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Abstract—Gait recognition can be used in person identification
and re-identification by itself or in conjunction with other bio-
metrics. Although gait has both spatial and temporal attributes,
and it has been observed that decoupling spatial feature and
temporal feature can better exploit the gait feature on the fine-
grained level. However, the spatial-temporal correlations of gait
video signals are also lost in the decoupling process. Direct 3D
convolution approaches can retain such correlations, but they
also introduce unnecessary interferences. Instead of common
3D convolution solutions, this paper proposes an integration of
decoupling process into a 3D convolution framework for cross-
view gait recognition. In particular, a novel block consisting of
a Parallel-insight Convolution layer integrated with a Spatial-
Temporal Dual-Attention (STDA) unit is proposed as the basic
block for global spatial-temporal information extraction. Under
the guidance of the STDA unit, this block can well integrate
spatial-temporal information extracted by two decoupled models
and at the same time retain the spatial-temporal correlations. In
addition, a Multi-Scale Salient Feature Extractor is proposed to
further exploit the fine-grained features through context aware-
ness extension of part-based features and adaptively aggregating
the spatial features. Extensive experiments on three popular gait
datasets, namely CASIA-B, OULP and OUMVLP, demonstrate
that the proposed method outperforms state-of-the-art methods.

Index Terms—Gait Recognition, Cross View, Spatial-Temporal
Enhance, Multi-Scale Salient Feature Extraction.

I. INTRODUCTION

COMPARED with traditional biometrics such as finger-
print, iris and face, gait is hard to disguise and has the

advantages of being identified under distant, non-cooperative
or low-resolution scenarios. These characters make it widely
used in many important applications, e.g., crime investigation,
forensic identification, and security systems.
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However, gait recognition, especially cross-view gait recog-
nition that seeks to identify gaits in unknown views, is very
challenging due to external interferences such as clothing,
carrying conditions and camera view changes [1, 2].

There are several potential ways to tackle this problem
and many advanced methods have been proposed for cross-
view gait recognition. In general, existing works fall into
three categories: i) model-based approaches, ii) template-based
approaches, and iii) sequence-based approaches. The methods
in the first category focus on reconstructing the 3D model of a
pedestrian [3–7] so that the motion information under any view
can be obtained in theory and an acceptable performance can
be achieved against view variations. However, these solutions
are vulnerable to the accuracy of pose estimation and the
quality of silhouette sequences. The methods in the second
category often obtain silhouettes using a gait cycle detection
method [8], and aggregate them into a template, e.g., a gait
energy image (GEI) [9–12]. These methods then optimize
the intra-individual distance by learning common subspace
projections across different views [13–17], building deep view
transformation models [18] or using metric learning loss
functions [1, 19–21] without modeling the gait cycle. Com-
pared with model-based methods, template-based methods are
simpler and better in feature representation. However, they
ignore the temporal information contained in gait sequences,
which limits the models’ performance, especially when the
view of input query gait is quite different from that of the
gallery gaits. The methods in the third category take the
original gait silhouette sequences as input and directly extract
features from the sequences to retain necessary temporal
information. Two widely used approaches are 1) decoupled
modeling [2, 22–27], and 2) 3D convolution [1, 28, 29], which
pick up features along the spatial and temporal domains simul-
taneously. Although the cross-view problem is not addressed
explicitly by this category of approaches, effective spatial-
temporal feature extraction shows encouraging accuracy on
cross-view recognition tasks. Nonetheless, both 1) and 2)
have limitations. Decoupled modeling usually uses different
processes to extract spatial and temporal features, which
overlooks the explicit correlation information across spatial
and temporal domains. Even though direct 3D convolution
can solve the correlation problem between the two domains,
it will inevitably introduce external interference from spatial-
temporal changes. Such changes could be caused by variations
in clothing or carrying bags when pedestrians are walking.

In this paper, we propose a novel 3D CNN-based frame-
work, called Enhanced Spatial-Temporal Salience Extraction
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Network (ESNet). This model can fully exploit the inte-
gration effectiveness of individual decoupled spatial feature,
temporal feature, and the common joint spatial-temporal in-
formation through 3D convolution pipelines, so that better
spatial-temporal gait representations can be achieved and the
model’s performance under various walking conditions can
be improved. As shown in Fig. 1, ESNet consists of initial
layers and two well-designed components, i.e., the Dual-
Attention Guided Feature Extractor (DAGFE) and Multi-Scale
Salient Feature Extractor (MSSFE). Specifically, DAGFE is a
special stacked CNN which has multiple specially designed
blocks and takes shallow spatial-temporal features as input.
Each block in DAGFE can extract information for both joint
spatial-temporal and individual spatial/temporal domain in
parallel, and then all the information is combined in an
intuitive but effective way. Thus, we can extract higher-quality
global spatial-temporal features without losing the correlations
between two domains. Subsequently, MSSFE is proposed for
fine-grained feature mining from the global spatial-temporal
features, which can further improve the feature representation
capability of the ESNet. More specifically, we make the
following three major contributions:
• In DAGFE, we propose a novel spatial-temporal extrac-

tion layer, called the Parallel-insight Convolution (Pi-
Conv) layer, to realize the synergy of direct 3D convolu-
tion and decoupled modeling. The core idea is to enable
parallel convolutions to perceive and extract different
domains’ information.

• In DAGFE, we design a simple yet effective attention
unit, namely the STDA unit. It is the first specifically
designed attention method for silhouette sequence-based
gait recognition. Using an attention approach, the STDA
unit can adaptively adjust the output of the Pi-Conv layer
and achieve a better integration of direct 3D convolution
and decoupled modeling.

• We propose MSSFE to acquire salient and compact fine-
grained features further. Instead of performing horizontal
slicing on the global spatial-temporal feature directly to
get part-based features, MSSFE expands the context-
aware scope of each part to capture the relationship
between adjacent parts and aggregate the spatial feature
adaptively, which more efficiently facilitates the robust
part-based feature learning.

The rest of this paper is organized as follows. Section II
briefly introduces the related work. Section III explains the
proposed ESNet in detail. In Section IV, the training and
testing phases with the ESNet are introduced. Meanwhile,
the experimental validation and performance evaluation of the
ESNet are presented. Section V concludes the entire paper.

II. RELATED WORK

In this section, we discuss related works on (1) sequence-
based gait recognition by taking decoupled modeling of
temporal and spatial domains and simultaneous extraction
of spatial-temporal information using 3D convolution into
account, (2) the 3D CNN-based framework, and also (3) the
attention mechanism, wherein the latter two inspired us to
propose the ESNet.

A. Sequence-based Gait Recognition

Sequence-based gait recognition methods [1, 2, 22–29] take
the original gait sequences as input, and this paper also be-
longs to it. Recently, sequence-based spatial-temporal feature
extraction is popular in gait recognition [30–32]. Sequence-
based gait recognition mainly refers to the decoupled modeling
and simultaneous modeling with 3D convolution.

The decoupled modeling of spatial and temporal informa-
tion often first extracts frame-level features and then applies
temporal models to encode the information along the time axis.
For instance, after extracting the spatial feature of each frame,
Zhang et al. [2] used an LSTM-based attention network to fuse
the features in the time dimension, Fan et al. [23] proposed
a Micro-motion Capture Module for local short-range time
modeling, and Li et al. [27] designed the Residual Frame
Attention Mechanism to acquire and highlight critical frames
of sequences and then aggregated temporal features using max
aggregation. Similarly, Chao et al. [22], Han et al. [26] and
Qin et al. [24] used a statistical function for temporal modeling
after frame-level feature extraction. And Zhang et al. [33]
extracted temporal and spatial features by two separate pro-
cesses through disentangled representation learning. Although
these methods have exhibited encouraging performance, the
decoupled modeling strategy ignores the synergy of spatial-
temporal information and loses the correlations between the
spatial and temporal domains.

