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Abstract—Semisupervised learning (SSL) has been widely used
in numerous practical applications where the labeled training
examples are inadequate while the unlabeled examples are abun-
dant. Due to the scarcity of labeled examples, the performances
of the existing SSL methods are often affected by the outliers
in the labeled data, leading to the imperfect trained classifier.
To enhance the robustness of SSL methods to the outliers, this
article proposes a novel SSL algorithm called Laplacian Welsch
regularization (LapWR). Specifically, apart from the conventional
Laplacian regularizer, we also introduce a bounded, smooth, and
nonconvex Welsch loss which can suppress the adverse effect
brought by the labeled outliers. To handle the model noncon-
vexity caused by the Welsch loss, an iterative half-quadratic
(HQ) optimization algorithm is adopted in which each sub-
problem has an ideal closed-form solution. To handle the large
datasets, we further propose an accelerated model by utilizing
the Nyström method to reduce the computational complexity of
LapWR. Theoretically, the generalization bound of LapWR is
derived based on analyzing its Rademacher complexity, which
suggests that our proposed algorithm is guaranteed to obtain
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satisfactory performance. By comparing LapWR with the exist-
ing representative SSL algorithms on various benchmark and
real-world datasets, we experimentally found that LapWR per-
forms robustly to outliers and is able to consistently achieve the
top-level results.

Index Terms—Generalization bound, half-quadratic (HQ)
optimization, Nyström method, semisupervised learning (SSL),
Welsch loss.

I. INTRODUCTION

IN MANY machine learning and data mining applications,
massive data can be easily collected due to the develop-

ment of sensors or Internet. However, manually labeling them
for model training is very expensive in terms of both time
and labor cost. Therefore, it is often the case that only a
small set of data are labeled while the vast majority of col-
lected data are left unlabeled. In this case, the traditional fully
supervised classification methods cannot be used due to the
scarcity of the labeled data. To address this problem, semisu-
pervised learning (SSL) was proposed [1] which has attracted
increasing attention in the past few years. The SSL methods
try to establish an accurate classifier by taking advantage of
the supervision information carried by the limited labeled data
as well as the distribution information revealed by the massive
unlabeled data.

SSL is an active field, in which a large number of algo-
rithms have been proposed so far. Among the existing SSL
algorithms, the graph-based methods are commonly used and
have attracted wide attention due to their good performance.
These methods usually build a graph whose nodes corre-
spond to data points and the edges connecting them encode
their similarities. The labels of the unlabeled data are then
learned from the graph in the way that the nearby data
points in the graph will have similar labels. In general,
researchers hypothesize a low-dimensional manifold struc-
ture along which labels are assumed to vary smoothly. To
discover the manifold structure of the data, Zhu et al. [2]
used the graph Laplacian to approximate the Laplace–Beltrami
operator defined on the manifold, and proposed an algo-
rithm called Gaussian field and harmonic functions (GFHF).
However, this method is transductive and cannot general-
ize to the unseen test data. Therefore, Belkin et al. [3]
developed the manifold regularization and proposed two vari-
ants, including Laplacian regularized least squares (LapRLS)
and Laplacian support vector machines (LapSVM). Different
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Fig. 1. Motivation of our method: (a) compares our adopted Welsch loss
with the existing �2 loss and �1 loss; (b) compares the generated decision
boundaries of our proposed LapWR with the Welsch loss (magenta line) and
the LapRLS method with the �2 loss (cyan line). The red and blue diamonds
represent the labeled positive examples and negative examples, respectively,
among which one of the negative examples forms an outlier. The black circles
are unlabeled examples.

from the above methods that only consider pairwise label
smoothness, Wang et al. [4] assumed that every data point
in the graph can be linearly reconstructed by its neighbors
and proposed the linear neighborhood propagation (LNP)
algorithm. Moreover, Yu et al. [5] proposed a feature selection-
based SSL algorithm to handle the classification task with
high-dimensional data. Afterward, they generated an auxil-
iary training set and adopt a multiobjective subspace selection
process to obtain the reliable classifier [6]. Recently, different
kinds of manifold regularization-based semisupervised algo-
rithms have been proposed, such as Hessian regularization [7],
p-Laplacian regularization [8], and hypergraph-based regu-
larization [9]. Other typical graph-based algorithms include
local and global consistency [10], Fick’s law-assisted propa-
gation [11], probabilistic pointwise smoothness [12], flexible
semisupervised embedding [13], and optimal graph embedded
semisupervised feature selection [14].

Besides the above manifold assumption, cluster assump-
tion is also a major assumption widely adopted by many
SSL algorithms. Cluster assumption assumes that the classes
are well separated, such that the decision boundary falls into
the low-density area in the feature space. The semisupervised
support vector machine (S3VM) [15] is one of the most rep-
resentative algorithms which focus on approaching an optimal
low-density separator. Based on S3VM, Li and Zhou [16]
proposed the safe S3VM (S4VM) model to exploit the can-
didate’s low-density separators simultaneously to reduce the
risk of identifying a poor separator with unlabeled data.
Furthermore, Wang et al. [17] extended the cluster assumption
of examples to class membership and developed a novel SSL
methodology by introducing the membership vector. Recently,
Sakai et al. [18], [19] studied SSL from the view of posi-
tive and unlabeled learning and proposed to conduct SSL by
directly optimizing the area under curve (AUC) metric.

However, the above methods share a common drawback
that they are not robust to the outliers. Taking LapRLS
as an example, due to the adopted �2 loss on the labeled
data which amplifies the negative impact of outliers, the
generated decision is quite biased and does not fall into
the margin between data clusters [see the cyan line in
Fig. 1(b)]. To mitigate this drawback, various methods have

been proposed to enhance the robustness of SSL. For example,
Nie et al. [20] and Luo et al. [21], respectively, devised the
adaptive elastic embedding and discriminative least-squares
regression to alleviate the sensitivity of �2 loss to outliers.
After that, Liu et al. [22] adapted the elastic constraint to
semisupervised label propagation and used the loss without
the square to make the learned model robust to the out-
liers. Apart from this, Gong et al. [23] used the degree of
each node on the graph to determine the examples ambi-
guity and designed a novel smoothness regularizer based
on the deformed graph Laplacian. Later, they proposed to
deploy curriculum learning for semisupervised label propa-
gation, so that the simple examples with definite labels are
learned ahead of the difficult ambiguous examples [24], [25].
Their method contains teaching-to-learn step and learning-
to-teach step, and these two steps interact in each iteration
so that all unlabeled examples are utilized via an ordered
sequence.

