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Abstract

Out-of-Distribution (OOD) Generalization aims to learn robust models that generalize well
to various environments without fitting to distribution-specific features. Recent studies based
on Lottery Ticket Hypothesis (LTH) address this problem by minimizing the learning target to
find some of the parameters that are critical to the task. However, in OOD problems, such so-
lutions are suboptimal as the learning task contains severe distribution noises, which can mis-
lead the optimization process. Therefore, apart from finding the task-related parameters (i.e.,
invariant parameters), we propose Exploring Variant parameters for Invariant Learning
(EVIL) which also leverages the distribution knowledge to find the parameters that are sen-
sitive to distribution shift (i.e., variant parameters). Once the variant parameters are left out
of invariant learning, a robust subnetwork that is resistant to distribution shift can be found.
Additionally, the parameters that are relatively stable across distributions can be considered
invariant ones to improve invariant learning. By fully exploring both variant and invariant
parameters, our EVIL can effectively identify a robust subnetwork to improve OOD general-
ization. In extensive experiments on integrated testbed: DomainBed, EVIL can effectively and
efficiently enhance many popular methods, such as ERM, IRM, SAM, etc.
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1 Introduction

Figure 1: Comparison of the gradient vari-
ance between the learned subnetwork, i.e.,
invariant parameters, and the pruned pa-
rameters, i.e., variant parameters. The gra-
dient variance is computed through V =
Mean(V ar([gi]

d
i=0)) [1], where gi denotes

the i-th gradient among d distributions, and
V ar(·) and Mean(·) denotes the mathemati-
cal variance and mean, respectively. The results
are from three independent trials.

The strong representation ability of deep neural
networks [2–4] has been one of the vital keys to
the success of deep learning over the past decade.
However, the realistic deployment of neural net-
works is often restricted to the IID assumption
where the training data and test data should be
distributed independently and identically. When
such an assumption is violated, a drastic degra-
dation in learning performance is often observed
which seriously hinders the practical application
of deep models. Therefore, Out-Of-Distribution
(OOD) generalization [5–7] thrives as a promis-
ing direction that aims to enhance model robust-
ness against unknown distribution shifts.

In order to achieve OOD generalization,
one mainstream methodology is invariant learn-
ing [8–11] which enforces extracting invari-
ant features to help make consistent predictions
among various data distributions (or domains),
meanwhile avoiding learning distribution-specific
features that are irrelevant to label information.
Recent advances based on Lottery Ticket Hy-
pothesis (LTH) [12–14] shows that sparse train-
ing optimized by learning task could select some critical parameters as a subnetwork which are
strongly responsible for invariant learning [15–17]. However, in OOD problems, the sparsification
guided by the learning task is problematic, because the distribution noise could be erroneously in-
corporated into the optimization of sparse learning. As a consequence, existing methods fail to
identify a robust subnetwork that is stable across different distributions. Particularly, we follow
Rame et al. [1] by using gradient variance to indicate model sensitivity to distribution shift. Then,
we compare the gradient variance between the subnetwork and the pruned parameters learned
by different methods, as shown in Figure 1. We can see that the subnetwork learned by existing
methods (MRM [16] and SparseIRM [17]) are almost as sensitive as the pruned parameters, which
means that invariant information could not be fully captured.

To overcome this problem, we propose a novel sparse training framework by Exploring Vari-
ant parameters for Invariant Learning (EVIL). Specifically, by following common assumptions that
input data can be decomposed into invariant features and spurious features [18, 19, 16, 20]1, we
can divide the network parameters into two types: invariant parameters that are strongly related
to invariant features, and variant parameters that can mistakenly produce spurious features. In-
tuitively, the invariant parameters and variant parameters are mutually exclusive of each other,
as they are either helpful or harmful to our learning task. In order to correctly identify an ideal
subnetwork for OOD generalization, our EVIL method not only selects invariant parameters based

1Though some works investigate more complex situations where there are multiple factors causing the data gener-
ation process [21, 10, 22], our assumption is more common in OOD generalization.
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on the learning task but also explores variant parameters via discriminating each distribution, i.e.,
classifying the data based on the distribution information. In this way, the connection between
variant parameters and spurious features can be successfully established. By finding those vari-
ant parameters that are strongly activated by the distribution information, we can be sure that
they should not be identified as invariant ones, which provides an alternative and effective way to
improve invariant learning.

Furthermore, to dynamically improve our identification of invariant parameters during the
course of network training, we propose to revisit some parameters that hardly vary when fac-
ing distribution shifts. Concretely, starting from an initialized partition of invariant parameters
and variant ones, we select some variant parameters that show low response to the distribution
information, as they might be critical for learning distribution-invariant features. Hence, such pa-
rameters are recollected as invariant ones to learn from label information. On the other hand, some
invariant parameters that are insensitive to our learning task shall be rejected from sparse train-
ing, as they hardly contribute to invariant learning. Through this dynamic process, we are able to
identify a robust subnetwork that is stable across different distributions. As shown in Figure 1, the
invariant parameters learned by our EVIL method show much smaller gradient variance than the
rest variant parameters, which manifests its effectiveness for capturing the invariant information.

By applying our EVIL framework to many existing OOD generalization methods, we conduct
extensive empirical comparison and analysis to show that EVIL brings promising improvement
with little computation cost. Specifically, when combined with simple ERM, our method achieves
2.4% gains on averaged performance from DomainBed. Furthermore, our EVIL framework can
surpass existing sparse training methods for invariant learning by a large margin in various spar-
sity levels.

To sum up, our contributions are three-fold:

– We propose a novel sparse training framework for OOD generalization which can fully ex-
plore the variant parameters to capture invariant information.

– An iterative strategy is designed to dynamically improve the identification of robust subnet-
works.

– The proposed EVIL framework can be deployed to many popular methods with great ef-
fectiveness and efficiency. Moreover, EVIL effectively surpasses existing sparse invariant
learning methods.

2 Related Work

Invariant learning for OOD generalization seeks to enforce model predictive invariance when
facing distribution shifts [8, 23–25]. Invariant Risk Minimization (IRM) [8] tries to find an optimal
classifier for each data distribution such that the spurious information from each domain is left out.
Then, Distributionally Robust Optimization (DRO) [26–29] proposes to tackle the most challenging
distribution to improve OOD generalization, which is shown effective by using strong regulariza-
tion penalties. Moreover, Sharpness-Aware risk Minimization (SAM) [30] hopes to learn a flat loss
landscape via penalizing the sharpness measurement to improve generalization results [31, 32] and
robustness to label noise [33–35]. Further, Risk Extrapolation (REx) [11] finds out that only focus-
ing on one of the known distributions might not help generalize to unknown distributions. Instead,

3



REx shows it is beneficial to enforce comparable performance among all training distributions via
penalizing risk variance. Additionally, other methods draw insights from causality [36–39] to dis-
entangle the invariant features from spurious ones [40, 10, 18] so that model prediction would not
be significantly affected by distribution shift [41, 42].