Using 3D convolution is the other spatial-temporal fea-
ture extraction method. Wolf et al. [28] proposed a 3D
convolution network for gait recognition. Lin et al. [29]
proposed a Multiple-Temporal-Scale 3D (MT3D) network
to extract spatial-temporal information on multiple temporal
scales. Since the 3D convolution can extract both the spa-
tial and temporal information simultaneously and preserve
the correlations between the two domains, [28] and MT3D
achieved performance improvements. However, common 3D
convolution will inevitably introduce external spatial-temporal
interference information, e.g., spatial-temporal changes caused
by variations in clothing or carrying.

Different from previous works which decouple spatial-
temporal feature extraction into two processes [2, 22–27], or
use direct 3D convolution [1, 28, 29], the proposed method
aims to integrate individual decoupled spatial feature, temporal
feature, and the common joint spatial-temporal information
through 3D convolution pipelines.

B. 3D CNN-based Framework

The 3D CNN-based framework has the spatial-temporal
modeling capability, which can effectively enhance the model
performance for video-based tasks [34, 35]. The proposal
of C3D [36] and its success in action recognition attracted
the attention of researchers and promoted the application of
3D CNN-based frameworks in various computer vision tasks
[35, 37, 38]. However, a 3D CNN-based framework built
with standard single 3D convolution may not achieve superior
performance. In response, Carreira et al. [39] proposed an
I3D network with a two-stream architecture, which achieves
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Fig. 1. The framework of the Enhanced Spatial-Temporal Salience Extraction Network. Our framework consists of initial layers and two well-designed
components, i.e., the Dual-Attention Guided Feature Extractor (DAGFE) and Multi-Scale Salient Feature Extractor (MSSFE). 1) Initial layers are introduced
to obtain shallow spatial-temporal features. 2) DAGFE is designed for global high-quality spatial-temporal extraction, which contains three tandem residual
blocks, and each block is composed of an STDA unit and a Pi-Conv layer. In particular, there is a pooling layer after the first block, which is omitted in
this figure. 3) MSSFE is utilized to acquire salient fine-grained gait features. Multi-Scale Salience Descriptor (MSSD) and Multi-Scale Salience Aggregator
(MSSA) are two components in the MSSFE, where MSSD contains multiple parameter-shared Multi-Scale Conv1ds. The final gait representation is the output
after separate fully connected mapping of the fine-grained gait features.

more significant performance improvement than C3D by ad-
justing the network structure and increasing the network width.
Unfortunately, although I3D has exhibited exciting results on
several benchmark datasets, it contains massive parameters.
In this case, problems such as huge resource consumption and
convergence difficulties in the training phase follow.

Many attempts have been made to introduce sparsity into the
network by factorizing the 3D convolution, thereby reducing
parameter redundancy. For example, through decomposing the
3D parameter matrix into 1D and 2D parameter matrix, Tran et
al. [40] proposed a new 3D convolution block named R(2+1)D
to improve model’s performance. Qiu et al. [41] proposed a
Pseudo-3D (P3D) network structure to reduce the parameters
of the model and extract more robust features.

Such network construction methods of decomposing 3D
parameter matrix into low-rank matrices also give us inspi-
ration. Inspired by these two works, we first propose the Pi-
Conv layer, which implements the integration of the direct
3D convolution and the decoupled modeling by controlling
the scope of perceptual domains (temporal, spatial, or spatial-
temporal) of 3D convolution kernels. The details of the Pi-
Conv layer will be introduced in III-B1.

C. Attention Mechanism and Beyond

Attention mechanism aims to focus on key features and
suppressing unnecessary ones. For CNNs, spatial attention and
channel attention are two main types of attention operation.
Hu et al. [42] introduced a SENet architecture and proposed
a squeeze-and-excitation block. SENet is a typical represen-
tative of channel attention, which can adaptively calibrate

the channel-wise features by explicitly modeling the channel
interdependencies. In addition to considering the importance of
different channel pixels like SENet, Woo et al. [43] proposed
a Convolutional Block Attention Module (CBAM) combining
channel attention and spatial attention. Although SENet and
CBAM have been proven useful for various computer vision
tasks [44, 45], limited by the practical receptive field, neithor
of them can effectively capture the large scope information.

Therefore, non-local/global attention exploration began. In
[46], a non-local block is inserted before the encoder-decoder
style attention module to enable attention learning based on
globally refined features. In [47], researchers adopted the non-
local mean idea which computes a weighted summation of the
non-local pixels/features as the refined representation of the
target pixels/features. The weight value connecting every two
positions represents their relationship and is calculated from
the similarity/correlation of the pair.

However, neither the non-local attention mechanism nor
the local attention-based SENet and CBAM are suitable for
silhouette sequence-based gait recognition, since its input are
simple binary image sequences which are lack of color and
texture information. Therefore, the similarity in each pair of
pixel positions does not necessarily show the relevance but
may introduce noise, especially for shallow gait feature maps.
Similarly, the introduction of channel attention will interfere
with the original feature extraction and lead to performance
degradation. Based on the above facts, we propose a novel
local attention structure, i.e., STDA unit. Unlike SENet and
CBAM processing each image without considering critical
information such as temporal properties for videos, the STDA
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unit introduces temporal attention and replaces the original
channel attention, in which case, the critical spatial and
temporal information in input can be activated. The details
of the STDA unit will be introduced in Sec. III-B2.

III. THE PROPOSED METHOD

In this section, we introduce the details of the proposed
ESNet which aims to extract robust and discriminative fine-
grained features from gait silhouettes. We first present the
pipeline of the ESNet, followed by the Dual-Attention Guided
Feature Extractor (DAGFE) and Multi-Scale Salient Feature
Extractor (MSSFE), and also the related loss functions. The
overall framework is illustrated in Fig. 1.

A. Pipeline

As shown in Fig. 1, a gait silhouette sequence containing
t frames XS = {xi |i = 1, 2, ..., t} is fed into the ESNet,
and shallow spatial-temporal features are first obtained through
two initial layers. Second, the Dual-Attention Guided Feature
Extractor (DAGFE), a specially designed 3D convolution net-
work, is utilized to further extract high-quality spatial-temporal
features XF :

XF = DAGFE(Xf ), (1)

where Xf denotes the shallow spatial-temporal features, and
both Xf and XF are five-dimensional tensors, i.e., the batch
size, channels, frames, height and width. DAGFE consists
of several well-designed blocks, and the details of it will
be introduced in Sec. III-B. In this way, the global spatial-
temporal representation of a gait silhouette sequence can be
obtained.

In order to meet the input requirement of the subsequent
module, the Reshape (RS) operation is used to flat the spatial
feature of XF and obtain the output X

′

F . Third, the Multi-
Scale Salient Feature Extractor (MSSFE), aiming at extracting
salient local information and improve the discrimination of
parted-based features, is executed over X

′

F :

SalF = MSSFE(X
′

F ), (2)

where SalF denotes the salient output of MSSFE. Actually,
MSSFE contains two sequential manipulations for input X

′

F :

ZF = MSSD(X
′

F ), (3)

SalF = MSSA(ZF ), (4)

where MSSD represents the Multi-Scale Salience Descriptor,
which can improve the spatial context awareness of each
part and efficiently extract salient part-based features. MSSA
represents the Multi-Scale Salience Aggregator, which is used
to adaptively aggregate the features acquired by MSSD and
obtain compact feature representations. Finally, several sep-
arate FC layers are employed to map the feature vectors to
metric space for the final individual identification.

