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Nowadays, class-mismatch problem has drawn intensive attention in Semi-Supervised Learning (SSL), where the classes

of labeled data are assumed to be only a subset of the classes of unlabeled data. However, in a more realistic scenario, the

labeled data and unlabeled data often share some common classes while they also have their individual classes, which leads

to an łintersectional class-mismatchž problem. As a result, existing SSL methods are often confused by these individual

classes and sufer from performance degradation. To address this problem, we propose a novel Dynamic Weighted Adversarial

Learning (DWAL) framework to properly utilize unlabeled data for boosting the SSL performance. Speciically, to handle the

inluence of the individual classes in unlabeled data (i.e., Out-Of-Distribution classes), we propose an enhanced adversarial

domain adaptation to dynamically assign weight for each unlabeled example from the perspectives of domain adaptation

and a class-wise weighting mechanism, which consists of transferability score and prediction conidence value. Besides, to

handle the inluence of the individual classes in labeled data (i.e., private classes), we propose a dissimilarity maximization

strategy to suppress the inaccurate correlations caused by the examples of individual classes within labeled data. Therefore,

our DWAL can properly make use of unlabeled data to acquire an accurate SSL classiier under intersectional class-mismatch

setting, and extensive experimental results on ive public datasets demonstrate the efectiveness of the proposed model over

other state-of-the-art SSL methods.

CCS Concepts: · Computing methodologies → Semi-supervised learning settings; Image representations; Neural

networks.

Additional Key Words and Phrases: Semi-supervised learning, intersectional class mismatch, adversarial domain adaptation,

dissimilarity maximization

This research is supported by NSF of China (Nos: 62336003, 12371510, 62172228, 62376153), NSF of Jiangsu Province (No: BZ2021013), NSF

for Distinguished Young Scholar of Jiangsu Province (No: BK20220080), the Fundamental Research Funds for the Central Universities (Nos:

30920032202, 30921013114), CAAI-Huawei MindSpore Open Fund, and ł111ž Program (No: B13022).

Corresponding authors: Chen Gong (chen.gong@njust.edu.cn) and Tao Zhou (taozhou.dreams@gmail.com).
Authors’ addresses: Mingyu Li, Nanjing University of Science and Technology, Nanjing, Jiangsu, China; Tao Zhou, Nanjing University of

Science and Technology, Nanjing, Jiangsu, China; Zhuo Huang, The University of Sydney, Sydney, Australia; Jian Yang, Nanjing University of

Science and Technology, Nanjing, Jiangsu, China; Jie Yang, Shanghai Jiao Tong University, Shanghai, China; Chen Gong, Nanjing University

of Science and Technology, Nanjing, Jiangsu, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1551-6857/2023/12-ART

https://doi.org/10.1145/3635310

ACM Trans. Multimedia Comput. Commun. Appl.

https://doi.org/10.1145/3635310
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3635310&domain=pdf&date_stamp=2023-12-02


2 • Li et al.

…
cat dog bull horsegoat

(a)Traditional SSL

pig bird

(c) SSL under intersectional class-mismatch setting

…
cat dog bull horsegoat

(b) SSL under class-mismatch setting

pig bird

…
cat dog bull horsegoat

Private Classes Shared Classes

Class space of labeled set Class space of unlabeled set

OOD Classes

OOD ClassesID Classes

Fig. 1. Illustration of diferent SSL setings. (a) In traditional SSL, the labeled and unlabeled sets share the same class space.
(b) In SSL with traditional class mismatch, the class space of the labeled set is a subset of that of the unlabeled set. (c) In SSL
with intersectional class mismatch, both labeled and unlabeled sets contain the classes that the other does not have. Some
relevant notions such as łID Classesž, łOOD Classesž, łShared Classesž and łPrivate Classesž are annotated in the figure.

1 INTRODUCTION

Mannually labeling lots of data for training a supervised machine learning or computer vision algorithm is often
prohibitive due to the unafordable human or monetary costs, so Semi-Supervised Learning (SSL) is proposed as
a useful way to solve the labeling data shortage problem [7]. SSL aims to efectively use scarce labeled data and
abundant unlabeled data to train an accurate classiier, which is capable of classifying new target examples with
known classes.

Semi-Supervised Learning (SSL) has received increasing attention over the past decades as it can use massive
unlabeled data to improve model performance when the labeled data is scarce [2, 3, 14, 22, 23, 26ś28, 38, 49, 52,
65, 66, 68, 69]. Nowadays, the study on SSL has achieved signiicant progress because of the application of deep
neural networks which is good at representing data and discovering data structure. There are usually three typical
strategies to train deep semi-supervised learning classiiers, namely entropy minimization [22, 36], consistency
regularization [35, 40, 45, 48, 50, 51], and data augmentation [18, 42, 49, 62].
However, the SSL approaches mentioned above are based on an assumption that labeled and unlabeled sets

share the same class space (i.e., each unlabeled example must belong to one of the known classes), as shown
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in Fig. 1(a). Mathematically, they assume that C� = C� , where C� and C� denote the class spaces of labeled
and unlabeled sets, respectively. However, it is improper, as in reality, C� is usually unknown. Under many
circumstances, there exists C� ∩ C� = C� , which leads to a łclass mismatchž problem [44] (see Fig. 1(b)). In this
situation, existing state-of-the-art SSL algorithms often sufer performance degradation signiicantly.
In order to deal with the traditional class-mismatch problem of SSL, some works focus on leveraging In-

Distribution (ID) data while trying to weaken the negative impacts caused by the Out-Of-Distribution (OOD) data.
Here the ID data refer to the unlabeled data of which the ground-truth labels belong to the ID Classes, and OOD
data denote the unlabeled data of which the ground-truth labels belong to the OOD Classes (see Fig. 1(b)). Several
representative works, e.g., Uncertainty-Aware Self-Distillation (UASD) [8], Safe Deep Semi-Supervised Learning
(DS3L) [24], Multi-part Curriculum (MTC) [61], OpenMatch (OM) [47], Trash to Treasure (T2T) [25],Class-aware
Contrastive SSL (CCSSL) [58] and Out-of-distributed Semantic Pruning (OSP) [54], mainly study the case where
C� is a subset of C� .
However, in reality, C� may not always be a subset of C� . For example, when we plan to take pictures of some

interested animals in the wild for ecological research via using the autonomous camera, it is quite possible that
some of our interested animals cannot be acquired due to the appearing occasionality of some animals. On the
other hand, the camera may also unintentionally capture some species that are out of our interests because our
interested species may not cover all the wild native species. For another example, to build a computer-aided
medical diagnosis system, we have a limited amount of labeled data with a variety of known diseases from one
hospital. Then, we need to collect a large amount of unlabeled data, which is often from another hospital and may
only contain partially known diseases as well as many unseen diseases. The diseases of labeled data cannot be
totally covered by unlabeled data because some of them may be rare and are not likely to appear in the collected
unlabeled data.

Due to the absence of prior knowledge about C� , the assumption of traditional class-mismatched SSL methods
may be violated as well. In other words, C� and C� may share some common classes while also having unknown
individual classes. Therefore, there is a case of C� ∩ C� ≠ ∅, C� − (C� ∩ C�) ≠ ∅, and C� − (C� ∩ C�) ≠ ∅, which
leads to an łintersectional class-mismatchž problem (see Fig. 1(c)). Thereby, in this work, we consider such
a semi-supervised learning scenario under intersectional class-mismatch setting, which is as realistic as the
existing traditional class-mismatch setting [8, 24, 25, 44, 47, 61], but is more challenging than existing traditional
class-mismatch setting. The goal of our work is to train an accurate SSL classiier capable of classifying new
target examples of known classes under intersectional class-mismatch setting.
Under intersectional class-mismatch setting (see Fig. 1(c)), existing traditional class-mismatch SSL methods

face two problems, namely: 1) The classiication of ID data (i.e., the unlabeled data belonging to Shared Classes,
see Fig. 1(c)), denoted as łclassiication partž, and the detection of OOD data (i.e., the unlabeled data belonging
to OOD Classes, see Fig. 1(c)), denoted as łdetection partž, often share the same network. These two parts have
a conlicting optimization during feature learning, as the classiication part aims to discriminate ID data from
diferent classes while the detection part treats ID data as a whole to distinguish OOD data from ID data [25]. 2)
The existence of Private Classes (i.e., C� − (C� ∩ C�)) (see Fig. 1(c)) has been ignored and its negative inluence
on the detection of OOD data and classiication of ID data has not been taken into consideration, which could
lead to performance degradation on the test set. For SSL, making use of a large amount of unlabeled data can
beneit the classiier. That is to say, to train a reliable SSL classiier under intersectional class-mismatch setting,
it is important to inhibit the disturbance of OOD data and emphasize the value of ID data. As a result, three
problems need to be solved, namely: 1) Harmful OOD data contain useless information for a classiier training,
and it is critical to ind a way to decrease their negative inluence on training; 2) If OOD data detection and ID
data classiication share the same network, it will lead to a conlicting optimization, and increase the diiculty of
training; 3) Private data could afect the normal correlations between the labeled examples and unlabeled ones,
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as private classes do not have corresponding examples in unlabeled set. Therefore, it is critical to detect private
data, and then maximize the disagreement between private data and unlabeled data.

