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Abstract—View change causes significant differences in the
gait appearance. Consequently, recognizing gait in cross-view
scenarios is highly challenging. Most recent approaches either
convert the gait from the original view to the target view before
recognition is carried out or extract the gait feature irrelevant to
the camera view through either brute force learning or decouple
learning. However, these approaches have many constraints,
such as the difficulty of handling unknown camera views. This
work treats the view-change issue as a domain-change issue
and proposes to tackle this problem through adversarial domain
adaptation. This way, gait information from different views is
regarded as the data from different sub-domains. The proposed
approach focuses on adapting the gait feature differences caused
by such sub-domain change and, at the same time, maintaining
sufficient discriminability across the different people. For this
purpose, a Hierarchical Feature Aggregation (HFA) strategy is
proposed for discriminative feature extraction. By incorporating
HFA, the feature extractor can well aggregate the spatial-
temporal feature across the various stages of the network and
thereby comprehensive gait features can be obtained. Then, an
Adversarial View-change Elimination (AVE) module equipped
with a set of explicit models for recognizing the different gait
viewpoints is proposed. Through the adversarial learning process,
AVE would not be able to identify the gait viewpoint in the end,
given the gait features generated by the feature extractor. That is,
the adversarial domain adaptation mitigates the view change fac-
tor, and discriminative gait features that are compatible with all
sub-domains are effectively extracted. Extensive experiments on
three of the most popular public datasets, CASIA-B, OULP, and
OUMVLP richly demonstrate the effectiveness of our approach.

Index Terms—Gait Recognition, Hierarchical Feature Aggre-
gation, Adversarial View-change Elimination, Adversarial Do-
main Adaptation.
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GAIT is a kind of physical and behavioral biometric
feature that depicts the walking pattern of human beings.

Unlike other biometrics such as the face, fingerprint, and
iris, gait can be easily captured at a distance without the
cooperation of subjects and is hard to disguise, which gives it
high potential in various surveillance applications [1, 2].

As an identification task in vision, the essential goal of gait
recognition is to learn unique and invariant representations
from gait sequences. However, in real-world scenarios, gait
sequences suffer from external factors like carrying, cloth-
ing conditions, and camera viewpoint switching. It brings a
significant challenge to gait recognition, especially to cross-
view gait recognition as dramatic appearance differences can
be introduced with viewpoint variances [3–5].

To tackle the challenge above, existing appearance-based
cross-view gait recognition methods primarily fall into t-
wo categories: i) transformation-based and ii) elimination-
based approaches. Methods in the first category usually learn
the transformation relations between different views [6–8]
or project the gaits from different views onto a common
view [4, 9–11]. They tend to work well in cases where
the transformation between views is included in the training
data. However, such transformation is typically performed
between two views and cannot be well extended to handle
diverse view transformations. Methods in the second category
intend to eliminate the view-change interference, and can be
further split into two sub-categories: 1) brute force learning
[1–3, 12–15]; and 2) decouple learning [16–19]. The former
is dedicated to extracting discriminative gait representations
irrelevant to view changes. To this end, diverse training data
under different camera views are usually first mixed. Then,
regardless of view differences, models are trained based on
given person IDs with the support of diverse loss functions.
Decouple learning intends to split the view information from
the rest of the gait features to eliminate its interference. It
either deliberately arranges the training data under different
views or clearly decouples the view feature from the rest of
the gait features. In such a way, the model can best learn
the feature irrelevant to the camera view. Compared with
transformation-based methods, elimination-based methods are
more flexible and can be well generalized to diverse views.
However, in brute force learning, the view itself, i.e., ex-
plicit view estimation or view-specific modeling, is ignored
and underrated to some extent. And in decouple learning,
the decoupling process involves feature decomposition and
synthesis [16, 18] using generative adversarial networks or
auto-encoders, which somehow damages the spatial-temporal
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Fig. 1. The framework of the proposed GaitDAN. Our framework consists of a novel feature extractor with HFA strategy and two well-designed modules, i.e.
the Adversarial View-change Elimination (AVE) module and Metric Learning (ML) module. (‘N’, ‘�’, ‘•’, ‘F’ denote the samples from different sub-domains,
and different colors indicate different IDs. The grey and orange squares in CSAA represent the two learnable parameters σ1 and σ2, respectively.)

feature in a gait sequence.

This work proposes a new approach to cross-view gait
recognition that is regarded as a domain transfer problem.
The gait information from different views is treated as the
information from different sub-domains. The statistical dis-
tribution discrepancy caused by view changes is considered
as a sub-domain shift. Thus, Domain Adaptation (DA) is
adopted as the pipeline for the proposed approach. The key
to successful adaptation is to learn a discriminative model
that minimizes the distribution discrepancy between the source
and target domains. In this work, DA does not consider
one source domain against one target domain [20–22] but
intends to simultaneously align gait information along multiple
sub-domains. Consequently, the final feature representation
of the gait for recognition is irrelevant to the view change.
Inspired by unsupervised DA methods [20, 23–25], we adopt
the Domain-adversarial Neural Network (DANN) [25] as the
basic framework to address this challenge. The rationale for
this choice stems from the fact that DANN offers several key
advantages. Firstly, DANN matches the feature space distri-
butions by modifying the feature representation itself, without
considering the variation factors and complex decoupling op-
erations behind different domains, which is more suited for our
purpose of multiple sub-domain adaptation. Secondly, DANN
performs feature learning and domain adaptation in a unified
architecture and can be implemented using a simple back-
propagation algorithm. Such a working mechanism enables
the fully exploration of spatial-temporal information in gait

sequences while eliminating the influence of view changes.

Therefore, we propose a novel gait domain-adversarial net-
work (denoted as GaitDAN) for cross-view gait recognition.
GaitDAN is able to learn discriminative and sub-domain-
invariant gait features through end-to-end adversarial training,
so that the final gait representations can be generalized well in
all sub-domains. Fig. 1 illustrates the structure of GaitDAN,
which consists of a novel feature extractor, an Adversarial
View-change Elimination (AVE) module, and a Metric Learn-
ing (ML) module. The feature extractor is a new network with
a specially designed Hierarchical Feature Aggregation (HFA)
strategy, and is capable of extracting complementary spatial-
temporal features of shallow-stage local detail information
and high-stage semantic representation. As a result, more
comprehensive spatial-temporal gait features can be obtained
without losing subtle visual cues. The AVE module is the key
adaptation component in GaitDAN that contains multiple view
discriminators. It tries to challenge the gait feature generated
by the feature extractor and distinguish them between the
different sub-domains through an adversarial learning process.
That is, the feature extractor intends to generate gait represen-
tation which is to fool the AVE. At the same time, the AVE
feeds back to the feature extractor in the way of adversarial
learning to generate a better sub-domain invariant gait feature
to fool AVE. The ML module is introduced to further enhance
the discriminability of gait representations in the feature space.
In this way, high discriminability of the gait recognition task
is guaranteed. By combining these components, the proposed
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GaitDAN can produce sub-domain-invariant and discrimina-
tive gait features as the training progresses. More specifically,
we make the following three major contributions.
• For the first time, we transform the view-change e-

limination into a domain adaptation problem, and pro-
pose a novel domain-adversarial network for cross-
view gait recognition. It is in sharp contrast to current
transformation-based or elimination-based methods, and
makes it possible to take full advantage of spatial-
temporal information while eliminating the influence of
view changes. More impressively, it improves the perfor-
mance of the model for cross-view gait recognition from
completely unknown viewpoints.

• We propose a novel HFA strategy that can exploit
comprehensive spatial-temporal information from various
stages of the network and aggregate them hierarchically
in a delicate attention way, which effectively enhances
the discriminative capacity of the proposed method and
ensures adequate mining of spatial-temporal information
in gait sequences.

• We propose a simple yet effective view-change elim-
ination method, i.e., the AVE module. By taking the
advantage of sub-domain adversarial alignment, the AVE
module can narrow the discrepancy across multiple view-
level sub-domains in a simple way, which facilitates the
end-to-end training of the whole network and further
improves the robustness of gait representations.

The rest of this paper is organized as follows. Section II
briefly introduces the related work. Section III explains the
proposed GaitDAN in detail. In Section IV, the implementation
details of GaitDAN are introduced. Meanwhile, the perfor-
mance evaluation and detailed ablation study of GaitDAN are
presented. Section V concludes the entire paper.