B. Dual-Attention Guided Feature Extractor

The Dual-Attention Guided Feature Extractor (DAGFE),
aiming at extracting high-quality global spatial-temporal fea-
tures, is composed of three tandem blocks. As shown in Fig.
2(a), each block consists of two main components, a Parallel-
insight Convolution (Pi-Conv) layer and a Spatial-Temporal
Dual-Attention (STDA) unit. In this part, the Pi-Conv layer
and the STDA unit will be described in detail first and followed
by the overall illustration of each block.

1) Pi-Conv layer:
Definition. The Pi-Conv layer is a novel spatial-temporal

feature extraction layer based on 3D convolution, which con-
tains three parallel 3D convolutions with different kernels.
These three parallel 3D convolutions are executed on the input
feature map, separately, and their outputs are added in an
element-wise manner.

Motivation. In order to assemble the decoupled learning of
spatial and temporal features and relation retainment through
3D convolution, the Pi-Conv layer is developed. As shown in
Fig. 2(b), the insight domain of a neuron can be determined
by setting the kernel size in the Pi-Conv layer. The 3D
convolution with the kernel size of k1 × k1 × k1 (left in
Fig. 2(b)) is a regular 3D convolution operation, which can
extract spatial-temporal information simultaneously. The 3D
convolutions with the kernel sizes of k2 × 1 × 1 (middle in
Fig. 2(b)) and 1× k3 × k3 (right in Fig. 2(b)) can realize the
separate feature extraction of the temporal and spatial domains,
respectively. This parallel-insight convolution design ensures
the synergy of spatial-temporal information while extracting
high-quality spatial and temporal features, which makes it
possible to give full play to the advantages of two sequence-
based modeling methods.

Operation. For convenience, the input feature map of the
Pi-Conv layer is expressed as X ∈ RN×C×T×H×W . W1,
W2 and W3 denote the three kernels with the sizes of k1 ×
k1× k1, k2× 1× 1 and 1× k3× k3, respectively. The outputs
of parallel-insight convolutions are added element-wisely as
the final output of the Pi-Conv layer. As shown in Fig. 2(b),
the output YPi−Conv ∈ RN×C×T×H×W of the Pi-Conv layer
can be presented as follows:

YPi−Conv = W1 ∗X+W2 ∗X+W3 ∗X, (5)

where ∗ denotes the convolution operation.
2) STDA unit:
Definition. The STDA unit is a simple yet effective attention

module that is specially designed for silhouette sequence-
based gait recognition. As shown in Fig. 2(c), the STDA unit
consists of two simple attention branches and a few element-
wise arithmetic operations.

Motivation. Effective integration of the decoupled (spatial
and temporal) modeling and the direct 3D convolution can
obtain more robust spatial-temporal features. To this end, the
STDA unit is devised and injected into the head of each block
( Fig. 2(c) is injected into Fig. 2(a)). Considering the binary
silhouette input of gait recognition, we discard the non-local
attention mechanism that computes similarity in each pair
of pixel positions or modeling the channel interdependencies
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Fig. 2. (a): The overall illustration of the proposed block. (b): The detailed
architecture of the Pi-Conv layer. (c): The detailed architecture of the STDA
unit.

explicitly (e.g., CBAM [43] or SENet [42]) since the input
is lack of color and texture. Instead, the STDA unit consists
of two simple branches. The temporal attention branch (left
branch in Fig. 2(c)) explores the correlations between temporal
features, and the spatial attention branch (right branch in
Fig. 2(c)) explores semantically robust features in the spatial
domain. Then the critical spatial and temporal information in
input can be activated by this parallel dual-attention branch
design. By embedding the STDA unit in the head of the Pi-
Conv layer, the STDA unit is expected to adaptively adjust the
spatial-temporal information extracted by the Pi-Conv layer
in such an attention manner, and achieve a better integration
of decoupled spatial and temporal feature extraction and the
direct 3D convolution.

Operation. The detailed architecture of the STDA unit is
shown Fig. 2(c). To obtain the temporal attention weight, the
input feature map X ∈ RN×C×T×H×W is first averaged
across channels to get a global spatial-temporal tensor F ∈
RN×1×T×H×W . Subsequently, the spatial-wise information
of F is aggregated by average pooling operation to obtain
Ft ∈ RN×1×T×1×1, which is then fed to a 3D convolution
layer Kt with kernel size k2 × 1 × 1 corresponding to W2

in the Pi-Conv layer. Finally, the temporal attention score
St ∈ RN×1×T×1×1 can be formulated as

St = Kt ∗ Ft, (6)

Similarly, to obtain the spatial attention weight, the input
tensor is averaged on the channel axis as above to obtain F and
the temporal dimension of F is squeezed by average pooling

to obtain Fs ∈ RN×1×1×H×W . Then a 3D convolution layer
Ks with kernel size 1× k3 × k3 corresponding to W3 in the
Pi-Conv layer is employed. The spatial attention score Ss ∈
RN×1×1×H×W can be formulated as follows:

Ss = Ks ∗ Fs, (7)

In order to take full advantage of spatial-temporal attention,
the attention scores from these two attention branches are
multiplied in an element-wise manner, and is fed into a
sigmoid activation function σ to get the final spatial-temporal
mask M ∈ RN×1×T×H×W , which can be represented as:

M = σ (St � Ss) , (8)

where � denotes the element-wise multiplication.
Then, the final output Ystda ∈ RN×C×T×H×W of the

STDA unit can be interpreted as:

Ystda = X+X�M, (9)

3) Overall illustration of the proposed block:
After injecting the STDA unit, we formulate the proposed

block so as to better illustrate its specific structure. The overall
illustration of the proposed block is shown in Fig. 2(a), the
input feature map is first sent to the STDA unit and then a Pi-
Conv layer is performed over it, finally the residual learning
mechanism is adopted.

Formally, let X ∈ RN×C×T×H×W denote the input of the
proposed block, Ystda ∈ RN×C×T×H×W and YPi−Conv ∈
RN×C×T×H×W denote the output of the STDA unit and the
Pi-Conv layer, respectively. To obtain Yblock, we first feed
X into the STDA unit to get Ystda. Subsequently, Ystda is
sent to three parallel-insight convolutions, respectively, and
the obtained results are added by element-wise, which can be
represented as:

YPi−Conv = W1 ∗Ystda+W2 ∗Ystda+W3 ∗Ystda, (10)

Finally, residual learning is performed with the input:

Yblock = δ (YPi−Conv +W4 ∗X) , (11)

where W4 is a 3D convolution layer with the kernel size of
1×1×1, which is used to match the number of channels. The
notation δ in Eq. (11) denotes the Leaky ReLU activation.

The above is the formulaic description of the proposed
block. The exact structure of DAGFE is listed in Tab. I and
the ablation study of the Pi-Conv layer and STDA unit will
be discussed in Sec. IV-F.

C. Multi-Scale Salient Feature Extractor
The Multi-Scale Salient Feature Extractor (MSSFE) is de-

signed for further salient and discriminative part-based feature
extraction. The detailed structure is shown in Fig. 3. For
the output XF ∈ RN×C×T×H×W of DAGFE, we hope to
mine diverse and robust fine-grained features through different
horizontal parts along the H axis. As mentioned in Sec. III-A,
the Reshape (RS) operation is firstly conducted to flat the
spatial feature of XF so as to meet the input requirement
of MSSFE. The MSSFE can be decomposed into a Multi-
Scale Salience Descriptor (MSSD) and a Multi-Scale Salience
Aggregator (MSSA). Next, the MSSD and MSSA will be
described in detail, respectively.
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Fig. 3. The detailed architecture of the Multi-Scale Salient Feature Extractor (MSSFE). Taking n = 3 as an example and the dilation rates of these three
parallel 1D convolutions are set to 1, 2, 4, respectively. For the convenience of description, the dimension T is omitted before the Global Max Pooling (GMP)
operation.