To this end, we propose a novel DynamicWeighted Adversarial Learning (DWAL) approach for semi-supervised
learning classiication under intersectional class-mismatch setting. Speciically, to solve the irst problem men-
tioned above, we propose to conduct enhanced adversarial domain adaptation to assign a weight for each example.
The weights of unlabeled examples, which consist of transferability scores and prediction conidence value, can
help highlight the ID examples that carry useful information for model training, and meanwhile suppress the
adverse impact of OOD examples that may confuse the training process. Besides, the weights of labeled examples
are interpreted as transferability scores, which help distinguish private data from labeled data of shared classes.
Further, to tackle the second problem, we separately conduct OOD data detection and ID data classiication, which
makes these two parts not afect each other. To handle the third problem, we propose a dissimilarity maximization
strategy to maximize the disagreement between the feature distribution of private data and that of unlabeled
data, so that unlabeled data can be well adapted and assigned accurate weights. Finally, we conduct intensive
experiments on benchmark datasets to demonstrate the efectiveness of our DWAL against other state-of-the-art
SSL methods under intersectional class-mismatch setting.

The remaining of the article is organized as follows. In Section 2, related works are briely reviewed. We provide
the details of our DWAL in Section 4. In Section 5, we report the experimental results of our method and other
compared methods. Finally, the conclusion for this work is provided in Section 6.

2 RELATED WORK

In this section, we present a brief overview of the two types of prior works that are most related to the pro-
posed intersectional class-mismatched semi-supervised learning approach, including traditional semi-supervised
learning and traditional class-mismatched semi-supervised learning. In addition, the related works on domain
adaptation are discussed as well.

2.1 Traditional Semi-Supervised Learning

Various SSL methods have been developed over the past years. These algorithms can be roughly divided into
the following categories: GAN-based methods, self-training methods, ensemble-based methods, graph-based
methods, and clustering-based methods.
GAN-based methods utilize unlabeled data by reforming the loss of the discriminator, or employing extra

discriminators and generators. For example, Dai et al. [12] employ a bad generator that does not match the true
data distribution but simply plays the role of a complement generator to help improve the classiication ability of
the discriminator. Triple-GAN [37] is proposed to achieve a good generation of realistically-looking examples
conditioned on class labels, which can reduce the possible prediction error of the discriminator. MarginGAN
[13] yields large-margin examples to train a classiier to increase the margin of real examples and to decrease
the margin of fake examples. Kumar et al. [34] propose to estimate the tangent space to the data manifold using
GANs, and employ it to inject invariances into the classiier. Relaxed Spatial Structural Alignment [56] calibrates
the target generative models during the adaptation with a cross-domain spatial structural consistency loss, where
the loss comprises of a self-correlation part and a disturbance correlation consistency part.

Self-training methods aim to learn a classiier by assigning pseudo-labels to the unlabeled data without a solid
threshold. For instance, Noisy Student [57] trains a student model on the combination of labeled and pseudo-
labeled examples, and then treats the student model as a teacher model to enhance the quality of pseudo-label.
The work [6] applies curriculum learning to pseudo-labeling so as to train a model with clear labels before
considering more complex ones.
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Ensemble-based methods combine several independent models to obtain promising generalization performance.
For example, the work [67] generates three subsets from the original set with Bootstrap sampling mechanism to
mine more information from the data. Temporal Ensembling [35] employs Exponential Moving Average (EMA),
and aggregates all the previous predictions to yield promising performance. Dual Student [31] trains two student
models with diferent initialization simultaneously to provide targets for each other, in order to improve the
quality of pseudo labels.
Graph-based methods aim to exploit connectivity relationships between labeled and unlabeled examples to

classify the examples of unknown classes. For instance, Graph cut algorithms [30] conduct SSL by inding a graph
partition to classify all the examples. Fick’s Law Assisted Propagation (FLAP) [16] employs the theory of Fick’s
First Law of Difusion to distribute eigenvalues of the iteration matrix regularly.
Clustering-based methods use a clustering algorithm to process unlabeled data with a small amount of prior

information. Speciically, Transductive Support Vector Machines (TSVMs) [29] adapt traditional Support Vector
Machines (SVMs) to the transductive learning setting, and incorporate the hat loss instead of the hinge loss
commonly adopted by SVMs. Semi-Supervised Classiication based on Class Membership (SSCCM) [53] introduces
the membership vector to develop the classiication ability of a semi-supervised classiier.

With the employment of deep neural network, three typical strategies are developed to train classiier of SSL,
namely entropy minimization, consistency regularization and data augmentation.

Entropyminimization enforces the networks to make conident predictions on unlabeled data byminimizing the
label prediction entropy. For example, Pseudo-Labeling [36] picks up the class label with the highest probability,
and then trains the classiier with all data in a supervised way. Uncertainty-aware Pseudo-label Selection (UPS)
[46] utilizes prediction uncertainty to improve the quality of pseudo label of every unlabeled data.

The methodologies of consistency-based methods enforce that the perturbations on unlabeled data should not
signiicantly change their label predictions. For example, Π-model [35] encourages consistent network output
between two diferent perturbations of the same input data. Mean Teacher [51] forms an improved teacher
model from the student model by averaging model parameters instead of model predictions. After that, VAT
[40] computes adversarial perturbations that can maximally change the unlabeled data to confuse the classiier.
Regularization framework based on Adversarial Transformations (RAT) [50] regularizes the smoothness of output
distribution by utilizing adversarial transformations. Batch Nuclear-norm Maximization [11] is proposed to
achieve good discriminability and diversity under label insuicient learning situations, thanks to the utilization
of Frobenius norm and the rank of batch output matrix.
Recently, data augmentation becomes popular in many traditional SSL methods. It is usually combined with

other traditional SSL methods, including entropy minimization and consistency regularization. For example,
FixMatch [49] encourages the predicted labels of weakly augmented images and strongly augmented images
to be consistent. AlphaMatch [18] uses alpha-divergence and an optimization-based framework to get efective
and stable consistency regularization based on data augmentation. FlexMatch [62] sets thresholds according
to the learning status and learning diiculties of diferent classes with Curriculum Pseudo Labeling (CPL), to
get reliable training examples. SemCo [42] leverages label semantics and co-training to improve the quality of
pseudo-labeling, and then weighs the training examples reasonably. However, due to the assumption that the
unlabeled data should have the same class space as the labeled data, traditional SSL methods cannot deal with
the real-world class-mismatch problem.