In this article, we focus on the loss function and present the
Welsch loss to solve the robustness problem incurred by the
outliers. By combining the proposed Welsch regularization and
also the existing Laplacian regularization, our method is thus
dubbed Laplacian Welsch regularization (LapWR). The main
motivation of LapWR is that the conventional loss functions,
such as �2 loss, are not robust to the outliers as the unbound-
edness of the convex loss functions would cause outliers to
have large loss values. As a result, the decision boundary may
deviate severely from the optimal one, which leads to the poor
performance. From Fig. 1(a), we learn that the adopted Welsch
loss is a bounded, smooth, and nonconvex loss and, thus, it
is more robust than the commonly used �2 loss and �1 loss.
To validate this, we generate two Gaussian data clusters with
an outlier of negative class as indicated in Fig. 1(b). We intu-
itively show how this outlier influences the decision boundaries
of the LapRLS method with the �2 loss and our method with
Welsch loss. It can be clearly found that the decision boundary
of LapRLS (i.e., the cyan line) is seriously influenced by the
outlier, while that of our LapWR (i.e., the magenta line) suc-
cessfully resists the perturbation of outlier and travels through
the margin between two classes.

Moreover, we establish our model in the reproducing kernel
Hilbert space (RKHS) to obtain a nonlinear decision boundary.
To handle the nonconvexity brought by the Welsch loss, we
adopt the half-quadratic (HQ) optimization [26] technique and
further prove that an ideal closed-form solution can be found
in each iteration, which means that our LapWR method can be
easily implemented. Furthermore, to reduce the computational
complexity of our method, we propose an extended accelerated
model by applying the Nyström method [27] to speed up the
original model. The Nyström method is probably one of the
most well-studied and successful methods that have been used
to scale up the kernel methods. Besides, we also present the
generalization bound based on the derived Rademacher com-
plexity. From the generalization bound, we observe that the
generalization error will gradually decrease with the increase
of training examples. Therefore, our proposed LapWR is guar-
anteed to obtain satisfactory performance. In the experiments,
we compare our algorithm on both the synthetic and real-world
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datasets with the state-of-the-art SSL algorithms, and the
results confirm the effectiveness of our algorithm in the pres-
ence of data noises. Also, we show the convergence property
and parametric stability of LapWR.

As mentioned above, in this article, we attempt to devise
a loss function to handle the robustness problem incurred
by the outliers. Actually, there are also some other robust
loss functions developed so far that are upper bounded
like our adopted Welsch loss, such as capped l1 loss [28]
and nonconvex squared loss [29]. However, they are infe-
rior to our Welsch loss due to the induced optimization
issues. Specifically, capped l1 loss and nonconvex squared
loss are nonsmooth, so the gradient that is critical for model
optimization cannot be computed at some nondifferentiable
points. Therefore, in this article, we deploy the Welsch loss to
deal with the robustness problem incurred by the outliers in
SSL. Moreover, the bisquare loss appeared in [30] can also
be used here, and it leads to the comparable performance
to the Welsch loss as their functional behaviors are quite
similar.

The remainder of this article is as follows. In Section II, we
describe the LapWR model and its optimization algorithm.
Then, the accelerated model which relies on the Nyström
method will be presented in Section III. Section IV derives
the generalization bound based on the Rademacher complex-
ity. Experimental results are shown in Section V. Finally, this
article is summarized in Section VI.

II. MODEL DESCRIPTION

In this section, we first introduce some background knowl-
edge of graph-based SSL, and then present the proposed
LapWR and also its solution.

A. Graph-Based Semisupervised Learning

The SSL problem is mathematically defined as follows.
Without loss of generality, we take the binary classification
as an example. Given a dataset X = {x1, . . . , xl, xl+1, . . . , xn}
of size n and a label set Y ∈ {1,−1}, where the first l data
examples xi(i ≤ l) in X are labeled as yi ∈ {1,−1} and the
remaining u examples xi(l + 1 ≤ i ≤ n, n = l + u) are unla-
beled with yi = 0. We use L = {(x1, y1), (x2, y2), . . . , (xl, yl)}
to denote the labeled set drawn from the joint distribution P
defined on X × Y , and U = {xl+1, xl+2, . . . , xl+u} to rep-
resent the unlabeled set drawn from the unknown marginal
distribution PX of P . In the graph-based method, we model
the whole dataset X as a graph G = 〈V, E〉, where V is the set
of nodes which is composed by the elements in X and E is
the set of edges which records the relationship among all the
nodes. W is the adjacency matrix of graph G which can be
defined as wij = exp(−‖xi − xj‖2/(2σ 2)), where wij denotes
the similarity between examples xi and xj; the variance σ is
a free parameter that should be manually tuned. Based on the
adjacency matrix W, the Laplacian matrix L of the graph G
can be computed by L = D−W, where D is an n×n diagonal
matrix with its ith diagonal element being equal to the sum of
the ith row of W.

TABLE I
IMPORTANT MATHEMATICAL NOTATIONS

y yii

The existing Laplacian regularized graph-based SSL models
are usually established in the RKHS, which has the formation

Q(f ) =
∑l

i=1
V(yi, f (xi))+ λ‖f ‖2

H + μf�Lf (1)

where the vector f = (f1, f2, . . . , fn)� records the determined
soft labels of all n examples. The first term of Q(f ) is the
fitting term which consists of the loss function on the labeled
set L. As mentioned before, the existing methods usually use
the �1 loss [31], �2 loss [3], or hinge loss [15] for V(yi, f (xi))

which are not sufficiently robust. The second term is the reg-
ularization term to prevent overfitting. The third term is the
smoothness term which requires that similar examples in the
feature space X also obtain similar labels in Y space. In (1), λ
and μ are non-negative tradeoff parameters governing the rel-
ative weights of the two terms. By extending the conventional
representer theorem to the semisupervised case, the closed-
form solution of (1) can be easily found [3]. For convenience,
we list the important notations which will be later used in this
article in Table I.

B. Laplacian Welsch Regularization

As mentioned in Section I, the loss functions V(·) adopted
by the existing SSL algorithms are often unbounded, and this
will cause large loss value when outliers appear. Therefore,
the SSL algorithms with such nonrobust losses are very likely
to be influenced by the outliers and produce the deviated deci-
sion boundary from the expected one (see Fig. 1). To make
matters worse, SSL only harnesses very few labeled examples
to train a classifier, so the negative impact of outliers can be
significantly amplified due to the existing nonrobust losses.
Therefore, in this article, we focus on designing a robust loss
function to make the classifier stable to the outliers in the
labeled set.