1) MSSD:
Definition. The MSSD is a new application of the dilation

convolution which contains multiple multi-scale 1D convolu-
tions, namely Multi-Scale Conv1d (as shown in Fig. 3), and
each Multi-Scale Conv1d consists of multiple parallel 1D con-
volutions with different dilation rates. Let n be the number of
pre-defined parallel 1D convolutions and d1, d2, ..., dn denote
the dilation rates for these parallel 1D convolutions, respec-
tively. In particular, the Multi-Scale Conv1d is equivalent to
an ordinary 1D convolution layer when n = 1.

Motivation. Each part of the human body has a dependent
relationship with each other, especially between adjacent parts.
In order to enhance the fine-grained learning of part-based spa-
tial features and avoid losing the relationship between adjacent
parts, MSSD is designed. As shown in Fig. 4, compared to
the direct horizontal splicing of XF , the context-aware scope
of each part is expanded with the dilation rate progressively
increaseing, which makes it possible to capture the relationship
between adjacent parts. Furthermore, parallel 1D convolutions
with multiple different dilation rates enable each part to be
aware of multi-scale contexts. By this means, more diverse
and robust part-based feature representations can be obtained.

Operation. As shown in Fig. 3, the input feature map
X

′

F ∈ RN×C×T×(H×W ) after reshaping is first sliced a-
long the T dimension and each slice is sent to a Multi-
Scale Conv1d, separately. Then regular convolution operations
are performed over each slice. Note that these Multi-Scale
Conv1ds for each slice are parameter shared. After that, the
outputs of each slice are concatenated along the channel. Then
all these slices’ outputs are combined as the whole output
feature maps and reshaped reversely to recover the shape like
XF . Thus, the multi-scale feature descriptor with the shape of
N×nC×T×H×W is generated. Subsequently, a Global Max
Pooling (GMP) operation is applied on the feature descriptor
to get the final multi-scale feature ZF ∈ RN×nC×H×W .

2) MSSA:
Definition. MSSA behaves like a multi-scale salience fea-

ture receptor that can perceive which part-based multi-scale
features are discriminative and need to be retained. It performs
salient feature selection as well as adaptive spatial feature
aggregation for each part.

......

1part

2part

3part

partH

parth 1parth1parth

...... 1d 

parth 1parth1parth

...... 2d 

parth 1parth1parth

...... 4d 

Fig. 4. An illustration of expanding the context-aware scope for each part by
1D convolution with different dilation rates.

Operation. MSSA is composed of a softmax activation,
an element-wise multiplication � and a weighted sum op-
eration ψ, which is analogous to an attention mechanism.
As shown in Fig. 3, the salience-sensitive weight tensor
WF ∈ RN×nC×H×W can be obtained after the softmax
activation operated on the W dimension of ZF . And then, the
salience part-based feature SalF ∈ RN×nC×H is achieved
and represented as follows:

Sal(X) = ψ(WF � ZF ), (12)

WF = Softmax(ZF ), (13)

Compared with common statistical functions, e.g., max and
mean, MSSA can integrate the spatial features of each part
adaptively while preserving the salience of features.

D. Loss Function

Before training the proposed gait recognition model, for
each horizontal slice of SalF shown in Fig. 3, a fully
connected operation is performed and the final feature Y ∈
RN×C

′′
×H is obtained. Then inspired by the success of triplet

loss in person re-identification task [48], we employ the batch
all version of triplet loss and embed it into the proposed
ESNet. In the training stage, a sample triplet consists of an
anchor, a positive example (pos.), and a negative example
(neg.). Specifically, the anchor and positive examples have the
same identity label but are different from the negative example.
To fully exploit fine-grained features, the triplet constraint is

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on September 27,2022 at 14:56:53 UTC from IEEE Xplore.  Restrictions apply. 



1051-8215 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2022.3175959, IEEE
Transactions on Circuits and Systems for Video Technology

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 1, NO. 1, DEC 2021 7

separately imposed on each horizontal slice. The complete
triplet loss is defined as:

Ltri all =
1

Ntri

H∑
h=1

anchor︷ ︸︸ ︷
U∑

u=1

V∑
v=1

pos.︷︸︸︷
V∑

a=1
a6=v

neg.︷ ︸︸ ︷
U∑

b=1
b6=u

V∑
c=1

max {dist+m, 0} ,

(14)
where Ntri is the number of triplets resulting in the non-
zero loss terms; (U, V ) are the number of subjects and the
number of sequences for each subject in a mini-batch, i.e.,
a total of U × V sequences are input into the model and
constitute UV (V − 1) (UV − V ) sample triplets; H is the
scale to slice the features horizontally, which is also the height
of XF ; and m is the margin. In a sample triplet, each example
has H part-based features, we calculate the triplet loss for
each corresponding feature triplet, i.e., H triplet losses are
calculated. Thus, the complexity of the triplet loss in Eq. (14)
is O (HUV (V − 1) (UV − V )), which is H times that of
original batch all version of triplet loss [48]. Although the
complexity is increased, the computational load is reduced to
1/H of the original. Furthermore, this sum of separate triplet
loss functions for the horizontal slicing can facilitate the fully
exploitation of fine-grained features effectively. The dist in
Eq. (14) can be formulated as follows:

dist = d+
(
yhu,v, y

h
u,a

)
− d−

(
yhu,v, y

h
b,c

)
, (15)

where yhu,v denotes the h-th part feature in the v-th gait
sequence of the u-th subject ( yhu,a and yhb,c are similar to yhu,v),
and d+ and d− measure the similarity between positive sample
pairs and negative sample pairs, respectively, e.g., Euclidean
distance.

IV. EXPERIMENTS

Three public datasets have been applied to evaluate the
proposed method, namely CASIA-B [49], OULP [50] and
OVMVLP [51]. In this section, datasets and implementation
details will be described firstly. Then, the performance of the
proposed method will be compared with that of other state-
of-the-art methods. Finally, the detailed ablation studies will
be conducted strictly on CASIA-B to verify the effectiveness
of each component in the proposed method.

A. Datasets

CASIA-B is a widely applied gait dataset with 124 subjects.
Each subject has 110 sequences, and the sequences are collect-
ed under three conditions, i.e., normal (NM) (6 video groups
per subject indexed as NM#01-06), walking with a bag (BG) (2
video groups per subjects indexed as BG#01-02) and wearing
a coat or jacket (CL) (2 video groups per subject indexed
as CL#01-02). Each group is simultaneously taken under 11
different views (0◦-180◦with interval 18◦). Therefore, the gait
dataset contains 124×(6+2+2)×11=13640 sequences in total.
Under 90◦, a subject’s gait sequences under the NM, BG,
and CL conditions are shown in Fig. 5. To evaluate the
performance of the proposed method fairly, we strictly follow
the popular protocol as [19] and [22]. In this paper, the first 74

Fig. 5. Three gait sequences under 90◦ from the CASIA-B dataset. From
top to bottom, these gait sequences are collected under the NM, BG and CL
walking conditions, respectively.

subjects are used for training and the remaining 50 subjects are
reserved for testing with no overlap. During the testing phase,
the first 4 sequences of the NM condition (i.e., NM#01-04) are
grouped into the gallery, and the rest sequences NM#05-06,
BG#01-02, and CL#01-02 are used as the probe, respectively.

