
(b) show that data heterogeneity can negatively impact both
model convergence and final test performance.

approaches that can leverage decentralized data while pre-
serving user privacy. Federated Learning (FL) addresses this
need by enabling collaborative model training directly on
edge devices, sharing only model updates rather than raw
data [16, 29]. Clients participating in FL typically possess
some labeled data and conduct supervised training locally.
However, when labeling costs are constrained, only a very
small portion of their data may be labeled [13]. To handle
this situation, Federated Semi-Supervised Learning (FSSL)
has emerged [12, 24], allowing clients to perform Semi-
Supervised Learning (SSL) on private data, leveraging a
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large amount of unlabeled data to improve the performance
of the global model. Current research assumes data hetero-
geneity both within and across clients, suggesting that data
distributions between clients are different (external imbal-
ance), and within each client, labeled and unlabeled data
may differ in distribution (internal imbalance) [2, 5, 50]. In
this context, biased labels fail to generalize effectively to
unseen unlabeled data.

Existing FSSL methods [8, 20, 44, 45] typically em-
ploy consistency regularization algorithms based on pseudo-
labeling, using high-confidence predictions from local or
global models as pseudo-labels for unlabeled data. However,
it cannot completely avoid pseudo-label mismatches even in
centralized environments due to the bias of self-training [3].
This inspires us to explore the following questions: (/) Does
heterogeneity exacerbate mismatches of hard pseudo-labels?
(2) What extent do incorrect hard pseudo-labels affect FSSL
model performance?

To quantify the impact of incorrect pseudo-labels on
model performance, we conduct quick experiments un-
der varying levels of data heterogeneity. As shown in
Fig. 1(a), with the increase of data heterogeneity (by the
value of «), the accuracy of pseudo-labels under SGD-FSSL
(FedSGD+FixMatch) significantly declines with a slower
convergence rate, exhibiting a clear deteriorating trend. For-
tunately, as shown in Fig. 1(b), SGD-FSSL’s accuracy im-
proves substantially once incorrect pseudo-labels are manu-
ally removed, approaching the level of centralized FixMatch.
These observations suggest that hard pseudo-labels act as
aggressive supervisory signals, and their negative impact
becomes especially embodied under a high level of data
heterogeneity. While it is unrealistic to directly eliminate
these incorrect pseudo-labels, we could consider moderately
correcting them and thus mitigate their harmful effects as
much as possible.

To address the problem of FSSL with the above find-
ings, we propose a new FSSL approach called SAGE (Semi-
supervised Aggregation for Globally-enhanced Ensemble)
to handle the scenario where the clients hold partially labeled
data, apply flexible pseudo-label corrections based on the
confidence perspective of the global model to mitigate the
effect of erroneous hard pseudo-label signals. Firstly, we in-
troduce a collaborative pseudo-label generation mechanism.
This approach leverages the global model to guide each
client, employing global distribution awareness to compen-
sate for the scarcity of pseudo-labels in local minority classes.
Secondly, we propose a dynamic, confidence-driven pseudo-
label correction mechanism, inspired by an intriguing ob-
servation: as heterogeneity increases, the confidence dis-
crepancy between local and global models gradually widens.
Accordingly, we adjust the contributions of local and global
hard pseudo-labels to the final pseudo-label based on their
confidence discrepancies. This mechanism mitigates the im-

pact of potentially incorrect hard pseudo-labels. Experiments

show that SAGE can significantly improve the performance

and convergence of the FSSL model.
The main contributions of this paper are as follows:

* This paper reveals an intriguing phenomenon: in FSSL,
greater data heterogeneity results in a larger confidence
discrepancy between the pseudo-labels generated by local
and global models. Accordingly, we offer an explanation
for the dynamic relationship between data heterogeneity
and confidence discrepancies during training.

* We propose an FSSL method, SAGE, that can evaluate
and flexibly correct the pseudo-labels generated by local
and global models based on their confidence discrepancies
under different levels of data heterogeneity, alleviating
the negative impact of aggressive hard pseudo-labeling
strategies.

* SAGE outperforms existing FSSL methods in performance
and convergence across multiple datasets, demonstrating
robustness under varying heterogeneous distributions. Ad-
ditionally, SAGE can serve as a plugin to enhance the
performance of existing FSSL methods.