To suppress the adverse impact caused by the outliers, we
propose to incorporate the Welsch loss to the framework of
SSL. The Welsch loss is a bounded, smooth, and nonconvex
loss which is very robust to the outliers. It is defined as

V(z) = c2

2

[
1 − exp

(
− z2

2c2

)]
(2)

where c is a tuning parameter controlling the degree of penalty
to the outliers. Fig. 2 shows the function curve of the Welsch

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on July 20,2020 at 14:06:16 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 2. Welsch loss with different selections of parameter c.

loss V(z) under different values of c which changes from 0.5
to 2. We see that the upper bound of the Welsch loss increases
and converges slowly when c gradually increases. By driving
z to infinity, it can be easily found that the upper bound of
the Welsch loss is c2/2 from (2), which means that the influ-
ences of abnormal examples are capped during model training.
Consequently, the Welsch loss is able to resist the disturbances
of outliers.

Due to the robustness of the Welsch loss, in this article,
we incorporate the loss (2) to the general framework of SSL
in (1), and thus the proposed method called LapWR. Since
our model is established in RKHS, there is a unique positive
semidefinite kernel on X ×X [32]. Therefore, by adopting the
representer theorem, the decision function can be expressed as
f (x) = ∑n

i=1 αiK(x, xi), where K is the n × n Gram matrix
over labeled and unlabeled examples and αi is the coefficient.
Consequently, our LapWR model is formally represented as

min
α

l∑

i=1

c2

2

[
1 − exp

(
− (yi − f (xi))

2

2c2

)]

+ λ

2
‖f ‖2

H + μ

2(l + u)2
f�Lf (3)

where l is the number of labeled examples, u is the num-
ber of unlabeled examples, and λ and μ are the non-negative
regularization parameters. By denoting the parameter vector
as α = (α1, . . . , αn)

�, our goal is to find a suitable α to
minimize the objective of (3). However, due to the introduc-
tion of the Welsch loss, the optimization of nonconvex (3)
becomes very difficult. There are several well-known algo-
rithms for dealing with nonconvex problem, such as iterative
reweighted least squares (IRLS) [33] and concave–convex pro-
cedure (CCCP) [34]. Although these above algorithms can
achieve reasonable solutions, they are not the optimal solu-
tions for solving LapWR. Specifically, they will result in a
slow convergence rate due to that each iteration also requires
iteratively solving an optimization subproblem. Consequently,
in this article, we simply follow [26] and use the HQ program-
ming method to handle the nonconvexity problem caused by
the Welsch loss. For our problem, HQ programming has a

closed-form solution in every iteration, so HQ can be imple-
mented more efficiently than IRLS and CCCP. We will show
the detailed optimization procedure of HQ in the next section.

C. HQ Optimization for LapWR

Before we use the HQ optimization algorithm to optimize
LapWR, we first rewrite (3) as

max
α

G1(α) (4)

where

G1(α) =
l∑

i=1

exp

(
− (yi − f (xi))

2

2c2

)
− λ

c2
‖f ‖2

H

− μ

c2(l + u)2
f�Lf. (5)

To facilitate the following derivations, we then define a con-
vex function g(v) = −v log(−v) + v, where v < 0. Based on
the conjugate function theory [35], we have

exp

(
− (y − f (a))2

2c2

)
= sup

v<0

{
v
(y − f (a))2

2c2
− g(v)

}
(6)

which the supremum is achieved at

v = − exp

(
− (y − f (a))2

2c2

)
. (7)

With (6), we can rewrite G1(α) in (4) as

G1(α)
1=

l∑

i=1

sup
vi<0

{
vi
(yi − f (xi))

2

2c2
− g(vi)

}
− Z(f )

2= sup
v<0

{
l∑

i=1

(
vi
(yi − f (xi))

2

2c2
− g(vi)

)}
− Z(f )

3= sup
v<0

{
l∑

i=1

(
vi
(yi − f (xi))

2

2c2
− g(vi)

)
− Z(f )

}
(8)

where Z(f ) = (λ/c2)‖f ‖2
H + (μ/c2(l + u)2)f�Lf; v =

(v1, . . . , vl)
� ∈ R

l with vi < 0 for i = 1, 2, . . . , l. The second
equation above holds due to the fact that the vis (i = 1, . . . , l)
in the first term are independent to each other, and the third
equation comes from the fact that Z(f ) is a constant that is
irrelevant to vi. By using (8), we further derive (4) as

max
α,v<0

G2(α, v) (9)

where

G2(α, v) =
l∑

i=1

[
vi
(yi − f (xi))

2

2c2
− g(vi)

]
− λ

c2
‖f ‖2

H

− μ

c2(l + u)2
f�Lf. (10)

Now we can use the HQ optimization algorithm to
optimize (9). Note that there are two variables to be opti-
mized in (9), so we may alternatively optimize one of α and
v while keeping the other one unchanged. Suppose that we
already have αs, where the superscript s denotes the result of
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Algorithm 1 HQ Optimization Algorithm for Solving (9)
Input: The kernel matrix K; the free parameters c, λ and μ;

the label vector y; and the maximum iteration number S.
Output: α in (16)

1: Set s = 0, ψ = 10−6 and initialize vs;
2: while s < S do
3: Construct � from vs, � = diag(−vs, 0);
4: Obtain αs+1 by solving (16);
5: Obtain vs+1 by solving (12);
6: Check the convergence condition:
7: ‖αs − αs+1‖2 < ψ .
8: Set s = s + 1;
9: end while

10: return α = αs.

the sth iteration, then the optimization problem with respect
to v becomes

max
vs<0

l∑

i=1

[
vs

i
(yi − f s(xi))

2

2c2
− g

(
vs

i

)
]
. (11)

According to (6) and (7), the analytical solution of (11) is

vs
i = − exp

(
− (yi − f s(xi))

2

2c2

)
. (12)

Second, after obtaining vs, we can obtain αs+1 by solving the
following problem:

max
α

l∑

i=1

[
vs

i
(yi − f s(xi))

2

2c2

]
− λ

c2
‖f ‖2

H − μ

c2(l + u)2
f�Lf.