Nonetheless, existing invariant learning methods suffer from two major drawbacks. Firstly,
some of them a computationally expensive. For example, SAM requires second-order computation
to manipulate gradient information, and causality-based methods often require training generative
models which is hard to be deployed on large-scale datasets. Secondly, as found out by Gulrajani
et al. [5], most methods have limited performances which are even worse than Empirical Risk
Minimization (ERM)! However, our EVIL can not only avoid redundant optimization on the variant
parameters but also fully capture the invariant feature to achieve superior generalization accuracy.

Sparse training for OOD generalization is first brought out by Morcos et al. [15], which
aims to discover the generalization ability of sparse networks obtained via common initialization
methods. Then, Modular Risk Minimization (MRM) [16] shows that sparse training can possibly
improve the OOD generalization performance compared to the original dense network. However,
MRM is designed in a static way which cannot be optimized along network training, hindering the
sparse learning results. To tackle this issue, Sparse Invariant Risk Minimization (SparseIRM) [17]
proposes to conduct the sparse training process and IRM simultaneously. As a result, its general-
ization performance is further improved compared to MRM.

Despite the improvement of existing sparse methods, they are still suboptimal as the sparse
training could be affected by the noisy gradient from the learning task. Meanwhile, the pruned
parameters are not properly leveraged which would cause non-negligible information loss. For-
tunately, EVIL can fully explore both variant and invariant parameters in a dynamic way. Thus, it
effectively finds an ideal subnetwork that is minimally influenced by distribution shift.

3 A Critical Analysis of Sparse Training with OOD Data

OOD generalization aims to learn an invariant predictior by leveraging multiple distributions of
training data such that the generalization performance on unseen test data distributions. Practi-
cally, we usually have multiple datasets correspondingly drawn from m distributions (also termed
environment), E = {e1, . . . em}, where each distribution e = {(xi, yi)}ni=0 contains n examples
x ∈ X ∈ R with class label y ∈ Y ∈ Rc. Therefore, for each example from distribution e, we can
assign a distribution index d ∈ Rm and denote a data point as (x, y, d). Moreover, we have a test
dataset sampled from unseen distributions Eunseen to evaluate the generalization performance of
our invariant learning. Let fθ : R → RD be a parameterized model with parameters θ ∈ Θ which
extracts feature Z ∈ RM . Our goal is to prune a sparse subnetwork from an overparameterized
model so that variant features can be excluded from making the final prediction. Therefore, OOD
generalization results can be improved.

Data Generation Process. By following the same formulation and problem setting from Zhang
et al. [16], we assume the input variable Xe from environment e is generated from latent variables
Ze = (Ze

inv, Z
e
var). Intuitively, the input Xe indicates the image pixels, while Ze

inv stands for
the feature of the object-of-interest that stays invariant across different environments, and Ze

var

denotes the spurious feature which is introduced by change of environments. Then, the data is
generated through Xe = G(Ze

inv, Z
e
var) where G(·) denotes the data generating function. To
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obtain an OOD-robust model, we hope to extract learning representations Ze which can recover
the invariant feature Ze

inv meanwhile excluding variant feature Ze
var . Such a process is modeled

through Ze = fθ(X
e), where we hope Ze ≈ [Ze

inv,0]. Hence, based on the extracted feature, we
can make predictions through a classification head Ŷ e = h(Ze) and train our model by minimizing
the error between prediction Ŷ e and ground truth label Y e.

The Cause of Data Bias. Based on the data generation process, here we explain why different
distributions contain biases that hinder the generalization result. We consider a simple example
where Ze

inv and Ze
var are multivariate variables with binary elements, i.e., Ze

inv ∈ {−1, 1}Minv

and Ze
var ∈ {−1, 1}Mvar , in which Minv and Mvar denotes the dimension of invariant feature

and spurious feature, respectively. We have class label Y e ∈ {−1, 1} and distribution index D ∈
{−1, 1}. Since the invariant feature stays constant across environments, we assume each element
of Ze

inv is equal to Y e. On the other hand, we assume each element in Ze
var takes a value equal

to Y e with probability pe and −Y e with probability 1 − pe [16]. When pe is large, the spurious
feature would be closely correlated with the class label, hence being unlikely to introduce large
data biases. Conversely, if pe is small, Ze

var can easily introduce noisy signals that might flip the
prediction.

Additionally, we analyze the domain knowledge to provide an opposite perspective, which
is overlooked by previous works [16, 17]. Concretely, the change of distribution index D is the
cause of introducing spurious feature, i.e., D → Ze

var , as described by many proposed causal
structures [40, 43, 44]. Therefore, when given the distribution D, we can find a specific type of
spurious feature. Hence, we assume each element of Ze

var is equal to D. On the other hand, we
consider Ze

inv takes the value of D with probability qe and −D with probability 1 − qe. It has
been commonly assumed that the invariant feature and domain knowledge are independent of
each other [40], thus the probability qe could approximately be 0.5.

The Flaw of Common Sparse Training Strategy Existing studies on sparse invariant learn-
ing [16, 17] have shown that when pruning an overparameterized model, the OOD generalization
performance could be improved substantially. However, we find that the existing pruning strat-
egy that is based on ERM or objectives only related to labels could be suboptimal. Specifically,
we consider the same data setting described above, Ze

inv ∈ {−1, 1}Minv and Ze
var ∈ {−1, 1}Mvar .

The data generating function G is simplified as an identity map [45, 46], thus X = (Ze
inv, Z

e
var).

Suppose the classification model fθ is a linear layer, we have a mask m randomly initialized with
0 − 1 values to prune the parameter θ, and its sparsity ratio is set to R = Mvar

M . Particularly,
we denote the selected invariant parameters as θinv = m ◦ θ and the pruned variant parameters
as θvar = (1 − m) ◦ θ where ◦ is the element-wise production. To ease the calculation, let the
parameter values follow a unit norm, i.e., θ = 1 1√

M
2.

Proposition 1. Consider a biased dataset described above, where Ze
inv ∈ {−1, 1}Minv and Ze

var ∈
{−1, 1}Mvar , let mask m being randomly initialized to 0 − 1 values with sparsity ratio R = Mvar

M ,

2Note that our assumption is more general than that from Zhang et al. [16], in which only two extreme case are
considered: an optimal sparse invariant network only extracts invariant feature and a network completely depending on
spurious feature. Our assumption is practical since it is similar to an initial state where all the parameters are initialized
with unit-norm.
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and assuming Ze is a multivariate variable with independent elements. For common sparse training
strategy that aims to minimize empirical risk Erre = 1

2E(Xe,Y e)∼e

[
1− Y eŶ e

]
, we have:

– Common strategy fails to find invariant parameters, i.e.,mi∈[0,Minv ] is unupdated. When lever-

aging domain knowledge with regularization Errd = 1
2E(X,Y )∼E

[
1−DD̂

]
, the invariant

parameters can be effectively selected with probability at least 1− qe

2 ;

– On an unknown distribution, the performance of the common strategy is highly sensitive to pe:
Erre ≤ O(e−(pe)4) while leveraging domain knowledge achieves tighter error bound when pe

is small: Erre ≤ O(e−(pe)2).