2.2 Traditional Class-Mismatched Semi-Supervised Learning

SSL methods under traditional class-mismatch setting consider the situation when the class spaces of labeled
data and unlabeled data are diferent. This problem is raised by [35] and [44]. Inspired by their works, some
new methods have been proposed to address this problem. For example, Uncertainty Aware Self-Distillation
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(UASD) [8] averages the historical predictions of a self-distillation method to ind the probable OOD data. Safe
Deep Semi-Supervised Learning (DS3L) [24] develops an instance weighting strategy to weaken the impact of
unlabeled data with unseen classes to prevent performance degradation. Besides, Multi-part Curriculum learning
Framework (MTCF) [61] proposes to distinguish ID data and OOD data in an ordered sequence from simple
to diicult, and employ curriculum learning [1, 17] to achieve this purpose. OpenMatch (OM) [47] employs a
Soft Open-set Consistency Regularization (SOCR) loss to hit the mark. Trash to Treasure (T2T) [25] employs
a self-supervised learning strategy to achieve better performance. Class-aware Contrastive Semi-Supervised
Learning (CCSSL) [58] utilizes both class-wise clustering and image-wise contrastive learning [32] to distinguish
OOD data from ID data. Out-of-distributed Semantic Pruning (OSP) [54] proposes an aliasing OOD matching
module and a soft orthogonality regularization to detect OOD data via using semantic information. However,
these methods are not suitable to solve the intersectional class-mismatch problem.

2.3 Domain Adaptation

Domain adaptation is primarily concerned with leveraging the knowledge gained from the labeled source domain
for application in the unlabeled target domain. This concept can be briely categorized into four distinct scenarios.
The irst category is closed-set domain adaptation, which assumes that the classes of source data correspond
to those of target data. Various existing methodologies [10, 39] focus on extracting class-discriminative and
domain-invariant features from both source domain and target domain. The second category is partial domain
adaptation, which works when the class set of the source data contains that of the target data. Certain strategies
[4, 5] advocate the use of class-level weights applied to each source data point to achieve partial distribution
match. The third category is open-set domain adaptation, in which the target domain contains additional classes
to source domain. Notably, Zhuo et al. [55] put forth the idea of harnessing word vectors to identify these open
domains. The fourth category is universal domain adaptation, which operates independently of any prerequisite
knowledge of the class relationship between the source domain and target domain. An approach by You et al. [60]
employs domain knowledge coupled with entropy values to identify the data belonging to the classes shared by
both source domain and target domain.

3 PRELIMINARIES

Let D =

{
x� ∈ X ⊂ R� , � = 1, 2, · · · , �, � = �� + ��

}
denote the training set, where the irst �� images are la-

beled examples and the remaining �� ones are unlabeled examples with typically �� ≪ �� . We use D� ={
(x1, �1), (x2, �2), · · · , (x�� , ��� )

}
to denote the labeled set with �� ∈ Y� = {1, 2, · · · , �}, where � is the number of

known classes. Besides, we use D� =

{
x��+1, x��+2, · · · , x��+��

}
to denote the unlabeled set whose class space

is denoted as Y� . In reality, the assumption that Y� = Y� is diicult to realize. Under the intersectional class-
mismatch setting, the shared classesY�ℎ���� = Y� ∩Y� ≠ ∅, the private classesY��� = Y� − (Y� ∩ Y�) ≠ ∅, and the
OOD classes Y��� = Y� − (Y� ∩ Y�) ≠ ∅. The examples of which the ground-truth labels fall into Y�ℎ���� , Y���

and Y��� constitute a shared set D�ℎ���� , a private set D��� , and an OOD set D��� , respectively. Note that Y��� ,
Y��� , and Y�ℎ���� are unknown before training, so are D��� , D��� , and D�ℎ���� . The class space of testing set is
the same as Y� . According to [44], it is important to weaken the negative inluence caused by OOD examples. To
achieve this goal, existing traditional class-mismatched SSL methods [8, 24, 25, 47, 61] choose to weigh unlabeled
data by weights w during training to optimize parameters �� , thus the objective function can be deined as
follows:

min
��

L�� (x
� ;�� ) + L��� (x

�,w;�� ), (1)

where x� and x� denote examples from D� and D� , respectively. Note that L�� is the classical cross-entropy loss
which compares the network prediction on every labeled example with its ground-truth label, while L��� means
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Table 1. Variables and Definitions.

Variables Deinitions

X feature space of training set
Y class space of training set
D training set
x� the �th example in D
�� label of x�
�� weight of x�
�� transferability score of x�
�� prediction conidence value of x�� (only for unlabeled data)

the loss deined on unlabeled examples, such as entropy minimization, consistency regularization, etc. Last but
not least, in w, the �-th element�� is used to weigh the �-th unlabeled example. However, the above-mentioned
class-mismatched SSL methods do not consider the existence of D��� , and they often share the same network to
conduct the ID data classiication and OOD data detection while calculating w. In complete, those methods are
not suitable for the intersectional class-mismatched setting. In this study, we propose a new method to weigh
unlabeled data reasonably, and we will conirm its efectiveness in Section 5. Table 1 lists the main variables we
use throughout the paper.

4 THE PROPOSED DWAL METHOD

This section explains our proposed DWAL algorithm in a detailed way. We irst introduce the motivation, and
overview of DWAL. Then, we detail the three components in DWAL, namely enhanced adversarial domain
adaptation, dissimilarity maximization, and weighted semi-supervised learning.

4.1 Motivation

The proposed DWAL aims to train an SSL classiier on the training set D = D� ∪D� , which can precisely classify
an unseen example x� with unknown true label �� ∈ Y� . As not all unlabeled examples are helpful to train an
accurate classiier, it is important to weigh each unlabeled example reasonably during the classiier training. To
achieve this goal, we need to deal with three problems. First, D� may contain both useful and harmful examples
for training an SSL classiier, so it is necessary to decrease the weights of those harmful OOD data while increasing
weights of ID data. Second, since Y��� and Y� are diferent, it is also critical to detect D��� from D� , and then
maximize the disagreement between the feature distribution of private data and that of unlabeled data, in case
unlabeled examples are incorrectly associated to D��� . Third, the detection part aims to seek invariant features of
ID data for distinguishing OOD data from ID data, while the classiication part focuses on inding variant features
of ID data to discriminate themselves. In this case, the optimization of detection part is against the optimization
of classiication part, therefore we need to carry out the two parts separately to avoid a conlicting optimization.

4.2 Overview of DWAL

The overall framework of our DWAL approach is shown in Fig. 2, in which � , � , �, � and �′ denote the feature
extractor, discriminator, image restorer, classiier, and pre-trained classiier, respectively. Besides, �� , �� , ��
and �� are the parameters of corresponding networks, respectively. Our DWAL includes three key components:
enhanced adversarial domain adaptation, dissimilarity maximization, and weighted semi-supervised learning.

In enhanced adversarial domain adaptation, given D� and D� , we use the feature extractor� to obtain feature
representations � (x) for x ∈ D� ∪ D� . Then, a discriminator � is imposed on � (x) to get the outputs � (� (x))

quantifying the similarity of x to the unlabeled set. According to the outputs of � , we deine transferability scores
s for training images, where the �-th element �� denote the transferability score of x� . With the guidance of L��� ,
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Fig. 2. This is the framework of our proposed DWAL, in which� ,� , �,� and�′ denote feature extractor, discriminator, image
restorer, classifier and pre-trained classifier, respectively. A lock sign indicates łno optimizationž in the framework. łGRLž
indicates Gradient Reverse Layer [15] for adversarial domain adaptation. Through enhanced adversarial domain adaptation,
we get weight for each example. According to the transferability scores s of examples in D� , dissimilarity maximization may
help � maximize the disagreement between D��� and D� , therefore improving the accuracy of weight of each example.

� is employed to confuse the discriminator � , while � should try to distinguish the presented data as labeled
or unlabeled data. Through enhanced adversarial domain adaptation, the distribution gap between Y� and Y�

can be reduced and the transferability score of each example can be harvested. At the same time, � (x) will be
forwarded into � to obtain the restored images x′ where the size of each restored image x′� is the same as the size
of x� . We employ L�������� to encourage the restored image to be similar to its original version. We introduce a
pre-trained classiier �′ which is only trained on the labeled set without sharing parameters with classiier � ,
and �′ outputs the label prediction of every restored image x′� . On one hand, L′

�� is cross-entropy minimization
loss, which encourages � to restore features of labeled data to easy-to-classify images. On the other hand, L′

�

is entropy maximization loss, which encourages � to restore features of unlabeled data to diicult-to-classify
images. As a result, � can be trained to capture the features important for classifying data fromY� and reduce the
conidence of assigning OOD data to label of Y� in the label prediction. The prediction conidence values p are
calculated from the label predictions of images, which are restored from the features of unlabeled data. In p, the
�-th element �� denote the prediction conidence value of x�� .