OULP is a gait dataset with large population. It is made
up of 4007 subjects including 2135 males and 1872 females
ranging in age from 1 to 94 years and has four view angles
(55◦, 65◦, 75◦, 85◦). Two sequences taken under normal
walking condition are available for each subject, one for
gallery and the other for the probe. Our experimental settings
are consistent with [19]. Thus, a total of 3836 subjects are
used in the subsequent experiments and the five-fold cross-
validation is adopted. At the testing phase, the sequences with
index #01 are used as the gallery while the rest sequences with
index #02 are used as the probe.

OUMVLP is currently the largest public gait dataset avail-
able. It contains 10307 subjects with 14 views per subject
(0◦, 15◦, ... , 90◦; 180◦, 195◦, ... , 270◦) and two sequences
per view (indexed as #00-01). Consistent with its protocols,
we take the sequences from 5,153 subjects for training and
the sequences from the remaining 5,154 subjects for testing.
During the testing phase, the sequences with index #01 for
each subject are kept in the gallery and the rest sequences
with index #00 are taken as the probe.

B. Implementation Details

In all the experiments, the input gait silhouettes are first
pre-processed using the method in [52], and then resized to
64×44. The Adam optimizer [53] with the momentum of
0.9 and the learning rate of 1e-4 is utilized for training the
proposed ESNet. The margin in Eq. (14) is set to 0.2. 1) On
the CASIA-B and OULP datasets, the convolution channels
of initial layers and the three stacked blocks in DAGFE are set
to (32, 32, 64, 128, 128), respectively, and the dilation rates
in MSSFE are set to (1, 2, 4). The exact structure of ESNet
is listed in Tab. I. The number of subjects and the sequences
for each subject in a mini-batch are set to (8, 8) for CASIA-
B and (32, 4) for OULP. We train the model for 100K and
60K iterations on CASIA-B and OULP, respectively. 2) On
the OUMVLP dataset, since it contains almost 20 times more
sequences than CASIA-B, two additional blocks with output
channels set to 256 are stacked into the DAGFE. The batch
size on OUMVLP is set to (32, 8), the iteration number is
set to 250K, and the learning rate is decreased to 1e-5 after
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TABLE I
THE STRUCTURE OF ESNET. (IN MSSFE, TAKING n = 3 AND THE DILATION RATES ARE SET TO 1, 2, 4, RESPECTIVELY.)

Stage Details Output Size
Input T×C×H×W 30×1×64×44

Initial Layers Layer1 Conv3D [1, 3×3×3, 32], stride 1, 1, 1 30×32×64×44
Layer2 Conv3D [32, 3×1×1, 32], stride 3, 1, 1 10×32×64×44

DAGFE

Block1

STDA Conv3D
[

1, 3× 1× 1, 1
1, 1× 3× 3, 1

]
, stride 1, 1, 1

10×64×64×44

Pi-Conv Conv3D

 32, 3× 3× 3, 64
32, 3× 1× 1, 64
32, 1× 3× 3, 64

, stride 1, 1, 1

MaxPool3D [1×2×2], stride 1, 2, 2 10×64×32×22

Block2

STDA Conv3D
[

1, 3× 1× 1, 1
1, 1× 3× 3, 1

]
, stride 1, 1, 1

10×128×32×22

Pi-Conv Conv3D

 64, 3× 3× 3, 128
64, 3× 1× 1, 128
64, 1× 3× 3, 128

, stride 1, 1, 1

Block3

STDA Conv3D
[

1, 3× 1× 1, 1
1, 1× 3× 3, 1

]
, stride 1, 1, 1

10×128×32×22

Pi-Conv Conv3D

 128, 3× 3× 3, 128
128, 3× 1× 1, 128
128, 1× 3× 3, 128

, stride 1, 1, 1

MSSFE
Scale Branch1 Conv1D [128, 3, 128], stride 1, dilation=1

384×32Scale Branch2 Conv1D [128, 3, 128], stride 1, dilation=2
Scale Branch3 Conv1D [128, 3, 128], stride 1, dilation=4

Separate FC For each part, FC [384, 128] 128×32

150K iterations. In the training phase, we randomly select 30
consecutive frames from each gait sequence as input. While in
the testing phase, all silhouette images of each gait sequence
are used to obtain the final representation. Furthermore, rank-1
identification accuracy is adopted to measure the identification
performance in the subsequent experiments.

C. Performance Comparison on CASIA-B
In this section, we evaluate the performance of the proposed

method on the CASIA-B dataset, and several state-of-the-art
methods are chosen for comparison, including GEINet [52],
CNN-LB [1], GaitNet [33], ACL [2], GaitPart [23], GaitSet
[22], MT3D [29], GaitSlice [27] and MvGAN [54]. For a
systematical and comprehensive comparison, the experiments
under all cross-view and cross-walking-condition cases are
conducted. To alleviate the influence of randomness, all experi-
ments in this subsection are conducted five times with different
random seeds, and the mean and standard deviation of the
experimental results are reported. Tab. II lists the average rank-
1 accuracy for each probe view on all gallery views excluding
the identical-view case, and the best record under each probe
view is marked in bold.

As listed in Tab. II, the proposed method achieves the
best performance with the mean recognition rates of 97.4%,
94.0% and 84.0% under the condition of NM, BG and CL,
respectively, which demonstrates the superiority of ESNet.
Furthermore, some interesting experimental phenomena can
be also analyzed from Tab. II:
• Effective extraction of temporal information can improve

recognition rates. Compared with GEINet and CNN-LB, the
methods that take temporal information into account, such

as GaitNet, ACL, GaitSet, GaitPart, GaitSlice, MT3D and
ESNet, have clear performance advantages. This indicates
that fully exploring the spatial-temporal information from
original gait sequences is the key to improving the recognition
performance.

• The temporal-spatial correlation also contributes to su-
perior performances. This phenomenon is clearly revealed in
Tab. II that MT3D and ESNet surpass GaitNet, ACL, GaitSet,
GaitPart and GaitSlice. Moreover, ESNet is superior to MT3D
which also uses 3D convolution. The reason is that the pro-
posed ESNet can obtain more effective spatial-temporal gait
representations by integrating spatial and temporal decoupled
modeling and the direct 3D convolution.

• The proposed ESNet is more robust, i.e., the recog-
nition accuracy of ESNet drops less under more difficult
testing conditions. For example, the mean accuracy of GaitSet
drops by almost 27% when the walking condition changes
from NM (96.1%) to CL (70.3%). Corresponding to that,
the performance degradation of ESNet is only 13.7% (from
97.4% to 84.0%). In the NM scenario, both temporal and
spatial information contribute to gait recognition performance.
However, in the CL scenario, large appearance changes make
temporal characteristics more dominant. Therefore, compared
with direct 3D convolution which may introduce extra interfer-
ence as extracting spatial-temporal information simultaneous-
ly, the proposed block is much more adept at learning high-
quality spatial-temporal gait features. In addition, MSSFE
enables ESNet to capture more discriminative fine-grained gait
features. All of the above enhance the robustness of ESNet to
various walking conditions.
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TABLE II
CROSS-VIEW AVERAGE RANK-1 ACCURACIES (%) ON CASIA-B FOR DIFFERENT PROBE VIEWS EXCLUDING THE IDENTICAL-VIEW CASES.