The detailed proof can be found in the Appendix A. As we find out, the pruning strategy is
not sufficient to find an ideal subnetwork that can exclude spurious features meanwhile extract-
ing invariant features. This is because the invariant parameters do not produce any error. As a
result, existing strategy based on connection sensitivity [47], weight value [48], and fisher informa-
tion [49] could be suboptimal when dealing with OOD problems because the gradient information
is not actually related to invariant parameters, but variant parameters. Based on this intuition,
we proposed a simple yet effective strategy that leverages an additional domain knowledge reg-
ularization to explore the invariant parameters. Thanks to such a regularization, the invariant
parameters can be selected because they generate gradients when calculating the distribution reg-
ularization, thus easy to find. Meanwhile, the variant parameters can still be excluded to avoid
learning spurious features. Moreover, based on the error bounds, our method is insensitive to the
spurious correlation 1 − pe compared to the common strategy. In a difficult scenario where pe is
small, our method can still be robust to distribution shift.

4 Methodology

In this section, we introduce our EVIL framework as shown in Figure 2. In the learning flow of
EVIL, there are two procedures: Parameter Exploration in which we propose to not only study
invariant parameters but also explore the variant ones; and Invariant Learning where we train the
identified subnetwork to optimize the invariant parameters.

In the following content, we first introduce our EVIL framework which contains the aforemen-
tioned two procedures. Then, we carefully demonstrate the realization of EVIL using an important
optimization method: SAM [30], which shows great improvement in OOD generalization.

4.1 The Proposed EVIL Framework

In order to get a good initialization, a few steps of pre-training are commonly conducted by min-
imizing a learning objective L(fθ(x)) [50, 51, 48, 15], where fθ is a deep model with parameters
θ ∈ RN . To sparsify the deep model, a binary mask m is often applied through element-wise prod-
uct m ◦ θ. Such a mask m is either learned through optimization [52, 51, 53, 16, 17], or obtained
based on certain criteria, such as connection sensitivity [47], weight value [48], fisher informa-
tion [49], or even random initialization [12, 54]. By setting the sparsity ratio R = 1 − ∥m∥0

|θ| ,
we can decide how many parameters are rejected from sparse training. Then, we start from a
pre-trained model with an initialized mask m.
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Figure 2: Learning flow of EVIL: The blocks in the middle are the training dataset where different
levels of shades denote different classes, and different types of color indicate different data distri-
butions. The blue arrows (→) and gray arrows (→) stand for the information flow that related to
label and distribution, respectively. Moreover, the blue solid lines ( ) and gray dashed lines ( )
that connect neurons are the selected invariant parameters and pruned variant ones, respectively.

Parameter Exploration. In this step, we mainly have two optimization targets:

min
fθinv

⊗h
Linv(h(fθinv

(x)), y), (1)

min
fθvar⊗g

Lvar(g(fθvar(x)), d), (2)

where θinv = m ◦ θ and θvar = (1−m) ◦ θ denote the corresponding invariant parameters and
variant ones divided by the mask m, h and g are two fully-connected layers which map the ex-
tracted features into class label space Rc and distribution index space Rm, respectively. Intuitively,
the objective Linv is the classification task which tries to make predictions based on the label in-
formation, and Lvar tries to discriminate each distribution based on the distribution information,
which is spurious and unwanted.

By minimizing Linv in Eq. 1, the gradient magnitude ∇θinv
Linv [47] can be used to find the

most relevant parameters to our loss function (Note that other aforementioned sparse training
criteria can be used). Similarly, by minimizingLvar in Eq. 2, those parameters with large∇θvarLvar

are sensitive to the spurious information which cannot help produce invariant features. Thus, we
can sort the parameters based on the gradient magnitude to show how much they are activated
by their corresponding objective.

Further, to dynamically improve our sparsification. We propose to update the mask m for
every ∆T iterations by rejecting the least activated invariant parameters, meanwhile calling back
the least activated variant parameters as invariant ones. Specifically, this process is conducted as:

m [ArgTopK(−|∇θinv
Linv|, ∥m∥0S(t, α, T ))] = 0,

m [ArgTopK(−|∇θvarLvar|, ∥m∥0S(t, α, T ))] = 1,
(3)

where ArgTopK(v, k) returns the indices of top-k elements regarding value v, m [·] denotes in-
dexing m. Moreover, to decide how many parameters should be exchanged, we follow Dettmers
& Zettlemoyer [51] to use cosine annealing function S(t, α, T ) = α

2 (1 + cos( tπT )), where t and
T are the current iteration and total iterations, respectively, and hyper-parameter α decides the
largest value. Intuitively, such a cosine annealing function gradually changes from α < 1 to 0.
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Through Eq. 3, the obtained new mask finds the parameters that are less affected by the distribu-
tion information and more related to our learning task than the previous one, further improving
the invariant learning performance.

Algorithm 1 EVIL
Input: Multiple training sets E = {e1, . . . em}; Learning model

fθ ; Cosine annealing function S(t, α, T ), mask m initialized
based on weight value, iteration number of pre-training Tpre.

1: for t ∈ 0, 1, . . . , T − 1 do
2: Optimize via Eq. 1; {Invariant learning}
3: if t > Tpre and t%∆T == 0 then
4: Obtain gradients of θinv and θvar via Eq. 1 and Eq. 2,

respectively; {Parameter exploration}
5: Update the mask m via Eq. 3;
6: end if
7: end for

Invariant Learning. After obtaining the
updated mask m, we then use the invariant pa-
rameters as a subnetwork to conduct invariant
learning, which is generally formed as:

Linv(h(fθinv
(x)), y) = Lce + λLreg, (4)

where the first term is the empirical risk com-
puted through cross-entropy loss, and the sec-
ond term is the invariant learning regulariza-
tion with penalty weight λ which can be real-
ized by many popular methods. For instance, to use IRM [8], we implement the regularization
term as Lreg =

1

mn

∑
x∈E

∥∇h|h=1Lce(h(fθinv
(x)), y)∥2. (5)

To implement REx [11], we penalize the loss variance as

Lreg =
1

mn

∑
x∈E

V ar({Lce(h(fθinv
(x|d)), y)}md=1). (6)

Moreover, we can focus on the worst-case distribution to realize DRO [26, 28]:

Linv = min
θinv

max
e∈E

1

n

∑
x∈e

Lce(h(fθinv
(x)), y). (7)

By combining with existing methods, their performance can be largely improved by EVIL, as
shown in Section 5. The general process of EVIL is summarized in Algorithm 1. For other de-
tailed discussions on invariant learning methods, please refer to the Appendix. Next, we describe
one realization of EVIL by adopting SAM optimizer [30] to further improve the generalization
performance.