II. RELATED WORK

In this section, we discuss related work on 1) appearance-
based gait recognition, considering both transformation-based
and elimination-based approaches, and 2) domain-adversarial-
learning with GRL, wherein the latter inspired us to propose
GaitDAN.

A. Cross-view Gait Recognition

Appearance-based cross-view gait recognition methods can
be broadly classified into two categories, i.e., transformation-
based and elimination-based methods.

Transformation-based methods deem the cross-view chal-
lenge as the problem of gait feature misalignment. These
methods aggregate the silhouettes of a gait sequence into a
template [26] or use silhouette sequences as input directly.
They focus on directly learning transformations or projections
between different views [4, 9–11, 27–29]. Then the gaits in one
view can be transformed into another [29], or gaits in different
views can be projected to a common subspace [4, 10, 11]. For
instance, Makihara et al. [28] proposed a View Transformation
Model to transform gait templates between views, while Ben et
al. [10] proposed a Coupled Bilinear Discriminant Projection
method to align gaits across different views by learning two

sets of bilinear transformation matrices. To further effectively
mitigate the feature misalignment between views, Xu et al.
[27] proposed a Pairwise Spatial Transformer to register the
gait features from different views to the target view simultane-
ously. However, this direct view transformation is constrained
by the learned transformation models based on the current
know camera views, and cannot sufficiently handle the view
transformations across unknown views.

Elimination-based methods attempt to extract view invariant
gait representations, and have shown state-of-the-art (SO-
TA) performance compared to transformation-based methods.
There are two main approaches for these methods: brute
force learning and decouple learning. Brute force learning
typically treats the silhouettes of a gait sequence as a video.
Regardless of different views, it intends to use robust spatial
feature extraction and temporal modelling [1–3, 12–15, 30]
to learn a strong gait representation that is irrelevant to the
camera view. Various methods have been proposed. Under
the constraint of triplet loss or cross-entropy loss, Chao et
al. [1], Qin et al. [2] and Hou et al. [31] first extracted frame-
level features from each silhouette independently and then
applied temporal models such as the Max Pooling operation
to encode the temporal information. Fan et al. [15] proposed a
Micro-motion Capture Module to exploit the gait feature in a
short-time period after spatial extraction. Analogously, Sepas-
Moghaddam et al. [32] learned gait convolutional energy maps
from frame-level features for temporal modeling and used an
attention mechanism to focus on important recurrently learned
gait representations. Chen et al. [33] conducted short-range
and long-range temporal modeling to aggregate multi-features
after frame-level spatial feature extraction, and utilized view
assessment learning to improve the discriminability of aggre-
gated features. Still, others [12, 13] directly extracted spatial-
temporal features through a 3D convolution network. Although
these methods have achieved encouraging success, the view-
point information is still needs to be fully utilized, i.e., explicit
view estimation or view-specific modeling which is ignored
and underrated in these methods. Decouple learning is another
approach for eliminating the influence of view changes on gait
recognition. It also has corresponding advanced applications in
action recognition tasks [34] and involves separating identity
features and view features to obtain view-robust features.
For example, Zhai et al. [17] adopted a newly designed
auto-encoder to detach the identity features from the view
features. Similarly, Zhang et al. [18] proposed the GaitNet to
directly learn disentangled representations from gait videos.
Yao et al. [16] proposed a group-supervised disentangle rep-
resentation learning framework that explicitly decoupled the
information in each gait sequence into pose, gait, appearance,
and view features via an encoder-decoder architecture. These
approaches effectively isolated the view-change information
and obtained robust features that are invariable to the camera
view. However, decouple learning relies on the generation and
decomposition of gait sequences [16–19], which is a complex
and challenging task. Current decoupling learning approaches
either decompose and synthesize single-frame gait silhouette
images before modeling the temporal information, or directly
aggregate a gait sequence into a single image (e.g., Gait
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Energy Image (GEI)) and then perform decomposition and
synthesis on GEI. These operations will inevitably destroy
the spatial-temporal information in gait sequences, and the
errors created by the generation task are further accumulated.
It significant limits the performance of gait recognition.

Therefore, the elimination-based method still presents open
problems, although it demonstrates SOTA performance.

B. Domain-adversarial Learning with GRL
Domain-adversarial Learning (DAL) has emerged as a

prominent technique in deep DA, and has first made the
breakthrough in DA image classification [25, 35]. In DAL,
a feature extractor and a domain discriminator are usually
included with an adversarial objective. It is like Generative
Adversarial Networks (GANs) [23–25]. The domain discrim-
inator is trained to classifier whether the input sample is
drawn from the source or target domain, while the feature
extractor tries to confuse the domain discriminator to extract
domain-invariant features. The optimization of the parameters
of both the feature extractor and discriminator is achieved
by maximizing and minimizing the domain discriminator’s
loss, respectively. Additionally, the label classification loss is
minimized simultaneously to ensure that the extracted features
possess high discriminability for original classification tasks.

The Gradient Reversal Layer (GRL) [35] was proposed for
efficient adversarial training in unsupervised DA [20, 21, 25].
Except for a negative-parameter α which is not updated by
the back-propagation, GRL has no parameters associated with
the adversarial loss. By inserting a GRL between the feature
extractor and domain discriminator, the maximization problem
in the above adversarial loss can be automatically transformed
into a minimized negative loss, ensuring a consistent opti-
mization direction for the network and allowing the entire
network to be routinely trained during forward and backward
propagation. Specifically, during forward propagation, GRL
acts as an identity transformation. During the back-propagation
though, GRL takes the gradient from the subsequent network
level, multiplies it by α and passes it to the preceding layer,
which allows the gradient of the domain discriminant loss to be
automatically inverted before back-propagating to the parame-
ters of the feature extractor. So that, GRL implements a similar
function to that performed in GANs for adversarial learning,
and yields domain-invariant and discriminative features.

DAL with GRL has also been successfully applied to
many other vision tasks [36–38]. For instance, He et al. [36]
used GRL for adversarial learning and proposed an asym-
metric tri-way Faster Region-Convolutional Neural Network
(Faster-RCNN) for domain adaptive object detection, which
fundamentally overcomes the source risk collapse caused by
parameter sharing in general domain adaptive object detection
methods and effectively ensures the adaptive safety of the
detector. Niu et al. [37] proposed a novel feature fusion-and-
alignment approach for remote sensing scene classification. By
embedding GRLs into DAL to dynamically align the features
of source and target domains, this method effectively improves
the adaptive performance of features.

Motivated by such methods, the proposed GaitDAN is also
based on DAL with GRL. In this paper, the gait information

under different views is regarded as the data under different
sub-domains, and the view-change mitigation problem is con-
verted into a domain adaptation problem. To the best of our
knowledge, GaitDAN is the first approach to cross-view gait
recognition through adversarial domain adaptation.

III. THE PROPOSED METHOD

In this section, we detail the proposed GaitDAN for cross-
view gait recognition. We start with an overview of GaitDAN,
followed by a description of key components including the
feature extractor with the HFA strategy, AVE module and ML
module, and end with the details of joint loss functions.

A. Overview
For supervised cross-view gait recognition, we have a

labeled training set XL which consists of V view-level sub-
domains Xv = {(xvi , yvi )}

Nv

i=1 , v ∈ {1, 2, ..., V }, such that
each sample xvi in sub-domain Xv has a corresponding
identity label yvi ∈ {1, 2, ..., Pv}. Nv and Pv are the numbers
of samples and identities in the sub-domain Xv , respectively.
Meanwhile, the testing set XT =

{
xTj
}NT

j=1
contains NT gait

samples without identity labels from V different views. The
goal of our proposed approach is to learn the discriminative
gait features irrelevant to view changes through DA process.