(13)

Equation (13) can be rewritten in a compact matrix formation
as follows:

min
α

1

2c2 (y − JKα)��(y − JKα)

+ λ

c2
α�Kα + μ

c2(l + u)2
α�KLKα (14)

where y is an n-dimensional label vector given by y =
[y1, . . . , yl, 0, . . . , 0]�; J is an n × n diagonal matrix given by
J = diag(1, . . . , 1, 0, . . . , 0) with the first l diagonal entries
being 1 and the remaining u elements being 0; and � is also
an n × n diagonal matrix given by � = diag(−vs, 0), where
0 is an all-zero vector.

By computing the derivative of (14) to α and setting the
result to zero, we obtain

�(y − JKα)(−JK)+ 2λKα + 2μ

(l + u)2
KLKα = 0 (15)

which leads to the following solution:

α =
[
�JK + 2λI + 2μ

(l + u)2
LK

]−1

�y. (16)

Above subproblems regarding α and v iterate and the solu-
tion of (9) can be finally obtained. Algorithm 1 summarizes
the entire optimization procedure, in which v0 is initialized
by setting it to −1. Also, we set the convergence condition as

‖αs − αs+1‖2 < ψ , where ψ = 10−6. Note that in our HQ
optimization, every subproblem has a closed-form solution, so
the model (3) can be efficiently solved.

Although our model is derived for binary classification, it
can be easily extended to multiclass situations by using the
one-vs-the-rest strategy.

III. MODEL ACCELERATION

Due to the matrix inversion in (16), the computational
complexity of direct implementation of LapWR is as high
as O(Sn3), which indicates that LapWR is computationally
expensive. In this section, we propose to use the Nyström
approximation method [27] to reduce the computational com-
plexity of LapWR.

It is obvious that α in (16) cannot be easily computed when
the number of examples n increases. In this case, we try to
reduce the dimension of kernel matrix K which is actually
the Gram matrix over labeled and unlabeled examples. To this
end, we try to find a low-rank approximation of K with rank
m to replace the full-rank K in (16). It should be noted that
the value of m should be settled carefully in practical use as
it controls the tradeoff between efficiency and accuracy for
matrix approximation. The Nyström method [27] is a popular
low-rank approximation method which can help to reduce the
computational complexity of LapWR. As mentioned before,
we focus on generating an approximation of K (i.e., K̃) based
on a sample of m 	 n of its columns. First, let C denote the
n×m matrix formed by these columns and Q denote the m×m
matrix consisted of the intersection of these m columns with
the corresponding m rows of K. Without loss of generality,
the columns and rows of K can be rearranged based on this
sampling so that K and C are written as

C =
[

Q
E

]
and K =

[
Q E�
E F

]
(17)

where E ∈ R
(n−m)×m represents the n − m columns with the

corresponding m rows of K; and F ∈ R
(n−m)×(n−m) represents

the n − m columns with the corresponding n − m rows of
K. In this way, we divide K into four parts which further
compose the matrix C. Second, the Nyström method utilizes
the above Q and C to approximate K. By uniform sampling,
a set of columns of K, the Nyström method generates a rank-r
approximation K̃ of K for r < n defined by

K̃ = CQ†
r C� (18)

where Qr is the optimal rank-r approximation of the m × m
inner matrix Q, and Q†

r represents the pseudo inverse of Qr.
Now we obtain the low-rank approximation of K which can
be decomposed as CQ†

r C�.
In order to apply the Nyström method to LapWR, we first

rewrite (15) as
(

2λI +
(

�J + 2μ

(l + u)2
L

)
K

)
α = �y. (19)

To facilitate the following derivations, we define A = �J +
2μ/(l + u)2L, then (19) is equal to

(
2λA−1 + K

)
α = A−1�y. (20)
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Now we use the Nyström method to reduce the dimension
of K by substituting K̃ for K in the above equation, which
arrives at (

2λA−1 + CQ†
r C�)

α = A−1�y. (21)

After decomposing K, we try to compute the inverse of
2λA−1 + CQ†

r C�, which reminds us to use the Sherman–
Morrison–Woodbury formula [36] that is formulated as

(P + UMV)−1 = P−1 − P−1U
(

M−1 + VP−1U
)−1

VP−1

(22)

where P ∈ R
n×n, U ∈ R

n×m, M ∈ R
m×m, and V ∈ R

m×n.
In this case, we only need to compute the inverse of a small
m × m matrix with m 	 n, making the computational cost of
LapWR acceptable. By applying (22) to 2λA−1 +CQ†

r C�, we
obtain
(

2λA−1 + CQ†
r C�)−1

= 1

2λ
A −

(
1

2λ

)2

AC
((

Q†
r

)−1 + 1

2λ
C�AC

)−1

C�A (23)

where ((Q†
r )

−1 + (1/2λ)C�AC) ∈ R
m×m. Note that the

Nyström approximation of K only needs to be computed once
and its computational complexity is O(rmn). Now, (16) can
be rewritten as

α =
[

1

2λ
I −

(
1

2λ

)2

AC
((

Q†
r

)−1 + 1

2λ
C�AC

)−1

C�
]
�y.

(24)

To summarize, in the accelerated LapWR, we use (24) to
replace (16) in Algorithm 1. Recall that when m 	 n, the com-
putational complexity of accelerated LapWR is O(rmn+Sm3)

which is obviously smaller than the computational complexity
of original LapWR which is O(Sn3). Furthermore, several low-
rank approximation methods which are variants or extensions
of the adopted Nyström method have recently been proposed to
obtain good decomposition results, such as [37] and [38], and
they can also be used here to further reduce the computational
complexity.

IV. GENERLIZAION BOUND

In this section, we derive the generalization bound of the
proposed LapWR based on its Rademacher complexity.

Definition 1 [39]: For a sample {x1, . . . , xn} generated by a
distribution D and a real-valued function class F with domain
X , the empirical Rademacher complexity of F is defined as

R̂n(F) = Eσ

[
sup
f ∈F

∣∣∣∣∣
2

n

n∑

i=1

σif (xi)

∣∣∣∣∣

]
(25)

where the expectation is taken over σ = (σ1, . . . , σn)
� with

σi ∈ {−1,+1} (i ∈ [1, n]) being independent uniform ran-
dom variables. The Rademacher random variables satisfy the
probability P{σi = +1} = P{σi = −1} = 1/2. Then, the
Rademacher complexity of F is

Rn(F) = Ex

[
R̂n(F)

]
= Exσ

[
sup
f ∈F

∣∣∣∣∣
2

n

n∑

i=1

σif (xi)

∣∣∣∣∣

]
. (26)

Based on Definition 1, the generalization bound for a
function f ∈ F is given in the following theorem.