5 Experiment

In this section, we conduct extensive experiments to evaluate the performance of our EVIL based
on a well-known testbed for OOD generalization: DomainBed [5]. Specifically, we first describe
the experimental setup. Then, we improve the performance of many popular invariant learning
methods by deploying our EVIL framework, including ERM, IRM [8], REx [11], DRO [26, 28],
SAM [30], CORelation ALignment (CORAL) [55], SWAD [31], and MIRO [56]. Further, we compare
EVIL and its variant EVIL-SAM with other existing sparse invariant learning methods, including
MRM [16], SparseIRM [17] and report the results under different sparsity levels (20%, 40%, 60%,
and 80%). Finally, we perform various analytical experiments to validate the effectiveness and
efficiency of EVIL.

5.1 Experimental Setup

Evaluation Protocol. We follow the experimental setting of DomainBed [5] to evaluation OOD
generalization performance. Specifically, DomainBed contains seven benchmark datasets: CMNIST [8]
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(60,000 images, 10 classes, and 3 domains), RMNIST [57] (60,000 images, 10 classes, and 6 do-
mains), PACS [6] (9,991 images, 7 classes, 4 domains), VLCS [58] (10,729 images, 5 classes, and 4
domains), OfficeHome [59] (15,588 images, 65 classes, and 4 domains), Terra-
Incognita [60] (24,788 images, 10 classes, and 4 domains), DomainNet [61] (586,575 images,
345 classes, and 6 domains), WILDS [62] (a testbed contains various dataset with significant distri-
bution shfit, here we use two typical datasets: iWildCam and FMoW), ImageNet [63] (contain
1000 classes, here we use ImageNet dataset for fine-tuning, and use many of its variant dataset
for OOD evaluation, including: ImageNetV2 [64], ImageNet-R [65], ImageNet-A [66],
ImageNet-Sketch [67], and ObjectNet [68]). The results of WILDS and ImageNet
datasets are shown in the appendix. For each benchmark dataset, we leave one domain out of
the training dataset and use it as an OOD test dataset. In the main paper, we use pre-trained
ResNet-50 [2] as our backbone model and train them for 5,000 iterations on all datasets except
DomainNet, which requires 15,000 iterations to converge. Moreover, in the appendix, we ex-
tend our method to large-scale visual recognition architecture CLIP ViT-B/16 [69], and fine-tune
the base model for OOD evaluation. The test accuracies generated by training models from the last
step are provided. To avoid randomness, we conducted experiments for three independent trials.

Implementation Details. All our experiments are conducted on one single NVIDIA 3090 using
PyTorch. To implement our EVIL framework, we first pre-train the models using ERM for 1,000 it-
erations. Then, a mask m is initialized based on the weight value. Specifically, by setting a sparsity
ratio R, we can select parameters R|θ|-largest weight values by setting their corresponding mask
value as 1. During parameter exploration, we first pass the gradient of invariant learning loss Linv ,
based on which we can sort the invariant parameters with their gradient magnitude from large
to small. Then, we reject the S(t, α, T )-least invariant parameters by setting their corresponding
mask as 0. Similarly, we use the gradient of Lvar to sort the variant parameters and recollect top-
S(t, α, T ) parameters. During invariant learning, we can apply the mask to parameter values as
well as their corresponding gradients to conduct sparse training. Please refer to the Appendix
for other details.

5.2 Improving Invariant Learning Using EVIL

In this section, we deploy our EVIL framework to some well-known invariant learning methods
and compare them with some other typical baseline methods. To conduct a fair comparison, we
only considered end-to-end training on one single model, so some other methods that conduct
model ensembling or averaging [31, 70–72] are not considered. Moreover, we use floating point
operations per second (FLOPs) as a criterion to denote the computational efficiency by denoting
the FLOPs of ERM as 1× (7.8e10). Practically, we set the sparsity ratio R = 60%, hyper-parameter
α = 0.2, and ∆T = 300 to implement EVIL. The results are shown in Table 1. We can see that our
EVIL can effectively improve the performance of all chosen backbone methods. Particularly, on
ERM, DRO, and SAM, EVIL can increase their test accuracies for 2.4%, 1.9%, and 1.9%, respec-
tively. Moreover, EVIL-SAM achieves the best OOD generalization performance among all com-
pared methods. Especially on TerraIncognita dataset, EVIL-SAM can improve the original
performance of SAM for 7.2%, which indicates the effectiveness of EVIL in improving the perfor-
mance of invariant learning. Moreover, compared to the FLOPs of all baseline methods, our EVIL
shows much less computational burden, which manifests the great efficiency of our method.
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Table 1: Comparison between OOD generalization methods and our EVIL realization on some
typical methods. The test accuracies on seven OOD generalization benchmarks from DomainBed
are provided. We highlight the best results and the second best results. The results marked with
† denote some results are from original literature [31].

Algorithm CMNIST RMNIST PACS VLCS OfficeHome TerraInc DomainNet Average FLOPs

I-Mixup† [73] 31.3 97.8 84.6 77.4 68.1 47.9 39.2 63.7 -
MLDG† [74] 36.9 98.0 84.9 77.2 66.8 47.8 41.2 64.6 -
MMD† [75] 42.6 98.1 84.7 77.5 66.4 42.2 23.4 62.1 -
DANN† [76] 29.0 89.1 83.7 78.6 65.9 46.7 38.3 61.6 -
CDANN† [77] 31.1 96.3 82.6 77.5 65.7 45.8 38.3 62.5 -
MTL† [78] 30.4 97.2 84.6 77.2 66.4 45.6 40.6 63.1 -
SagNet† [79] 34.2 96.4 86.3 77.8 68.1 48.6 40.3 64.5 -
ARM† [80] 32.6 98.1 85.1 77.6 64.8 45.5 35.5 62.5 -
RSC† [81] 35.2 96.3 85.2 77.1 65.5 46.6 38.9 63.5 -
Mixstyle† [82] 38.5 97.2 85.2 77.9 60.4 44.0 34.0 62.4 -

ERM† [83] 34.2 98.0 83.3 76.8 67.3 46.2 40.8 63.8 1×
EVIL 39.4 98.4 86.0 78.8 68.2 49.1 43.8 66.2 0.42×

(±1.1) (±0.1) (±0.1) (±0.2) (±0.2) (±0.2) (±0.3) (↑ 2.4)

DRO† [28] 32.2 97.9 84.4 76.7 66.0 43.2 33.3 61.9 1×
EVIL-DRO 34.2 98.2 85.6 77.7 66.4 49.1 35.5 63.8 0.42×

(±1.7) (±0.1) (±0.2) (±0.2) (±0.1) (±0.2) (±0.2) (↑ 1.9)