Gallery NM#1-4 0◦-180◦ MeanProbe 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

NM#5-6

GEINet [52] 40.2 38.9 42.9 45.6 51.2 42.0 53.5 57.6 57.8 51.8 47.7 48.1
CNN-LB [1] 82.6 90.3 96.1 94.3 90.1 87.4 89.9 94.0 94.7 91.3 78.5 89.9
GaitNet [33] 93.1 92.6 90.8 92.4 87.6 95.1 94.2 95.8 92.6 90.4 90.2 92.3
ACL [2] 92.0 98.5 100.0 98.9 95.7 91.5 94.5 97.7 98.4 96.7 91.9 96.0
GaitSet [22] 91.1 99.0 99.9 97.8 95.1 94.5 96.1 98.3 99.2 98.1 88.0 96.1
GaitPart [23] 94.1 98.6 99.3 98.5 94.0 92.3 95.9 98.4 99.2 97.8 90.4 96.2
MvGAN [54] 94.8 99.0 99.7 99.2 96.6 93.7 96.3 98.6 99.2 98.2 92.3 97.1
GaitSlice [27] 95.5 99.2 99.6 99.0 94.4 92.5 95.0 98.1 99.7 98.3 92.9 96.7
MT3D [29] 95.7 98.2 99.0 97.5 95.1 93.9 96.1 98.6 99.2 98.2 92.0 96.7

Ours
95.6 98.6 99.1 97.9 96.7 94.4 96.9 98.7 99.3 98.6 95.1 97.4
± ± ± ± ± ± ± ± ± ± ± ±

0.218 0.050 0.076 0.041 0.119 0.326 0.233 0.218 0.041 0.076 0.292 0.043

BG #1-2

GEINet [52] 34.2 29.3 31.2 35.2 35.2 27.6 35.9 43.5 45.0 39.0 36.8 35.7
CNN-LB [1] 64.2 80.6 82.7 76.9 64.8 63.1 68.0 76.9 82.2 75.4 61.3 72.4
GaitNet [33] 88.8 88.7 88.7 94.3 85.4 92.7 91.1 92.6 84.9 84.4 86.7 88.9
GaitSet [22] 86.7 94.2 95.7 93.4 88.9 85.5 89.0 91.7 94.5 95.9 83.3 90.8
GaitPart [23] 89.1 94.8 96.7 95.1 88.3 84.9 89.0 93.5 96.1 93.8 85.8 91.5
MvGAN [54] 92.4 94.7 97.2 94.6 88.7 83.6 87.8 93.8 96.3 95.2 86.8 91.9
GaitSlice [27] 90.2 96.4 96.1 94.9 89.3 85.0 90.9 94.5 96.3 95.0 88.1 92.4
MT3D [29] 91.0 95.4 97.5 94.2 92.3 86.9 91.2 95.6 97.3 96.4 86.6 93.0

Ours
92.7 95.9 96.3 94.9 93.2 87.7 90.9 96.2 97.3 96.9 91.7 94.0
± ± ± ± ± ± ± ± ± ± ± ±

0.139 0.050 0.050 0.082 0.100 0.100 0.119 0.091 0.076 0.146 0.122 0.026

CL #1-2

GEINet [52] 19.9 20.3 22.5 23.5 26.7 21.3 27.4 28.2 24.2 22.5 21.6 23.5
CNN-LB [1] 37.7 57.2 66.6 61.1 55.2 54.6 55.2 59.1 58.9 48.8 39.4 54.0
GaitNet [33] 50.1 60.7 72.4 72.1 74.6 78.4 70.3 68.2 53.5 44.1 40.8 62.3
GaitSet [22] 59.5 75.0 78.3 74.6 71.4 71.3 70.8 74.1 74.6 69.4 54.1 70.3
GaitPart [23] 70.7 85.5 86.9 83.3 77.1 72.5 76.9 82.2 83.8 80.2 66.5 78.7
MvGAN [54] 70.5 77.9 82.5 82.7 77.4 73.6 73.8 77.8 77.6 72.5 64.8 75.6
GaitSlice [27] 75.6 87.0 88.9 86.5 80.5 77.5 79.1 84.0 84.8 83.6 70.1 81.6
MT3D [29] 76.0 87.6 89.8 85.0 81.2 75.7 81.0 84.5 85.4 82.2 68.1 81.5

Ours
75.6 89.2 92.4 90.3 84.3 80.2 83.0 86.3 89.0 83.9 69.8 84.0
± ± ± ± ± ± ± ± ± ± ± ±

0.887 0.345 0.227 0.802 0.178 1.252 0.761 0.473 0.305 0.536 0.657 0.024

D. Performance Comparison on OULP

To verify the generalization of the proposed method, we
perform the evaluation of ESNet on the OULP dataset and all
experiments are conducted five times using different random
seeds as in Sec. IV-C. The detailed experimental results
of ESNet and several state-of-the-art methods including NN
[50], MGAN [19], CNNS [1] and MT3D [29] for each
view are reported in Tab. III. It can be found that ESNet
achieves the highest accuracy in all cross-view cases with
a clear performance advantage. In the identical view case,
although the proposed method achieves sub-optimal results,
the gap between the results of the proposed method and the
optimal method is no more than 0.2%, which is negligible
compared with the performance improvement in cross-view
cases. Moreover, as can be seen in Tab. III, the accuracy
of CNNS, MGAN and MT3D may drop heavily when the
angle between the probe and the gallery becomes larger.
For example, the recognition rate of the probe and gallery
with angles of (55◦, 85◦) is significantly lower than that of
the probe and gallery with (55◦, 65◦) and (55◦, 75◦). The
same problem also exists when the probe is another view.
Nevertheless, the proposed ESNet can still obtain excellent
recognition performance when the angles of the probe and
gallery are quite different, indicating that ESNet is more robust
to the variable of view and has better generalization ability.

E. Performance Comparison on OUMVLP
To further evaluate the performance of the proposed method,

the evaluation of ESNet is completed on the largest public gait
dataset, i.e., OUMVLP. As in Sec. IV-C, experiments in this
subsection are also performed five times with different random
seeds. Tab. IV lists the comparison results between ESNet
and other five famous methods, including DULE [55], GaitSet
[22], GaitPart [23], GLN [25] and GaitSlice [27]. As listed in
Tab. IV, ESNet achieves the best recognition performance in
most cases, which demonstrates the generalization capability
of ESNet on a large-scale dataset. For some probe sequences,
the corresponding sequences are not available in the gallery
due to the incomplete sample collection for some subjects. If
we exclude the case where there is no corresponding sample
in the gallery, the average rank-1 accuracy of all probe views
can rise to 95.8%.

F. Ablation Study
1) Incremental evaluation of each component:
To validate the effectiveness of the Pi-Conv layer, STDA

unit and MSSFE, we incrementally evaluate each component
on the CASIA-B dataset. It is worth noting that unlike most
gait recognition methods that decouple spatial and tempo-
ral feature extraction into two processes or use direct 3D
convolution to extract spatial-temporal information, the Pi-
Conv layer achieves the integration of both above to extract
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TABLE III
CROSS-VIEW AVERAGE RANK-1 ACCURACIES (%) ON OULP FOR FOUR

VIEWS EXCLUDING THE IDENTICAL-VIEW CASES.