The overall framework of the proposed GaitDAN is illus-
trated in Fig. 1. The gait silhouette sequences from different
sub-domains are firstly input into a novel feature extractor GF
to extract fine-grained spatial-temporal features FFM . Then, to
obtain view-invariant fine-grained features, the view adversar-
ial learning procedure is incorporated into the network. It is a
two-player game consisting of the feature extractor GF and the
AVE module GAV E . The AVE module is trained to distinguish
which sub-domain the input fine-grained gait features come
from and the feature extractor GF is fine-tuned simultaneously
to confuse the AVE module. Specifically, the parameters WF

of feature extractor GF are learned by maximizing the loss of
AVE module, while the parameters WAV E of AVE module
are learned by minimizing the loss of AVE module. At the
same time, the ML module including triplet loss and cross-
entropy loss is applied to enhance the discrimination of fine-
grained gait representations in the feature space. As a result,
the objective of the overall framework can be formulated as:

L(WF,WAV E)=
∑

xiεXL

LML(GF (xi), yi)−βLAV E(GAV E(GF (xi)), di),

(1)
where β is a trade-off parameter between two objectives that
shape the gait feature learning. LML and LAV E denote the
loss of ML module and AVE module, respectively. di denotes
the sub-domain labels of input samples. After the training
convergence, the parameters ŴF and ŴAV E will deliver a
saddle point of Eq. (1):

ŴF = arg min
WF

L
(
WF ,ŴAV E

)
ŴAV E = arg max

WAV E

L
(
ŴF ,WAV E

)
.

(2)

Hence, the final gait representations that are discriminative
and view-invariant can be obtained.
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B. Feature Extractor with the HFA Strategy

As illustrated in Fig. 2, the Feature Extractor with the HFA
strategy is composed of two branches and a feature mapping
head. The upper branch is the basic branch for extracting
general spatial-temporal features, and can be implemented
by any backbone. The following branch is the HFA branch.
It takes the stage-specific features produced in basic branch
as input, and is the main branch for progressively capturing
comprehensive global spatial-temporal features through hierar-
chical feature aggregation. In the way, more integrated spatial-
temporal gait features are extracted, which is more conducive
to discriminative silhouette sequence-based gait recognition.
Then, the extracted global features are mapped to the metric
space by the feature mapping head to obtain part-based fine-
grained gait representations.

In this part, the specific structure and detailed working
mechanism of the basic branch and the HFA branch will be
first introduced, and followed by the formulaic description
of the feature mapping head. Note that in this section, gait
samples from different sub-domains (views) are subjected to
the same operation, so the superscript indicating the view is
omitted for the convenience.

1) Basic Branch:

TABLE I
THE EXACT STRUCTURE OF THE BASIC BRANCH.(LEAKYRELU LAYER

AFTER EACH 3D CONVOLUTION LAYER IS OMITTED.)

Stage Layer name In channel Out channel Kernel

Stage 0 Conv3D 1 32 (3, 3, 3)
Conv3D 32 32 (3, 1, 1)

Stage 1 Conv3D 32 64 (3, 3, 3)
Max Pooling - - (1, 2, 2)

Stage 2 Conv3D 64 128 (3, 3, 3)
Stage 3 Conv3D 128 128 (3, 3, 3)

In this paper, a general 3D Convolutional Neural Network
(CNN) is taken as the basic branch since previous SOTA
works [1, 12–14] have proved that robust spatial-temporal
representation is the key to the silhouette sequence-based gait
recognition, and that 3D CNNs can bring great performance
advantages. As shown in Fig. 2, the basic branch contains
multiple network stages (’Stage 0’, ’Stage 1’, ’Stage 2’ and
’Stage 3’), and each stage consists of initial layers or a
convolution block. ’Stage 0’ is the initial stage introduced
to process the input gait sequences. ’Stage 1’ to ’Stage 3’
are different stages of the network used to extract shallow
and high-level semantic information of the preprocessed input
respectively. The extract structure of the network stages is
listed in Tab. I.

2) HFA Branch:
The binarized nature of gait silhouette sequences, coupled

with large appearance interference caused by view changes,
results in subtle differences between subjects only at specific
locations within the silhouette sequences. Therefore, it be-
comes crucial to utilize features extracted from the shallow
stages of the network for accurate gait recognition, as they can
encode the local regions in detail. Additionally, supplement-
ing high-level features with low-level features can focus on
more discriminative regions, thereby improving the feature’s
discriminability. Based on this, we introduce the Hierarchical
Feature Aggregation (HFA) strategy to the feature extractor
based on the basic branch in anticipation of obtaining more
comprehensive spatial-temporal gait features. It is implement-
ed by the HFA branch as shown in Fig. 2.

The core idea of HFA is to consider visual cues at dif-
ferent stages simultaneously. Nevertheless, there are distribu-
tion differences and semantic misalignment between different
stage features. Direct aggregation [39, 40] like concatenation,
summation or using bottle neck layers may lead to semantic
confusion rather than achieving a positive complement. To
this end, we introduce the attention mechanism and propose
a Cross-Stage Attention Aggregation (CSAA) block in the
HFA branch to incorporate cross-stage spatial-temporal fea-
tures from different network stages in the basic branch. The
detailed architecture of the CSAA block is shown in Fig. 3.
It consists of two learnable parameters σ1, σ2, a cross-stage
attention derivation operation Wm , and a cross-stage attention
aggregation operation Wa .

Specifically, for input x from any sub-domain, general
spatial-temporal features from two neighbour stages in basic
branch are first combined by the learnable parameters, which
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can be formulated as:

f lad =

{
f lb, l = 1

σ1f
l
b + σ2f

l−1
c , l > 1,

(3)

where f lad is the output of the element-wise weighted addition;
f lb ∈ RCl×Tl×Hl×Wl (1 < l ≤ n) denotes the feature map
extracted from basic branch at the l-th stage; Cl, Tl, Hl and Wl

are the channels, frames, height and width of f lb, respectively.
As shown in Fig. 2, the first CSAA block in HFA branch takes
f lb from “Stage 1” in basic branch as the input. For subsequent
CSAA block at the l-th stage, the f lb from basic branch and
the attention aggregated feature map f l−1c from the previous
stage in HFA branch are taken as the input.

Then, a soft attention mask ml indicating the importance
of each position in f lad is generated through the cross-stage
attention derivation operation Wm:

ml = Wm

(
f lad
)
, (4)

where Wm is composed of a channel pooling, a 3 × 3 ×
3 convolution layer and a sigmoid layer. Subsequently, the
generated ml is also utilized to guide Wa to perform deep
cross-stage attention aggregation, and the output feature map
f lc ∈ RC̃l×Tl×Hl×Wl can be expressed as:

f lc = Wa

(
f lad ⊕ f lad �ml

)
, (5)

where ⊕ and � denote the element-wise summation and
multiplication, respectively. Wa contains another 3 × 3 × 3
convolution layer and a Leaky Relu layer. It is worth not-
ing that the CSAA block takes into account the differences
between different stage features in the basic branch and thus
generates more accurate attention masks. With the guidance of
the soft attention masks, the initial combined features can be
further aggregated and more discriminative cross-stage spatial-
temporal features can be extracted. By utilizing this two-step
attention aggregation approach, CSAA effectively alleviate
the misalignment of heterogeneous features from different
stages. It is quite different from the commonly used operation
of directly aggregating global general features along multi-
stage. In addition, CSAA generates attention masks in the
spatial-temporal domain for the initially aggregated cross-
stage features via Wm, and forgoes explicit modeling of
channel interdependencies. Since the input for gait recognition
is simple binary silhouette sequences lacking color and texture
information, the channel weights cannot accurately reflect the
importance of the channels, but may instead introduce noise
and interfere with the original feature extraction, especially
for shallow gait feature maps. If the channel-attention methods
are introduced, it will in turn lead to performance degradation
[14]. Compared to channel-attention methods, CSAA takes
into account the spatial-temporal properties of gait sequences,
in which case, critical spatial-temporal information can be
activated by Wm in CSAA. Thus, more comprehensive cross-
stage spatial-temporal features can be obtained.