IRM† [8] 36.3 97.7 83.5 78.6 64.3 47.6 33.9 63.1 1×
EVIL-IRM 39.1 98.3 85.1 78.8 66.4 48.3 36.0 64.6 0.42×

(±2.2) (±0.2) (±0.1) (±0.1) (±0.1) (±0.3) (±0.3) (↑ 1.5)

REx† [11] 39.2 97.3 84.9 78.3 66.4 46.4 33.6 63.7 1×
EVIL-REx 41.2 98.7 86.0 79.1 68.0 48.4 34.5 65.1 0.42×

(±1.3) (±0.1) (±0.1) (±0.2) (±0.2) (±0.3) (±0.1) (↑ 1.4)

CORAL† [55] 29.9 98.1 86.2 78.8 68.7 47.7 41.5 64.4 1×
EVIL-CORAL 34.5 98.6 86.9 79.2 69.0 49.2 42.6 65.7 0.43×

(±1.9) (±0.1) (±0.2) (±0.1) (±0.1) (±0.2) (±0.3) (↑ 1.3)

SWAD [31] 38.3 98.1 88.1 79.1 70.6 50.0 46.5 67.2 1×
EVIL-SWAD 38.7 98.3 88.3 79.3 71.7 51.2 46.9 67.7 0.43×

(±2.3) (±0.3) (±0.1) (±0.1) (±0.2) (±0.3) (±0.2) (↑ 0.5)

MIRO [56] 39.4 97.5 85.4 79.0 70.5 50.4 44.3 66.6 1×
EVIL-MIRO 40.2 98.6 85.8 79.4 71.2 50.9 45.0 67.3 0.45×

(±2.3) (±0.3) (±0.1) (±0.1) (±0.2) (±0.3) (±0.2) (↑ 0.7)

SAM [30] 38.5 98.1 85.8 79.4 69.6 43.3 44.3 65.6 2×
EVIL-SAM 40.4 98.8 87.8 80.1 70.3 50.5 45.0 67.5 0.89×

(±2.3) (±0.3) (±0.1) (±0.1) (±0.2) (±0.3) (±0.2) (↑ 1.9)
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5.3 Comparing EVIL to Sparse Invariant Learning

Furthermore, to show that our method finds a more robust subnetwork for OOD generalization, we
compare EVIL with two existing sparse invariant learning methods. Specifically, to validate the ef-
fectiveness of our method under different levels of sparsity, we vary to sparsity ratio as 20%, 40%,
60%, and 80%. The experimental results are shown in Table 2. Generally, we can see that our EVIL
and EVIL-SAM surpass both MRM and SparseIRM in almost all scenarios. Moreover, among all
sparsity levels, both EVIL and the other two methods achieve the best results under sparsity 60%.
Specifically, EVIL-SAM shows the best performance under sparsity 60% on almost all datasets, and
it surpasses the second-best opponent for 2.8% on averaged accuracy. Besides, EVIL implementa-
tion with just ERM can also improve the second-best methods for 1.5% on the averaged results. As
for the computational efficiency, our EVIL is comparable to other sparse training methods, except
EVIL-SAM which requires an extra backward to compute the parameter perturbation. Therefore,
by exploring the variant parameters, our method can successfully achieve superior OOD general-
ization performance with comparable efficiency to the sparse invariant learning methods.

Table 2: Comparison between existing sparse invariant learning methods and EVIL varying spar-
sity levels. The test accuracies on seven OOD generalization benchmarks from DomainBed are
provided. We highlight the best results and the second best results.

R Algorithm CMNIST RMNIST PACS VLCS OfficeHome TerraInc DomainNet Average FLOPs

20%

MRM [16] 31.5 89.3 78.3 70.0 63.6 42.7 37.9 59.0 0.82×
SparseIRM [17] 31.5 92.2 80.8 71.2 63.7 43.0 39.6 60.3 0.81×
EVIL 34.1 95.8 82.2 73.7 66.3 45.3 41.9 62.7 0.82×

(±1.7) (±0.1) (±0.2) (±0.2) (±0.2) (±0.3) (±0.2)

EVIL-SAM 35.2 96.3 83.6 74.0 65.6 45.3 42.6 63.2 1.62×
(±2.3) (±0.2) (±0.2) (±0.2) (±0.2) (±0.1) (±0.1)

40%

MRM [16] 36.2 95.8 81.9 73.5 63.1 45.6 40.4 62.3 0.62×
SparseIRM [17] 35.7 96.4 82.5 74.2 66.8 47.8 42.6 63.7 0.62×
EVIL 38.9 97.3 84.7 75.3 66.4 47.1 44.0 64.8 0.62×

(±1.6) (±0.2) (±0.1) (±0.2) (±0.1) (±0.1) (±0.1)

EVIL-SAM 38.8 97.9 84.8 77.4 66.9 48.1 45.2 65.6 1.33×
(±2.4) (±0.3) (±0.3) (±0.2) (±0.1) (±0.2) (±0.2)

60%

MRM [16] 38.2 97.6 83.6 76.8 66.5 46.7 40.3 64.2 0.41×
SparseIRM [17] 37.9 97.9 84.9 77.3 65.1 48.8 42.0 64.8 0.42×
EVIL 39.4 98.4 86.0 78.8 68.2 49.1 43.8 66.3 0.42×

(±1.4) (±0.2) (±0.1) (±0.2) (±0.2) (±0.2) (±0.3)

EVIL-SAM 40.4 98.8 87.8 80.1 70.3 50.5 45.0 67.6 0.89×
(±2.2) (±0.1) (±0.1) (±0.1) (±0.2) (±0.1) (±0.2)

80%

MRM [16] 37.7 96.3 80.3 72.0 61.2 42.7 35.4 60.8 0.21×
SparseIRM [17] 37.8 97.2 82.9 71.6 62.4 43.8 36.2 61.7 0.21×
EVIL 38.5 98.1 84.7 74.1 64.3 46.4 40.1 63.7 0.21×

(±1.3) (±0.2) (±0.0) (±0.2) (±0.2) (±0.1) (±0.0)

EVIL-SAM 38.9 98.3 87.8 76.8 65.7 47.6 42.7 65.4 0.57×
(±1.2) (±0.3) (±0.2) (±0.2) (±0.2) (±0.1) (±0.3)

11



(a) (b)

Figure 3: (a) Comparison of EVIL and RigL which leverages the label information to explore the
variant parameters. (b) Comparison of different mask initialization strategies.

5.4 Performance Analysis

In this section, we conduct extensive empirical analyses to exploit why EVIL can achieve effective
results. First, we conduct ablation studies to show the effect of leveraging distribution knowledge
and the influence of choosing different mask initialization strategies. Then, we conduct parameter
sensitivity analysis on the hyper-parameter α and ∆T . Further, we show compare EVIL-SAM
and SAM by visualizing their sharpness during training. Finally, we show the Hessian spectra to
explain why EVIL can achieve good generalization results.