In dissimilarity maximization, with the help of transferability scores of labeled examples, we can decide D��� ,
which are sent back to minimize L��� . As a result, � can be trained to maximize the disagreement between
feature distribution of private data and that of unlabeled data, so that it can avoid the improper adaptation from
unlabeled data to private data during adversarial domain adaptation, helping to obtain accurate transferability
scores s and prediction conidence values p.

In weighted semi-supervised learning,D� andD� will be fed to the classiier� to achieve their label predictions.
The predictions of D� will be used to compute L�� , and those of D� will be used to compute L��� with their
weights w, made up of transferability scores and prediction conidence values.

It is worth noting that enhanced adversarial domain adaptation and dissimilarity maximization constitute
detection part, and weighted semi-supervised learning is the classiication part in Fig. 2. The weights utilized
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in the classiication part are totally computed in detection part and they do not share any network, so that the
conlicting optimization brought by the combination of detection part and classiication part in other traditional
class-mismatched SSL methods [8, 24, 47, 61] can be avoided, and the classiication performance on the test set of
the classiier can be improved. Therefore, the overall objective function of proposed DWAL can be formulated as:

min
�� ,�� ,��

max
��

L��� (x;�� , �� ) + L��� (x;�� )

+L�� (x
� ;�� ) + L��� (x

�,w;�� )

+L�������� (x;��) + L′
�� (x

� ;��) + L′
� (x

� ;��).

(2)

We have x� mean labeled examples, and x� mean unlabeled examples. We have w denote the weights of training
examples. The weights of x� are the transferability scores of x� . The weights of x� consist of transferability scores
of x� and prediction conidence values of x� . We will detail each component below.

4.3 Enhanced Adversarial Domain Adaptation

To train an accurate SSL classiier under intersectional class-mismatch setting, it is critical to utilize useful ID
data and weaken the inluences of harmful OOD data. To achieve this goal, we propose an enhanced adversarial
domain adaptation to assign weights w for examples from the perspectives of domain adaptation and a class-wise
weighting mechanism, which can efectively detect private data in D� and weaken the inluences of OOD data in
D� . The weights w should satisfy the following inequalities

Ex� ∈D�ℎ����
w > Ex� ∈D���

w,

Ex� ∈D�ℎ����
w > Ex� ∈D���

w,
(3)

where x� denotes labeled examples and x� denotes unlabeled examples. Speciically, irst, D� may contain both
useful and harmful examples for training an SSL classiier, so it is critical to decrease the weights of those harmful
OOD data, while increasing weights of ID data that are shared examples in D� . As a result, the expectation of
weightsw of ID data should be larger than that of OOD data, so we haveEx� ∈D�ℎ����

w > Ex� ∈D���
w. Second, as the

class space of private data is diferent from that of unlabeled data, it is important to detect private data for avoiding
the improper adaptation from unlabeled data to private data. Therefore, we have Ex� ∈D�ℎ����

w > Ex� ∈D���
w.

Consequently, we can distinguish private data from labeled shared data based on their weights w, and the labeled
examples with small weights are considered as private data. As a result, the above inequities should hold in
a large margin for better classiication performance instructed by w, and we achieve this through producing
reliable transferability scores and prediction conidence values.

4.3.1 Transferability Score. We treat D� and D� as the source domain and target domain, respectively. To
highlight shared data in both D� and D� , we propose an adversarial domain adaptation strategy adopted from
[19]. Here the discriminator � is trained to determine whether an example belongs to D� or D� , and the feature
extractor � is used to fool � . In adversarial domain adaptation, if an example’s domain is hard to determine,
the example can be considered transferable and it is likely to appear in both source domain and target domain.
Similarly, if some examples belong to D�ℎ���� , it is diicult for � to determine their domains, because both D�

and D� contain examples belonging to D�ℎ���� . As a result, the classes of transferable examples are likely to
belong to Y�ℎ���� . Consequently, we propose to use the transferability score �� to weigh each example, and the
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process can be formulated as:

min
��

max
��

L��� = −
1

��

��︁

�=1

�� ln(� (� (x� )))

−
1

��

��+��︁

�=��+1

�� ln(1 − � (� (x� ))),

(4)

where �� is the transferability score of x� . The parameters �� are learned to distinguish the labeled data from
the unlabeled data by maximizing a cross-entropy loss. The feature extractor’s parameters �� are learned to
deceive � by minimizing a cross-entropy loss. In this case, the output � (� (x� )) is in the range of (0, 1). If an
example x� belongs to D�ℎ���� , � (� (x� )) should be close to 0.5, because it is diicult for � to distinguish its
domain. Consequently, the transferability score �� of an example x� is computed by

�� = 1 − 2 · |� (� (x� )) − 0.5| . (5)

To conclude, for x ∈ D� , Ex∈D�ℎ����
s > Ex∈D���

s; for x ∈ D� , Ex∈D�ℎ����
s > Ex∈D���

s. It is worth noting
that we can obtain the transferability scores of all examples. Hence, our transferability score can help highlight
D�ℎ���� in both D� and D� .

4.3.2 Prediction Confidence Value. To further enhance the detection performance, we calculate a prediction
conidence value for each unlabeled example via a class-wise weighting mechanism. Typically, the prediction
conidence value is generated by the SSL classiier, which predicts the classiication probability of each example.
However, when dealing with a class mismatch scenario, the outcome of an OOD example using the aforementioned
process tends to be similar to that of a shared example, incurring the łoverconidencež issue. This issue is
inconsistent with the expectations of DWAL regarding weights of unlabeled data (i.e., Eq. (3)). The issue arises
due to the distributional diference between labeled data and OOD data [20, 21, 43, 63]. To address the challenge,
we irst construct an image restorer � to restore the generated feature � (x� ) to �(� (x� )), which is denoted
as x′� . Thanks to the adversarial domain adaptation between � and � , the feature � (x� ) can reliably describe
the information of x� , and mitigate the distribution diference between labeled data and OOD data. L��������

calculates the ℓ2 distance between x� and x′� as an instruction of the generation of the restored image, so that the
incorrect restoration can be avoided. The objective function L�������� can be formulated as

min
��

L�������� =
1

�� + ��

︁��+��

�=1
∥x� − x′� ∥2, (6)

As a result, the restored image x′� can get useful information from x� , and mitigate the distribution diference
between labeled data and OOD data. Therefore, we can replace x� with x

′
� to calculate reliable prediction conidence

value.
Then, a pre-trained classiier �′ is imposed on the restored images, where the pre-trained classiier has been

trained on the labeled data (i.e., D� ) and keeps ixed in this stage. Note that, the classiier�′ is only trained on D� ,
so that the label prediction of�′ could avoid negative inluences caused by incorrect information, which inevitably
appears in SSL classiier [8, 59]. The loss L′

�� is the classical cross-entropy loss for entropy minimization on x′�
when x� is labeled data, so that we can encourage � to emphasize the features that are easy-to-classify in labeled
data. By denoting � (·) as the cross-entropy loss, the objective function L′

�� is deined by

min
��

L′
�� =

1

��

︁��

�=1
� (�� ,�

′ (x′� )) . (7)
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We employ L′
� to enhance the distinction ability between the prediction conidence values of shared data and

those of OOD data. Speciically, the minimization of L′
� tries to prevent restored OOD data from being mistakenly

assigned to known classes with a high probability, therefore reducing the prediction conidence values of OOD
data. As such, we can further reduce the negative inluence caused by overconidence issue. The induced objective
is

min
��

L′
� =

1

��

︁��+��

�=��+1
� (�′ (x′� )) · ln(� (�

′ (x′� ))), (8)

where � (·) means the softmax function.
At this point, we introduce a class-wise weighting mechanism guaranteed by margin theory to calculate a

prediction conidence value. The margin between features and the classiication surface can relect the conidence
of label prediction, which contributes to a generalizable SSL classiier [33, 59, 64]. According to [33, 59, 64], given
an unlabeled example x�� , its prediction conidence value �� can be computed by

�� = �′ (�(� (x�� )), �̂) −max
�≠�̂

�′ (�(� (x�� )), �), (9)

where

�̂ = argmax
�∈Y�

�′ (�(� (x�� )), �). (10)