Theorem 1 [40]: Let F be a class of functions mapping
from Z = X × Y to [0, 1]. Given n examples drawn inde-
pendently from a distribution D, then with probability 1 − δ,
every f ∈ F satisfies

err(f ) ≤ ˆerr(f )+ R̂n(F)+ 3

√
ln(2/δ)

2n
(27)

where err(f ) represents the expected error, and ˆerr(f ) denotes
the empirical error of f .

This bound is quite general and applicable to various learn-
ing algorithms if an empirical Rademacher complexity R̂n(F)
of the function class F can be found. Meanwhile, it is easy
to bound the empirical Rademacher complexity for kernelized
algorithms by using the trace of the kernel matrix.

Theorem 2 [41]: If K : X × X 
→ R is a kernel,
and {x1, . . . , xn} is a sample from X , then the empirical
Rademacher complexity of the class F(B) with the bounded
norm ‖f ‖H ≤ B satisfies

R̂n(F(B)) ≤ 2B

n

√√√√
n∑

i=1

K(xi, xi). (28)

If K(x, x) ≤ T2 for all x ∈ X and K is a normalized kernel,
we can rewrite (28) as

R̂n(F(B)) ≤ 2B

n

√√√√
n∑

i=1

K(xi, xi) ≤ 2B

√
T2

n
. (29)

Based on the empirical Rademacher complexity and
Theorem 2, it is easy to bound the generalization error of
our LapWR. To be specific, we may first find the value of B
in Theorem 2, and then combine (27) and (28) to derive the
generalization bound of LapWR. The result is presented in the
following theorem.

Theorem 3 (Generalization Bound): Let err(f ) and ˆerr(f )
be the expected error and the empirical error of LapWR; l and
u be the amounts of labeled examples and unlabeled examples,
respectively. Suppose n = l + u and K(x, x) ≤ T2, then for
any δ > 0, with probability at least 1 − δ, the generalization
error of LapWR is

|err(f )− ˆerr(f )| ≤ 2cT

√
ln

λn2 + μβ1

[
1 − exp

(
− 1

2c2

)]

+ 3

√
ln(2/δ)

2n
. (30)

Proof: In order to use Theorem 2, we are going to find the
value of B in (28) which is the upper bound of ‖f ‖2

H. To this
end, recalling that the objective function of LapWR expressed
in RKHS H is

Q̃(f ) =
∑l

i=1
V(yi, f (xi))+ λ

2
‖f ‖2

H + μ

2n2
f�Lf. (31)

Let f ∗ = argminf ∈HQ̃(f ) be the solution of (31), then we have
Q̃(f ∗) ≤ Q̃(0). Therefore, we further obtain

λ

2
‖f ∗‖2

H + μ

2n2
f�Lf ≤ Q̃(0). (32)
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Assume that the nonzero eigenvalues of L are β1 < β2 <

· · · < βd, where d is the rank of L, among which β1 repre-
sents the minimum eigenvalue and βd represents the maximum
eigenvalue, then we obtain

β1‖f ∗‖2
H ≤ f�Lf ≤ βd‖f ∗‖2

H. (33)

It is obvious that
(
λ

2
+ μβ1

2n2

)
‖f ∗‖2

H ≤ λ

2
‖f ∗‖2

H + μ

2n2
f�Lf

≤
(
λ

2
+ μβd

2n2

)
‖f ∗‖2

H. (34)

By combining (32) and (34), we arrive at

(
λ

2
+ μβ1

2n2

)
‖f ∗‖2

H ≤ Q̃(0). (35)

Therefore, we can restrict the search for f ∗ to a ball in H
of radius g =

√
Q̃(0)/(λ/2 + μβ1/2n2). Let Hg := {f ∈

H : ‖f ‖H ≤ g} denote the ball of radius g in RKHS H, then
according to Theorem 1, the generalization bound of LapWR
can be written as

|err(f )− ˆerr(f )| ≤ R̂n
(Hg

) + 3

√
ln(2/δ)

2n
(36)

where

R̂n
(Hg

) ≤ 2g

√
T2

n
. (37)

Suppose we set the parameter vector α = (0, . . . , 0)� which
makes the last two terms in (31) equal zero, then we can
have Q̃(0) = ∑l

i=1 V(yi, f (0)) = lc2/2[1 − exp(−1/2c2)]. By
further considering (35) we obtain

(
λ

2
+ μβ1

2n2

)
‖f ∗‖2

H ≤ lc2

2

[
1 − exp

(
− 1

2c2

)]
(38)

which reveals that

g =
√

lc2n2

λn2 + μβ1

[
1 − exp

(
− 1

2c2

)]
. (39)

By plugging (39) into (37), we find

R̂n
(Hg

) ≤ 2cT

√
ln

λn2 + μβ1

[
1 − exp

(
− 1

2c2

)]
. (40)

Finally, Theorem 3 can be proved by putting (40) into (36).
Theorem 3 reveals that the LapWR has a profound general-
izability with the convergence rate of order O(1/√n), which
means that the more training examples are adopted, the lower
generalization bound of LapWR we will have. This is also
consistent with our general understanding.

(a) (b)

Fig. 3. Linear decision boundaries generated by LapRLS, LPDGL, and
LapWR on the synthetic DoubleLine dataset. The red and blue diamonds rep-
resent the labeled positive examples and negative examples, respectively, and
the hollow circles denote unlabeled examples. The lines with x-coordinates
−1 and 1 correspond to negative class and positive class separately. In (a), an
outlier positive example is located at (10, 5); and in (b), this outlier is moved
to (15, 5).

V. EXPERIMENTS

In this section, we first validate the proposed LapWR on
an artificial toy dataset, and then compare LapWR with the
state-of-the-art SSL algorithms on some real-world collec-
tions. Finally, we investigate the convergence property and
the parametric sensitivity of our LapWR method. Several
popular SSL algorithms serve as baselines for comparison,
including S3VM [15], S4VM [16], LapRLS [3], LapSVM [3],
label prediction via deformed graph Laplacian (LPDGL) [23],
SSL with elastic embedding (SEE) [20], SSL based on PN
and PU classification (PNU) [18], and semisupervised AUC
optimization (SSAUC) [19].