To further encourage the semantic complement for high
stage ones, a hierarchically dynamic fusion from the lower
to the higher stages is employed. The bottle neck layers are
utilized to adjust the channels of feature maps from different

CSAA blocks. After that, resized feature maps are concate-
nated along the channel and a Max Pooling (MP) operation
is utilized to generate the final global spatial-temporal feature
Fc ∈ RC′×H′×W ′

, which can be formulated as:

Fc = MP
[
f1c ; f

2
c ; ...; f

n
c

]
, (6)

where n denotes the number of CSAA blocks.
3) Feature Mapping Head:
The feature mapping head is introduced to obtain more dis-

criminative fine-grained features. The global feature obtained
from the HFA branch is firstly horizontally sliced (HS). Then
the Generalized-Mean pooling (GeM) [41] is used to extract
refined features from each horizontal strip as follows:

FGeM = WGeM (F′c) , (7)

WGeM (F′c) =
(
WAvg

(
(F′c)

r)) 1
r , (8)

where FGeM =
{
fhGeM |h = 1, 2, ...,H ′

}
∈ RC′×H′

is
the fine-grained part-based feature after GeM and F′c ={
f ′hc |h = 1, 2, ...,H ′

}
∈ RC′×H′×W ′

is the horizontal sliced
feature, i.e., H

′
part-based features in total in single F′c or

FGeM . WGeM (·) and WAvg(·) denote the GeM pooling
and Averaged pooling, respectively. The parameter r can be
optimized during the training phase.

Subsequently, for each horizontal sliced feature fhGeM in
FGeM , separate Fully Connected (FC) layers are employed to
map the part-based gait features into a more discriminative
representation space [1, 15], which can be presented as:

FFM = WSFC (FGeM ) , (9)

where FFM =
{
fhFM

∣∣h = 1, 2, ...,H ′
}
∈ RC′×H′

is the
output after separate feature mapping. WSFC denotes the
separate FC mapping operation.

C. Adversarial View-change Elimination Module

Based on the domain adaptation theory [42], a good repre-
sentation of the subject for the case of cross-domains is the
one by which an model cannot identify the domain origin
information. The AVE module aims to reduce the distri-
bution differences between sub-domains without specifying
any particular source or target domains. Unlike the general
domain adaptation problem that involves only two domains,
the situation of cross-view gait recognition based on silhou-
ette sequences is complex, involving multiple different sub-
domains on one hand, and complex scene variations such as
wearing and carrying situations on the other hand. Therefore,
the transformation from different sub-domains to the domain
invariant space is not the same. In this regard, a stepwise,
refined domain adaptation method that allows samples from
each sub-domain to learn their respective transformations to
the domain invariant space is designed. This results in a
gradual decrease in the domain offset between each sub-
domain and the other sub-domains, and ultimately leads to
a decrease in the difference between all sub-domains.

As shown in Fig. 4, the AVE module consists of multiple
view discriminators with a shared Gradient Reverse Layer
(GRL). In particular, a binary (1 v.s. others) discriminator
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is designed for each specific view in the AVE module. Ad-
ditionally, an adversarial objective is developed to train the
feature extractor and these discriminators concurrently in a
min-max way. The minimum process of the discriminators’
losses enables them to distinguish whether each gait input
originating from this sub-domain or not, while the maximum
process of their losses aims to confuse these discriminators
for removing the sub-domain difference. Consequently, each
sub-domain in the AVE module is treated as a temporary
target domain, while others are treated as source domains. And
adversarial learning is used to reduce the differences between
the source and target domains. By iterative training, gait
information under different camera views are finally mapped
to a common embedding space where gait features cannot be
discriminated between multiple sub-domains.

Specifically, for a view discriminator Dv with weight pa-
rameters Wv

D , each part-based feature fhFM ∈ RC′
of input

sample x after normalization is first separately input to Dv

through GRL, and the corresponding output of Dv is then fed
into a softmax layer to obtain the probabilistic output z ∈ R2.
The process can be denoted as:

z
(
fhFM

)
= ϕ

(
(Wv

D)
>
GRL

(
fhFM∥∥fhFM∥∥

))
, (10)

where ϕ denotes a softmax function. As mentioned in Sec.
III-B3, each input sample has H ′ part-based features. Thus,
H ′ probabilistic outputs of the input x in total. The minimum
process of the view discriminator Dv is then trained by a
binary cross-entropy loss defined on all the part-based features
as:

min
Wv

D

LDv (XL, z,GF ) = min
Wv

D

[
1
H′

∑H′

h=1 〈LBCE (z,1)〉Xv

+ 〈LBCE (z,0)〉 ∪
k 6=v

Xk

]
,

(11)
where LBCE denotes the binary cross-entropy loss 1 and 〈·〉
denotes averaging over the set in subscript. The collective
minimum optimization objective of all view discriminators can
be formulated as:

min
W1:V

D

LD1:V
(XL, z, GF ) = min

W1:V
D

[
1

V

V∑
v=1

LDv (XL, z, GF )

]
.

(12)
The GRL utilized here [25, 35] is to reduce the distribution

discrepancy of multi-sub-domains by maximizing the sub-
domain discrimination loss (i.e., Eq. 12). As stated in Sec.
II-B, it can automatically transform a maximization problem
into minimizing a negative loss during back-propagation for
the consistency of network optimization. Thus, the maximum
objective function to optimize GF can be formulated as

1LBCE

(
y′i, yi

)
= −

∑N
i=1[yi log(y

′
i) + (1− yi) log(1− y′i)], where

N denotes the number of samples, yi and y′i denote the true label and predict
label of the sample, respectively.
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Fig. 4. The detailed architecture of the AVE module. The black arrows
indicate the direction of forward propagation, while the yellow and green
arrows indicate the direction of back propagation.

follows:

max
WGF

LD1:V
(XL, z,D1:V )→ min

WGF

LD1:V
(XL, z,D1:V )

= min
WGF

[−LD1:V
(XL, z,D1:V )]

= min
WGF

[
− 1
V

∑V
v=1 LDv (XL, z,Dv)

]
.

(13)
The forward and backward propagation of the AVE module

is depicted in Fig. 4. During forward propagation, GRL is
simply a common layer without any additional operation.
During back-propagation, GRL inverts the gradients of the
optimization objective Eq. (12) with respect to the parameters
in the feature extractor and then passes backward with a
negative weight α. Through GRL, the sub-domain adversarial
alignment can be achieved in an end-to-end manner without
fixing the generator and discriminator separately for itera-
tive training like GANs. This greatly simplifies the overall
implementation of the network and facilitates the mining of
spatial-temporal features in gait sequences. Finally, robust
feature representations that hard be discriminated by all view
discriminators can be extracted and then the gaps between
sub-domains can be effectively mitigated.

D. Metric Learning Module

As a metric learning problem, features with high discrim-
inability are critical for cross-view gait recognition. Triplet-
based loss functions are directly designed at learning discrim-
inative features, which are more direct and suitable. Addi-
tionally, triplet-based loss functions are typically able to learn
subtle features more effectively by setting a margin during
training, which is particularly suitable for silhouette sequence
based cross-view gait recognition. Compared to other distance-
based loss function methods, e.g., the DrLim method [43],
its constraints are relatively loose and more suitable. DrLim
uses a contrast loss that uniformly converges the distance
between all samples of the same class to 0, while the distance
between samples of different classes converges to a fixed
threshold. This is an extremely strict constraint for cross-view
gait recognition, where there are large appearance differences
between samples of the same class and the use of DrLim can
confound original metric learning. Therefore, in this paper,
a combined loss consisting of the separate batch-all triplet
loss [44] and cross-entropy loss is adopted in the ML module
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to ensure the learned gait features are dispersed and highly
discriminative.

Following the settings outlined in [44], P subjects and
U silhouette sequences per subject are sampled to compose
a mini-batch with the size of P × U . For each sequence
(anchor) in the mini-batch, the corresponding positive ex-
amples (pos.) and negative examples (neg.) are selected to
construct sample triplets. Specifically, the anchor and positive
examples have the same identity label but are different from
the negative examples, and PU (U − 1) (PU − U) sample
triplets are constituted in each mini-batch. To fully exploit fine-
grained features, the batch-all triplet constraint is separately
imposed on horizontal sliced features in the ML module. The
complete triplet loss is defined as:

Ltri all =
1

Ntri

H′∑
h=1

anchor︷ ︸︸ ︷
P∑
p=1

U∑
u=1

pos.︷︸︸︷
U∑
a=1
a 6=u

neg.︷ ︸︸ ︷
P∑
b=1
b 6=p

U∑
c=1

max {dist+m, 0} ,

(14)
where Ntri is the number of triplets resulting in the non-zero
loss terms; H ′ is the scale to slice the features horizontally;
and m is the margin. In a sample triplet, each example has
H ′ part-based features, and we calculate the triplet loss for
each corresponding feature triplet, i.e. H ′ triplet losses are
calculated. The dist in Eq. (14) can be formulated as:

dist = d+

(
fh,p,uFM , fh,p,aFM

)
− d−

(
fh,p,uFM , fh,b,cFM

)
, (15)

where fh,p,uFM denotes the h-th horizontal feature vector in
the u-th gait sequence of the p-th subject ( fh,p,aFM and fh,b,cFM

are similar to fh,p,uFM ). d+ and d− are the euclidean distances
between positive samples and negative samples, respectively.