Here �′ (�(� (x�� )), �) means the classiication probability of the restored image �(� (x�� )) belonging to class � in
Y� .
Obviously, the minimization of L′

�� will enlarge the prediction conidence values for labeled data. As shared
data may appear in both D� and D� , the minimization of L′

�� will enlarge the prediction conidence values for
shared data in the unlabeled set. However, OOD data only exist in D� , so the prediction conidence values for
OOD data cannot be enlarged through the minimization of L′

�� , and the prediction conidence value of OOD data
will only be reduced by the minimization of L′

� . As a result, we have Ex�� ∈D�ℎ����
p > Ex�� ∈D���

p.
Finally, with the help of transferability score �� and prediction conidence value �� , we can obtain the weight

�� of each example x� by

�� =

{
�� , x� ∈ D� ,

�� + �� , x� ∈ D� .
(11)

Through Eq. (11), Eq. (3) can be perfectly satisied. For labeled examples, their weights can help detect private
data, which will be detailed in Section 4.4. For unlabeled data, we can use their weights to weigh the importance
of all unlabeled examples during the classiier training, which will be detailed in Section 4.5. To conclude, w can
weigh the labeled data and unlabeled data accurately.

4.4 Dissimilarity Maximization

The diference between intersectional and traditional class-mismatch setting lies in the existence of Y��� . As
examples of Y��� will appear in testing set, private examples can provide important supervision information
during training. However, they will afect the adaptation of unlabeled examples. This is because thatY��� is totally
diferent from Y� , so if an unlabeled example is adapted to D��� , it will cause confusion and lead to imprecise
transferability score. Consequently, it is important to ind out these examples of D��� to prevent adaptation
to them. As such private data have the labels of Y��� which only exist in D� , their transferability scores could
be lower than those of other labeled data. Therefore, we propose to detect the examples of D��� from D� by
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computing

� (x� ) =

{
0, �� ≥ �,

1, �� < �,
� =

1

��
·
︁��

�=1
�� . (12)

Since the averaged transferability score of all labeled examples keeps updating, � is updated in each training
iteration as well. By using Eq. (12), we can update D��� in each iteration via the following rules: if � (x� ) = 1,
x� should be put into D��� , otherwise x� should not be put into D��� . After obtaining D��� , we prevent it from
confusing the normal adaptation of unlabeled data by enforcing the examples in D��� to be far from the examples
in D� . Speciically, we calculate the dissimilarity between the examples in D��� and D� . Let x� and x� denote
the �-th example in D��� and the �-th example in D� , respectively, then the dissimilarity between x� and x� is
computed by

� �,� =
1

1 + �−� �,�
, (13)

where � �,� is the ℓ2 distance between � (x� ) and � (x� ), and� �,� is used to map � �,� from (0, +∞) to (0.5, 1). To
maximize the disagreement between x� and x� , the optimization problem with objective function L��� (·) can be
formulated as:

min
��

L��� = −
1

��

1

����

����︁

�=1

��+��︁

�=��+1

ln(� �,� ), (14)

where ���� is the number of labeled examples which are attributed to D��� .
To conclude, we can make the features of examples in D��� be far from the features of examples in D� by

conducting dissimilarity maximization, which avoids the improper adaptation from unlabeled data to private
data in domain adaptation.

4.5 Weighted Semi-Supervised Learning

Through the enhanced adversarial domain adaptation and dissimilarity maximization, we can adjust the efect of
each unlabeled example according to its weight. Then, we can implement semi-supervised learning under the
setting of intersectional class mismatch. Speciically, for D� , we use the cross-entropy loss L�� on the labeled
example. For D� , we use a consistency regularization with the sum of transferability score and prediction
conidence value controlling the weight of each unlabeled example for training the classiier � . Therefore, this
process can be formulated as:

min
��

L��� = −
1

��

��+��︁

�=��+1

�� ∥� (������� (x� )) −� (x� )∥
2
2, (15)

where ������� (·) means a perturbation on x� , which is widely used in consistency regularization of SSL works
such as [24, 35, 48]. It is worth noting that �� is calculated in the detection part where the classiier � is not
involved. As a result, the detection part and the classiication part do not share any network, so that we can
obtain accurate weights to boost the classiication performance.
Overall, our DWAL approach can efectively utilize unlabeled examples to aid SSL training, and weaken

the negative impacts caused by private data and OOD data. The detailed process of our DWAL approach is
summarized in Algorithm 1.
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Algorithm 1 Training process for our DWAL method.

Input: Labeled set D� =
{
(x1, �1), · · · , (x�� , ��� )

}
, unlabeled set D� =

{
x��+1, · · · , x��+��

}
.

1: for � = 1 to MaxIter do

2: Optimize �� and �� according to Eq. (4);

3: Compute �� for each example x� according to Eq. (5)

4: Optimize �� according to Eq. (6), Eq. (7), and Eq. (8);

5: Compute �� for each unlabeled example x�� according to Eq. (9)

6: Compute�� for each example x� according to Eq. (11)

7: Find out the data in D��� according to Eq. (12);

8: Optimize �� according to Eq. (14);

9: Optimize �� by minimizing L�� ;

10: Optimize �� according to Eq. (15);

11: end for

Output: �� .

5 EXPERIMENTS

In this section, we carry out experiments to show the efectiveness of DWAL. We irst introduce the experi-
mental settings and implementation details. Then, we provide the performance comparison, ablation study, and
performance veriication.

5.1 Experimental Setings

We will introduce the experimental datasets and the formulation of intersectional class-mismatch setting.

5.1.1 Datasets. We adopt ive image classiication datasets in the comparison experiments, and the details are
provided below. (1) MNIST includes 60, 000 training images and 10, 000 test images with the size of 28 × 28,
belonging to 10 classes: ł0ž∼ł9ž. (2) SVHN is collected from house numbers with 73, 257 training images and
26, 032 test images with the size of 32×32, belonging to 10 classes: ł0ž∼ł9ž. (3) CIFAR-10 includes 60, 000 training
images and 10, 000 test images with the size of 32 × 32. This dataset contains 10 classes, which consist of six
animal classes (i.e., łbirdž, łcatž, łdeerž, łdogž, łfrogž, and łhorsež, of which the class IDs are denoted as ł0ž∼ł5ž,
respectively) and four transportation tool classes (i.e., łairplanež, łautomobilež, łshipž, and łtruckž, of which the
class IDs are ł6ž∼ł9ž, respectively). (4) ImageNet-100 is a subset of ImageNet [9] and has 100 classes, which
contains 133, 116 images with a size of 32×32 from ImageNet. In this dataset, the class IDs are denoted as ł0ž∼ł99ž,
respectively. (5) Fundus is a real-world dataset. Its labeled set and unlabeled set are from two public datasets,
respectively, i.e., TAOP1 and ODIR2. Note that the fundus disease images of TAOP and ODIR are collected from
patients of diferent hospitals, respectively, so the types of eye diseases are diferent between labeled set and
unlabeled set. This is consistent with the intersectional class-mismatch setting. In this dataset, the labeled set has
ive classes: ł0ž∼ł4ž, and the unlabeled set has eight classes: ł1ž∼ł8ž.

5.1.2 Intersectional Class-Mismatch Seting. To evaluate the capability of our DWAL method in handling SSL
tasks with intersectional class mismatch, we deine the intersectional class-mismatch setting for each dataset.
Speciically, we ix Y� and Y��� , and change the number of classes in Y�ℎ���� to evaluate the efectiveness of
DWAL under diferent circumstances. As Y��� = Y� −Y�ℎ���� and Y� = Y��� ∪Y�ℎ���� , if we deine Y�ℎ���� , then
Y� and Y��� are known as well.