A. Toy Data

To intuitively show the robustness of our LapWR with
the Welsch loss, we generate an artificial dataset called
“DoubleLine” contaminated by different outliers as illustrated
in Fig. 3. In this figure, we see that the data points belong-
ing to two vertical lines, respectively, constitute two different
classes, where the points with x-coordinate 1 correspond to
positive class while the points with x-coordinate −1 represent
negative class. Among these data points, the red diamonds
are labeled as positive examples and the blue diamonds are
labeled as negative examples. Note that there are only three
examples labeled in each class, while the remaining hollow
circles represent the unlabeled data. Furthermore, in Fig. 3(a),
we observe that a labeled positive example located at (10, 5) is
far away from the normal positive data, and this point is treated
as an outlier that may have a large influence on determining
the decision boundary. In Fig. 3(b), we move this outlier to a
farther place [i.e., (15, 5)], to see how it affects the classifier
training.

Apart from presenting the decision boundary of our
proposed LapWR, we also show the results of two existing
SSL models (i.e., LapRLS [3] and LPDGL [23]) that utilize the
�2-norm-based mean square loss. All the three methodologies
employ the k-nearest neighbor (k-NN) graph with k = 3, and
the linear kernel is adopted for illustration. For LapWR, we
set the tradeoff parameters λ and μ, the normalizing constant
parameter c, and the maximum iteration number S to 1000,
10, 1, and 5, respectively. As for the compared algorithms,
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TABLE II
STATISTICS OF THE ADOPTED UCI DATASETS

we, respectively, set γA and γI to 100 and 1 in LapRLS, and
tune α, γ , and β to 1 in LPDGL as recommended by the
authors. From Fig. 3(a), we observe that the decision bound-
aries of LapRLS and LPDGL are seriously influenced by the
outlier (i.e., cyan line and green line). Furthermore, Fig. 3(b)
shows that as the outlier goes further, the decision boundaries
produced by these two methods get worse, which indicates that
LapRLS and LPDGL are not robust to outlier. In contrast, the
Welsch loss mentioned before has the upper bound which can
suppress the negative influences caused by the outlier. Thanks
to the adopted Welsch loss, the decision boundaries of LapWR
[i.e., magenta line in Fig. 3(a) and (b)] correctly discriminate
the positive and negative classes no matter how far the out-
lier is from its normal position. More notably, even though
the outlier has been pulled to a farther place in Fig. 3(b), the
decision boundary of LapWR is almost the same with that in
Fig. 3(a), which confirms that LapWR is very robust to the out-
liers. Therefore, the argument that our method with a bounded
loss is better than the existing methods with the unbounded
losses has been empirically verified.

B. UCI Data

In this section, we choose five University of California
Irvine (UCI) machine learning repository datasets [42], that is,
Pima (D1), Redwine (D2), Whitewine (D3), Waveform (D4),
and Pendigits (D5), to compare the performance of LapWR
with other baselines. D1 comes from the Indian diabetes
dataset consisted of 768 examples with 8 attributes. D2 and
D3 are related to red and white wine quality evaluation. We
divide the wine examples into three levels, including “good”
(the score is above 5), “normal” (the score equals to 5), and
“bad” (the score is below 5). As for D4, it contains 5000 exam-
ples with 21 attributes belonging to three kinds of waveforms
(i.e., classes). D5 is a multiclass classification dataset which
is pen-based recognition of handwritten digits with 16 integer
attributes and 10 classes. The detailed information of these
five datasets is summarized in Table II. From Table II, we see
that our experiments not only involve the binary classification
but also contain multiclass classification. In this article, we
adopt the one-vs-the-rest strategy to deal with the multiclass
problems.

For all the UCI datasets we use 70% of the examples as the
training data and the remaining 30% as the test data. For each
dataset, we consider three different cases in which 5%, 10%,
and 15% of the training examples are labeled. To achieve a
fair comparison, we randomly pick up a subset of the training
examples as labeled, and the selected labeled examples are
kept identical for all compared methods for each case. Then,
we repeat the above process 10 times for each dataset and

then calculate the average test accuracies of compared algo-
rithms to measure their performances. For fair comparison,
SEE, LapSVM, LapRLS, LPDGL, and LapWR are trained on
the same k-NN graph for each of the datasets. In D2 and D3,
we construct the 10-NN graphs, and we build 12-NN graphs
for D1, D4, and D5. The parameters λ and μ in LapWR are set
to 0.1 and 1, respectively, and the maximum iteration number
is decided as S = 5. Because the parameter c determines the
upper bound of the loss function in our LapWR, we fix c = 1
to get small loss values for the outliers in all experiments. The
parameters γA and γI are set to 0.1 and 1 in LapRLS, while
the same parameters are set to 0.1 and 0.15 in LapSVM in all
the UCI datasets. In LPDGL, we optimally set α, γ , and β
to 1 via cross-validation. As for the parameters of other base-
lines, we adopt the default values which are provided by the
authors.

Table III shows the mean value with the standard deviation
of ten independent runs of all methods on different datasets,
which reveals that our LapWR can consistently obtain the best
results when compared with other baselines. In D1, we observe
that LPDGL achieves 69% accuracy with 15% labeled exam-
ples, while LapWR can obtain almost the same accuracy with
5% labeled examples. With 15% labeled examples, LapWR
can further improve the accuracy to almost 73%. LapWR also
produces a very encouraging performance in D2. Its test accu-
racies are 3 or 4 percent higher than those of the baselines no
matter how many training data labeled. As for D3, LapWR
also achieves a better performance than the baselines with
very few labeled examples. LapWR can get approximately
70% accuracy while the second best algorithm just yields
66% accuracy when 15% training examples are labeled. Also,
we notice that LapWR obtains a very small standard devia-
tion while other baselines render relatively large ones, such
as SEE, PNU and SSAUC. This means that the performance
of our LapWR is stable on this dataset with respect to differ-
ent selections of labeled examples. In D4 and D5, we observe
that some of the baselines achieve very good performances,
such as LPDGL, LapSVM, and SSAUC. However, the accu-
racies obtained by them can still be improved by the LapWR,
which demonstrates the strength of our algorithm. Besides,
since the paired t-test is a statistical tool to determine whether
two sets of observations are essentially the same, we use the
paired t-test with 90% confidence level to examine whether
the accuracies output by LapWR are significantly higher than
the baselines. From Table III, we can see that the perfor-
mances of LapWR are significantly better than other algo-
rithms in most situations. In very rare cases, LapWR achieves
comparable performances with the competitive baseline
algorithms.