2. Related Work
2.1. Non-IID in Federated Learning

FL is a distributed machine learning approach enabling
collaborative training across clients without sharing raw
data[14, 16, 29]. Non-IID data presents a major challenge in
FL, as differences in data distributions across clients signifi-
cantly impact the training of federated models [21, 48, 51].
Numerous studies have explored the mechanisms underly-
ing heterogeneous data’s effect and proposed solutions like
classifier calibration [23, 28] and client selection [4, 38]
to alleviate performance degradation. For example, Fed-
DECORR [36] addresses dimensional collapse in FL due
to non-1ID data by regularizing local models; FedCal [31]
reduces global calibration error by applying client-specific
calibration factors, while HiCS-FL [4] estimates statistical
heterogeneity by analyzing client updates in the output layer
of the network, enabling client clustering and selection. How-
ever, these methods have yet to analyze non-IID mechanisms
in federated scenarios with semi-supervised learning.

2.2. Semi-Supervised Learning

SSL enhances model generalization by combining limited
labeled data and abundant unlabeled data, reducing depen-
dence on labeled samples [33, 49]. Current SSL approaches
fall primarily into two categories: consistency regulariza-
tion and pseudo-labeling strategies. Consistency regular-
ization [1, 34, 40] assumes that a model should yield con-
sistent outputs under different perturbations of the same
input, using techniques like perturbation augmentation and
contrastive loss to constrain the model. Pseudo-labeling
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strategies [11, 18, 32], meanwhile, use the model’s own pre-
dictions as labels for unlabeled samples. Recent methods
like FixMatch [37] efficiently integrate consistency regu-
larization and pseudo-labeling through a lightweight self-
training mechanism, with several studies refining this ap-
proach [19, 39, 41, 43]. However, pseudo-label generation
in self-training methods relies heavily on prediction confi-
dence, and in the heterogeneous setting of FL, the quality
of self-generated pseudo-labels can vary greatly, making
centralized SSL methods challenging to apply directly to FL
scenarios.

2.3. Federated Semi-Supervised Learning

FSSL settings fall into three categories: (1) Label-at-
Server [8,9, 12, 15, 42], where the server holds some labeled
data while clients possess only unlabeled data; (2) Label-
at-All-Client [12, 47], where each client contains a small
amount of labeled data alongside a large amount of unlabeled
data; and (3) Label-at-Partial-Client [20, 24, 26, 27, 46],
where only a few clients have fully labeled data, while most
have only unlabeled data. Our study focuses on the Label-at-
All-Client setting. Recent research [2, 5, 35, 44, 50] builds
on FixMatch, focusing on pseudo-label selection or debi-
asing. However, these methods cannot avoid the impact of
incorrect hard pseudo-labels in heterogeneous scenarios.

3. Problem Formulation

This study examines the impact of data heterogeneity on
FSSL. We consider both intra-client and inter-client data
heterogeneity in FSSL scenarios, with not only external
imbalance across clients but also internal imbalance between
labeled and unlabeled distributions within each client. Let
the set of clients be C = {C4,Cy,...,Ck}, where each
client C}, trains a local model f; ; parameterized by 0, .
During each communication round, a subset of online clients
Cym C C is randomly selected to participate in training,
and the global model f, aggregates the uploaded model
parameters from the clients, obtaining the global parameters
0, as 0, = Zcm eCur W 0;,m, where w,, represents the
weight for client C,,,, determined by the proportion of its
local dataset size relative to the total number of samples
across all participating clients.

Each client C) maintains a private partially labeled
dataset, consisting of labeled data D}, = {(x;, yz)}f\E1 and
unlabeled data D} = {u; 5\51, with N < N, both D}
and D} demonstrate class imbalance across the label set
Y. Specifically, there exists a significant shift between the
distribution Q3 (y) of the labeled set and the ideal uniform
distribution U = ﬁ ie., KL(Q;(y) || U) > 0. The
unlabeled set D} is assumed to follow the imbalanced distri-
bution Q! (y). For simplicity, we will omit the client index
k in the following sections.
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Figure 2. Differences of the pseudo-labeling ability between local
and global models on CIFAR-100. (a) shows the distributions of
pseudo-labels with confidence greater than 0.99. As heterogeneity
increases (with smaller «), the local and global models exhibit
opposite trends. The difference is also reflected in the number of
pseudo-labels in (b).