1https://contest.taop.qq.com
2https://odir2019.grand-challenge.org
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For MNIST, SVHN, and CIFAR-10, they share the same setting because they all contain 10 classes. By following
[24], their Y� and Y��� are set as {0, 1, 2, 3, 4, 5} and {6, 7, 8, 9}, respectively. Then, we deine four cases of Y�ℎ���� ,
namely 1) ���� 1: Y�ℎ���� = {2, 3, 4, 5}; 2) ���� 2: Y�ℎ���� = {3, 4, 5}; 3) ���� 3: Y�ℎ���� = {4, 5}; and 4) ���� 4:
Y�ℎ���� = {5}. Thereby, the number of classes contained in Y�ℎ���� will decrease from ���� 1 to ���� 4. By
following [24], the detailed settings of labeled and unlabeled data in MNIST, SVHN and CIFAR-10 are provided
below: (1) For MNIST, we select 10 images from each class in Y� to construct D� , and choose 3, 332 images per
class from Y� to form D� . (2) For SVHN, we select 100 images from each class in Y� to construct D� , and choose
3, 332 images per class from Y� to form D� . (3) For CIFAR-10, we select 400 images from each class in Y� to
constructD� , and choose 3, 332 images per class fromY� to formD� . For ImageNet-100, as it includes 100 classes,
we set itsY� andY��� as {0, 1, ..., 59} and {60, 61, ..., 99}, respectively, by following [28]. Then we deine two ways
of Y�ℎ���� for ImageNet-100, namely 1)��� 1: Y�ℎ���� = {15, 16, ..., 99}; 2)��� 2: Y�ℎ���� = {30, 31, ..., 99}. For
ImageNet-100, we choose 100 images from each class in Y� to construct the D� , and then we select 1, 208 images
from each class in Y� to form D� . For Fundus, we have made the setting consistent with the assumption of our
intersectional class-mismatch setting. Its labeled set containing 2, 472 examples of ive classes is from TAOP,
and its unlabeled set containing 5, 814 examples of eight classes is from ODIR. For each dataset, under diferent
settings, we investigate the accuracy of each method on test sets, of which the class space is the same as Y� , and
then report the mean classiication accuracy over ive trials.

5.2 Implementation Details

We will introduce the compared methods and the algorithmic settings.

5.2.1 Compared Methods. To validate the efectiveness of DWAL, we compare it with the following deep SSL
methods: Pseudo Labeling (PL) [36], Π-model (PI) [35], VAT [40], Mean Teacher (MT) [51], MTCF [61], UASD [8],
DS3L [24], OM [47], T2T [25], CCSSL [58], FixMatch [49], FlexMatch [62], SemCo [42], and OSP [54]. Note that
MTCF, UASD, DS3L, OM, T2T, CCSSL, and OSP are designed for SSL under the traditional class-mismatch setting.
In addition, we compare DWAL with a supervised baseline method, which simply trains a deep neural network
on D� based on the cross-entropy loss. Note that FlexMatch, SemCo, OM, T2T, CCSSL, and OSP largely depend
on the framework of FixMatch, which uses weak and strong data augmentations to process training data and
achieve consistency regularization. Diferent from the above methods, the DWAL and the rest of compared SSL
methods are based on the framework of Pseudo-Labeling (PL), which only processes training data through Global
Contrast Normalization (GCN) and Zero-phase Component Analysis Whitening (ZCA) strategy. Owing to the
fact that the aforementioned SSL methods are implemented across diverse frameworks (i.e., PL and FixMatch), we
also implement our DWAL under the framework of FixMatch which is based on Data Augmentation (DA), namely
łDWAL+DAž. Speciically, in the classiication part of DWAL+DA, the labeled data are weakly augmented in L�� ,
and the predictions of weakly augmented unlabeled data are compared with those of their strongly augmented
versions in L��� . The weak data augmentation and strong data augmentation employed in DWAL+DA are the
same as those in FixMatch. As a result, for fairness of comparison, DWAL should be compared with the SSL
methods following PL framework, including PL, PI, VAT, MT, MTCF, UASD, and DS3L. DWAL+DA should be
compared with the SSL methods based on FixMatch framework, including FixMatch, FlexMatch, SemCo, OM,
T2T, CCSSL, and OSP. For all compared methods, their classiier architectures are the same with DWAL, and
use well-tuned hyperparameters for each dataset. The data preprocessing method of each compared method
is consistent with its original work. DWAL and DWAL+DA share the same network architectures, but their
optimizers are not exactly identical, which will be shown in Appendix. The detailed L��� of DWAL+DA can be
found in Appendix as well.

ACM Trans. Multimedia Comput. Commun. Appl.



Dynamic Weighted Adversarial Learning for Semi-Supervised Classification under Intersectional Class Mismatch • 15

Table 2. Classification accuracies on MNIST.

Settings Methods ���� 1 ���� 2 ���� 3 ���� 4

Supervised 87.92 ± 0.11 * * 87.92 ± 0.11 * * 87.92 ± 0.11 * * 87.92 ± 0.11 * *

Class-

matched

Methods

VAT [40] 94.02 ± 0.20 * * 88.75 ± 0.29 * * 82.17 ± 0.24 * * 78.98 ± 0.34 * *
MT [51] 94.37 ± 0.16 * * 87.09 ± 0.28 * * 81.00 ± 0.27 * * 78.95 ± 0.32 * *
PI [35] 94.09 ± 0.19 * * 86.66 ± 0.27 * * 78.12 ± 0.26 * * 76.62 ± 0.29 * *
PL [36] 92.76 ± 0.23 * * 86.81 ± 0.31 * * 80.54 ± 0.33 * * 77.77 ± 0.36 * *
FixMatch [49] 97.02 ± 0.16 * 96.15 ± 0.19 * 95.25 ± 0.21 * 92.34 ± 0.22 *
FlexMatch [62] 96.30 ± 0.29 * 95.04 ± 0.35 * 93.57 ± 0.36 * 91.73 ± 0.40 *
SemCo [42] 97.75 ± 0.15 * 96.67 ± 0.20 * 95.10 ± 0.24 * 93.28 ± 0.26 *

Class-

mismatched

Methods

MTCF [61] 94.48 ± 0.17 * * 89.12 ± 0.21 * * 82.53 ± 0.27 * * 80.83 ± 0.26 * *
UASD [8] 95.18 ± 0.21 * * 90.73 ± 0.23 * * 85.71 ± 0.29 * * 83.48 ± 0.27 * *
DS3L [24] 95.22 ± 0.19 * * 89.37 ± 0.21 * * 82.62 ± 0.22 * * 81.23 ± 0.26 * *
OM [47] 97.52 ± 0.21 * 96.22 ± 0.24 * 95.29 ± 0.30 * 93.37 ± 0.32 *
T2T [25] 97.94 ± 0.19 * 96.87 ± 0.22 * 95.63 ± 0.27 * 93.60 ± 0.33 *
CCSSSL [58] 97.16 ± 0.27 * 96.10 ± 0.27 * 94.68 ± 0.29 * 92.95 ± 0.34 *
OSP [54] 97.98 ± 0.17 * 96.91 ± 0.22 * 95.66 ± 0.24 * 93.74 ± 0.35 *

Our

Methods

DWAL 96.29 ± 0.16 93.54 ± 0.15 91.69 ± 0.14 91.31 ± 0.20
DWAL+DA 98.36 ± 0.15 97.27 ± 0.17 95.91 ± 0.17 94.02 ± 0.18

5.2.2 Algorithmic Setings. The batch size for both labeled and unlabeled sets is set to 100. We report the mean
classiication accuracy of all test examples with the labeled classes over ive trials. The proposed DWAL method
is implemented with PyTorch, which is trained using two NVIDIA TITAN GPUs.

5.3 Performance Comparison

This part we will show the classiication accuracies with averaged results of ive runs for last several iterations on
each dataset. To evaluate statistical signiicance, we perform the paired t-test [41] with 95% conidence level on
the classiication performances of our method and other compared methods. In Tables 2-6, the black ł*ž denotes
that DWAL is signiicantly better than the compared method. Similarly, the blue ł*ž denotes that DWAL+DA is
signiicantly better than the compared method. Experimental results conirm the advantage of our methods over
other competitors.