Probe
angle Method Gallery angle Identical

angle55◦ 65◦ 75◦ 85◦ Mean

55◦

NN - - - - 84.7
CNNS 98.3 96.0 80.5 91.6 98.8
MGAN 99.4 96.1 77.9 - 98.8
MT3D 99.6 98.1 84.7 94.2 100

Ours
99.7 99.2 98.7 99.2 99.9
± ± ± ± ±

0.052 0.052 0.000 0.027 0.000

65◦

NN - - - - 86.6
CNNS 96.3 97.3 83.3 92.3 98.9
MGAN 97.7 98.5 84.4 - -
MT3D 97.8 98.5 84.9 93.7 99.9

Ours
99.5 99.5 98.8 99.3 99.8
± ± ± ± ±

0.000 0.000 0.000 0.000 0.052

75◦

NN - - - - 86.9
CNNS 94.2 97.8 85.1 92.4 98.9
MGAN 94.8 98.9 86.4 - -
MT3D 96.8 99.0 86.1 94.0 99.9

Ours
99.0 99.6 99.1 99.2 99.7
± ± ± ± ±

0.064 0.064 0.053 0.032 0.052

85◦

NN - - - - 85.7
CNNS 90.0 96.0 98.4 94.8 98.9
MGAN 86.9 97.4 99.5 - -
MT3D 96.4 98.4 99.5 98.1 99.8

Ours
99.2 99.5 99.8 99.5 99.7
± ± ± ± ±

0.097 0.056 0.052 0.058 0.064

TABLE IV
CROSS-VIEW AVERAGE RANK-1 ACCURACIES (%) ON OUMVLP

EXCLUDING IDENTICAL-VIEW CASES.

Probe Gallery all 14 views
DULE GaitSet GaitPart GLN GaitSlice Ours

0◦ 56.2 81.3 82.6 83.8 84.1 84.8±0.065
15◦ 73.7 88.6 88.9 90.0 89.0 89.6±0.013
30◦ 81.4 90.2 90.8 91.0 91.2 91.0±0.110
45◦ 82.0 90.7 91.0 91.2 91.6 91.3±0.004
60◦ 78.4 88.6 89.7 90.3 90.6 90.7±0.007
75◦ 78.0 89.1 89.9 90.0 89.9 90.4±0.003
90◦ 76.5 88.3 89.5 89.4 89.8 89.9±0.027
180◦ 60.2 83.1 85.2 85.3 85.7 88.5±0.040
195◦ 72.0 87.7 88.1 89.1 89.3 87.5±0.042
210◦ 79.8 89.4 90.0 90.5 90.6 90.1±0.009
225◦ 80.2 89.7 90.1 90.6 90.7 90.2±0.015
240◦ 76.7 87.8 89.0 89.6 89.8 89.4±0.014
255◦ 76.3 88.3 89.1 89.3 89.6 89.3±0.015
270◦ 73.9 86.9 88.2 88.5 88.5 88.5±0.042
Mean 74.7 87.9 88.7 89.2 89.3 89.4±0.022

more comprehensive gait information. The Pi-Conv layer is
composed of three parallel 3D convolutions, i.e., the right two
in Fig. 2(b) implement the decoupled spatial and temporal
feature extraction, and the rest in Fig. 2(b) is the direct 3D
convolution. The detailed experimental results are presented
in Tab. V, where CBAM and SEM denote the Convolution-
al Block Attention Module [43] and Squeeze-and-Excitation
module [42], respectively. From Tab. V, several observations
can be drawn:
• Under three walking conditions, the average accuracy

when using either decoupled extraction or direct 3D convo-
lution is 88.9% and 89.5%, while the average accuracy when

the Pi-Conv layer uses both (group g) is 90.1%. It increases by
1.2% and 0.6%, respectively. With the assistance of the STDA
unit, the improvements are clearer, especially under difficult
testing conditions. For example, under the CL condition, com-
pared with the cases using either decoupled extraction or direct
3D convolution, the combination of the Pi-Conv layer and
the STDA unit (group h) obtains significant improvements of
3.3% and 1.7%, respectively, which powerfully demonstrates
the necessity and effectiveness of the Pi-Conv layer and the
STDA unit.
• As shown in groups (h-j), only the STDA unit that

combines the spatial and temporal attention mechanism can
improve the performance. Especially, both SEM and CBAM
severely reduce the accuracy under all three walking con-
ditions, which means that channel attention is not suitable
for silhouette sequence-based gait recognition. Moreover, an
inappropriate combination of attention may have an additional
negative impact, as the accuracy with CBMA is reduced
again compared to SEM. It fully validates the rationality of
the STDA unit’s design and its applicability for silhouette
sequence-based gait recognition.
• Combined with MSSFE, the recognition accuracy can

be boosted once again. As listed in Tab. V, based on the
joint use of the Pi-Conv layer and the STDA unit (group
h), MEEFS improves the performance under three walking
conditions by 0.9%, 1.2%, and 1.3%, respectively, and makes
the proposed model achieve the best accuracy. This can be
attributed to MSSFE, by which more robust and salient part-
based representations for gait recognition can be obtained.

2) Impact of each branch in the Pi-Conv layer:
As shown in Fig. 2(b), the Pi-Conv layer is composed

of temporal, spatial and direct 3D convolution branches. To
explore the role of each branch, we conduct comparison
experiments of ESNet and its three degradation models on the
CASIA-B dataset, where each of these degradation models
is implemented by using only one branch in the Pi-Conv
layer. The experimental results are shown in Fig. 6, from
which we can see that the direct 3D convolution branch
shows the biggest contribution among the three branches. Al-
though the temporal and spatial branches contribute relatively
weakly compared to the direct 3D convolution branch, they
are both useful because when they are combined with the
direct 3D convolution branch, i.e., the proposed Pi-Conv layer,
our ESNet achieves the best results under all three walking
conditions.

3) Impact of each branch in the STDA unit:
The STDA unit consists of two parallel attention branches,

i.e., the temporal attention branch and the spatial attention
branch as shown in Fig. 2(c). Similarly, to explore the role of
each branch in the STDA unit, we compare ESNet with its
degradation models that implemented with only one attention
branch of the STDA unit. The experiments are conducted on
the CASIA-B dataset and the experimental results are shown in
Fig. 7. It can be observed that the contribution of the spatial
attention branch is slightly better than that of the temporal
attention branch. The combination of these two branches, i.e.,
the proposed STDA unit, can further improve performance,
which also demonstrates the role of the STDA unit.
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TABLE V
AVERAGED RANK-1 ACCURACIES (%) OF ESNET FOR ABLATION STUDIES ON CASIA-B.

Groups Pi-Conv STDA CBAM SEM MSSFE Accuracy
Decoupled Direct 3D NM BG CL Mean

a X 95.8 91.5 79.4 88.9
b X X 95.8 92.0 79.4 89.0
c X X X 96.7 92.6 82.1 90.5
d X 95.8 91.8 81.0 89.5
e X X 96.1 92.3 81.8 90.1
f X X X 96.9 93.2 83.4 91.2
g X X 96.3 92.4 81.6 90.1
h X X X 96.5 92.8 82.7 90.7
i X X X 91.1 83.9 68.1 81.0
j X X X 93.3 87.2 72.6 84.4
k X X X X 97.4 94.0 84.0 91.8
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Fig. 6. The impact of each branch within the Pi-Conv layer on the
performance of the proposed ESNet on CASIA-B.

To further analyze the role of the STDA unit in ESNet,
on the CASIA-B dataset, we visualize the attention scores of
temporal and spatial branches of the STDA unit in Block3.
As shown in Fig. 8, by normalizing the temporal and spatial
attention scores, the heat maps of one subject’s gait sequences
under three different conditions (NM, BG, and CL) are drawn,
where each condition contains 11 different views. It can be
observed that spatial attention can focus on crucial body
regions. By comparing the second, fourth and sixth rows in
Fig. 8, we can find that the temporal attention scores vary
under different walking conditions even for the same view
of the same subject. As the walking condition becomes more
complex, the temporal attention scores become larger. Obvi-
ously, the temporal attention scores of all 11 views in the CL
case are larger than those in the NM case. It strongly indicates
that the STDA unit can indeed adjust the output of the Pi-
Conv layer adaptively under different walking conditions, and
verifies the effectiveness and necessity of the STDA unit again.