C. Object Recognition

Object recognition has been widely studied as a traditional
research area of computer vision because of the extensive prac-
tical demands. We apply the proposed LapWR to the object
recognition problem. COIL201 is a popular object recogni-
tion dataset, which contains 1440 object images belonging to

1http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
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TABLE III
COMPARISON OF TEST ACCURACIES (MEAN±STD) OF VARIOUS METHODS ON UCI DATASETS. •/◦ INDICATES THAT LAPWR IS SIGNIFICANTLY

BETTER/WORSE THAN THE CORRESPONDING METHOD (PAIRED t-TEST WITH 90% CONFIDENCE LEVEL).
THE BEST RESULT FOR EACH DATASET IS MARKED IN RED

Fig. 4. Example images from the COIL20 dataset.

20 classes. Fig. 4 shows the example images of 20 classes
from COIL20. The size of each image is 32×32 with 256
gray levels per pixel. Each image is represented by a 1024-D
vector. Like the UCI datasets, we select 70% examples from
the entire dataset to form the training data, and the remain-
ing 30% examples are treated as the test data. Also, we
consider three different labeling ratios, including 5%, 10%,
and 15%. To make the accuracies reliable, we run all the
investigated methods ten times with randomly selected labeled
examples and compute the average accuracy with the standard
deviation.

We build a 5-NN graph with λ = 0.1, and set μ = 10,
c = 1, and S = 5 for LapWR in COIL20. For fair compar-
ison, we build the same graph for SEE, LapRLS, LapSVM,
and LPDGL. In LapRLS and LapSVM, we set both γA and
γI to 1 to obtain the best performance. The test accuracies
of compared algorithms are reported in Table IV, in which
the best performance under each percent is marked in red.
Note that S4VM is not compared here as this algorithm cannot
deal with the dataset with high dimensionality. It is observed
that LapWR achieves very satisfactory results and significantly
outperforms other algorithms.

TABLE IV
TEST ACCURACIES OF COMPARED METHODS ON THE COIL20 DATASET.

•/◦ INDICATES THAT LAPWR IS SIGNIFICANTLY BETTER/WORSE

THAN THE CORRESPONDING METHOD (PAIRED t-TEST

WITH 90% CONFIDENCE LEVEL)

In particular, the proposed LapWR achieves very high
accuracy with limited labeled examples, for example, 88%,
when only 10% of the training examples are labeled, which
is better than other algorithms when 15% labeled exam-
ples are available. With 15% labeled examples, LapWR can
achieve almost 90% accuracy which is very impressive. Also,
we use the paired t-test to statistically demonstrate such
superiority of LapWR to other methods. As we can see,
LapWR has better performance than all the baselines on this
dataset.

D. Text Classification

Besides object recognition, text classification is also an
important task that deserves academic study. Here, we utilize
the proposed LapWR to classify the text examples from the
Reuters Corpus Volume I (RCV1)2 to verify the advantages
of LapWR for tackling text data. RCV1 is a dataset recording
the corpus of newswire stories which contains 9625 examples
with 29 992 distinct words, and these textual examples are
divided into four classes, such as “C15”, “ECAT”, “GCAT,”
and “MCAT”.

A 9-NN graph is established to evaluate the performances of
SEE, LapRLS, LapSVM, LPDGL, and LapWR. Other param-
eters in LapWR are λ = 0.001, μ = 1, c = 1, and S = 5.

2http://www.daviddlewis.com/resources/testcollections/rcv1/
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TABLE V
EXPERIMENTS ON RCV1 DATASET. •/◦ INDICATES THAT LAPWR IS

SIGNIFICANTLY BETTER/WORSE THAN THE CORRESPONDING

METHOD (PAIRED t-TEST WITH 90% CONFIDENCE LEVEL)

The parameters γA and γI in LapRLS are set to 0.1 and 1,
while in LapSVM they are set to 0.1 and 0.5 to obtain the
optimal results. Because the RCV1 dataset is sparse, the sin-
gular problem appears in SEE, so this method is not compared
here. Besides, S4VM cannot handle this dataset as the feature
dimensionality is very high. The results of other methodolo-
gies are given in Table V, in which the best result under each
labeling rate is marked in red. We observe that LPDGL and
SSAUC generate very low accuracies on this dataset, of which
the accuracies are around 70% and 65%, respectively. In con-
trast, LapRLS is slightly better than PNU. Among the baseline
methods, LapSVM and S3VM achieve very high accuracies,
however, they are still inferior to LapWR with the margin
1% in terms of test accuracy. The paired t-test also statis-
tically confirms the superiority of LapWR to the compared
baselines.

E. Image Classification

In this section, we apply LapWR to image classifica-
tion problem. We choose the CIFAR-103 dataset to test the
performance of LapWR for image classification. CIFAR-10
consists of 60 000 32×32 color images in ten classes, with
6000 images per class. Fig. 5 shows ten images which are
randomly selected from ten classes in CIFAR-10. We use
the output of the first fully connected layer of VGGNet-16
to extract the CNN features for each image, therefore, the
dimensionality of a feature vector is 4096. For our experi-
ment, we randomly choose 3500 images from each class as
training images, and the remaining images as testing. Similar
to the above experiments, we also study the test accuracies of
all methods with different sizes of labeled sets.

We build a 15-NN graph for model comparison, and the key
parameters in LapWR are λ = 0.5, μ = 500, c = 1, and S = 5.
In order to obtain the best performance, we set γA and γI to
0.1 and 1 in LapRLS. In LapSVM, we set these two parame-
ters to 0.5 and 1. The results are presented in Table VI where
the best performance has been marked as red. The SEE and
S4VM are not compared as they are not scalable to this dataset.
From Table VI, we can observe that LapRLS and LapSVM
are generally the best methods among the baselines. In con-
trast, our LapWR can still obtain better results than them no

3http://www.cs.toronto.edu/ kriz/cifar.html

Fig. 5. Random sample of images from the CIFAR-10 dataset. There are
ten image categories in the dataset, and each row represents a category.

TABLE VI
RESULTS OF ACCURACY ON THE CIFAR-10 DATASET. •/◦ INDICATES

THAT LAPWR IS SIGNIFICANTLY BETTER/WORSE THAN

THE CORRESPONDING METHOD (PAIRED t-TEST

WITH 90% CONFIDENCE LEVEL)

matter how many examples are labeled. Furthermore, we con-
duct the t-test on the CIFAR-10 which shows that LapWR is
significantly better than all the baselines.