5.3.1 Results on MNIST. Table 2 shows classiication accuracies of diferent methods on MNIST. It can be seen
that all methods perform better than the supervised baseline in ���� 1. However, from ���� 1 to ���� 4, the
performance of existing SSL methods degrades. Speciically, as for���� 3, it means that half of the classes ofY� is
unseen inY� and two-thirds of the classes ofY� is unseen inY� . In this case, it can be observed that many existing
deep SSL methods perform worse than the supervised baseline method, while our DWAL method achieves good
performance and shows advantage over PL-based methods (i.e., VAT, MT, PL, PI, MTCF, UASD, and DS3L). More
importantly, DWAL+DA outperforms all the compared methods as well. Therefore, the advantage of our methods
over other methods in tackling the intersectional class-mismatch problem is veriied.

5.3.2 Results on SVHN. The results on SVHN are shown in Table 3. It can be observed that DWAL performs better
than other compared methods without data augmentation in diferent cases. In these cases, most of the existing
SSL methods perform worse than the supervised learning competitor, while DWAL achieves very encouraging
results and outperforms PL-based methods. Moreover, DWAL+DA performs better than the FixMatch-based
methods (i.e., FixMatch, FlexMatch, SemCo, OM, T2T, CCSSL, and OSP).

5.3.3 Results on CIFAR-10. The comparison results on CIFAR-10 are shown in Table 4. We can see that DWAL
performs better than most other compared methods in all cases. From ���� 1 to ���� 4, the number of classes
contained in Y�ℎ���� decreases, which leads to the signiicant performance degradation of most SSL methods.
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Table 3. Classification accuracies on SVHN.

Settings Methods ���� 1 ���� 2 ���� 3 ���� 4

Supervised 82.93 ± 0.20 * * 82.93 ± 0.20 * * 82.93 ± 0.20 * * 82.93 ± 0.20 * *

Class-

matched

Methods

VAT [40] 83.49 ± 0.37 * * 82.38 ± 0.42 * * 80.28 ± 0.46 * * 79.56 ± 0.52 * *
MT [51] 83.12 ± 0.32 * * 81.95 ± 0.36 * * 81.69 ± 0.47 * * 79.41 ± 0.49 * *
PI [35] 81.84 ± 0.41 * * 79.95 ± 0.50 * * 79.69 ± 0.49 * * 78.95 ± 0.53 * *
PL [36] 82.94 ± 0.36 * * 82.27 ± 0.43 * * 81.18 ± 0.48 * * 79.15 ± 0.52 * *
FixMatch [49] 94.98 ± 0.19 * 93.02 ± 0.20 * 91.89 ± 0.20 * 90.72 ± 0.22 *
FlexMatch [62] 94.53 ± 0.36 * 92.75 ± 0.40 * 90.81 ± 0.41 * 89.05 ± 0.44 *
SemCo [42] 95.44 ± 0.17 * 94.27 ± 0.21 * 92.11 ± 0.21 * 90.98 ± 0.25 *

Class-

mismatched

Methods

MTCF [61] 85.89 ± 0.32 * * 85.35 ± 0.42 * * 84.73 ± 0.43 * * 83.36 ± 0.46 * *
UASD [8] 85.78 ± 0.35 * * 85.07 ± 0.36 * * 84.42 ± 0.43 * * 83.74 ± 0.45 * *
DS3L [24] 85.79 ± 0.29 * * 83.82 ± 0.38 * * 82.89 ± 0.45 * * 81.95 ± 0.44 * *
OM [47] 94.44 ± 0.27 * 92.88 ± 0.30 * 90.81 ± 0.33 * 89.70 ± 0.36 *
T2T [25] 94.36 ± 0.30 * 93.13 ± 0.33 * 91.01 ± 0.35 * 89.89 ± 0.38 *
CCSSL [58] 93.72 ± 0.32 * 92.90 ± 0.34 * 90.47 ± 0.37 * 89.58 ± 0.41 *
OSP [54] 94.54 ± 0.33 * 93.32 ± 0.37 * 91.19 ± 0.40 * 90.05 ± 0.46 *

Our

Methods

DWAL 86.12 ± 0.34 85.76 ± 0.37 85.21 ± 0.26 84.98 ± 0.33
DWAL+DA 96.58 ± 0.26 95.31 ± 0.27 93.09 ± 0.26 92.40 ± 0.31

Table 4. Classification accuracies on CIFAR-10.

Settings Methods ���� 1 ���� 2 ���� 3 ���� 4

Supervised 69.83 ± 0.35 * * 69.83 ± 0.35 * * 69.83 ± 0.35 * * 69.83 ± 0.35 * *

Class-

matched

Methods

VAT [40] 71.46 ± 0.61 * * 70.10 ± 0.67 * * 68.06 ± 0.58 * * 66.10 ± 0.62 * *
MT [51] 70.46 ± 0.56 * * 69.86 ± 0.69 * * 68.42 ± 0.67 * * 66.32 ± 0.71 * *
PI [35] 70.83 ± 0.45 * * 69.42 ± 0.64 * * 68.75 ± 0.59 * * 66.21 ± 0.58 * *
PL [36] 70.66 ± 0.49 * * 69.03 ± 0.55 * * 68.33 ± 0.63 * * 66.65 ± 0.66 * *
FixMatch [49] 86.31 ± 0.25 * 84.17 ± 0.25 * 81.91 ± 0.27 * 80.77 ± 0.30 *
FlexMatch [62] 87.47 ± 0.20 * 85.37 ± 0.21 * 83.09 ± 0.24 * 81.95 ± 0.24 *
SemCo [42] 87.84 ± 0.27 * 85.81 ± 0.29 * 83.58 ± 0.31 * 82.52 ± 0.34 *

Class-

mismatched

Methods

MTCF [61] 75.16 ± 0.54 * * 74.27 ± 0.51 * * 73.21 ± 0.47 * * 71.06 ± 0.48 * *
UASD [8] 75.01 ± 0.51 * * 74.60 ± 0.53 * * 74.01 ± 0.49 * * 71.82 ± 0.57 * *
DS3L [24] 74.76 ± 0.47 * * 72.67 ± 0.48 * * 71.52 ± 0.55 * * 70.18 ± 0.56 * *
OM [47] 88.37 ± 0.35 * 86.06 ± 0.40 * 83.92 ± 0.40 * 82.41 ± 0.42 *
T2T [25] 87.84 ± 0.33 * 85.75 ± 0.36 * 83.49 ± 0.37 * 82.28 ± 0.43 *
CCSSL [58] 87.42 ± 0.35 * 85.58 ± 0.38 * 83.46 ± 0.41 * 82.44 ± 0.46 *
OSP [54] 86.92 ± 0.34 * 84.98 ± 0.39 * 82.72 ± 0.45 * 81.07 ± 0.49 *

Our

Methods

DWAL 76.18 ± 0.57 75.57 ± 0.53 74.53 ± 0.58 72.35 ± 0.66
DWAL+DA 90.58 ± 0.29 88.51 ± 0.31 86.48 ± 0.34 85.62 ± 0.38

Our DWAL still performs better than those PL-based methods, and DWAL+DA shows its advantage over other
FixMatch-based methods. This indicates that our methods can efectively cope with the intersectional class-
mismatch problem.

5.3.4 Results on ImageNet-100. The results are shown in Table 5. ImageNet-100 has more classes than MNIST,
SVHN and CIFAR-10 which means that its complexity is higher than other datasets. Under the complex situation,
it can be observed that our methods perform better than SSL methods within the same framework.

5.3.5 Results on Fundus. Fundus is a real-world clinic dataset, and the comparison results on Fundus are shown
in Table 6. From the results, it can be observed that DWAL performs better than PL-based methods. Moreover, by
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Table 5. Classification accuracies on ImageNet-100.