4. Proposed Method
4.1. Preliminary Study

Our goal is to moderately correct potentially incorrect
pseudo-labels to mitigate their impact, with the local and
global models providing two distinct perspectives on pseudo-
labels. To this end, we conduct exploratory experiments
to investigate the pseudo-labeling differences between lo-
cal and global models as data heterogeneity increases. We
analyze the confidence distribution of pseudo-labels from
both models and track the number of pseudo-labels assigned
throughout training. As shown in Fig. 2(a), the confidence
of the local model’s pseudo-labels shifts more toward the
high-confidence region, while the global model exhibits the
opposite trend. Additionally, as shown in Fig. 2(b), the lo-
cal model assigns a higher number of pseudo-labels than
the global model in the early stages of training. More ex-
ploratory experimental results are shown in Appendix B.1.
Based on these experiments, we summarize this phenomenon
through two key observations:

Observation 1. As heterogeneity intensifies, the pseudo-
label predictions of the local model grow more confident,
while those of the global model become more conservative.

Observation 2. The local model exhibits a higher uti-
lization rate of unlabeled data in the early training stages
compared to the global model.

We further analyze the rationale behind these observations
to explain why increasing heterogeneity leads to differing
predictive tendencies in pseudo-labels between local and
global models. The detailed derivation towards the above
analysis is provided in Appendix B.2 and B.3. The analysis
is as follows:

Remark 1. The entropy of the local model’s predictive
distribution, H (p(y|x,D")), is influenced by the entropy
of the prior distribution H (p(y|D")) and is related to the
entropy of the local data distribution H(Q"(y)).
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Figure 3. Framework of the proposed SAGE. This framework demonstrates the pseudo-labeling strategy of SAGE in the label-at-all-client
scenario. The global model’s pseudo-labels provide supplementary information when the local model lacks confidence and are dynamically
adjusted based on confidence discrepancies between the local and global models.

Remark 2. The global model’s high-confidence predic-
tions increasingly focus on classes with higher consistency
across clients, demonstrating more conservative behavior.

They suggest that the local model tends to overfit when
faced with Non-IID data, relying excessively on its imbal-
anced distribution and being overly confident in its predic-
tions, while the global model exhibits a lack of confidence
as it attempts to create a model that can adapt to the data
distribution of all clients.

Based on the above analysis, the pseudo-labeling strate-
gies of the local and global models exhibit substantial dis-
crepancies, offering an opportunity to mitigate the impact
of potentially incorrect pseudo-labels by leveraging these
discrepancies. To address this, we propose Collaborative
Pseudo-Label Generation (CPG) and Confidence-Driven
Soft Correction (CDSC), improving unsupervised data uti-
lization while ensuring pseudo-label quality and using flexi-
ble pseudo-labels to avoid the radical impacts of hard pseudo-
labels. The framework of SAGE approach is shown in Fig. 3.

4.2. Collaborative Pseudo-Label Generation

As discussed above, the pseudo-labeling abilities of the lo-
cal model f; and the global model f, have their respective
strengths and weaknesses: f; is trained on local data, gener-
ating a large number of pseudo-labels with high utilization
of unsupervised data, but the accuracy of these pseudo-labels
cannot be guaranteed. On the other hand, f, generates fewer
pseudo-labels but has a better understanding of the over-
all data distribution, compensating for the shortcomings of

the local model. It can offer robust pseudo-label support
to the local model for minority classes, thereby mitigating
training errors resulting from the exclusive reliance on lo-
cal pseudo-labeling strategies. Therefore, we anticipate that
integrating the strengths of both models will reduce train-
ing errors caused by reliance solely on local pseudo-labels,
thereby enhancing the overall pseudo-labeling accuracy.

Therefore, we propose Collaborative Pseudo-Label Gen-
eration (CPG) to ensure pseudo-labeling accuracy while
enhancing the utilization of unlabeled data. For each unsu-
pervised sample u € D“, we compute the weakly augmented
prediction outputs of the local model and the global model,
denoted as p;(u) = fi(a(u)) and p,(u) = fy(a(u)), where
a(u) represents the weak augmentation (e.g., using only flip-
and-shift data augmentation) applied to the unsupervised
sample u. We will omit u in the following text to avoid
redundancy. We initially assign pseudo-labels based on the
predictions of f; and fg:

arg max(p;)
§ = { argmax(py) else if max(py) > 7, (1)
N/A otherwise,

if max(p;) > T,

where 7 is the confidence threshold. This strategy, derived
from Observation 2, prioritizes obtaining pseudo-labels from
the local model and supplements them with predictions from
the global model when local confidence is insufficient. This
approach ensures pseudo-label quality while further enhanc-
ing the utilization of unlabeled data. Building on this, we
will further correct pseudo-labels.
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4.3. Confidence-Driven Soft Correction