F. Effectiveness of Accelerated Model

As we mentioned before, the computational complexity
of direct implementation of LapWR is as high as O(Sn3).
Therefore, in Section III, we proposed the accelerated model
which uses the Nyström approximation to reduce the computa-
tional complexity of LapWR. In this section, we compare the
original model with accelerated model on RCV1 and CIFAR-
10 to show the effectiveness of model acceleration. We repeat
the process ten times under three different ratios of labeled
examples to compare the accuracy and CPU time of these two
settings. For the accelerated model, m is a key tuning parame-
ter which indicates the rank of the approximation of the kernel
matrix. We set m to 500, 700, and 1200 in RCV1 when 5%,
10%, and 15% examples are labeled. As for CIFAR-10, m is
set to 4000, 5000, and 6000 under 5%, 10%, and 15% labeled
data.

Table VII shows the average CPU time and accuracy of
ten independent runs on the real-world datasets RCV1 and
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(a) (b) (c)

Fig. 6. Convergence behaviors of LapWR. (a)–(c) Convergence curves of LapWR on COIL20, RCV1 and CIFAR-10, respectively.

TABLE VII
AVERAGE ACCURACY AND CPU TIME OF LAPWR AND

LAPWR∗ ON RCV1 AND CIFAR-10 DATASETS. LAPWR∗
REPRESENTS THE ACCELERATED MODEL

CIFAR-10, where LapWR∗ stands for the accelerated model
and LapWR is the original model. From Table VII, we see
that LapWR∗ can obtain comparable classification accuracies
with LapWR on the two datasets, but the computational time is
significantly less than LapWR. This indicates that our accel-
erated model can reduce the computational burden without
sacrificing too much performance. In CIFAR-10, the accelera-
tion effect of LapWR∗ is more obvious. The original LapWR
needs more than 95 000 s for model training, while the accel-
erated LapWR∗ only consumes 30 685, 46 797, and 52 533 s
when 5%, 10%, and 15% training examples are labeled. In
other words, LapWR∗ saves 68%, 51%, and 45% of the train-
ing time when compared with LapWR under different ratios
of labeled data.

G. Convergence Study

Because the Welsch loss is nonconvex, we cannot find a
closed-form solution of LapWR. Therefore, we propose to use
the HQ optimization to solve problem (3) in Section II. To
this end, we develop Algorithm 1 to alternatively optimize the
involved parameters. Therefore, in this section, we empirically
study the convergence property of Algorithm 1.

In Fig. 6, we plot the convergence curves of our algorithm
on the COIL20, RCV1, and CIFAR-10 datasets with 10%
training data labeled, where the y-axis represents the resid-
ual ‖αs − αs+1‖2 and x-axis is the iteration times s. Similar
to above experiments, we set ψ to 10−6 and stop the iteration

(a)

(c) (d)

(e) (f)

(g) (h)

(b)

Fig. 7. Parametric sensitivity of LapWR. The first and second column, respec-
tively, correspond to the COIL20 and RCV1 datasets. (a) and (b) Accuracy
with respect to the change of λ when μ, c, and k are fixed. (c) and (d) Influence
of μ to final accuracy when λ, c, and k are fixed. (e) and (f) Effects of c to
the model accuracy when λ, μ, and k are fixed. (g) and (h) Impacts of k to
the final accuracy when λ, μ, and c are fixed.

process when the residual is less than ψ . The α0 is initial-
ized to all-zero vector 0, and all parameters settings remain
the same as mentioned above. From Fig. 6, we can find that
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the residual gradually goes down and touches zero around the
third iteration. Therefore, we conclude that LapWR can con-
vergence to a stationary point rapidly. This also explains the
reason that we set the maximum iteration number to 5 in all
the above experiments.

H. Parametric Sensitivity

In this section, we investigate the parametric sensitivity of
the tradeoff parameters λ and μ, the normalization parameter
c, and the number of nearest neighbors k for graph construc-
tion. We examine the classification performance when one of
them is changing while the others are fixed. The above two
real-world datasets COIL20 and RCV1 are adopted here. Fig. 7
shows the model accuracies on these two datasets with 10%
labeled examples. We tune λ from 10−4 to 10−1, μ from 10−1

to 102, c from 10−1 to 102, and k from 3 to 20. From Fig. 7,
we can observe that in COIL20, λ, μ, and c only have tiny
effect on the accuracy. In RCV1, λ has a slight influence on
the performance while μ and c have almost no influences.
As for the parameter k, we find that the performance of our
method will drop if k is too small or too large. Specifically, if
k is too small, the graph may not be a connected graph and
the isolated graph nodes will not receive label information. If
k is too large, the graph will be very dense, which usually
leads to worse performance than a sparse graph as reported in
many prior works [43], [44]. In conclusion, we generally find
that the parameters in LapWR can be easily tuned for practical
implementations.

VI. CONCLUSION

This article proposed a novel SSL algorithm called LapWR,
which is robust to the outliers in the labeled data. LapWR crit-
ically inherits a robust Welsch loss which upper bounds the
large losses that are incurred by the outliers. To enhance the
discriminability of LapWR, our model is established in RKHS
so that a nonlinear classifier can be obtained. Because of the
nonconvexity caused by the Welsch loss, we reformulate our
model and use the HQ optimization algorithm to iteratively
optimize the related model variables. Moreover, to reduce
the computational complexity on large datasets, we propose
an accelerated model based on the Nyström approximation
method. We theoretically proved the Rademacher complexity
and generalization bound of LapWR, which suggests that the
test examples can be classified reliably and accurately. The
experiments on the toy dataset, the UCI benchmark datasets,
and the real-world datasets reveal that our LapWR is supe-
rior to the state-of-the-art SSL methods in terms of robustness
and classification accuracy. The convergence property as well
as the parametric stability of LapWR are also empirically
verified. In the future, we plan to apply the Welsch loss to
more deep learning-based SSL methods, such as [45] and [46]
to improve their robustness. Besides, we may also consider
extending our method to more related SSL scenarios, such
as semisupervised dictionary learning, semisupervised dimen-
sionality reduction, and semisupervised domain adaptation, as
all these topics contain the data reconstruction process which
may be heavily influenced by the outliers.
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