Settings Methods ��� 1 ��� 2

Class-

matched

Methods

Supervised 40.03 ± 0.21 * * 40.03 ± 0.21 * *
VAT [40] 39.42 ± 0.21 * * 37.39 ± 0.25 * *
MT [51] 38.66 ± 0.14 * * 37.30 ± 0.21 * *
PI [35] 39.57 ± 0.19 * * 38.33 ± 0.27 * *
PL [36] 39.17 ± 0.15 * * 37.83 ± 0.19 * *
FixMatch [49] 52.55 ± 0.17 * 50.15 ± 0.23 *
FlexMatch [62] 54.23 ± 0.18 * 53.26 ± 0.29 *
SemCo [42] 54.94 ± 0.33 * 53.88 ± 0.42 *

Class-

mismatched

Methods

MTCF [61] 40.86 ± 0.17 * * 38.57 ± 0.26 * *
UASD [8] 40.20 ± 0.19 * * 37.97 ± 0.28 * *
DS3L [24] 39.91 ± 0.16 * * 37.52 ± 0.24 * *
OM [47] 55.52 ± 0.34 * 54.01 ± 0.39 *
T2T [25] 54.75 ± 0.29 * 53.45 ± 0.33 *
CCSSL [58] 55.16 ± 0.27 * 53.73 ± 0.40 *
OSP [54] 55.82 ± 0.34 * 54.61 ± 0.37 *

Our

Methods

DWAL 42.12 ± 0.16 41.23 ± 0.22
DWAL+DA 58.42 ± 0.24 56.17 ± 0.32

Table 6. Classification accuracies on Fundus.

Settings Methods Accuracy

Class-

matched

Methods

Supervised 38.07 ± 0.26 * *
VAT [40] 40.03 ± 0.61 * *
MT [51] 39.25 ± 0.64 * *
PI [35] 39.95 ± 0.52 * *
PL [36] 40.51 ± 0.59 * *
FixMatch [49] 78.39 ± 0.41 *
FlexMatch [62] 80.27 ± 0.37 *
SemCo [42] 80.87 ± 0.42 *

Class-

mismatched

Methods

MTCF [61] 42.76 ± 0.51 * *
UASD [8] 42.48 ± 0.48 * *
DS3L [24] 41.74 ± 0.57 * *
OM [47] 80.02 ± 0.55 *
T2T [25] 78.63 ± 0.48 *
CCSSL [58] 80.75 ± 0.56 *
OSP [54] 79.89 ± 0.58 *

Our

Methods

DWAL 46.57 ± 0.79
DWAL+DA 83.42 ± 0.56

employing the same data augmentation strategy, our DWAL+DA surpasses all other FixMatch-based methods,
indicating that our method can handle the intersectional class-mismatched problem.

5.4 Ablation Study

To investigate the efectiveness of diferent key components in our DWAL, we conduct the following ablative
experiments, including: 1) we remove dissimilarity maximization term while keeping others ixed, denoted as
łw/o dissimilarity maximizationž; 2) we drop transferability scores s and only use prediction conidence values
p to weigh unlabeled data, denoted as łw/o transferability scorež; 3) we drop prediction conidence values p
and only use transferability scores s to weigh unlabeled data, denoted as łw/o prediction conidencež; 4) we
drop weights of unlabeled examples, i.e., both prediction conidence values p and transferability scores s, in
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Fig. 3. Ablation study on MNIST and CIFAR-10. Shaded regions indicate a standard deviation over five trails.

L��� , denoted as łw/o weightž; and 5) we replace pre-trained classiier �′ with classiier � to calculate prediction
conidence value, denoted as łreplace �′ with �ž.
Fig. 3 shows the ablative results on MNIST and CIFAR-10. It can be clearly seen how DWAL improves

classiication performance. Without transferability score or prediction conidence value, (see line (2) and (3)),
the performance will decrease. When transferability score and prediction conidence value are both dropped,
the whole DWAL method is equal to the traditional SSL method and we observe that the line (4) sufers the
largest performance drop when compared with other lines, indicating that the transferability score and prediction
conidence value yielded by DWAL can provide rich information beyond label supervision, which can instruct
the classiier to learn unlabeled data well. In addition, by observing line (1), we can draw several interesting
observations. In���� 1, its performance is very close to that of DWAL method (see Fig. 3). This is mainly because,
in ���� 1, the real proportion of examples of D��� in D� is low and the negative inluence caused by private data
is small. From ���� 1 to ���� 4, the proportion improves, so does the contribution of dissimilarity maximization.
Though dissimilarity maximization cannot get weight directly, it can weaken the negative inluence caused by
private data and improve the accuracy of weight calculated by DWAL. Last but not least, line (5) deserves our
attention as well. When we replace �′ with � , we involve � in the calculation of weight in fact. We can ind that
line (5) sufers a large performance drop as well, which conirms the disastrous outcome when combining the
detection part and classiication part together, and our DWAL method can solve this problem.

5.5 Performance Verification

We will show visualization of transferability score, visualization of prediction conidence value, and efects of �.

5.5.1 Visualization of Transferability Scores. To conirm the reasonability of transferability scores, we visualize
the transferability scores of labeled data and unlabeled data on three diferent datasets in Fig. 4. The results
show that, the distribution of transferability score of shared data is diferent from that of other data, and the
averaged transferability score of shared data is more likely to be close to 1 than that of other data, in both labeled
and unlabeled sets. The transferability score provides valuable information in distinguishing shared data from
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Fig. 4. Transferability score of labeled data and unlabeled data in three datasets: (a): Labeled data in MNIST; (b) Unlabeled
data in MNIST; (c): Labeled data in SVHN; (d) Unlabeled data in SVHN; and (e): Labeled data in CIFAR-10; and (f) Unlabeled
data in CIFAR-10.

Fig. 5. Visualization of prediction confidence value on three datasets: (a) MNIST, (b) SVHN; and (c) CIFAR-10.

private data in D� , and shared data from OOD data in D� . This explains how transferability score improves the
performance under intersectional class-mismatch setting.

5.5.2 Visualization of Prediction Confidence Value. To show the reliability of prediction conidence value, we
visualize the prediction conidence value of unlabeled data on three diferent datasets in Fig. 5. The results show
that, the distribution of prediction conidence value of shared data is diferent from that of OOD data, and the
expectation of prediction conidence value of shared data is larger than that of OOD data. This conirms that
the way we calculate prediction conidence value is efective and explains why prediction conidence value can
instruct classiier to learn from unlabeled data.
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Table 7. Classification accuracies of � with diferent coeficients on SVHN.

Value of � ���� 1 ���� 2 ���� 3 ���� 4

0.5 ∗ � 86.19 ± 0.21 85.30 ± 0.17 83.86 ± 0.29 82.81 ± 0.26
0.9 ∗ � 86.16 ± 0.27 85.81 ± 0.24 85.15 ± 0.32 84.94 ± 0.37
1.0 ∗ � 86.12 ± 0.34 85.76 ± 0.37 85.21 ± 0.26 84.98 ± 0.33
1.1 ∗ � 86.10 ± 0.35 85.56 ± 0.42 85.19 ± 0.39 85.01 ± 0.35
1.5 ∗ � 86.06 ± 0.35 85.03 ± 0.36 84.09 ± 0.37 83.15 ± 0.46

5.5.3 Efects of �. According to Eq. (12), we can detect private data by comparing the transferability scores of
labeled examples with �, where � is the average transferability score of labeled examples. To investigate the
efects brought by value of �, we set diferent values of � by letting the averaged transferability score multiply the
range of coeicients (i.e., 0.5, 0.9, 1.0, 1.1 and 1.5), and then we have conducted an experiment on SVHN from
���� 1 to���� 4. The accuracies are shown in Table 7. From Table 7, it can be seen that when � luctuates slightly
between 0.9 and 1.1, the results change mildly, but when � luctuates critically to 0.5 or 1.5, the accuracy sufers
degradation. This indicates dissimilarity maximization is not sensitive to the value of � when it is close to the
averaged transferability score of labeled data.

6 CONCLUSION

In this paper, we propose a novel DWAL method to tackle SSL under intersectional class mismatch. Speciically,
we conduct enhanced adversarial domain adaptation to reliably calculate weight from the perspectives of domain
adaptation and a class-wise weighting mechanism, so that we can weigh each example. After detecting the private
data from labeled data, dissimilarity maximization is proposed to maximize the disagreement between the feature
distribution of private data and that of unlabeled data, reducing the inaccurate adaptation caused by private
data. More importantly, we separately conduct the detection part and classiication part to avoid a conlicting
optimization. Experimental results show that our DWAL performs better than other state-of-the-art SSL methods
under intersectional class-mismatch setting.

In our method, the private examples in labeled set are decided according to the threshold � in Eq. (12), where
� is simply the average number of transferbility scores of labeled data. In the future, we plan to ind a more
advanced way to adaptively decide this threshold, so that the private examples can be reliably detected.
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