Similarly, the cross-entropy loss is also conducted on all
horizontal sliced features. As shown in Fig. 1, a classifier that
predicts identity labels is trained for each horizontal sliced
feature fhFM , and there are H ′ classifiers in the ML module.
The total cross-entropy loss is as follows:

LCE all =
1

NH ′

H′∑
h=1

N∑
n=1

y
(
fhFM

)
log
(
q
(
fhFM

))
, (16)

where N is the number of samples in a mini-batch that equals
to PU , y

(
fhFM

)
and q

(
fhFM

)
denote the ground truth and

predict identity of fhFM , respectively.

E. Joint Loss Functions

Finally, the overall objective consisting of the separate
batch-all triplet loss Eq. (14) and cross-entropy loss Eq. (16)
in ML module, as well as the loss introduced in Sec. III-C
is conducted to optimize the proposed GaitDAN. And the
function Eq. (2) of the proposed GaitDAN can be rewritten
as follows:

min
WGF

L(XL, z,D1:V)=min
WGF

(Ltri all+LCE all−βLD1:V
(XL, z,D1:V))

min
WD1:V

L(XL, z,GF)=min
WD1:V

βLD1:V
(XL, z,GF) ,

(17)
where β denotes the weighted factor.

IV. EXPERIMENTS

In this section, the datasets and implementation details
are first described. Then, the performance of the proposed
GaitDAN will be compared with other state-of-the-art methods
on three gait databases. Finally, a detailed ablation study
will be strictly performed to verify the effectiveness of each
component in the proposed GaitDAN.

A. Datasets

We evaluate the proposed GaitDAN on three commonly
used gait recognition datasets, i.e., CASIA-B [45], OULP [46]
and OUMVLP [47].

CASIA-B is the most widely used gait dataset. It contains
124 subjects with three different variations, including view-
point, clothing and carrying conditions. For each subject, 10
video groups under three walking conditions are collected, i.e.,
6 NM (normal) (indexed as NM#01-06), 2 BG (with a bag)
(indexed as BG#01-02), and 2 CL (with a cloth) (indexed
as CL#01-02). In each video group, 11 videos taken under
11 different views (0◦-180◦with interval 18◦) are included.
Therefore, this dataset contains 124×(6+2+2)×11=13640 se-
quences. For fair comparison, the experiments in this paper
are strictly following the protocol in [1, 15]. The first 74
subjects are used for training and the remaining 50 subjects
are reserved for testing. During the testing phase, the first 4
sequences under NM condition (NM#01-04) are grouped into
the gallery, and the rest sequences NM#05-06, BG#01-02, and
CL#01-02 are used as the probe, respectively.

OULP is a gait dataset with a larger population. It consists
of 4007 subjects with 2 video groups (indexed as #01-02)
per subject. In each video group, 4 videos taken under view
angles (55◦, 65◦, 75◦, 85◦) are available. Taking the same
experimental settings as [13], samples of 3836 subjects are
used for training, and five-fold cross-validation is adopted.
During the test phase, the sequences with index #01 are used
as the gallery, and the remaining sequences with index #02
are used as the probe.

OUMVLP is currently the largest public gait dataset which
contains 10307 subjects (5153 subjects for training and 5154
subjects for testing). Similarly, there are 2 video groups
(indexed as #01-02) per subject with 14 videos taken under
14 different view angles (0◦, 15◦, ... , 90◦; 180◦, 195◦, ...,
270◦). Consistent with the protocol in [1, 15], the sequences
with index #01 of each subject are kept in the gallery and the
rest sequences with index #00 are taken as the probe during
the testing phase.

B. Implementation Details

Common configuration: Gait silhouette sequences are first-
ly pre-processed by the approach mentioned in [1] and each
frame is resized to the size of 64×44. Adam optimizer [48]
is utilized with the momentum of 0.9 and the initial learning
rate of 10−4 . The margin in Eq. (14) is set to 0.2, and the
frame number of each gait sequence for training is set to 30.

Network structures: The extractor in CASIA-B and OULP
is shown in Fig. 2. The basic branch is listed in Tab. I. For the
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HFA branch, the output channel of the CSAA block in each
stage is the same as that of the next stage in the basic branch.
In OUMVLP, three additional 3D convolution layers with the
kernel size of (3, 3, 3) are added into the basic branch at
“Stage 0”, “Stage2” and “Stage 3” to adapt the enlarged data
scale. That is, there are eight 3D convolution layers, and the
output channels are 64, 96, 96, 128, 192, 192, 256 and 256,
respectively. Accordingly, the output channels of the CSAA
blocks in HFA branch are also modified in OUMVLP case.

Parameter settings: The parameters α in GRL and β in
Eq.(17) are set to -0.3 and 0.01 respectively in CASIA-B and
OUMVLP, while set to -0.3 and 0.03 in OULP. The mini-batch
(P, U) is set to (8, 8) for CASIA-B, (32, 4) for OULP and (32,
8) for OUMVLP. Moreover, the iteration is set to 100K, 60K,
210K for CASIA-B, OULP and OUMVLP, respectively, and
the learning rate is decreased to 10−5 after 80K on CASIA-B
while decreased to 10−5, 5 × 10−6 after 150K and 200K on
OUMVLP, respectively.

Testing details: During the test phase, all frames of a gait
sequence are fed into the proposed GaitDAN to generate the
feature representation. Then the distance between gallery and
probe is defined as the average of euclidean distance of all
corresponding horizontal sliced features. Finally, we calculate
the recognition accuracy.

C. Performance Comparison on CASIA-B
To evaluate the performance of GaitDAN under both cross-

view and cross-walking-condition cases, the comparison ex-
periment is conducted on CASIA-B. We compare the per-
formance of GaitDAN with several state-of-the-art methods,
including CNN-LB [49], GaitNet [18], Group-supervised DRL
[16], GaitSet [1], GaitPart [15], MvGAN [5], GaitSlice [50],
MT3D [13], ESNet [14] and GaitGL [12]. Tab. II lists the
average rank-1 accuracy for each probe view on all gallery
views excluding the identical-view cases. It can be observed
that GaitDAN achieves the highest accuracy with the mean
recognition rates of 97.8%, 95.2% and 86.0% under NM,
BG, and CL conditions respectively, which demonstrates the
superiority of GaitDAN. More specifically, there are some
interesting findings can be also analyzed from Tab. II:
• Coherent mining of spatial-temporal information in gait

sequences by the end-to-end adversarial training con-
tributes to superior performance. This is clearly revealed
in Tab. II that compared with GaitNet and Group-
supervised DRL, GaitDAN achieves an average accuracy
improvement of at least 5.5%, 6.3% and 14.5% under
three walking conditions, respectively. Such an improve-
ment fully demonstrates the effectiveness of adversarial
domain adaptation in view-change elimination. In addi-
tion, the design of AVE module embedded with GRLs
enables the entire GaitDAN to be trained in an end-to-end
adversarial manner. This approach effectively alleviates
the limitations of decoupling learning, which results in
the disruption of spatial-temporal information coherence
in gait sequences due to decomposition and synthesis on
single frame images.

• Integrated spatial-temporal feature extraction can also im-
prove the gait recognition performance. Compared with

MT3D and GaitGL, both of which are based on brute
force learning and use 3D convolutions, the performance
of GaitDAN under NM, BG, and CL conditions is 1.1%,
2.2%, and 4.5% higher than that of MT3D, and 0.4%,
0.7%, and 2.4% higher than that of GaitGL. This is a
major improvement over the already high performance,
and demonstrates the superiority of GaitDAN again.
It benefits from the design of the HFA strategy and
AVE module as described above. The HFA strategy
allows for efficient aggregation of general local detail
information and semantic representation from different
network stages, thereby providing more complementary
and comprehensive features, which effectively improves
the discriminability of gait features.