4) Impact of multi-scale in MSSFE:
We achieve the robust fine-grained feature learning through

multi-scale feature extraction by using parallel multiple 1D
convolutions with different dilation rates in MSSFE. For
each part, different settings of dilation rates enable them to
have different contextual perception capabilities, and different
multi-scale combinations may have different effects on the
model. Therefore, we conduct experiments of different multi-
scale combinations on the CASIA-B dataset and report the
experimental results in Tab. VI.
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Fig. 7. The impact of each branch within the STDA unit on the performance
of the proposed ESNet on CASIA-B. (T&A and S&A represent the temporal
attention branch and the spatial attention branch, respectively.)

0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180°

Sp
at
ia
l

Te
m
po
ra
l

Sp
at
ia
l

Te
m
po
ra
l

Sp
at
ia
l

Te
m
po
ra
l

NM

CL

BG

Fig. 8. Visualization of attention scores for spatial and temporal branches in
the STDA unit on CASIA-B. The first two rows are heat maps of the spatial
and temporal attention scores for 11 views under the NM walking condition,
the middle two rows are the attention scores under the CL walking condition,
and the last two rows are under the BG walking condition.

From Tab. VI, we can observe that under all three walking
conditions, the accuracy first increases and then decreases as
the number of different scales increases from 1 to 4. When the
combination includes more scales from (1, 2, 4) to (1, 2, 4,
8), a significant decrease in recognition performance occurs,
which indicates that too many combinations of scales would
instead lead to parameter redundancy. Therefore, the number
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TABLE VI
AVERAGED RANK-1 ACCURACIES (%) OF DIFFERENT SCALES SET IN

MSSFE ON CASIA-B.

Groups Different scales
in MSSFE

Accuracy
NM BG CL

a (1) 96.7 92.8 82.4
b (1, 2) 96.8 93.2 83.4
c (1, 4) 97.1 93.6 83.5
d (2, 4) 97.1 93.0 82.2
e (1, 2, 4) 97.4 94.0 84.0
f (1, 2, 8) 96.6 92.7 82.5
g (1, 4, 8) 96.9 93.0 82.8
h (2, 4, 8) 96.9 92.6 82.0
i (1, 2, 4, 8) 96.8 93.0 82.9

TABLE VII
AVERAGED RANK-1 ACCURACIES (%) OF DIFFERENT FEATURE MAP SIZES

INPUT TO MSSFE ON CASIA-B.

Groups Different feature map sizes
input to MSSFE (H×W)

Accuracy
NM BG CL Mean

a (16×11) 96.0 90.7 78.1 88.3
b (32×22) 97.4 94.0 84.0 91.8
c (64×44) 97.1 94.2 85.1 92.1

of different scales is set to 3. Moreover, when the number of
scales is the same, an appropriate combination of scales can
bring performance gain, while expanding the context-aware
scope of each part excessively may be contrary to the purpose
of the STDA unit, resulting in performance degradation. For
example, under the conditions of NM, BG and CL, a multi-
scale combination of (1, 4) has higher accuracy than (1, 2),
while (1, 2, 8) has lower accuracy than (1, 2, 4). In all multi-
scale combinations, when 3 different scales are combined and
set to (1, 2, 4), the proposed model achieves the highest
recognition rates. Thereby, the multi-scale combination of (1,
2, 4) is selected to implement the proposed model.

5) Impact of input feature map size in MSSFE:
To further analyze the influence of the input feature map

size on MSSFE, we fix the multi-scale combination in MSSFE
as (1, 2, 4) and conduct experiments with different input
feature map sizes for MSSFE on the CASIA-B dataset. The
experimental results are listed in Tab. VII, where input feature
map sizes set to (64×44) and (16×11) are implemented by
removing the MaxPool3D layer (listed in Tab. I) after Block1
or adding another MaxPool3D layer after Block2, respectively.
It can be observed that when the scale of the feature maps input
to MSSFE is reduced from (32×22) to (16×11), the mean
accuracy under three walking conditions drops from 91.8% to
88.3%, which shows a significant performance degradation.
When the feature map scale is extended to (64×44), the
average recognition rate under three walking conditions is
92.1%, with a weak improvement but a significant increase in
model training time and GPU occupation. Therefore, balancing
the accuracy and calculation load, we set the scale of the
feature maps input to MSSFE as (32×22).

6) Impact of spatial aggregator in MSSFE:
To verify the effectiveness of the MSSA, we design the

comparison experiment by implementing the proposed frame-
work with different spatial aggregation methods on CASIA-B,
including aggregating with a single statistical function, e.g.,

TABLE VIII
AVERAGED RANK-1 ACCURACIES(%) OF DIFFERENT SPATIAL

AGGREGATORS IN MSSFE ON CASIA-B.

Groups Different spatial
aggregators in MSSFE

Accuracy
NM BG CL

a Max() 96.9 93.3 82.0
b Mean() 96.4 92.6 79.9
c Max()+Mean() 96.7 92.8 82.7
d GCP 96.7 92.8 82.1
e MSSA 97.4 94.0 84.0

Max(), Mean(), and the sum of them, as well as the deforma-
tion of them, e.g., Global contrastive pooling (GCP) [56]. The
comparison results are listed in Tab. VIII. It can be observed
that compared with Mean(), Max() and the sum of Max() and
Mean() have a significant improvement, especially under the
condition of CL. The performance of GCP in this experiment
is normal. What’s exciting is that the MSSA proposed in this
paper achieves the best performance under all three walking
conditions, and has obvious advantages compared with other
four spatial feature aggregation methods.

V. CONCLUSION AND FUTURE WORK

In this work, we present a novel insight that integrating
the extraction of temporal and spatial information separately
in a decoupled manner and the simultaneous extraction of
spatial-temporal information using 3D convolution can yield
better spatial-temporal feature representations of gait. The
proposed ESNet for cross-view gait recognition consists of
the Dual-Attention Guided Feature Extractor (DAGFE) with
stacked well-designed blocks and the Multi-Scale Salient
Feature Extractor (MSSFE). Specially, the proposed block is
a novel residual learning block with a Pi-Conv layer and a
STDA unit, the core of these two components is to enhance
high-quality spatial-temporal feature learning, and MSSFE is
designed for further part-based salient feature extraction. Thus,
discriminative and robust fine-grained feature representations
can be obtained by the ESNet. The experiments on CASIA-B,
OULP and OUMVLP demonstrate that the proposed ESNet
can bring improvement for cross-view gait recognition.

In the future work, we will thoroughly investigate the
influence of view changes on the gait spatial-temporal feature
extraction. To reduce the performance degradation due to
view changes, the explicit modeling of viewpoints will be
considered. In addition, although MSSFE is able to extract
part-based features for fine-grained mining, the contribution of
different part-based features is not considered. Therefore, fully
considering the synergy between different part-based features
and finding a better integration method for them is still the
future work. Moreover, we will explore a unified framework
that integrates gait segmentation [57–60] and recognition for
online applications. For gait segmentation, the combination
of local and global attention algorithms with segmentation
technologies will also be considered, since attention algorithms
can highlight important parts of silhouettes and suppress
unnecessary parts.
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