Ablation Study. To validate the effectiveness of exploring variant parameters using distribution
knowledge, we change the optimization target Lvar(g(fθvar(x)), d) in Eq. 2 to Lce(h(fθvar(x)), y)
which leverages the label information instead. As a result, the changed variant is actually Rigging
the Lottery (RigL) [48] which is an effective sparse training method. By comparing EVIL and RigL
on DomainBed as shown in Figure 3 (a), we can see that EVIL surpasses RigL in all scenarios. There-
fore, we can conclude that exploring variant parameters by using the distribution information is
essential for OOD generalization. Moreover, to show the influence of choosing different mask ini-
tialization strategies as mentioned in Section 4.1, we compare the weight value (as done in our
method) with Fisher information [49], connection sensitivity [47], and random initialization [12]
and show the result in Figure 3 (b). As we can see, the Fisher information and weight value are two
better strategies than connection sensitivity and random initialization, which supports our choice
of using weight value.

Figure 4: Parameter sensitivity analysis on α and ∆T .
Figure 5: Sharpness comparison of EVIL-
SAM and SAM.
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Parameter Sensitivity Analysis. To analyze the different choices of α and ∆T , we set α to
0.1, 0.2, and 0.3 and vary ∆T as 1, 100, 200, 300, 400, and 500. As shown in Figure 4, choosing α as
0.2, and ∆T as 300 is the best. Moreover, lower α would hinder the dynamic update of the mask,
and high α would cause incorporating noises, thus both choices lead to a performance drop. On
the other hand, ∆T controls the updating frequency. Both too small ∆T and too large ∆T would
correspondingly cause insufficient update and redundant update, further leading to degradation.

ERM

EVIL 𝜆1 = 16.7

𝜆1/𝜆5 = 1.2

𝜆1 = 19.1

𝜆1/𝜆5 = 1.87

Figure 6: Hessian Spectrum of EVIL and ERM.

Sharpness Analysis. To show how our
EVIL affects SAM during OOD generalization,
we visualize the sharpness obtained from the
training process in Figure 5. As a result, our
EVIL-SAM can produce smaller sharpness dur-
ing training than SAM, which indicates that
EVIL-SAM is more robust than SAM in OOD
generalization problems.

Hessian Spectra. To analyze whether an al-
gorithm can converge to a flat minima, the
Hessian spectrum is commonly used as a cri-
terion [84]. Specifically, we follow Foret et
al. [30] to use the ratio of dominant eigenvalue
to fifth largest eigenvalue, i.e., λ1/λ5 as the
criterion for comparing EVIL and ERM. Gen-
erally, a smaller λ1/λ5 often means a flatter
minima is found. Thus, we follow Ghorbani et
al. [84] by using the Lanczos algorithm to approximate the Hessian spectrums of ERM and EVIL in
Figure 6. As we can see the λ1/λ5 of EVIL is much smaller than that of ERM, which confirms that
our method can converge to a flatter minima than ERM. Moreover, as the dominant eigenvalue λ1

is also an important measurement, we can see that EVIL produces smaller λ1 than ERM as well,
which again supports the effectiveness of EVIL. Therefore, it is reasonable that EVIL can achieve
great generalization results.

6 Conclusion

In this paper, we aim to address the problem that existing sparse invariant learning methods fail
to fully capture invariant information in OOD generalization problems, owing to the misleading
influence of distribution shifts. Therefore, we propose EVIL by leveraging the distribution knowl-
edge to explore the variant parameters. By finding the variant parameters that are highly sensitive
to distribution shift, we can identify a robust subnetwork that effectively extracts invariant fea-
tures. Moreover, we propose to improve our identification dynamically during network training.
As a result, our EVIL framework can effectively and efficiently improve the OOD generalization
performance of many invariant learning methods, meanwhile surpassing all compared sparse in-
variant learning methods. Exhaustive analyses are conducted to comprehensively validate the
performance of EVIL.

13



Appendix

In this Appendix, we first provide detailed proof of our proposition in Section 3. Then, we
provide extra implementation details. Finally, we conduct additional experiments regarding extra
invariant learning methods, detailed analysis on SAM optimizer [85], various network architec-
tures such as the most sophisticated visual recognition model CLIP ViT-B/16 [69], and large-scale
datasets including WILDS [62] and ImageNet [63].

A Proof of Proposition 1

First, by applying the selected invariant parameters, we can have the label prediction Ŷ e =
sgn(θ⊤invZ

e) = sgn((m ◦ θ)⊤Ze) where sgn(·) returns the sign of input value. Further, we have:
(m ◦ θ)⊤Ze =

1√
M

m⊤Ze (8)

=
√
M

1

M

[
mi∈[0,Minv ],mi∈[Minv ,M ]

]⊤
[Ze

inv, Z
e
var]

=
√
M

[
1

Minv
m⊤

i∈[0,Minv ]
Ze
inv +

1

Mvar
m⊤

i∈[Minv ,M ]Z
e
var

]
. (9)

Then the error produced by the current sparse network for a given environment is:

Erre =
1

2
E(Xe,Y e)∼e

[
1− Y eŶ e

]
=

1

2

[
1− Ee

[
Y eŶ e

]]
. (10)

Here we simplify the expectation on samples from distribution e as Ee.

Ee
[
Y eŶ e

]
= Ee

[
sgn(

1

M
m⊤Ze)Y e

]
=

∑
y∈{−1,1}

P [Y e = y]Ee

[
sgn(

1

M
m⊤Ze) | Y e = y

]
y. (11)
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[
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1

M
m⊤Ze) | Y e = 1

]
= P

[
1

M
m⊤Ze > 0 | Y e = 1

]
− P

[
1

M
m⊤Ze ≤ 0 | Y e = 1

]
= 2P

[
1

M
m⊤Ze > 0 | Y e = 1

]
− 1. (12)

Similar to Zhang et al. [16], we observe thatP
[

1
Mm⊤Ze ≤ 0 | Y e = 1

]
= P

[
1
Mm⊤Ze > 0 | Y e = −1

]
,

and plug Eq. 12 into Eq. 11 to get:

Erre = P
[
1

M
m⊤Ze ≤ 0 | Y e = 1

]
. (13)
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Similar to Eq. 9, we further decompose Eq. 13:

Erre = P
[

1

Minv
m⊤

i∈[0,Minv ]
Ze
inv +

1

Mvar
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i∈[Minv ,M ]Z
e
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]
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]
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[
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e
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]
.

(14)

Since all elements in Ze
inv are equal to Y e, the first term equals 0, thus the equality also holds.