D. Performance Comparison on OULP

To further evaluate the performance of GaitDAN, we con-
tinue to perform the evaluation on OULP, and several state-of-
the-art methods are chosen for comparison, including CNNS
[49], MGAN [51], and MT3D [13]. The detailed comparison
results are listed in Tab. III. As can be seen in Tab. III, the
proposed GaitDAN achieves the highest recognition rate in
all cross-view cases with obvious performance advantages. In
addition, it can be found that as the view difference between
the probe and the gallery becomes larger, there is a significant
degradation in performance. For example, when the view of
the probe is 55◦and the view of the gallery changes from 65◦to
85◦, the performance of MGAN decreases by 21.6% (99.4% to
77.9%). Corresponding to that, the performance degradation of
GaitDAN is only 1.0% ( 99.6% to 98.6%) , indicating that the
proposed GaitDAN can effectively eliminate the view-change
interference and is more robust to view changes.

E. Performance Comparison on OUMVLP

To verify the generalization of GaitDAN on the large
scale database, the evaluation of GaitDAN is completed on
OUMVLP. Tab. IV lists the detailed experimental results of
GaitDAN and other several state-of-the-art methods, including
GEINet [52], GaitSet [1] GaitPart [15], GaitSlice [50], GLN
[31], ESNet [14], GaitGL [12], and GQAN [53]. From the
results in Tab. IV, we can observed that GaitDAN has the
highest recognition rate except for the probe view of 195◦,
210◦and 225◦, and achieves the competitive averaged rank-1
accuracy of 90.2%, which demonstrates the effectiveness of
GaitDAN under the large-scale data scenario.

F. Ablation Study

To verify the effectiveness of each component in proposed
GaitDAN, the detailed ablation studies are performed in the
following parts. All experiments in this section are conducted
on CASIA-B due to the richness of its data types.

1) Incremental evaluation of each component:
To valid the effectiveness of the HFA strategy, AVE module

and ML module, incremental evaluations are conducted on
CASIA-B. The experimental results are presented in Tab. V,
where the backbone consists of the basic branch and feature
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TABLE II
CROSS-VIEW AVERAGE RANK-1 ACCURACIES (%) ON CASIA-B UNDER ALL DIFFERENT PROBE VIEWS EXCLUDING IDENTICAL-VIEW CASES.

Gallery NM#01-04 0◦-180◦ MeanProbe 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

NM#05-06

CNN-LB [49] 82.6 90.3 96.1 94.3 90.1 87.4 89.9 84.0 94.7 91.3 78.5 89.9
GaitNet [18] 93.1 92.6 90.8 92.4 87.6 95.1 94.2 95.8 92.6 90.4 90.2 92.3

Group-supervised DRL [16] 87.9 95.2 97.0 95.1 90.5 88.0 90.9 94.8 96.5 93.7 82.7 92.0
GaitSet [1] 90.8 97.9 99.4 96.9 93.6 91.7 95.0 97.8 98.9 96.8 85.8 95.0

GaitPart [15] 94.1 98.6 99.3 98.5 94.0 92.3 95.9 98.4 99.2 97.8 90.4 96.2
GaitSlice [50] 95.5 99.2 99.6 99.0 94.4 92.5 95.0 98.1 99.7 98.3 92.9 96.7

MT3D [13] 95.7 98.2 99.0 97.5 95.1 93.9 96.1 98.6 99.2 98.2 92.0 96.7
ESNet [14] 95.6 98.6 99.1 97.9 96.7 94.4 96.9 98.7 99.3 98.6 95.1 97.4
GaitGL [12] 96.0 98.3 99.0 97.9 96.9 95.4 97.0 98.9 99.3 98.8 94.0 97.4
PROPOSED 96.6 98.1 99.2 98.1 96.7 95.5 98.0 99.0 99.3 99.1 96.4 97.8

BG#01-02

CNN-LB [49] 64.2 80.6 82.7 76.9 64.8 63.1 68.0 76.9 82.2 75.4 61.3 72.4
GaitNet [18] 88.8 88.7 88.7 94.3 85.4 92.7 91.1 92.6 84.9 84.4 86.7 88.9

Group-supervised DRL [16] 77.9 88.8 91.8 90.1 84.4 79.7 83.5 89.3 92.2 89.5 77.5 85.9
GaitSet [1] 83.8 91.2 91.8 88.8 83.3 81.0 84.1 90.0 92.2 94.4 79.0 87.2

GaitPart [15] 89.1 94.8 96.7 95.1 88.3 94.9 89.0 93.5 96.1 93.8 85.8 91.5
GaitSlice [50] 90.2 96.4 96.1 94.9 89.3 85.0 90.9 94.5 96.3 95.0 88.1 92.4

MT3D [13] 91.0 95.4 97.5 94.2 92.3 86.9 91.2 95.6 97.3 96.4 86.6 93.0
ESNet [14] 92.7 95.9 96.3 94.9 93.2 87.7 90.9 96.2 97.3 96.9 91.7 94.0
GaitGL [12] 92.6 96.6 96.8 95.5 93.5 89.3 92.2 96.5 98.2 96.9 94.5 94.5
PROPOSED 93.1 97.2 97.1 96.1 95.0 91.0 93.4 97.0 98.2 96.9 92.3 95.2

CL#01-02

CNN-LB [49] 37.7 57.2 66.6 61.1 55.2 54.6 55.2 59.1 58.9 48.8 39.4 54.0
GaitNet [18] 50.1 60.7 72.4 72.1 74.6 78.4 70.3 68.2 53.5 44.1 40.8 62.3

Group-supervised DRL [16] 60.9 75.6 81.0 78.1 72.6 67.8 73.0 77.1 76.8 70.0 53.3 71.5
GaitSet [1] 61.4 75.4 80.7 77.3 72.1 70.1 71.5 73.5 73.5 68.4 50.0 70.4

GaitPart [15] 70.7 85.5 86.9 83.3 77.1 72.5 76.9 82.2 83.8 80.2 66.5 78.7
GaitSlice [50] 75.6 87.0 88.9 86.5 80.5 77.5 79.1 84.0 84.8 83.6 70.1 81.6

MT3D [13] 76.0 87.6 89.8 85.0 81.2 75.7 81.0 84.5 85.4 82.2 68.1 81.5
ESNet [14] 75.6 89.2 92.4 90.3 84.3 80.2 83.0 86.3 89.0 83.9 69.8 84.0
GaitGL [12] 76.6 90.0 90.3 87.1 84.5 79.0 84.1 87.0 87.3 84.4 69.5 83.6
PROPOSED 78.2 90.9 93.0 91.4 86.4 79.9 84.7 89.1 91.2 87.6 73.2 86.0

TABLE III
CROSS-VIEW AVERAGE RANK-1 ACCURACIES (%) ON OULP FOR FOUR

VIEWS EXCLUDING IDENTICAL-VIEW CASES.

Probe Method Gallery
55◦ 65◦ 75◦ 85◦ Mean

55◦
CNNS [49] 98.3 96.0 80.5 91.6
MGAN [51] 99.4 96.1 77.9 -
MT3D [13] 99.6 98.1 84.7 94.2
PROPOSED 99.6 99.2 98.6 99.1

65◦
CNNS [49] 96.3 97.3 83.3 92.3
MGAN [51] 97.7 98.5 84.4 -
MT3D [13] 97.8 98.5 84.9 93.7
PROPOSED 99.6 99.5 99.0 99.4

75◦
CNNS [49] 94.2 97.8 85.1 92.4
MGAN [51] 94.8 98.9 86.4 -
MT3D [13] 96.8 99.0 86.1 94.0
PROPOSED 99.2 99.5 99.1 99.3

85◦
CNNS [49] 90.0 96.0 98.4 94.8
MGAN [51] 86.9 97.4 99.5 -
MT3D [13] 96.4 98.4 99.5 98.1
PROPOSED 99.1 99.5 99.7 99.4

mapping head, and is optimized under the separate cross-
entropy loss or triplet loss in the ML module, respectively.
HFA∼ denotes a degenerate version of HFA strategy without
CSAA blocks. In HFA∼, the output of each stage in the basic
branch is simply concatenated along the channel, and the final
output is directly obtained after channel adjustment with bottle
neck layers.