CPG enables local models to maintain a high utilization rate
of unlabeled data while compensating for the scarcity of
pseudo-labels in local minority classes. Building on this,
we further aim to utilize the conservative predictions of the
global model to mitigate the impact of incorrect local pseudo-
labels. From Observation 1, we can infer that: as heterogene-
ity intensifies, the confidence discrepancy between the local
and global models widens. This insight suggests that the
confidence discrepancy between the local and global model
can serve as a measure of local imbalance in the predicted
class. Specifically, a larger confidence difference between
fq and f indicates a greater discrepancy between the local
and global distributions for the locally predicted pseudo-
label class of that sample. In such cases, we assign greater
weight to the global model to ensure pseudo-label robust-
ness. Conversely, when the confidence discrepancy between
fq and f; is small, it suggests that the local pseudo-label
predictions are reliable. In this scenario, the local model is
able to capture the characteristics of the local distribution
during the current training iteration. Below, we provide a
detailed explanation of the confidence-driven soft correction
mechanism.

First, we calculate the confidence difference AC' between
fiand f, to characterize the discrepancy between the models:

AC = | max(p;) — max(py)|. )

Then, based on AC, we dynamically adjust the contribution
of each model to the pseudo-labels. We define a dynamic
correction coefficient A(-) to regulate the contribution of the
local and global model pseudo-labels. As AC increases, we
should decrease the influence of local pseudo-labels and rely
more on the conservative predictions of the global model.
Therefore, the correction coefficient takes the form of an
exponential decay:

A =exp(—k-AC), 3)

where k is a hyperparameter that controls the sensitivity of
the correction coefficient.

Next, based on A, we perform linear interpolation be-
tween the predictions of f; and f,. We first convert the local
pseudo-label and the global predicted class into one-hot
form:

0; = one-hot(arg max(p;)), 4
04 = one-hot(arg max(p,)). 5)

Then the corrected local pseudo-label is obtained through
linear interpolation of them:

=6+ (1—=)\) -0, (©6)

Based on this linear correction, when the confidence pre-
dictions of f; and f,; are more consistent, we rely more on

fi’s prediction; when there is a larger discrepancy, we rely
more on f,’s prediction. The final pseudo-label § can be
expressed as:

7 if max(p;) > T,
7 = § argmax(p,) else if max(py) > T, 7
N/A otherwise.

Through dynamic and flexible correction, CDSC mitigates
the radical impact of hard pseudo-labels.

4.4. Loss Functions

For a batch of unlabeled samples B,,, we use KL divergence
to compute the unsupervised loss between the corrected
soft pseudo-label and the local model’s strongly augmented
prediction for the sample u, denoted as p; (A(u)):

L= r(paw]i). @

where A(u) refers to RandAugment with random magni-
tude [6]. For a batch of labeled samples B, we calculate the
cross entropy between the local model’s predictions and the
ground-truth labels: Ly = ﬁ > xen, Lcrmi(yx,y)),
where Lo is the cross-entropy loss. The final loss is a
combination of supervised and unsupervised loss:

LZLS"’Hu'Lu- &)

We follow the setup in FixMatch [37] where L, and L, have
the same weight, i.e., i, = 1.

The process of SAGE is presented in Algorithm | in Ap-
pendix A. Using the CPG and CDSC components, SAGE
leverages the high utilization of the local model and the bal-
anced distribution of the global model, enabling a “safer” uti-
lization of unlabeled data. This approach mitigates the harm-
ful effects of erroneous hard pseudo-labels and enhances the
consensus between local and global models.

5. Experiments

5.1. Experimental Setup

Datasets. We evaluated the SAGE method on the CIFAR-
10, CIFAR-100, SVHN, and CINIC-10 datasets [7, 17, 30].
For each dataset, we divided the labeled and unlabeled
datasets per class with label proportions of 10% and 20%.
We focus on evaluating the performance of methods under
more challenging conditions of heterogeneous data. In line
with previous work in the FSSL field [2, 5, 50], we simulated
both inter-client and intra-client imbalances by sampling la-
beled and unlabeled data from a Dirichlet distribution Dir(c)
and allocating them equally to each client. We simulated
three levels of heterogeneity: o € {0.1,0.5,1}, A smaller «
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Table 1. Experimental results on CIFAR-10, CIFAR-100, SVHN and CINIC-10 under 10% label. Bold text indicates the best result, while
underlined text indicates the second-best result. The last row presents the improvement of SAGE over existing methods.