Then, we have:

Erre = P
[

1

Mvar
m⊤

i∈[Minv ,M ]Z
e
var ≤ 0 | Y e = 1

]
. (15)

Here we assume each element of Ze and m are independent with each other, we can have Erre =
P
[
miZ

e
var,i ≤ 0 | Y e = 1

]
. It is obvious that there is only one situation when the error occurs, i.e.,

mi = 1 and Ze
var,i ≤ 0. Only in this scenario, the sparse training strategy would update the mask

to value 0. Therefore, P [mi = 0] = 1− pe. For other cases where P
[
Ze
var,i > 0

]
= pe, the value

of each mi is randomly initialized and stays intact since there is no error, hence, P [mi = 0] =
P [mi = 1] = pe

2 . So, for i ∈ [Minv,M ], P [mi = 0] = 1− pe

2 and P [mi = 1] = pe

2 .
To further bound the error, we denote [mZe]var =

1
Mvar

m⊤
i∈[Minv ,M ]Z

e
var , and have:

Erre = P
[
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E
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]
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e
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]
− 1

= (pe)2 − 1. (17)

Therefore, Erre ≤ 2e−2((pe)2−1)2Mvar = O(e−(pe)4). In contrast to the idealized bound that
achieves 0 error in Zhang et al. [16], when θ is initialized with the unit norm and given a small
pe, the error could be considerably large. This is because the error produced by the variant pa-
rameters is largely decided by the probability pe, which could further affect the pruning process.
Based on such an intuition, we propose to enhance the pruning strategy by adding an additional
regularization that leverages domain knowledge.

Specifically, the regularization considers the errors from distinguishing different distributions
using variant parameters:

Errd =
1

2
E(X,Y )∼E

[
1−DD̂

]
=

1

2

[
1− E

[
DD̂

]]
,

where D̂ = sgn(θ⊤varZ
e) = sgn(((1−m) ◦ θ)⊤Ze). (18)
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Similar to Eq. 13, we can have:

Errd = P
[
1

M
(1−m)⊤Ze ≤ 0 | D = 1
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Since all elements in Ze
var equal to D, we can have:
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]
. (20)

Therefore, for i ∈ [0,Minv], P [mi = 1] = 1 − qe

2 and P [mi = 0] = qe

2 . As a result, the regu-
larization can complement the mask by finding the invariant parameters with at least probability
1 − qe

2 . Moreover, based on a given sparsity ratio R = Mvar
M , i.e., only Minv elements from Ze

would be selected by m, the erroneous mask that produces classification error can be further con-
strained from being too much. Particularly, from P [mi = 1] = 1− qe

2 , i ∈ [0,Minv], we can have
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2
)Minv

Mvar
= qeMinv
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2 which is calculated based
on random initialization. Hence, we can again bound the classification error as:
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Erre ≤ P
[
|[mZe]var − E

[
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]
| ≥ E

[
[mZe]var

]
| Y e = 1

]
≤ 2e−2(

qeMinv
Mvar

pe−1)2Mvar = O(e−(pe)2) (22)

B Additional Implementation Details

h g

invariant 

parameters

variant 

parameters

Adam_1 Adam_2

Figure 7: Illustra-
tion of our optimiz-
ers.

We have demonstrated the implementation process of our EVIL method,
here we provided other details such as the optimization method, hyper-
parameters, and the specific experimental setting for each empirical analysis.

To optimize our model, we use Adam [86] optimizer with an initial learn-
ing rate 1e−3 without weight decay. Moreover, to avoid the conflict between
optimizing invariant parameters and variant parameters, we adopt two Adam
optimizers, denoted as Adam1 and Adam2, to correspondingly include the
invariant parameters and variant parameters. Moreover, Adam1 would in-
clude the class prediction head h and Adam2 would include the distribution
prediction head g, as illustrated in Figure 7. During the training, Adam1 is
mainly used to optimize the invariant parameters, but Adam2 is just em-
ployed to compute the gradient of variant parameters.

For implementing baseline methods, we mainly follow [5] to set the
hyper-parameters. Specifically, for DRO, we set η as 1e − 2 to update the
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group importance. For IRM, we set λ = 1e2 to trade off the invariant regularizer. The similar λ
for penalization from REx is set to 1e1. For CORAL and MMD, set the trade-off weight γ as 1.
For implementing SagNet, we set the weight for adversarial loss as 0.1. For SAM, we do not use
Adaptive SAM [87] and set the perturbation magnitude ρ as 0.05.

In the experiments from the main paper, we conducted different experimental settings. Partic-
ularly, in Section 5.2, we set the sparsity ratio R = 60%, hyper-parameter α = 0.2, and ∆T = 300
to implement EVIL. In Section 5.3, we keep other hyper-parameters the same but vary the sparsity
ratio to evaluate the performance of EVIL under different levels of sparsity. Further, in Section 5.4,
we keep the same experimental setting as Section 5.2 except for the parameter sensitivity analysis
section, where we carefully tuned the values of α and ∆T to show their effect on the learning
performance.

C Additional Experimental Results

C.1 Performance on Additional Invariant Learning Methods

Figure 8: Results on additional invariant
learning methods.

Method MMD SagNet Mixstyle ARM

w/o EVIL 84.7 86.3 85.2 85.1
with EVIL 85.3 87.1 86.5 86.6

(±0.1) (±0.2) (±0.2) (±0.2)

We have discussed several invariant learning meth-
ods in the main paper, here we conduct extra exper-
iments on PACS dataset using additional invariant
learning methods to show how EVIL affects their
OOD generalization results. Moreover, we conduct
experiments using different network architectures
to show the effect of EVIL on various learning mod-
els.

Concretely, as we have provided results of IRM, REx, DRO, CORAL, and SAM in the main paper,
here we implement EVIL using backbone methods including MMD, SagNet, Mixstyle, and ARM.
The results on PACS dataset are shown in Table 8. We can see that our method can still improve
the OOD generalization performance which is consistent with the observation in the main paper.
Therefore, the proposed EVIL framework is generally effective among various invariant learning
methods, which shows great deployment practicality of EVIL.

C.2 Performance on Additional ResNet Architectures

Moreover, to evaluate the effectiveness of EVIL on different backbone models, we implement the
Wide ResNet (WRN) [88] with varied depths (20, 32, 44, 56, and 110) and train each model from
scratch for 500,000 steps to ensure convergence. We also show the result of using ResNet50 pre-
trained on ImageNet (Note that due to the pre-training, the performance on ResNet50 would be
much better than training from scratch). The comparison between ERM and EVIL is shown in
Table 3. Again, we can observe the superiority of EVIL over the baseline method ERM on all
investigated architectures. Therefore, we can conclude that the performance improvement brought
by EVIL is model-agnostic.
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Table 3: Results on various model architectures. ResNet50 is pre-trained on ImageNet, and other
models are trained from scratch.