As listed in Tab. V, the completed use of the ML module can
effectively improve the performance of the model. Specifically,
the average accuracy of the backbone+ML model under the

three walking conditions is 0.5% higher than that of the
backbone+Ltri all model and 2.7% higher than that of the
backbone+LCE model, which also illustrates the advantages
of the joint constraint of the separate triple loss and the cross-
entropy loss in ML module. In addition, with the help of HFA,
the performance is boosted considerably, especially under the
most challenging condition (CL) and the average condition.
This is because that HFA can adequately integrate the detailed
visual information extracted from shallow layers and the subtle
spatial-temporal clues from high layers, thereby obtaining
more comprehensive and discriminative gait representations.
The performance gain also suggests that mining specific local
cues in shallow stages of the network is more imporatant for
challenging and complex conditions (e.g. CL). Compared to
simply cascading the general spatial-temporal features using
bottle neck layers (Backbone+ML+HFA∼), the complete HFA
provides a significant performance improvement as it considers
the semantic and distribution differences between different
stage features, which fully validates the rationality of the
HFA’s design. Moreover, the integration of the AVE module
can further improve the recognition accuracy. As indicated
in Tab. V, AVE brings an additional average performance
improvement by 0.6% when used in conjunction with HFA.
This is attributed to AVE, by which the influence of view-
change can be effectively eliminated and thus improve the
robustness of feature representations.

2) Analysis of the internal structure in CSAA block:
As described in Sec. III-B2, the CSAA block is composed of

two learnable parameters σ1, σ2, a cross-stage attention deriva-
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TABLE IV
CROSS-VIEW AVERAGE RANK-1 ACCURACIES (%) ON OUMVLP EXCLUDING IDENTICAL-VIEW CASES.

Gallery 0◦-90◦, 180◦-270◦ MeanProbe 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ 180◦ 195◦ 210◦ 225◦ 240◦ 255◦ 270◦

GEINet [52] 23.2 38.1 48.0 51.8 47.5 48.1 43.8 27.3 37.9 46.8 49.9 45.9 45.7 41.0 42.5
GaitSet [1] 79.3 87.9 90.0 90.1 88.0 88.7 87.7 81.8 86.5 89.0 89.2 87.2 87.6 86.2 87.1

GaitPart [15] 82.6 88.9 90.8 91.0 89.7 89.9 89.5 85.2 88.1 90.0 90.1 89.0 89.0 88.2 88.7
GLN [31] 83.8 90.0 91.0 91.2 90.3 90.0 89.4 85.3 89.1 90.5 90.6 89.6 89.3 88.5 89.2

GaitSlice[50] 84.1 89.0 91.2 91.6 90.6 89.9 89.8 85.7 89.3 90.6 90.7 89.8 89.6 88.5 89.3
ESNet [14] 84.8 89.6 91.0 91.3 90.7 90.4 89.9 88.5 87.5 90.1 90.2 89.4 89.3 88.5 89.4
GaitGL [12] 84.9 90.2 91.1 91.5 91.1 90.8 90.3 88.5 88.6 90.3 90.4 89.6 89.5 88.8 89.7
GQAN [53] 85.0 90.3 91.3 91.4 90.6 90.6 90.1 87.1 89.4 90.5 90.6 90.0 89.8 89.1 89.7
PROPOSED 86.4 90.9 91.3 91.6 91.4 91.1 90.8 89.5 89.3 90.3 90.5 90.0 89.8 89.5 90.2

TABLE V
AVERAGED RANK-1 ACCURACIES (%) OF GAITDAN FOR ABLATION

STUDIES ON CASIA-B.

Methods Accuracy
NM BG CL Mean

Backbone+LCE all 96.0 92.3 77.2 88.5
Backbone+Ltri all 97.0 93.5 81.6 90.7
Backbone+ML 96.9 93.6 83.3 91.2
Backbone+ML+HFA∼ 96.9 94.1 83.7 91.6
Backbone+ML+HFA 97.5 94.5 85.3 92.4
Backbone+ML+HFA+AVE (PROPOSED) 97.8 95.2 86.0 93.0

TABLE VI
AVERAGE RANK-1 ACCURACIES (%) OF THREE DEGRADATION MODELS

ON CASIA-B. (‘W/O’ DENOTES WITHOUT.)

Methods Accuracy
NM BG CL Mean

PROPOSED w/o σ1 and σ2 97.6 94.8 85.3 92.6
PROPOSED w/o Wm 97.5 94.6 84.8 92.3
PROPOSED w/o Wa 97.5 94.3 84.2 92.0
PROPOSED 97.8 95.2 86.0 93.0

tion operation Wm and a cross-stage attention aggregation
operation Wa. To explore their individual roles, we conduct
comparison experiments of GaitDAN and its three degradation
models on CASIA-B, where each of these degradation models
is implemented by deleting one of the above components. The
experimental results are reported in Tab. VI, from which we
can see that the cross-stage attention aggregation operation
shows the biggest contribution among the three components.
However, the absence of either the learnable parameters or the
cross-stage attention derivation operation can lead to certain
performance degradation. It is also well illustrated that the
introduction of learnable parameters, and the utilization of
cross-stage attention derivation with minimal parameters can
indeed contribute to cross-stage feature aggregation. With
them, the semantic and distributional differences between dif-
ferent stage features can be effectively mitigated. Furthermore,
these three components are shown to be complementary, with
the complete CSAA block, the highest results under three
walking conditions can be achieved.

3) Analysis of hyper-parameters:
To evaluate how α and β affect the model learning, we

conduct parameter sensitivity experiments on CASIA-B. From
the results in Fig. 5, we can observe that GaitDAN performs
better when α increases from -1.0 and achieves the best
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Fig. 5. Evaluation of the hyper-parameters α and β on CASIA-B.

TABLE VII
AVERAGE RANK-1 ACCURACIES (%) ON CASIA-B UNDER THE PROBE

VIEW OF 54◦AND 126◦ . (‘W/O’ DENOTES ‘WITHOUT’, ‘M D/I’ DENOTES
THE DECREASE OR INCREASE IN MEAN.)

Probe Methods Experimental settings Accuracy
NM BG CL Mean M D/I

54◦

PROPOSED Complete training set 98.1 96.1 91.4 95.2 ↓1.8w/o samples at 54◦ 98.1 95.5 86.6 93.4

GaitGL Complete training set 97.9 95.9 87.1 93.6 ↓2.2w/o samples at 54◦ 96.4 93.5 84.3 91.4
GaitGL+AVE w/o samples at 54◦ 97.7 94.6 86.1 92.8 ↑1.4

GaitSet Complete training set 97.8 93.4 74.6 88.6 ↓4.5w/o samples at 54◦ 93.7 87.2 71.5 84.1
GaitSet+AVE w/o samples at 54◦ 96.3 90.6 74.2 87.0 ↑2.9

126◦

PROPOSED Complete training set 99.0 97.0 89.1 95.0 ↓1.0w/o samples at 126◦ 98.6 95.4 88.0 94.0

GaitGL Complete training set 98.9 96.5 87.0 94.1 ↓1.5w/o samples at 126◦ 98.5 95.1 84.1 92.6
GaitGL+AVE w/o samples at 126◦ 98.7 95.5 85.6 93.3 ↑0.7

GaitSet Complete training set 98.3 91.7 74.1 88.0 ↓2.5w/o samples at 126◦ 96.4 88.5 71.5 85.5
GaitSet+AVE w/o samples at 126◦ 97.1 90.3 73.5 87.0 ↑1.5

performance when α = −0.3. Moreover, the performance
decreases as α continues to increase. Thus, we set α = −0.3
on CASIA-B. For β, the performance tends to increase and
then decrease as β continues increasing within the range of
[0.005, 0.1]. More concretely, the proposed method reaches the
optimum when β attains to 0.01. Therefore, we set β = 0.01
on CASIA-B. Similarly, for OULP, we set α = −0.3 and
β = 0.03, while for the experiments on OUMVLP, the hyper-
parameters are all set the same as on CASIA-B.