CIFAR-10 CIFAR-100 SVHN CINIC-10
Methods

a=01 a=05 a=1 a=01 a=05 a=1 a=01 a=05 a=1 a=01 a=05 a=1

SL methods
FedAvg 69.60 68.88 69.39 34.08 33.21 35.31 82.40 83.40 78.60 57.17 60.09 61.54
FedProx 68.58 69.53 68.00 34.20 34.07 34.88 81.67 83.77 83.77 58.05 60.71 62.82
FedAvg-SL  90.46 91.24 91.32 67.98 68.83 69.10 94.11 94.41 94.40 77.82 80.42 81.29

SSL methods
FixMatch-LPL. ~ 82.98 84.36 84.69 49.32 49.67 49.55 89.68 91.33 91.91 68.02 70.67 72.69
FixMatch-GPL. ~ 84.56 86.05 86.66 48.96 51.80 52.19 90.50 91.94 92.31 71.67 73.26 74.80
FedProx+FixMatch 84.60 85.49 86.95 48.42 48.51 49.33 90.46 91.36 91.25 68.62 70.67 72.69
FedAvg+FlexMatch 84.21 86.00 86.57 4991 51.39 51.79 52.58 55.59 60.50 69.20 71.87 73.42

FSSL methods
FedMatch [12] 75.35 77.86 78.00 32.23 31.49 35.75 88.63 89.20 89.23 51.94 56.27 70.22
FedLabel [5] 62.85 79.46 79.17 50.88 52.21 52.38 89.31 91.51 91.16 67.64 70.56 72.80
FedLoke [44] 83.32 82.22 81.87 39.29 40.46 39.96 89.94 90.00 89.45 59.03 61.60 63.21
FedDure [2] 84.60 85.88 87.34 48.27 51.09 50.79 92.87 93.49 94.19 70.86 73.37 74.89
FedDB [50] 83.99 85.28 87.49 48.43 50.11 51.55 92.56 93.00 93.14 69.44 72.60 73.61
SAGE (ours) 87.05 88.05 89.08 54.18 55.82 56.06 93.85 94.27 94.65 74.59 75.74 76.68
1245 1200 1159 133 1361 1368 1098 1078 1046 1292 1237 1179

value indicates higher data heterogeneity. The specific data
distribution is shown in the visualization of Fig. 16 in Ap-
pendix E. For all methods, we follow the FixMatch setup and
add labeled samples without labels into the unlabeled dataset
to enhance sample diversity in the unsupervised dataset. We
compared the following methods in our experiments:

* FL methods (FedAvg [29], FedProx [22], FedAvg-SL):
For FedAvg and FedProx, models are trained via super-
vised federated learning using only the labeled dataset.
FedAvg-SL denotes the standard federated training of Fe-
dAvg on the fully labeled dataset, indicating the ideal
upper bound.

* Vanilla combinations: These methods simply com-
bine SSL methods with FL methods. Notably, for
FedAvg+FixMatch, we further subdivided it into “lo-
cal model pseudo-labeling” and “global model pseudo-
labeling” to illustrate differences in pseudo-labeling capa-
bilities between local and global models, abbreviated as
FixMatch-LPL and FixMatch-GPL.

* FSSL methods: SAGE is compared with state-of-the-art
FSSL methods, including FedMatch [12], FedLoke [44],
FedLabel [5], FedDure [2], and FedDB [50]. All of them
follow the Label-at-All-Client scenario.

Implementation Details. We assume a total of |C| = 20
clients participating in FL, with |Cps| = 8 clients randomly
selected each round for global training. ResNet-8 serves
as the backbone network locally, with the number of local
epochs setto £ = 5 and the local learning rate set to v = 0.1.

Except for FlexMatch, the pseudo-label confidence threshold
for all other methods is set to 7 = 0.95. Unless otherwise
specified, SAGE follows the FixMatch setup in this section.
All experiments are conducted three times, with standard
deviations shown as error bars in the figures.