Arch. ResNet50 WRN-20 WRN-32 WRN-44 WRN-56 WRN-110

ERM 84.2 35.6 39.2 41.0 44.6 48.9
EVIL 86.0 37.3 42.5 43.7 47.2 51.4

(±0.1) (±0.2) (±0.3) (±0.3) (±0.2) (±0.3)

Table 4: Comparison of SAM [30] and ERM under both ID and OOD situations on DomainBed.

PACS VLCS OfficeHome TerraInc DomainNet Average

ID
ERM 96.6 84.7 78.9 91.3 81.4 86.5
SAM 97.1 86.8 82.0 93.1 85.2 88.8

OOD
ERM 85.5 77.5 66.5 46.1 40.9 63.3
SAM 85.8 79.4 69.6 43.3 44.3 64.5

C.3 Optimizing EVIL Using SAM

In this section, we first briefly describe the realization of EVIL optimized by SAM for OOD gener-
alization (EVIL-SAM). Then, despite of orthogonality of flatness and OOD generalization as found
before [31, 70], we discuss some properties of SAM and demonstrate why combining EVIL and
SAM can achieve great performance.

Realization of EVIL-SAM. Generally, our EVIL can be optimized using SAM by minimizing
the following objectives:

min
θinv

max
∥ϵ◦m∥2≤ρ

L(θinv + ϵ ◦m;x, y). (23)

Specifically, SAM seeks to compute an optimal parameter perturbation ϵ∗ = argmaxϵ L(θ +
ϵ;x, y) within ρ-radius neighbor that can maximally increase the loss value L. By applying ϵ∗,
the loss change L(θ + ϵ∗;x, y) − L(θ;x, y) is denoted as sharpness which indicates the flatness
of the learned loss function. Intuitively, a flatter loss function often shows better generalization
properties, as a slight shift imposed in the input space would not significantly change the loss value.
Therefore, SAM has achieved promising in-distribution (ID) generalization performance [89, 90, 87,
91, 92]. To adopt SAM into EVIL, we just need to apply our mask m to the parameter perturbation
ϵ before computing the optimal ϵ∗. This process not only leaves out spurious information but also
reduces the computational burden of SAM. As a result, SAM-EVIL can achieve low sharpness for
invariant learning.

Discussion. Although SAM has achieved promising ID results, its OOD performance is quite
limited [31, 70] which is still unexplained. As shown in Table 4, in the ID scenario, SAM shows
great effectiveness compared to ERM, but it merely achieves comparable results to ERM in the OOD
setting, even worse in some scenarios. In our perspective, the limitation of SAM is caused by erro-
neously perturbing the variant parameters which encourages fitting to spurious features. Specifi-
cally, in OOD problems, the invariant features and spurious ones would activate θinv and θvar , re-
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Table 5: Comparison of EVIL-SAM with other baseline methods on five datasets from DomainNet.

Method PACS VLCS OfficeHome TerraInc DomainNet Avg.

SagNet-SAM 86.4 78.5 69.2 49.3 40.0 64.6
CORAL-SAM 86.6 79.0 69.3 47.9 42.1 65.0
MRM-SAM 83.9 77.1 67.0 47.4 40.6 63.2
SparseIRM-SAM 85.2 77.4 65.6 48.5 43.1 63.9
EVIL-SAM 87.8 80.1 70.3 50.5 45.0 66.7

spectively. Enforcing robustness (i.e., low sharpness) against perturbation on θinv can enhance ex-
tracting invariant features. However, by perturbing θvar , low sharpness L(θ+ϵ∗;x, y)−L(θ;x, y)
denotes encouraging the spurious features to bond with the label information. Therefore, SAM
cannot extract invariant features as it is sensitive to spurious ones, thus damaging the OOD gen-
eralization results. Fortunately, our EVIL can perfectly solve this problem by filtering out the
variant parameters which is strongly related to distribution noise. Thus SAM can be further lever-
aged to enhance the robustness of extracting invariant features. The effectiveness and efficiency
of EVIL-SAM are demonstrated in Section 5.

Compare with Other Methods using SAM optimization. To further validate our realization
that combining EVIL with SAM indeed shows a positive effect, we compare EVIL-SAM to other
algorithms as shown in Table 5. We observe that EVIL-SAM achieves the best result among both
dense and sparse methods with a significant margin, therefore we can justify our improvement on
SAM as more effective than other methods.

SAM
𝜆1=16.2

𝜆1/𝜆5=3.4

EVIL-SAM
𝜆1=14.3

𝜆1/𝜆5=2.3

Figure 9: Hessian spectra of SAM and EVIL-SAM.

REx
𝜆1=17.9

𝜆1/𝜆5=3.08

EVIL-REx
𝜆1=16.2

𝜆1/𝜆5=2.0

Figure 10: Hessian spectra of REx and EVIL-REx.

More Hessian Spectra on SAM and REx. Since the proposed method shows effective general-
ization performance, as we have demonstrated in Section 5.4, we further validate that the proposed
EVIL framework can still help produce improved Hessian spectra when compared to other meth-
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ImageNet iWildCam FMoW
Methods ID OOD ID OOD ID OOD

Zeroshot 68.3 ±0.0 58.7 ±0.0 8.7 ±0.0 11.0 ±0.0 20.4 ±0.0 18.7 ±0.0
Finetuning 82.5 ±0.1 61.3 ±0.1 48.1 ±0.5 35.0 ±0.5 68.5 ±0.1 39.2 ±0.7

EVIL 81.8 ±0.2 62.5 ±0.6 47.6 ±0.8 37.4±1.2 68.2 ±0.6 41.2 ±1.3

Table 6: Performance on ImageNet, iWildCam, and FMoW using CLIP ViT-B/16 as backbone.

ods such as SAM and REx. As shown in Figs. 9 and 10, We observe the same phenomenon as in
the main paper: when combined with EVIL, the largest eigenvalue of both SAM and REx is smaller
than its original ones, and the Hessian spectra are more compact when using our EVIL framework.
Therefore, we can again conclude that EVIL indeed helps produce flat minima.

C.4 Performance on Large-Scale Architecture and Datasets

In this section, we adopt pretrained CLIP ViT-B/16 [69] and conduct finetuning on training datasets
from iWildCam, FMoW, and ImageNet, and further test the OOD generalization performance on
the split OOD datasets. To extend our sparse training strategy into the CLIP model, we employ
a linear layer on top of the ViT backbone and conduct the same pruning strategy by leveraging
both class information and domain information. For all datasets, we set the finetuning epoch as 20
and keep the rest of the training parameters the same as described before. The results are shown
in Table 6, we can see that although EVIL shows a slight performance drop on ID datasets, which
is reasonable since we use fewer parameters than full finetuning, our method achieves the best
OOD performance on all three datasets. Specifically, there are 1.2%, 2.4%, and 2.0% performance
gains on ImageNet, iWildCam, and FMoW datasets, respectively. Therefore, the effectiveness and
superiority of the proposed EVIL method can be successfully extended to large-scale architectures
and datasets.
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