4) Analysis of viewpoint generalization:
To further evaluate the robustness and generalization of

the proposed GaitDAN, an experiment based on CASIA-B is
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(a) (b) (c)

Fig. 6. T-SNE visualization of (a) the original sample features, (b) the features without view-change elimination, and (c) the features after view-change
elimination under three walking conditions on CASIA-B. We visualize 10 identities. Each point represents a sample and each color defines a identity class.

designed where subjects (i.e. people) are different between the
training and testing data. The view angle of the probe gait in
the testing data can be included in or not in the model training.
In the case that the probe gait view is not in the training data, it
can best demonstrate the performance of the proposed method
when dealing with an unknown gait view angle, where the
existing transformation-based methods VTM [28] and CBDP
[10] cannot deal with such situations. This experiment is
carried out twice by using different probe gait view samples,
54 ◦and 126 ◦. For the case of unknown viewpoints, such as
54 ◦, the gait samples under all other known 10 viewpoints
in CASIA-B dataset are used for training, so the proposed
method can learn a model to transform the gait samples from
different viewpoints to view-invariant space during the training
phase. In this way, during the test phase, it is only necessary
to input the gait samples to be recognized (e.g., samples
under 54 ◦) into the model, and then the gait features can
be directly obtained. This allows for the comparison of the
distance between probe and gallery gait samples, enabling gait
recognition to be carried out in various cross-view situations.
For the case of an unknown viewpoint of 126 ◦, the test of
gait samples is similar to the above. The detailed results are
reported in Tab .VII.

From Tab. VII, we can find that when 54◦gait samples
are not included in the training data and the probe view
is 54◦, the average accuracy under three walking conditions
decreases by about 1.8%. More specifically, the performance
degradation is more slight under the NM walking condition, as
NM is somewhat easier compared to BG and CL. Even so, it
also elucidates the comparative advantages of GaitDAN over
previous state-of-the-art approaches, such as GaitSet [1] and
GaitGL [12]. Compared to them, GaitDAN has a more slight
decrease in average accuracy of the three walking conditions,
and still achieves the highest recognition rate under all three
walking conditions when performing cross-view recognition
with the unknown view angle of 54◦. It demonstrates the
strong generalizability of GaitDAN to different viewpoints,
and further illustrates the rationality of the design of the HFA
strategy and the AVE module in GaitDAN. The introduction
of the HFA strategy ensures comprehensive spatial-temporal
feature extraction, while the end-to-end adversarial training
method of the AVE module achieves effective elimination

TABLE VIII
AVERAGE RANK-1 ACCURACIES (%) ON CASIA-B OF GAITSET

AND GAITGL WITH/WITHOT AVE MODULE.

Methods Accuracy
NM BG CL Mean

GaitSet 95.0 87.2 70.4 84.2
GaitSet+AVE 94.9 89.4 73.2 85.8
GaitGL 97.4 84.5 83.6 91.8
GaitGL+AVE 97.3 94.7 85.0 92.3

of viewpoint variations in a simple way, facilitating the full
exploitation of spatial-temporal features by the HFA strategy.
In this way, GaitDAN can be tested under unknown viewpoints
and obtain considerable recognition performance. As listed in
Tab. VII, similar results can also be obtained when the training
data does not contain 126◦gait samples and the view angle of
probe samples is 126◦, which strongly indicates the superiority
of GaitDAN.

Furthermore, we test the performance of other feature ex-
traction methods with our AVE module, i.e., GaitGL+AVE and
GaitSet+AVE. As listed in Table VII, the addition of the AVE
module can effectively reduce the performance degradation
of GaitSet and GaitGL at 54◦and 126◦views, which further
demonstrates the effectiveness of the AVE module.

5) Feature Visualization:
To illustrate the effectiveness of the AVE module to help

extract highly discriminative gait features for the overal-
l model, the t-SNE [54] technique is utilized to visualize
the distributions of different features, including original gait
sample features, and the features before and after view-
change elimination. The visualization is shown in Fig. 6.
It can be observed that the feature distribution after view-
change elimination is more dispersed than that before view-
change elimination. In other words, the inter-class distance
between features is larger. And for some difficult samples, the
intra-class distance is smaller. Therefore, these view-change-
eliminated features are more separable and discriminative,
making them more effective for gait recognition and increasing
the likelihood of correctly identifying difficult samples. The
visualization results further validate the effectiveness of the
AVE module.

6) Analysis of the AVE module:
In addition, to quantitatively evaluate the effectiveness of
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Fig. 7. Average rank-1 accuracies (%) of different training view numbers on
CASIA-B.

TABLE IX
AVERAGE RANK-1 ACCURACIES (%) COMPARISON WITH

SKELETON-BASED METHODS ON CASIA-B.

Methods Accuracy
NM BG CL Mean

GaitGraph2 80.3 71.4 63.8 71.8
GPGait 93.6 80.2 69.3 81.0
PROPOSED 97.8 95.2 86.0 93.0

AVE module, experiments of combining different feature
extraction methods (GaitSet and GaitGL) with AVE module
are carried out to show the performance difference with and
without AVE module. The results are listed in Table VIII. It
can be found that with the AVE module, although there is a
slight decrease under the NM condition, there is a significant
increase under both the BG and CL conditions. Compared to
the original GaitSet and GaitGL, the addition of AVE results
in an improvement of 1.6% and 0.5% in the mean values
of the NM, BG and CL cases, respectively. This once again
demonstrates the effectiveness of the AVE module.

7) Analysis of the impact of the number of viewpoints:
Here we investigate the influence of the number of training

viewpoints on the final performance. For the 11 viewpoints
in the CASIA-B dataset (0◦-180◦with interval 18◦), the pro-
posed GaitDAN was trained by sequentially removing the
gait samples under 1, 3, 5, 7 and 9 training viewpoints.
In other words, we evaluate the cross-view gait recognition
performance when the number of training viewpoints is 2, 4,
6, 8, and 10, respectively. The detailed experimental results
are shown in Fig. 7. From Fig. 7, it can be obversed that
the number of training viewpoints has a significant impact
on the final performance, especially when the number of
training viewpoints is small, the lower the test results. This is
also cinsistent with the expectation because 1) the number of
training samples decreases dramatically, and 2) the number of
samples with unseen viewpoints becomes larger at the testing
phase.

G. Comparison with skeleton-based methods

To further illustrate the validity of our proposed method,
we compared our results with current SOTA human skeleton-
based methods on CASIA-B, including GaitGraph2 [55] and
GPGait [56]. The detailed comparison results are listed in

Tab. IX. It can be found that the proposed method exhibits a
significant advantage over the skeleton-based methods under
the NM, BG and CL walking conditions. Notably, under the
BG and CL conditions, where the walking conditions are more
complex, our method is significantly improved, which once
again demonstrates the superiority of the proposed method
and also reflects the advantages of appearance-based cross-
view gait recognition.

V. CONCLUSION AND FUTURE WORK

In this paper, we address the task of cross-view gait recog-
nition by casting the view-change mitigation as a domain
adaptation problem of narrowing the distribution differences
among view-level sub-domains. On this basis, GaitDAN is pro-
posed to generate discriminate and sub-domain-invariant gait
representations via adversarial domain adaptation. GaitDAN
contains two key components, i.e., a novel feature extractor
with HFA and the AVE module. The feature extractor equipped
with HFA is presented to aggregate the spacial-temporal
features from various stages of the network for discriminative
feature extraction. The AVE module aims to match the dis-
tributions of sub-domains by making them indistinguishable
for view-specific discriminators with GRL. It enables an end-
to-end training of the entire framework. Therefore, the view-
change information can be effectively utilized and eliminated,
and at the same time, spacial-temporal information in gait
sequences can be fully exploited. Experiments conducted on
the three public databases, CASIA-B, OULP and OUMVLP,
also demonstrate the superiority of the proposed method as
well as all its components. In the future work, we intend to
further investigate the differential distributions of sub-domains
(viewpoints). We plan to quantitatively evaluate the differences
among sub-domains and perform dynamic adversarial sub-
domain adaptation for more challenging cross-view gait recog-
nition problems. In addition, we also consider using richer
input modalities such as human posture [57] to further improve
the model’s performance.
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