5.2. Performance Comparison

Tab. 1 presents the accuracy of various methods across dif-
ferent datasets and under Non-IID settings with 10% label.
Under inter-client and intra-client imbalances, FixMatch-
GPL outperforms FixMatch-LPL because the global model’s
pseudo-label generation is unaffected by local data distribu-
tions. Most existing FSSL methods based on hard pseudo-
labels provide limited performance improvements and, in
some cases, perform worse than the vanilla FixMatch method
on certain datasets. In contrast, SAGE significantly mitigates
the impact of potentially incorrect pseudo-labels by integrat-
ing local and global model predictions, achieving the highest
test accuracy across all datasets, with more substantial im-
provements as the heterogeneity increases. On the SVHN
dataset, SAGE even reaches the performance of fully labeled
FedAvg-SL. We attribute this improvement to the enhanced
generalization brought by data augmentation. Other labeling
ratios are provided in Tab. 8 in Appendix D.2, where SAGE
also achieves the best performance.

5.3. Convergence Rate

As shown in Fig. 4 and Tab. 2, SAGE significantly speeds
up the convergence rate and test accuracy on the CIFAR-100
dataset when a = 1 (Other heterogeneous scenarios are simi-
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Figure 4. Convergence curves of SAGE and
other baselines on CIFAR-100 with o = 1.

Table 2. Comparison of convergence rates between SAGE and

other baseline methods with o = 1.

Figure 5. Ablation on Dynamic Correction
Coefficient \.

baseline methods.

Figure 6. Comparison of pseudo-label counts
on CIFAR-100.

Table 4. Performance gains brought by SAGE as a plugin to other

Acc. 30% 40% 50% Methods CIFAR-100 SVHN
Method Round| Speedupt Round| Speedupt Round| Speedupt ethods a=01 a=05 a=1 a=01 a=05 a=1
LPL 118 x1.00 267 x1.00 527 x1.00 FixMatch 49.32 49.67 4955  90.46 9136  91.25
GPL 94 x1.26 183 x1.46 390 x1.35 5418 5582 5606 93.85 9427  94.65
FedLabel 91 x130 164  x163 341 xI155 *SAGE 1486 teds 1651 1339 1291 1340
FedDB 103 x1.15 237 x1.13 418 x1.26
FedDure 95 124 182 147 450 117 FlexMatch  49.91 5139 5179 5258 5559  60.50
SAGE 56 x2.11 112 x2.38 242 x2.18 +SAGE 1984 514l 5206 9336 9426  93.86
1007 1002 1027 14078 13867 133.36
FedDure 4827 51.09 5079 9287 9349  94.19
Table 3. Module ablation studies on CPG and CDSC. +SAGE 54.13 5623 5584  93.96 94.11 94.31
1586 1514 1505 1109 1062 10.12
CIEARI00 CINIC10 FedDB 4843 50.11  51.55 9256  93.00 94.14
PG CDSC 01 a=05 a=1 a=01 a=05 a= LSAGE 48.33 5027  51.84 9251 93.16  93.42
29
5 B 55 0 06 6 1010 1016 1029 1005 1016 1028
v 52.25 5385 5350 7219 7314 7391
v 5243 53.17 5348 7283 7322 7410
v v 5418 5582 5606 7459 7574  76.68

lar and are provided in Appendix D.1). Compared to baseline
and existing FSSL methods, SAGE achieves higher accuracy
within fewer communication rounds. Existing FSSL meth-
ods based on hard pseudo-label strategies amplify the impact
of incorrect pseudo-labels, leading to greater divergence of
local models under non-IID conditions. In contrast, SAGE
dynamically corrects pseudo-labels using the global model,
establishing stronger consensus between local and global
models, thereby accelerating model convergence in the early
stages of training.

5.4. SAGE as a Plug-in Approach

The CPL and CDSC components of SAGE function
as pseudo-labeling mechanisms agnostic to local semi-
supervised training specifics, allowing integration as plugins
into hard pseudo-labeling-based SSL and FSSL methods. As
shown in Tab. 4, SAGE improves the performance of existing
methods. This is especially beneficial for FlexMatch, which,
due to its strategy of dynamically adjusting class thresholds,
is prone to overfitting under class imbalance, a problem ex-

acerbated in non-IID settings. SAGE mitigates this issue by
incorporating global information into the pseudo-labeling
strategy, resulting in significant performance improvements
for FlexMatch on the SVHN dataset.

5.5. Ablation Study

In this section, we conduct an in-depth ablation study to
demonstrate the contributions of CPG and CDSC within
SAGE. More ablation studies on hyperparameter tuning and
experiments under different heterogeneity are provided in
Appendix. C.

Effectiveness of Components. We first validated the con-
tributions of CPG and CDSC through ablation experiments.
FedAvg+FixMatch-LPL, the vanilla combination of FedAvg
with FixMatch, served as the baseline method. Experiments
were conducted on client data with different levels of data
heterogeneity o = {0.1, 0.5, 1} to assess component effec-
tiveness. As shown in Tab. 3, each component consistently
enhances model performance under different levels of het-
erogeneity. With both CPG and CDSC included, SAGE
achieves the best performance gain.
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Figure 7. In-depth ablation of CPG on CIFAR-100. CPG signifi-
cantly increases the utilization of unlabeled data of SAGE while
ensuring pseudo-labeling accuracy.

Pseudo-label Gains from CPG. We monitor the num-
ber of pseudo-labels generated by SAGE and the baselines
throughout training. As shown in Fig. 6, with the enhance-
ment provided by CPG, SAGE consistently maintains a lead
in pseudo-label count, a key factor in SAGE’s performance
improvement. We conducted a further analysis of the perfor-
mance gains from CPG. As shown in Fig. 7, compared to a
single local pseudo-labeling strategy, CPG generates high-
accuracy pseudo-labels early in training. With the assistance
of the global model, CPG effectively compensates for the
scarcity of pseudo-labels in local minority classes, further
enhancing the utilization of unlabeled data.

Dynamic Correction Coefficient \. In CDSC, the cor-
rection coefficient A(z) quantifies prediction discrepancy
between local and global models, balancing the confident
predictions of the local model with the conservative pre-
dictions of the global model. To evaluate its effectiveness,
we compared the dynamic coefficient against fixed values
of A (ranging from O to 1). When A = 0, the method re-
duces to FixMatch-LPL, relying only on local pseudo-labels;
when A = 1, it relies solely on global pseudo-labels, as in
FixMatch-GPL. Experimental results in Fig. 5 demonstrate
that regardless of the fixed value of A\, the model’s perfor-
mance surpasses both FixMatch-LPL and FixMatch-GPL,
but does not achieve the effectiveness of the dynamic \. This
finding suggests that assigning a greater global weight to
samples with larger confidence discrepancies can more ef-
fectively mitigate the impact of potentially incorrect pseudo-
labels and thus improve model performance. More ablation
studies on A are provided in Appendix C.2.

CDSC Enhances Consensus Between Global and Local.
As stated in Remark 1, existing FSSL methods based on
hard pseudo-labels cause local models to fit local biased
distributions more aggressively, amplifying the discrepancy
between global and local models. Fig. 8 presents a histogram
of predicted class rankings, demonstrating the improvement

FixMatch-LPL FixMatch-GPL
4 SAGE 4 SAGE

0 5 10 15
Class Class

(a) Ranking in global predictions. (b) Ranking in local predictions.

Figure 8. Consensus ablation between local and global models. (a)
displays the ranking statistics of the local model’s pseudo-labels
within the global model’s class predictions, while (b) displays the
ranking statistics of the global model’s pseudo-labels within the
local model’s class predictions.

in predictive consensus achieved by SAGE. Taking Fig. 8(a)
as an example, after applying SAGE the pseudo-label predic-
tions of the local model tend to rank higher within the global
model’s class predictions. Similarly, Fig. 8(b) exhibits that
the predictions of the global model exhibit the same trend.
This indicates that SAGE effectively reduces prediction dis-
crepancies between local and global models, thereby enhanc-
ing their consensus and accelerating the model convergence.

6. Conclusion

In this study, it was initially observed that increasing hetero-
geneity leads to pseudo-label mismatches in FSSL, which
subsequently affect model performance and convergence.
Another intriguing phenomenon was discovered: as hetero-
geneity increases, the confidence discrepancy between the
local and global models expands.We analyzed the underly-
ing rationale and, based on this observation, proposed a new
approach called SAGE.SAGE leverages confidence discrep-
ancies for flexible pseudo-label correction, enhancing the
utilization of unlabeled data, mitigating the adverse effects
of incorrect pseudo-labels, and strengthening the consen-
sus between local and global models. In future work, we
aim is to extend the applicability of SAGE to ensure ro-
bust performance across different FSSL scenarios, including
Label-at-Partial-Client and Label-at-Server settings.Client
and Label-at-Server settings.
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